51
|
Flament-Simon SC, de Toro M, Mora A, García V, García-Meniño I, Díaz-Jiménez D, Herrera A, Blanco J. Whole Genome Sequencing and Characteristics of mcr-1-Harboring Plasmids of Porcine Escherichia coli Isolates Belonging to the High-Risk Clone O25b:H4-ST131 Clade B. Front Microbiol 2020; 11:387. [PMID: 32265859 PMCID: PMC7105644 DOI: 10.3389/fmicb.2020.00387] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine Escherichia coli ST131 isolates are scarcely documented. Here, whole genome sequencing and core genome (CG) and plasmidome analysis of seven isolates collected from diarrheic piglets and four from pork meat were performed. All of the 11 ST131 isolates belonged to serotype O25b:H4 and clade B and showed fimH22 allele or mutational derivatives. The 11 porcine isolates possessed virulence traits that classified the isolates as avian pathogenic, uropathogenic, and extraintestinal pathogenic E. coli–like (APEC-, UPEC-, and ExPEC-like) and constituted virotype D. The CG was performed for all porcine isolates in addition to 73 ST131 reference isolates from different origins. Within clade B, the CG showed nine subclusters, allowing us to describe five new subclades (B6, B6-like, B7, B8, and B9). There was an association between subclade B6, PST43, virotype D2, and food origin, whereas subclade B7 included PST9 isolates with virotype D5 from diarrheic piglets (p = 0.007). The distance between human and porcine isolates from subclades B6 and B7 had an average of 20 and 15 SNP/Mb, respectively. [F2:A-:B1]-IncF, ColE1-like, and IncX plasmids were the most prevalent. Besides, IncF plasmids harbored a ColV region frequent among APEC isolates. Antimicrobial resistance genes conferring resistance to penicillin, tetracycline, quinolones, and colistin were the most common. The mcr-1.1 gene was detected in 5 of 11 porcine isolates, integrated into the chromosome of one isolate and into plasmids in the remainder isolates (two MOBH11/IncHI2-ST4, one MOBP3/IncX4, and one MOBF12/IncF [F2:A-:B1] supposedly cointegrated with an IncHI2). The surrounding environments of the mcr-1 cassette showed variability. However, there were conserved structures within the same plasmid family. In conclusion, CG analysis defined five new subclades. The ST131 porcine isolates belonged to new subclades B6 and B7. Moreover, porcine and clinical human isolates were strongly related. The 11 porcine ST131 isolates harbored a wide variety of plasmids, virulence, and resistance genes. Furthermore, epidemic plasmids IncX4 and IncHI2 are responsible for the acquisition of mcr-1.1 gene. We hypothesize that the APEC-IncF plasmid acquired the mcr-1.1 gene via cointegrating an IncHI2 plasmid, which is worrying due to combination of virulence and resistance attributes in a single mobile genetic element.
Collapse
Affiliation(s)
- Saskia-Camille Flament-Simon
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CBIR), Logroño, Spain
| | - Azucena Mora
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Vanesa García
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Isidro García-Meniño
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Dafne Díaz-Jiménez
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Alexandra Herrera
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jorge Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| |
Collapse
|
52
|
Shen Y, Zhang R, Schwarz S, Wu C, Shen J, Walsh TR, Wang Y. Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes. Environ Microbiol 2020; 22:2469-2484. [PMID: 32114703 DOI: 10.1111/1462-2920.14961] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
Colistin resistance has attracted substantial attention after colistin was considered as a last-resort drug for the treatment of infections caused by carbapenem-resistant and/or multidrug-resistant (MDR) Gram-negative bacteria in clinical settings. However, with the discovery of highly mobile colistin resistance (mcr) genes, colistin resistance has become an increasingly urgent issue worldwide. Despite many reviews, which summarized the prevalence, mechanisms, and structures of these genes in bacteria of human and animal origin, studies on the prevalence of mobile colistin resistance genes in aquaculture and their transmission between animals and humans remain scarce. Herein, we review recent reports on the prevalence of colistin resistance genes in animals, especially wildlife and aquaculture, and their possibility of transmission to humans via the food chain. This review also gives some insights into the routine surveillance, changing policy and replacement of polymyxins by polymyxin derivatives, molecular inhibitors, and traditional Chinese medicine to tackle colistin resistance.
Collapse
Affiliation(s)
- Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, 310009, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Timothy R Walsh
- Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park Hospital, Cardiff, CF14 4XN, UK
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
53
|
Wang C, Feng Y, Liu L, Wei L, Kang M, Zong Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg Microbes Infect 2020; 9:508-516. [PMID: 32116151 PMCID: PMC7067168 DOI: 10.1080/22221751.2020.1732231] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mobile colistin resistance (mcr) genes represent an emerging challenge. Here we describe a novel mcr gene, mcr-10, on an IncFIA plasmid of an Enterobacter roggenkampii clinical strain. mcr-10 has the highest nucleotide identity (79.69%) with mcr-9 and encodes MCR-10 with 82.93% amino acids identical to MCR-9. mcr-10 confers 4-fold increase in colistin MIC (from 1 to 4 mg/L) when cloned into a colistin-susceptible E. roggenkampii strain. By screening GenBank, mcr-10 was found in various Enterobacteriaceae species of countries in four continents, suggesting that this gene has widely spread. MCR-10 shows 79.04% to 83.67% amino acid identity and highly conserved predicted protein structures with chromosomally encoded MCR-like phosphoethanolamine transferases (designated MCR-B here) of various Buttiauxella species. MCR-10, MCR-9 and MCR-B proteins may, therefore, originate from a common ancestor. mcr-10 was adjacent to a site-specific recombinase-encoding gene and was bracketed by IS903 and may be mobilized by site-specific recombination or composite transposon. Our results indicate that mcr-10 is a novel plasmid-borne colistin resistance gene and warrants immediate monitoring and further studies.
Collapse
Affiliation(s)
- Chengcheng Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, People's Republic of China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, People's Republic of China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lina Liu
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Mei Kang
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, People's Republic of China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
54
|
Occurrence and Characteristics of Mobile Colistin Resistance ( mcr) Gene-Containing Isolates from the Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031028. [PMID: 32041167 PMCID: PMC7036836 DOI: 10.3390/ijerph17031028] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
Abstract
The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1–3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB.
