51
|
Lin C, Guo X, Lange S, Liu J, Ouyang K, Yin X, Jiang L, Cai Y, Mu Y, Sheikh F, Ye S, Chen J, Ke Y, Cheng H. Cypher/ZASP is a novel A-kinase anchoring protein. J Biol Chem 2013; 288:29403-13. [PMID: 23996002 DOI: 10.1074/jbc.m113.470708] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKA signaling is important for the post-translational modification of proteins, especially those in cardiomyocytes involved in cardiac excitation-contraction coupling. PKA activity is spatially and temporally regulated through compartmentalization by protein kinase A anchoring proteins. Cypher/ZASP, a member of PDZ-LIM domain protein family, is a cytoskeletal protein that forms multiprotein complexes at sarcomeric Z-lines. It has been demonstrated that Cypher/ZASP plays a pivotal structural role in the structural integrity of sarcomeres, and several of its mutations are associated with myopathies including dilated cardiomyopathy. Here we show that Cypher/ZASP, interacting specifically with the type II regulatory subunit RIIα of PKA, acted as a typical protein kinase A anchoring protein in cardiomyocytes. In addition, we show that Cypher/ZASP itself was phosphorylated at Ser(265) and Ser(296) by PKA. Furthermore, the PDZ domain of Cypher/ZASP interacted with the L-type calcium channel through its C-terminal PDZ binding motif. Expression of Cypher/ZASP facilitated PKA-mediated phosphorylation of the L-type calcium channel in vitro. Additionally, the phosphorylation of the L-type calcium channel at Ser(1928) induced by isoproterenol was impaired in neonatal Cypher/ZASP-null cardiomyocytes. Moreover, Cypher/ZASP interacted with the Ser/Thr phosphatase calcineurin, which is a phosphatase for the L-type calcium channel. Taken together, our data strongly suggest that Cypher/ZASP not only plays a structural role for the sarcomeric integrity, but is also an important sarcomeric signaling scaffold in regulating the phosphorylation of channels or contractile proteins.
Collapse
Affiliation(s)
- Changsong Lin
- From the Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Sequeira V, Nijenkamp LLAM, Regan JA, van der Velden J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:700-22. [PMID: 23860255 DOI: 10.1016/j.bbamem.2013.07.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
Cardiac muscle cells are equipped with specialized biochemical machineries for the rapid generation of force and movement central to the work generated by the heart. During each heart beat cardiac muscle cells perceive and experience changes in length and load, which reflect one of the fundamental principles of physiology known as the Frank-Starling law of the heart. Cardiac muscle cells are unique mechanical stretch sensors that allow the heart to increase cardiac output, and adjust it to new physiological and pathological situations. In the present review we discuss the mechano-sensory role of the cytoskeletal proteins with respect to their tight interaction with the sarcolemma and extracellular matrix. The role of contractile thick and thin filament proteins, the elastic protein titin, and their anchorage at the Z-disc and M-band, with associated proteins are reviewed in physiologic and pathologic conditions leading to heart failure. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Louise L A M Nijenkamp
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jessica A Regan
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; Department of Physiology, Molecular Cardiovascular Research Program, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, The Netherlands.