Collapse
|
55
|
Ricci V, Zhang D, Teale C, Piddock LJV. The O-Antigen Epitope Governs Susceptibility to Colistin in Salmonella enterica. mBio 2020; 11:e02831-19. [PMID: 31992619 PMCID: PMC6989106 DOI: 10.1128/mbio.02831-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Group D and group B Salmonella enterica serovars differ in their susceptibility to colistin with the former frequently intrinsically resistant (MIC > 2 μg/ml); however, the mechanism has not been described. Here, we show that the O-antigen epitope in group D Salmonella governs the levels of colistin susceptibility. Substitution of the rfbJ gene in a group B Salmonella with the rfbSE genes from a group D Salmonella conferred a decrease in susceptibility to colistin. The presence of dideoxyhexose, abequose, and the deoxymannose, tyvelose, differentiate the Salmonella group B and group D O antigens, respectively. We hypothesize that the subtle difference between abequose and tyvelose hinders the colistin molecule from reaching its target. Whole-genome sequencing also revealed that increased colistin susceptibility in a group D Salmonella veterinary isolate was due to a defect in the O-antigen polymerase protein, Rfc. This study shows that two different mechanisms that influence the presence and composition of O antigens affect colistin susceptibility in Salmonella entericaIMPORTANCE Some serovars of Salmonella, namely, those belonging to group D, appear to show a degree of intrinsic resistance to colistin. This observed intrinsic colistin resistance is of concern since this last-resort drug might no longer be effective for treating severe human infections with the most common Salmonella serovar, Salmonella enterica serovar Enteritidis. Here, we show that the O-antigen epitope in group D Salmonella governs the levels of colistin susceptibility. Using whole-genome sequencing, we also revealed that increased colistin susceptibility in a group D Salmonella veterinary isolate was due to a defect in the O-antigen polymerase protein, Rfc. In summary, we show that two different mechanisms that influence the presence and composition of O antigens affect colistin susceptibility in Salmonella enterica.
Collapse
Affiliation(s)
- Vito Ricci
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Dexian Zhang
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Christopher Teale
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey, United Kingdom
| | - Laura J V Piddock
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
56
|
Haque M, Shampa S. Colistin resistance and rapid spread colistin resistance gene: A significant public health challenge worldwide. ADVANCES IN HUMAN BIOLOGY 2020. [DOI: 10.4103/aihb.aihb_94_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
57
|
Al-Kadmy IMS, Ibrahim SA, Al-Saryi N, Aziz SN, Besinis A, Hetta HF. Prevalence of Genes Involved in Colistin Resistance in Acinetobacter baumannii: First Report from Iraq. Microb Drug Resist 2019; 26:616-622. [PMID: 31816255 DOI: 10.1089/mdr.2019.0243] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background and Aim: Colistin is increasingly being used as a "last-line" therapy to treat infections caused by multidrug-resistant (MDR) Acinetobacter baumannii isolates, when essentially no other options are available in these days. The aim of this study was to detect genes associated with colistin resistance in A. baumannii. Methods: One hundred twenty-one isolates of A. baumannii were collected from clinical and environmental samples during 2016 to 2018 in Baghdad. Isolates were diagnosed as A. baumannii by using morphological tests, Vitek-2 system, 16SrRNA PCR amplification, and sequencing. Antibiotic susceptibility test was carried out using disk diffusion method. Phenotypic detection of colistin resistance was performed by CHROMagar™ COL-APSE medium and broth microdilution method for the determination of the minimal inhibitory concentration. Molecular detection of genes responsible for colistin resistance in A. baumannii was performed by PCR. Results: Ninety-two (76%) of the 121 A. baumannii isolates were colistin resistant. Twenty-six (21.5%) of the 121 isolates showed positive growth on CHROMagar Acinetobacter base for MDR. PCR detected mcr-1, mcr-2, and mcr-3 genes in 89 (73.5%), 78 (64.5%), and 82 (67.8%) A. baumannii isolates, respectively. Seventy-eight (64.5%) of the 121 isolates harbored the integron intI2 gene and 81 (66.9%) contained intI3 gene. Moreover, 60 (49.6%) of the 121 isolates were positive for the quorum sensing lasI gene. Conclusion: The presence of a large percentage of colistin-resistant A. baumannii strains in Baghdad may be due to the presence of mobile genetic elements, and it is urgent to avoid unnecessary clinical use of colistin.
Collapse
Affiliation(s)
- Israa M S Al-Kadmy
- Faculty of Science and Engineering, School of Engineering, University of Plymouth, Plymouth, United Kingdom.,Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Susan A Ibrahim
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Nadal Al-Saryi
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Sarah Naji Aziz
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Alexandros Besinis
- Faculty of Science and Engineering, School of Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
58
|
Hadjadj L, Baron SA, Olaitan AO, Morand S, Rolain JM. Co-occurrence of Variants of mcr-3 and mcr- 8 Genes in a Klebsiella pneumoniae Isolate From Laos. Front Microbiol 2019; 10:2720. [PMID: 31849875 PMCID: PMC6887894 DOI: 10.3389/fmicb.2019.02720] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Colistin is considered as a last resort antibiotic. The re-use of this antibiotic highlighted the emergence of colistin resistance mediated by chromosomal and plasmidic resistance mechanisms. Five colistin-resistant Klebsiella pneumoniae strains from Laos and Thailand were analyzed by Next Generation Sequencing (NGS) approaches to determine their colistin resistance mechanisms. Antimicrobial susceptibility testing, conjugation and transformation were performed on these strains. Moreover, whole genome sequencing (WGS) combining Illumina (MiSeq) and Oxford Nanopore technologies (MinION) was realized to obtain closed genomes and plasmids. Resistome analyses as well as location of mcr genes and its genetic environments were done in silico. All five strains had colistin MIC of 32 mg/L and were positive for mcr-3 variants including additionally positive for a mcr-8 variant gene. The novel variants were named mcr-3.21, mcr-3.26, mcr-3.28, and mcr-8.3 genes. The mcr-3 variants genes were located on plasmids IncP1, IncFII, and IncI1 type, while mcr-8.3 gene was found on an IncFII type plasmid. The genetic environment of mcr-3.21 and mcr-3.26 genes were composed of a composite transposon ISKpn40- mcr-3-dgkA- ISKpn40. Concerning mcr-8.3 gene, a similar genetic environment of mcr-8.1 gene surrounded by ISIX2 and IS903B was observed. To the best of our knowledge, this is the first description of the novel variants mcr-3.21, mcr-3.26, mcr-3.28 and mcr-8.3 genes as well as the first study on co-occurrence of mcr-3 and mcr-8 genes. Spread and evolution of mcr genes should be monitored.
Collapse
Affiliation(s)
- Linda Hadjadj
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Abiola Olumuyiwa Olaitan
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Serge Morand
- Institut des Sciences de l'Évolution, CNRS-IRD-UM2, CC065, Université Montpellier 2, Montpellier, France
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
59
|
Liu D, Song H, Ke Y, Xia J, Shen Y, Ou Y, Hao Y, He J, Li X, Zhou Y, Fu J, Wang Y, Lv Z, Wu C. Co-existence of two novel phosphoethanolamine transferase gene variants in Aeromonas jandaei from retail fish. Int J Antimicrob Agents 2019; 55:105856. [PMID: 31770630 DOI: 10.1016/j.ijantimicag.2019.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 11/25/2022]
Abstract
Two novel phosphoethanolamine transferase genes, eptAv7 and eptAv3, were identified in the chromosome of an Aeromonas jandaei isolate from retail fish. The variants showed 79.9% and 80.0% amino acid identity to MCR-7.1 and MCR-3.1, respectively, and increased colistin resistance 128- to 256-fold in Aeromonas salmonicida. The two variants with no mobile genetic element in the flanking regions were also observed in other Aeromonas species. This finding supports the view that Aeromonas is a reservoir for MCR-3 and MCR-7 mobile colistin resistance.
Collapse
Affiliation(s)
- Dejun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huangwei Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Junjie Xia
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanran Ou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuxin Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junjia He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuqing Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiani Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziquan Lv
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
60
|
Gharaibeh MH, Shatnawi SQ. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: A review. Vet World 2019; 12:1735-1746. [PMID: 32009752 PMCID: PMC6925059 DOI: 10.14202/vetworld.2019.1735-1746] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Colistin, also known as polymyxin E, is an antimicrobial agent that is effective against a variety of Gram-negative bacilli, especially the Enterobacteriaceae family. Recently, the wide dissemination of colistin-resistance has brought strong attention to the scientific society because of its importance as the last resort for the treatment of carbapenem-resistant Enterobacteriaceae infections and its possible horizontal transmission. The mobilized colistin resistance (mcr) gene was identified as the gene responsible for unique colistin resistance. Indeed, despite many studies that have revealed a pan variation in the existence of this gene, not only for the mcr genes main group but also for its many subgroups, the problem is growing and worsening day after day. In this regard, this review paper is set to review the updated data that has been published up to the end of 2019 third quarter, especially when related to colistin resistance by the mcr genes. It will include the present status of colistin resistance worldwide, the mcr gene dissemination in different sectors, the discovery of the mcr variants, and the global plan to deal with the threat of antimicrobial resistance. In line with global awareness, and to stop antibiotic misuse and overuse, especially in agricultural animals, the study will further discuss in detail the latest alternatives to colistin use in animals, which may contribute to the elimination of inappropriate antibiotic use and to the help in preventing infections. This review will advance our understanding of colistin resistance, while supporting the efforts toward better stewardship, for the proper usage of antimicrobial drugs in humans, animals, and in the environment.
Collapse
Affiliation(s)
- Mohammad H Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| | - Shoroq Q Shatnawi
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 Jordan
| |
Collapse
|
61
|
Giordano C, Klak A, Barnini S, Chlebowicz MA, Menconi M, Rossen JW, Friedrich AW, Bathoorn E. Reduced Fitness Costs of mcr-1.2 Compared to Mutated pmrB in Isogenic Colistin-Resistant KPC-3-Producing Klebsiella pneumoniae. mSphere 2019; 4:e00551-19. [PMID: 31694895 PMCID: PMC6835208 DOI: 10.1128/msphere.00551-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/11/2019] [Indexed: 11/20/2022] Open
Abstract
In the present study, we provide the results of a detailed genomic analysis and the growth characteristics of a colistin-resistant KPC-3-producing Klebsiella pneumoniae sequence type 512 (ST512) isolate (the colR-KPC3-KP isolate) with a mutated pmrB and isogenic isolates of colR-KPC3-KP with mcr-1.2 isolated from an immunocompromised patient. From 2014 to 2017, four colR-KPC3-KP isolates were detected in rectal swab samples collected from a pediatric hematology patient at the Azienda Ospedaliero-Universitaria Pisana in Pisa, Italy. Whole-genome sequencing was performed by MiSeq sequencing (Illumina). Growth experiments were performed using different concentrations of colistin. The growth lag phases both of an isolate harboring a deletion in pmrB and of clonal variants with mcr-1.2 were assessed by the use of real-time light-scattering measurements. In the first isolate (isolate 1000-pmrBΔ, recovered in September 2014), a 17-nucleotide deletion in pmrB was detected. In subsequent isolates, the mcr-1.2 gene associated with the plasmid pIncX4-AOUP was found, while pmrB was intact. Additionally, plasmid pIncQ-AOUP, harboring aminoglycoside resistance genes, was detected. The growth curves of the first three isolates were identical without colistin exposure; however, at higher concentrations of colistin, the growth curves of the isolate with a deletion in pmrB showed longer lag phases. We observed the replacement of mutated colR-KPC3-KP pmrB by isogenic isolates with multiple resistance plasmids, including mcr-1.2-carrying pIncX4, probably due to coselection under gentamicin treatment in a patient with prolonged colR-KPC3-KP carriage. The carriage of these isolates persisted in follow-up cultures. Coselection and the advantages in growth characteristics suggest that the plasmid-mediated resistance conferred by mcr has fewer fitness costs in colR-KPC3-KP than mutations in chromosomal pmrB, contributing to the success of this highly resistant hospital-adapted epidemiological lineage.IMPORTANCE Our study shows a successful prolonged human colonization by a colistin-resistant Klebsiella pneumoniae isolate harboring mcr-1.2 An intense antibiotic therapy contributed to the maintenance of this microorganism through the acquisition of new resistance genes. The isolates carrying mcr-1.2 showed fewer fitness costs than isogenic isolates with a pmrB mutation in the chromosome. Coselection and reduced fitness costs may explain the replacement of isolates with the pmrB mutation by other isolates and the ability of the microorganism to persist despite antibiotic treatment.