| |
Collapse
|
53
|
Clark KA, Kadrmas JL. Drosophila melanogaster muscle LIM protein and alpha-actinin function together to stabilize muscle cytoarchitecture: a potential role for Mlp84B in actin-crosslinking. Cytoskeleton (Hoboken) 2013; 70:304-16. [PMID: 23606669 PMCID: PMC3716849 DOI: 10.1002/cm.21106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 02/06/2023]
Abstract
Stabilization of tissue architecture during development and growth is essential to maintain structural integrity. Because of its contractile nature, muscle is especially susceptible to physiological stresses, and has multiple mechanisms to maintain structural integrity. The Drosophila melanogaster Muscle LIM Protein (MLP), Mlp84B, participates in muscle maintenance, yet its precise mechanism of action is still controversial. Through a candidate approach, we identified α-actinin as a protein that functions with Mlp84B to ensure muscle integrity. α-actinin RNAi animals die primarily as pupae, and Mlp84B RNAi animals are adult viable. RNAi knockdown of Mlp84B and α-actinin together produces synergistic early larval lethality and destabilization of Z-line structures. We recapitulated these phenotypes using combinations of traditional loss-of-function alleles and single-gene RNAi. We observe that Mlp84B induces the formation of actin loops in muscle cell nuclei in the absence of nuclear α-actinin, suggesting Mlp84B has intrinsic actin cross-linking activity, which may complement α-actinin cross-linking activity at sites of actin filament anchorage. These results reveal a molecular mechanism for MLP stabilization of muscle and implicate reduced actin crosslinking as the primary destabilizing defect in MLP-associated cardiomyopathies. Our data support a model in which α-actinin and Mlp84B have important and overlapping functions at sites of actin filament anchorage to preserve muscle structure and function.
Collapse
Affiliation(s)
- Kathleen A. Clark
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Biology, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Julie L. Kadrmas
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
54
|
Ito J, Takita M, Takimoto K, Maturana AD. Enigma homolog 1 promotes myogenic gene expression and differentiation of C2C12 cells. Biochem Biophys Res Commun 2013; 435:483-7. [PMID: 23680663 DOI: 10.1016/j.bbrc.2013.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 11/17/2022]
Abstract
The Enigma homolog (ENH) gene generates several splicing variants. The initially identified ENH1 possesses one PDZ and three LIM domains, whereas ENH2~4 lack the latter domains. The splicing switch from ENH1 to LIM-less ENHs occurs during development/maturation of skeletal and heart muscles. We examined for the roles of ENH splicing variants in muscle differentiation using C2C12 cells. Cells stably expressing ENH1 exhibited significantly higher MyoD and myogenin mRNA levels before differentiation and after 5 days in low serum-differentiating medium than mock-transfected cells. ENH1-stable transformants also retained the ability to exhibit elongated morphology with well-extended actin fibers following differentiation. In contrast, cells stably expressing ENH3 or ENH4 did not show myotube-like morphology or reorganization of actin fibers following culture in the differentiating medium. Transient overexpression of ENH1 using adenovirus supported the increased expression of muscle marker mRNAs and the formation of well-organized stress fibers, whereas ENH4 overexpression prevented these morphological changes. Furthermore, specific suppression of ENH1 expression by RNAi caused a significant reduction in MyoD mRNA level and blocked the morphological changes. These results suggest that ENH1 with multiple protein-protein interaction modules is essential for differentiation of striated muscles, whereas ectopic expression of LIM-less ENH disrupts normal muscle differentiation.
Collapse
Affiliation(s)
- Jumpei Ito
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | | | | | | |
Collapse
|
55
|
Alp/Enigma family proteins cooperate in Z-disc formation and myofibril assembly. PLoS Genet 2013; 9:e1003342. [PMID: 23505387 PMCID: PMC3591300 DOI: 10.1371/journal.pgen.1003342] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
The Drosophila Alp/Enigma family protein Zasp52 localizes to myotendinous junctions and Z-discs. It is required for terminal muscle differentiation and muscle attachment. Its vertebrate ortholog ZASP/Cypher also localizes to Z-discs, interacts with α-actinin through its PDZ domain, and is involved in Z-disc maintenance. Human mutations in ZASP cause myopathies and cardiomyopathies. Here we show that Drosophila Zasp52 is one of the earliest markers of Z-disc assembly, and we use a Zasp52-GFP fusion to document myofibril assembly by live imaging. We demonstrate that Zasp52 is required for adult Z-disc stability and pupal myofibril assembly. In addition, we show that two closely related proteins, Zasp66 and the newly identified Zasp67, are also required for adult Z-disc stability and are participating with Zasp52 in Z-disc assembly resulting in more severe, synergistic myofibril defects in double mutants. Zasp52 and Zasp66 directly bind to α-actinin, and they can also form a ternary complex. Our results indicate that Alp/Enigma family members cooperate in Z-disc assembly and myofibril formation; and we propose, based on sequence analysis, a novel class of PDZ domain likely involved in α-actinin binding.