Collapse
Affiliation(s)
- Cesira Giordano
- SD Ospedaliera di Microbiologia, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Adrian Klak
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| | - Simona Barnini
- SD Ospedaliera di Microbiologia, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Monika A Chlebowicz
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| | | | - John W Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| | - Alexander W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| | - Erik Bathoorn
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| |
Collapse
|
62
|
Kim S, Woo JH, Kim N, Kim MH, Kim SY, Son JH, Moon DC, Lim SK, Shin M, Lee JC. Characterization Of Chromosome-Mediated Colistin Resistance In Escherichia coli Isolates From Livestock In Korea. Infect Drug Resist 2019; 12:3291-3299. [PMID: 31695448 PMCID: PMC6815941 DOI: 10.2147/idr.s225383] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose Colistin resistance in gram-negative bacteria from humans and livestock has been increasingly reported worldwide. The aim of this study was to investigate the underlying mechanisms of chromosome-mediated colistin resistance in Escherichia coli isolates from livestock in Korea. Materials and methods Thirty mcr-1-negative isolates were selected from a collection of colistin-resistant E. coli isolates collected from livestock in 2005 and 2015 in Korea. Amino acid alterations in PmrAB, PhoPQ, MgrB, and PmrD were investigated. Colistin-resistant derivatives were produced by serial passage of colistin-susceptible E. coli isolates in colistin-containing media. Results Thirty colistin-resistant mcr-negative E. coli isolates were classified into 26 sequence types. Twenty-two isolates carried diverse amino acid alterations in PmrB, PhoP, PhoQ, MgrB, and/or PmrD, whereas no mutation in any of these genes was found in the remaining eight isolates. Sixteen out of the 22 isolates shared a total of nine polymorphic positions that were found in colistin-susceptible E. coli strains. Colistin-resistant derivatives from two colistin-susceptible isolates showed the same genetic alterations that were observed in colistin-resistant clinical isolates. Conclusion Our results suggest that the mechanism underlying chromosome-mediated colistin resistance remain to be discovered in E. coli. Selective pressure of colistin in vitro induced the same genetic mutations associated with colistin resistance in vivo. Efforts to reduce colistin consumption in livestock should be redoubled, to prevent the occurrence of colistin-resistant E. coli strains.
Collapse
Affiliation(s)
- Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Hwa Woo
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hyun Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Se Yeon Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joo Hee Son
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Chan Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
63
|
Fernandes MR, Cerdeira L, Silva MM, Sellera FP, Muñoz M, Junior FG, Azevedo SS, Power P, Gutkind G, Lincopan N. Novel mcr-5.3 variant in a CTX-M-8-producing Escherichia coli ST711 isolated from an infected horse. J Antimicrob Chemother 2019; 73:3520-3522. [PMID: 30202925 DOI: 10.1093/jac/dky341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Miriam R Fernandes
- Department of Clinical Analysis School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Louise Cerdeira
- Department of Clinical Analysis School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Meire M Silva
- Academic Unit of Veterinary Medicine, Universidade Federal de Campina Grande, Patos, Paraíba, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Muñoz
- Department of Clinical Analysis School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Felicio G Junior
- Academic Unit of Veterinary Medicine, Universidade Federal de Campina Grande, Patos, Paraíba, Brazil
| | - Sergio S Azevedo
- Academic Unit of Veterinary Medicine, Universidade Federal de Campina Grande, Patos, Paraíba, Brazil
| | - Pablo Power
- Cátedra de Microbiología, Departmento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel Gutkind
- Cátedra de Microbiología, Departmento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nilton Lincopan
- Department of Clinical Analysis School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.,Department of Microbiology, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| |
Collapse
|
64
|
Complete Nucleotide Sequences of mcr-4.3-Carrying Plasmids in Acinetobacter baumannii Sequence Type 345 of Human and Food Origin from the Czech Republic, the First Case in Europe. Antimicrob Agents Chemother 2019; 63:AAC.01166-19. [PMID: 31332072 DOI: 10.1128/aac.01166-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Here, we describe two plasmids carrying mcr-4.3 in two Acinetobacter baumannii strains isolated from imported food and a clinical sample. The comparative analysis of these plasmids, with two other plasmids reported in the NCBI database, highlighted the common origin of the plasmidic structure carrying mcr-4.3 This is the first case of the mcr-4.3 gene in a A. baumannii strain isolated from a clinical case in Europe. We hypothesize that food import is initiating the spread in Czech Republic.
Collapse
|
65
|
Shen Y, Lv Z, Yang L, Liu D, Ou Y, Xu C, Liu W, Yuan D, Hao Y, He J, Li X, Zhou Y, Walsh TR, Shen J, Xia J, Ke Y, Wang Y. Integrated aquaculture contributes to the transfer of mcr-1 between animals and humans via the aquaculture supply chain. ENVIRONMENT INTERNATIONAL 2019; 130:104708. [PMID: 31202027 DOI: 10.1016/j.envint.2019.03.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Since its discovery in 2015, the mobile colistin resistance gene mcr-1 has been reported in bacteria from >50 countries. Although aquaculture-associated bacteria may act as a significant reservoir for colistin resistance, systematic investigations of mcr-1 in the aquaculture supply chain are scarce. OBJECTIVES We investigated the presence of colistin resistance determinants in the aquaculture supply chain in south China and determined their characteristics and relationships. METHODS A total of 250 samples were collected from a duck-fish integrated fishery, slaughter house, and market in Guangdong Province, China, in July 2017. Colistin-resistant bacteria were isolated on colistin-supplemented CHROMagar Orientation plates, and the species were identified by matrix-assisted laser desorption/ionization time-of-flight assay. The presence of mcr genes was confirmed by polymerase chain reaction analysis. We examined the minimum inhibitory concentrations (MICs) of 16 antimicrobial agents against the isolates using agar diffusion and broth microdilution methods. Whole-genome sequencing (WGS) was used to explore the molecular characteristics and relationships of mcr-1-positive Escherichia coli (MCRPEC). RESULTS Overall, 143 (57.2%) colistin-resistant bacteria were isolated, of which, 56 (22.4%, including 54 Escherichia coli and two Klebsiella pneumoniae) and four Aeromonas species were positive for mcr-1 and mcr-3, respectively. The animal-derived MCRPEC were significantly more prevalent in integrated fishery samples (40.0%) than those in market (4.8%, P<0.01) samples but not in slaughter house (28.0%, P=0.164). All MCRPEC were highly resistant to ampicillin, tetracycline, and compound sulfamethoxazole (>90%) but were susceptible to carbapenems and tigecycline. WGS analysis suggested that mcr-1 was mainly contained on plasmids, including IncHI2 (29.6%), IncI2 (27.8%), IncX4 (14.8%), and IncP (11.1%). Genomic analysis suggested mcr-1 transmission via the aquatic food chain. CONCLUSIONS MCRPEC were highly prevalent in the aquaculture supply chain, with the isolates showing resistance to most antibiotics. The data suggested mcr-1 could be transferred to humans via the aquatic food chain. Taking the "One Health" perspective, aquaculture should be incorporated into systematic surveillance programs with animal, human, and environmental monitoring.
Collapse
Affiliation(s)
- Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziquan Lv
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lu Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dejun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanran Ou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunyan Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weiwen Liu
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dongmei Yuan
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuxin Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junjia He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuqing Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Timothy R Walsh
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China; Department of Medical Microbiology and Infectious Disease, Institute of Infection and Immunity, Heath Park Hospital, Cardiff, United Kingdom
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junjie Xia
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuebin Ke
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
66
|
Complete Genome and Plasmid Sequences of Seven Isolates of Salmonella enterica subsp. enterica Harboring the mcr-1 Gene Obtained from Food in China. Microbiol Resour Announc 2019; 8:8/31/e00114-19. [PMID: 31371529 PMCID: PMC6675977 DOI: 10.1128/mra.00114-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven Salmonella enterica subsp. enterica isolates were identified as carrying the mcr-1 gene, by using a real-time fluorescence quantitative PCR method, from a total of 2,558 isolates which were cultured from various food origins in China between 2011 and 2016. Few complete genomes of Salmonella strains harboring the mcr-1 gene have been reported to date, so we report here the complete genome and plasmid sequences of all of these isolates to provide useful references for understanding the prevalence of foodborne Salmonella enterica subsp. enterica isolates carrying mcr-1.
Collapse
|
67
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
68
|
Zhang H, Srinivas S, Xu Y, Wei W, Feng Y. Genetic and Biochemical Mechanisms for Bacterial Lipid A Modifiers Associated with Polymyxin Resistance. Trends Biochem Sci 2019; 44:973-988. [PMID: 31279652 DOI: 10.1016/j.tibs.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023]
Abstract
Polymyxins are a group of detergent-like antimicrobial peptides that are the ultimate line of defense against carbapenem-resistant pathogens in clinical settings. Polymyxin resistance primarily originates from structural remodeling of lipid A anchored on bacterial surfaces. We integrate genetic, structural, and biochemical aspects of three major types of lipid A modifiers that have been shown to confer intrinsic colistin resistance. Namely, we highlight ArnT, a glycosyltransferase, EptA, a phosphoethanolamine transferase, and the AlmEFG tripartite system, which is restricted to EI Tor biotype of Vibrio cholerae O1. We also discuss the growing family of mobile colistin resistance (MCR) enzymes, each of which is analogous to EptA, and which pose great challenges to global public health.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Swaminath Srinivas
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yongchang Xu
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenhui Wei
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; College of Animal Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
69
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
70
|
Zhang H, Wei W, Huang M, Umar Z, Feng Y. Definition of a Family of Nonmobile Colistin Resistance (NMCR-1) Determinants Suggests Aquatic Reservoirs for MCR-4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900038. [PMID: 31179218 PMCID: PMC6548957 DOI: 10.1002/advs.201900038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Polymyxins, a family of cationic antimicrobial peptides, are recognized as a last-resort clinical option used in the treatment of lethal infections with carbapenem-resistant pathogens. A growing body of mobile colistin resistance (MCR) determinants renders colistin ineffective in the clinical and human sectors, posing a challenge to human health and food security. However, the origin and reservoir of the MCR family enzymes is poorly understood. Herein, a new family of nonmobile colistin resistance (from nmcr-1 to nmcr-1.8) from the aquatic bacterium Shewanella is reported. NMCR-1 (541aa) displays 62.78% identity to MCR-4. Genetic and structural analyses reveal that NMCR-1 shares a similar catalytic mechanism and functional motifs, both of which are required for MCR action and its resultant phenotypic resistance to polymyxin. Phylogeny and domain-swapping demonstrate that NMCR-1 is a progenitor of MCR-4 rather than MCR-1/2. Additionally, the experiment of bacterial growth and viability reveals that NMCR-1 promotes fitness cost as MCR-1/4 does in the recipient Escherichia coli. In summary, the finding suggests that the aquatic bacterium Shewanella (and even its associated aquaculture) is a reservoir for MCR-4 mobile colistin resistance.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Wenhui Wei
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Man Huang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Zeeshan Umar
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| |
Collapse
|
71
|
Cui Y, Quan J, Liao W, Zhao D, Jiang Y, Du X, Zhao F, Yu Y. A new variant of mcr-1 identified from an extended-spectrum β lactamase-producing Escherichia coli. J Glob Antimicrob Resist 2019; 18:26-27. [PMID: 31154009 DOI: 10.1016/j.jgar.2019.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Yushan Cui