Collapse
|
56
|
Leung MC, Hitchen PG, Ward DG, Messer AE, Marston SB. Z-band alternatively spliced PDZ motif protein (ZASP) is the major O-linked β-N-acetylglucosamine-substituted protein in human heart myofibrils. J Biol Chem 2012; 288:4891-8. [PMID: 23271734 DOI: 10.1074/jbc.m112.410316] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ~90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p < 0.05). ZASP is only 22% of all O-GlcNAcylated proteins in mouse heart myofibrils.
Collapse
Affiliation(s)
- Man-Ching Leung
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|
57
|
Miyazaki K, Ohno K, Tamura N, Sasaki T, Sato K. CLP36 and RIL recruit α-actinin-1 to stress fibers and differentially regulate stress fiber dynamics in F2408 fibroblasts. Exp Cell Res 2012; 318:1716-25. [PMID: 22659164 DOI: 10.1016/j.yexcr.2012.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/01/2012] [Accepted: 05/06/2012] [Indexed: 01/09/2023]
Abstract
CLP36 is a member of the ALP/Enigma protein family and has been shown to be localized to stress fibers in various cells. We previously reported that depletion of CLP36 caused loss of stress fibers in BeWo choriocarcinoma cells, but it remains unclear how CLP36 contributes to stress fiber formation. In this study, we generated CLP36-depleted F2408 fibroblasts and found that stress fibers showed abnormal non-oriented organization in these cells. In addition to CLP36, F2408 cells contained RIL, another ALP/Enigma protein, and we demonstrated that RIL could compensate for the role of CLP36 in stress fiber formation. CLP36 and RIL form a complex with α-actinin-1 and palladin. We found a strong correlation between loss of CLP36/RIL and failure of α-actinin-1 or palladin to localize on stress fibers. In addition, time lapse observation revealed that incorporation of RIL stabilizes stress fibers and that CLP36 influences the dynamic architecture of these fibers. Our findings indicate that CLP36 and RIL have a redundant role in the formation of stress fibers, but have different effects on stress fiber dynamics in F2408 cells.
Collapse
Affiliation(s)
- Kazufumi Miyazaki
- Department of Anatomy, Hamamatsu University School of Medicine, 431-3192 Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
58
|
The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011; 2011:569628. [PMID: 22028589 PMCID: PMC3199094 DOI: 10.1155/2011/569628] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023] Open
Abstract
The sarcomeric Z-disc defines the lateral borders of the sarcomere and has primarily been seen as a structure important for mechanical stability. This view has changed dramatically within the last one or two decades. A multitude of novel Z-disc proteins and their interacting partners have been identified, which has led to the identification of additional functions and which have now been assigned to this structure. This includes its importance for intracellular signalling, for mechanosensation and mechanotransduction in particular, an emerging importance for protein turnover and autophagy, as well as its molecular links to the t-tubular system and the sarcoplasmic reticulum. Moreover, the discovery of mutations in a wide variety of Z-disc proteins, which lead to perturbations of several of the above-mentioned systems, gives rise to a diverse group of diseases which can be termed Z-discopathies. This paper provides a brief overview of these novel aspects as well as points to future research directions.
Collapse
|
59
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
60
|
Katzemich A, Long JY, Jani K, Lee BR, Schöck F. Muscle type-specific expression of Zasp52 isoforms in Drosophila. Gene Expr Patterns 2011; 11:484-90. [PMID: 21867777 DOI: 10.1016/j.gep.2011.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 10/24/2022]
Abstract
Zasp52 is a member of the PDZ-LIM domain protein family in Drosophila, which comprises Enigma, ENH, ZASP, Alp, CLP36, RIL, and Mystique in vertebrates. Drosophila Zasp52 colocalizes with integrins at myotendinous junctions and with α-actinin at Z-disks, and is required for muscle attachment as well as Z-disk assembly and maintenance. Here we document 13 Zasp52 splice variants giving rise to six different LIM domains. We demonstrate stage- and tissue-specific expression in different muscle types for Zasp52 isoforms encoding different LIM domains. In particular, LIM1b is expressed only in heart muscle and certain somatic muscles, implying muscle-specific functions in Z-disk assembly or maintenance.