- Department of Infectious Diseases, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China; Department of Medical Laboratory, Ningbo Medical Center, Li Huili Hospital, Ningbo, Zhejiang, China
| | - Jingjing Quan
- Department of Infectious Diseases, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Weichao Liao
- Department of Intensive Care Unit, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Department of Infectious Diseases, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoxing Du
- Department of Infectious Diseases, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Feng Zhao
- Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
72
|
He T, Wang R, Liu D, Walsh TR, Zhang R, Lv Y, Ke Y, Ji Q, Wei R, Liu Z, Shen Y, Wang G, Sun L, Lei L, Lv Z, Li Y, Pang M, Wang L, Sun Q, Fu Y, Song H, Hao Y, Shen Z, Wang S, Chen G, Wu C, Shen J, Wang Y. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol 2019; 4:1450-1456. [PMID: 31133751 DOI: 10.1038/s41564-019-0445-2] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/02/2019] [Indexed: 01/17/2023]
Abstract
Tigecycline is a last-resort antibiotic that is used to treat severe infections caused by extensively drug-resistant bacteria. tet(X) has been shown to encode a flavin-dependent monooxygenase that modifies tigecycline1,2. Here, we report two unique mobile tigecycline-resistance genes, tet(X3) and tet(X4), in numerous Enterobacteriaceae and Acinetobacter that were isolated from animals, meat for consumption and humans. Tet(X3) and Tet(X4) inactivate all tetracyclines, including tigecycline and the newly FDA-approved eravacycline and omadacycline. Both tet(X3) and tet(X4) increase (by 64-128-fold) the tigecycline minimal inhibitory concentration values for Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii. In addition, both Tet(X3) (A. baumannii) and Tet(X4) (E. coli) significantly compromise tigecycline in in vivo infection models. Both tet(X3) and tet(X4) are adjacent to insertion sequence ISVsa3 on their respective conjugative plasmids and confer a mild fitness cost (relative fitness of >0.704). Database mining and retrospective screening analyses confirm that tet(X3) and tet(X4) are globally present in clinical bacteria-even in the same bacteria as blaNDM-1, resulting in resistance to both tigecycline and carbapenems. Our findings suggest that both the surveillance of tet(X) variants in clinical and animal sectors and the use of tetracyclines in food production require urgent global attention.
Collapse
Affiliation(s)
- Tao He
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dejun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Timothy R Walsh
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Department of Medical Microbiology and Infectious Disease, Institute of Infection and Immunity, Cardiff, UK
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Yuan Lv
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ruicheng Wei
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhihai Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gang Wang
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lichang Sun
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziquan Lv
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Maoda Pang
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liyuan Wang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Qiaoling Sun
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Yulin Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huangwei Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuxin Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shaolin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gongxiang Chen
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China. .,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China. .,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
73
|
Characterization of mcr-5-Harboring Salmonella enterica subsp. enterica Serovar Typhimurium Isolates from Animal and Food Origin in Germany. Antimicrob Agents Chemother 2019; 63:AAC.00063-19. [PMID: 30910897 DOI: 10.1128/aac.00063-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/17/2019] [Indexed: 12/25/2022] Open
Abstract
We characterized eight mcr-5-positive Salmonella enterica subsp. enterica serovar Typhimurium sequence type 34 (ST34) isolates obtained from pigs and meat in Germany. Five plasmid types were identified harboring mcr-5 on Tn6452 or putative mobile insertion cassettes. The mobility of mcr-5 was confirmed by integration of Tn6452 into the bacterial chromosomes of two strains and the detection of conjugative mcr-5 plasmids. The association with mobile genetic elements might further enhance mcr-5 distribution.
Collapse
|
74
|
Identification of a Novel Plasmid Carrying mcr-4.3 in an Acinetobacter baumannii Strain in China. Antimicrob Agents Chemother 2019; 63:AAC.00133-19. [PMID: 30936095 DOI: 10.1128/aac.00133-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/23/2019] [Indexed: 12/21/2022] Open
Abstract
Here, we identified mcr-4.3 in Acinetobacter baumannii, which had not been previously observed to carry an mcr gene. The mcr-4.3-harboring A. baumannii strain AB18PR065 was isolated from pig feces from a slaughterhouse in Guangdong Province of China. The mcr-4.3-carrying pAB18PR065 is 25,602 bp in size and could not be transferred in conjugation, transformation, and electroporation experiments, as we did not find any conjugation-related genes therein. pAB18PR065 harbors two copies of type II toxin-antitoxin systems, which are functional in plasmid stabilization and maintenance. pAB18PR065 shares similarity only with one recently identified plasmid, pAb-MCR4.3 (35,502 bp), from a clinical A. baumannii strain. It is likely that the emergence of pAb-MCR4.3 was due to the insertion of an 11,386-bp, ISAba19-based, composite transposon into pAB18PR065. These data indicate that mcr-4.3 was captured by an A. baumannii-original plasmid via horizontal gene transfer.
Collapse
|
75
|
Hammad AM, Hoffmann M, Gonzalez-Escalona N, Abbas NH, Yao K, Koenig S, Allué-Guardia A, Eppinger M. Genomic features of colistin resistant Escherichia coli ST69 strain harboring mcr-1 on IncHI2 plasmid from raw milk cheese in Egypt. INFECTION GENETICS AND EVOLUTION 2019; 73:126-131. [PMID: 31029792 DOI: 10.1016/j.meegid.2019.04.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/26/2019] [Accepted: 04/21/2019] [Indexed: 11/15/2022]
Abstract
There is emerging evidence that food of animal origin may be responsible for the spread of multidrug resistant extraintestinal pathogenic Escherichia coli in the community. Here, we describe the emergence of colistin resistance gene, mcr-1, in a strain belonging to the dominant uropathogenic E. coli ST69 lineage. E. coli strain CFSAN061770 was isolated during monitoring of the popular Egyptian raw milk cheese, karish cheese, for the presence of colistin resistance. The complete genome of E. coli strain CFSAN061770 comprises a chromosome of 5,292,297 bp with a G + C content of 50.6%. Further, three plasmids named pEGY1-MCR-1, pEGY2 and pEGY3 of 228,947 bp, 103,234 bp and 87,012 bp were detected, respectively. Plasmid pEGY1-MCR-1 belongs to the IncHI2 incompatibility group and carries the colistin resistance mcr-1 gene flanked by two ISApl1 elements and forms a composite transposon. It mediates resistance to aminoglycosides (aadA1 and aadA2), phenicol (cmlA1 and floR), sulfonamides (sul3), and tetracycline (tet(A)), and these loci were found clustered in a multidrug resistant region. Plasmid pEGY3 carries a complex multiple resistance locus (CMR) (aph(3')-Ia, strA, strB, sul2, and blaTEM-1) encoding resistance to different classes of antibiotics. Interestingly, the closest plasmids to plasmid pEGY1-MCR-1 detected from the NCBI Blast search belonged to the incompatibility group IncHI2 and were from the Kingdom of Saudi Arabia and Qatar which suggests a dissemination of pEGY1-MCR-1-like plasmids in the Middle East. Most striking, and of great public health concern is that strain CFSAN061770 carries five virulence genes (iss, fimH, iutA, kpsMIII and kpsTIII) which were identified in clinical extraintestinal pathogenic E. coli. Besides that, it carries the astA gene, which codes for the enteroaggregative E. coli heat-stable toxin 1 (EAST1).
Collapse
Affiliation(s)
- Ahmed M Hammad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Nasser H Abbas
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Kuan Yao
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Sara Koenig
- Department of Biology and South Texas Center for Emerging Infectious Diseases (STCEID), University of Texas at San Antonio, San Antonio, TX, USA
| | - Anna Allué-Guardia
- Department of Biology and South Texas Center for Emerging Infectious Diseases (STCEID), University of Texas at San Antonio, San Antonio, TX, USA
| | - Mark Eppinger
- Department of Biology and South Texas Center for Emerging Infectious Diseases (STCEID), University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
76
|
Li J, Liu S, Fu J, Yin J, Zhao J, Zhong C, Cao G. Co-Occurrence of Colistin and Meropenem Resistance Determinants in a Stenotrophomonas Strain Isolated from Sewage Water. Microb Drug Resist 2019; 25:317-325. [DOI: 10.1089/mdr.2018.0418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jun Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuyan Liu
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jiafang Fu
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jia Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
77
|
Dominguez JE, Faccone D, Tijet N, Gomez S, Corso A, Fernández-Miyakawa ME, Melano RG. Characterization of Escherichia coli Carrying mcr- 1-Plasmids Recovered From Food Animals From Argentina. Front Cell Infect Microbiol 2019; 9:41. [PMID: 30895173 PMCID: PMC6414435 DOI: 10.3389/fcimb.2019.00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, we found mcr-1.1 and mcr-1.5 genes carried by IncI2 plasmids in a subset of Escherichia coli isolates recovered from commercial broiler farms in Argentina. The comparative analysis of the sequences of these plasmids with those described in human clinical isolates suggests that this replicon-type is one of the main mcr-disseminator sources in Argentina.
Collapse
Affiliation(s)
- Johana E Dominguez
- Laboratorio de Bacteriología General, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Faccone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Servicio de Antimicrobianos, National and Regional Reference Laboratory in Antimicrobial Resistance, Instituto Nacional de Enfermedades Infecciosas (INEI)-Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. C. Malbrán", Buenos Aires, Argentina
| | | | - Sonia Gomez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Servicio de Antimicrobianos, National and Regional Reference Laboratory in Antimicrobial Resistance, Instituto Nacional de Enfermedades Infecciosas (INEI)-Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. C. Malbrán", Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio de Antimicrobianos, National and Regional Reference Laboratory in Antimicrobial Resistance, Instituto Nacional de Enfermedades Infecciosas (INEI)-Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. C. Malbrán", Buenos Aires, Argentina
| | - Mariano E Fernández-Miyakawa
- Laboratorio de Bacteriología General, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Roberto G Melano
- Public Health Ontario Laboratory, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Sinai Health System, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
78
|
Genetic environment of colistin resistance genes mcr-1 and mcr-3 in Escherichia coli from one pig farm in China. Vet Microbiol 2019; 230:56-61. [DOI: 10.1016/j.vetmic.2019.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 11/20/2022]
|
79
|
Wang X, Wang Y, Zhou Y, Wang Z, Wang Y, Zhang S, Shen Z. Emergence of Colistin Resistance Gene mcr-8 and Its Variant in Raoultella ornithinolytica. Front Microbiol 2019; 10:228. [PMID: 30828324 PMCID: PMC6384272 DOI: 10.3389/fmicb.2019.00228] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, a novel mobile colistin resistance gene, mcr-8, was identified in Klebsiella pneumoniae. Here, we report the identification of mcr-8 and its variant, mcr-8.4, in Raoultella ornithinolytica isolates which also belong to Enterobacteriaceae family. The mcr-8 gene was located on transferrable plasmids with difference sizes. Notably, the transferability of mcr-8-carrying plasmids was enhanced once they entered into Escherichia coli hosts and multiple β-lactamase genes could co-transfer with mcr-8. These findings expand our knowledge of mcr-8-carrying bacterial species.
Collapse
Affiliation(s)
- Xiaoming Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China
| | - Ying Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zheng Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China
| | - Suxia Zhang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
80
|
Dortet L, Potron A, Bonnin RA, Plesiat P, Naas T, Filloux A, Larrouy-Maumus G. Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria. Sci Rep 2018; 8:16910. [PMID: 30442963 PMCID: PMC6237936 DOI: 10.1038/s41598-018-35041-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
With the dissemination of extremely drug resistant bacteria, colistin is now considered as the last-resort therapy for the treatment of infection caused by Gram-negative bacilli (including carbapenemase producers). Unfortunately, the increase use of colistin has resulted in the emergence of resistance as well. In A. baumannii, colistin resistance is mostly caused by the addition of phosphoethanolamine to the lipid A through the action of a phosphoethanolamine transferase chromosomally-encoded by the pmrC gene, which is regulated by the two-component system PmrA/PmrB. In A. baumannii clinical isolate the main resistance mechanism to colistin involves mutations in pmrA, pmrB or pmrC genes leading to the overexpression of pmrC. Although, rapid detection of resistance is one of the key issues to improve the treatment of infected patient, detection of colistin resistance in A. baumannii still relies on MIC determination through microdilution, which is time-consuming (16-24 h). Here, we evaluated the performance of a recently described MALDI-TOF-based assay, the MALDIxin test, which allows the rapid detection of colistin resistance-related modifications to lipid A (i.e phosphoethanolamine addition). This test accurately detected all colistin-resistant A. baumannii isolates in less than 15 minutes, directly on intact bacteria with a very limited sample preparation prior MALDI-TOF analysis.
Collapse
Affiliation(s)
- Laurent Dortet
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
- Department of Bacteriology- Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Paris-Sud University, LabEx Lermit, Faculty of Medecine, Le Kremlin-Bicêtre, France.
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.
| | - Anais Potron
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
- Bacteriology unit, University hospital of Besançon, Besançon, France
| | - Rémy A Bonnin
- Department of Bacteriology- Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Paris-Sud University, LabEx Lermit, Faculty of Medecine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Patrick Plesiat
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
- Bacteriology unit, University hospital of Besançon, Besançon, France
| | - Thierry Naas
- Department of Bacteriology- Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Paris-Sud University, LabEx Lermit, Faculty of Medecine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
81
|
Büdel T, Clément M, Bernasconi OJ, Principe L, Perreten V, Luzzaro F, Endimiani A. Evaluation of EDTA- and DPA-Based Microdilution Phenotypic Tests for the Detection of MCR-Mediated Colistin Resistance in Enterobacteriaceae. Microb Drug Resist 2018; 25:494-500. [PMID: 30431401 DOI: 10.1089/mdr.2018.0275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence of the colistin-resistant (COL-R) Enterobacteriaceae represents a worrying health issue. However, only a portion of these strains may carry the plasmid-mediated mcr colistin resistance genes. We evaluated the ability of both ethylenediaminetetraacetic acid (EDTA)-based and dipicolinic acid (DPA)-based broth microdilution (BMD) tests to detect mcr-1 to mcr-5 producers. Of 92 Enterobacteriaceae (85 COL-R), 44 mcr-positive strains (39 Escherichia coli, 3 Klebsiella pneumoniae, and 2 Salmonella spp.) were tested. EDTA (100 μg/mL) was tested in Mueller-Hinton broth (MHB), whereas the DPA (900 μg/mL) was used in cation-adjusted MHB. Results were categorized as positive if in presence of chelator strains exhibited ≥3 two fold MIC decrease compared to the COL MIC alone. The EDTA-based BMD assay detected 41 mcr-positive strains, but 22 false-positive strains (including 12 E. coli and 4 K. pneumoniae) were recorded (sensitivity [SN], 93.2%; specificity [SP], 54.2%). The DPA-based BMD assay detected 37 mcr-positive strains, with 7 false-negative (2 E. coli, 3 K. pneumoniae, 2 Salmonella spp.) strains (SN, 84.1%; SP, 100%). Overall, the EDTA-based BMD assay is not accurate to detect mcr producers, whereas the DPA-based BMD test ("colistin-MAC test") demonstrated good accuracy, but only when implemented for E. coli strains (SN, 94.9%; SP, 100%). With the aim to prevent the dissemination of mcr-possessing E. coli strains, the COL-MAC test could be implemented by clinical laboratories that are unable to perform molecular tests. Moreover, this assay could be applied to screen large collections of isolates to reveal the expression of new mcr-like genes not yet targeted by the current molecular assays.
Collapse
Affiliation(s)
- Thomas Büdel
- 1 Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mathieu Clément
- 1 Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,2 Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Odette J Bernasconi
- 1 Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,2 Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Luigi Principe
- 3 Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Vincent Perreten
- 4 Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Francesco Luzzaro
- 3 Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Andrea Endimiani
- 1 Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
82
|
Malli E, Florou Z, Tsilipounidaki K, Voulgaridi I, Stefos A, Xitsas S, Papagiannitsis CC, Petinaki E. Evaluation of rapid polymyxin NP test to detect colistin-resistant Klebsiella pneumoniae isolated in a tertiary Greek hospital. J Microbiol Methods 2018; 153:35-39. [DOI: 10.1016/j.mimet.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 11/30/2022]
|
83
|
Chavda B, Lv J, Hou M, Chavda KD, Kreiswirth BN, Feng Y, Chen L, Yu F. Coidentification of mcr-4.3 and blaNDM-1 in a Clinical Enterobacter cloacae Isolate from China. Antimicrob Agents Chemother 2018; 62:e00649-18. [PMID: 30038043 PMCID: PMC6153785 DOI: 10.1128/aac.00649-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
We describe the first report of a clinical colistin-resistant ST84 Enterobacter cloacae isolate coharboring mcr-4.3 (previously named mcr-4.2) and blaNDM-1 from a patient in China. The blaNDM-1-harboring IncX3 plasmid and the novel mcr-4.3-harboring ColE plasmid were completely sequenced. Although this isolate showed a high level of resistance to colistin, mcr-4.3 plasmid transformation, gene subcloning, susceptibility testing, and lipid A matrix-assisted laser desorption ionization mass spectrometry analysis indicated that mcr-4.3 itself does not confer resistance to colistin.
Collapse
Affiliation(s)
- Bhakti Chavda
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jingnan Lv
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengyun Hou
- Department of Medical Microbiology and Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kalyan D Chavda
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Barry N Kreiswirth
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Youjun Feng
- Department of Medical Microbiology and Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liang Chen
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Fangyou Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
84
|
|
85
|
The EDTA-based disk-combination tests are unreliable for the detection of MCR-mediated colistin-resistance in Enterobacteriaceae. J Microbiol Methods 2018; 153:31-34. [PMID: 30138643 DOI: 10.1016/j.mimet.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022]
Abstract
We evaluated several EDTA-based combined-disk tests to detect 25 mcr producers among 48 Enterobacteriaceae. Colistin disks plus EDTA (292/584 μg) on MH and CAMH agar were used. Results were positive if with chelator there was an inhibition zone increase ≥3 mm compared to colistin alone. All tests resulted unreliable (sensitivity ≤68%).
Collapse
|
86
|
AbuOun M, Stubberfield EJ, Duggett NA, Kirchner M, Dormer L, Nunez-Garcia J, Randall LP, Lemma F, Crook DW, Teale C, Smith RP, Anjum MF. mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother 2018; 73:2904. [PMID: 30053008 DOI: 10.1093/jac/dky272] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|