Collapse
Affiliation(s)
- Anja Katzemich
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec, Canada H3A 1B1
| | | | | | | | | |
Collapse
|
61
|
Guryanova OA, Drazba JA, Frolova EI, Chumakov PM. Actin cytoskeleton remodeling by the alternatively spliced isoform of PDLIM4/RIL protein. J Biol Chem 2011; 286:26849-59. [PMID: 21636573 DOI: 10.1074/jbc.m111.241554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RIL (product of PDLIM4 gene) is an actin-associated protein that has previously been shown to stimulate actin bundling by interacting with actin-cross-linking protein α-actinin-1 and increasing its affinity to filamentous actin. Here, we report that the alternatively spliced isoform of RIL, denoted here as RILaltCterm, functions as a dominant-negative modulator of RIL-mediated actin reorganization. RILaltCterm is regulated at the level of protein stability, and this protein isoform accumulates particularly in response to oxidative stress. We show that the alternative C-terminal segment of RILaltCterm has a disordered structure that directs the protein to rapid degradation in the core 20 S proteasomes. Such degradation is ubiquitin-independent and can be blocked by binding to NAD(P)H quinone oxidoreductase NQO1, a detoxifying enzyme induced by prolonged exposure to oxidative stress. We show that either overexpression of RILaltCterm or its stabilization by stresses counteracts the effects produced by full-length RIL on organization of actin cytoskeleton and cell motility. Taken together, the data suggest a mechanism for fine-tuning actin cytoskeleton rearrangement in response to stresses.
Collapse
Affiliation(s)
- Olga A Guryanova
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
62
|
Abstract
Costameres are sub-membranous, Z-line associated structures found in striated muscle. They have been shown to have important roles in transmission of force from the sarcomere to the sarcolemma and extracellular matrix, maintaining mechanical integrity of the sarcolemma, and orchestrating mechanically related signaling. The costamere is akin to the more well-known focal adhesion complex present in most cells. The Z-line is a critical structural anchor for the sarcomere, but it is also a hot-spot for muscle cell signaling. Therefore functionally, the costamere represents a two-way signaling highway tethered between the Z-line and the extracellular matrix, relaying mechanical stress signals from outside the cell to intracellular signaling networks. In this role it can modulate myofibril growth and contraction. The major force generated by sarcomeres is transduced in the lateral direction from the sarcomere to the extracellular matrix through the costamere. Two major protein complexes have been described at the costamere: the dystrophin-glycoprotein complex and the integrin-vinculin-talin complex. The importance of these two protein complexes in striated muscle function has between demonstrated both in human disease and mouse models. Members of the dystrophin glycoprotein complex and integrins have both been reported to interact directly with filamin-C, thus linking costameric complexes with those present at the Z-line. Moreover, studies from our labs and others have shown that the Z-line proteins belonging to the PDZ-LIM domain protein family, enigma homolog (ENH) and cypher, may directly or indirectly be involved in this linkage. The following review will focus on the protein components of this linkage, their function in force transmission, and how the dysfunction or loss of proteins within these complexes contributes to muscular disease.
Collapse
|
63
|
Cheng H, Zheng M, Peter AK, Kimura K, Li X, Ouyang K, Shen T, Cui L, Frank D, Dalton ND, Gu Y, Frey N, Peterson KL, Evans SM, Knowlton KU, Sheikh F, Chen J. Selective deletion of long but not short Cypher isoforms leads to late-onset dilated cardiomyopathy. Hum Mol Genet 2011; 20:1751-62. [PMID: 21303826 DOI: 10.1093/hmg/ddr050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cypher long (CypherL) and short (CypherS) isoforms are distinguished from each other by the presence and absence of three C-terminal LIM domains, respectively. Cypher isoforms are developmentally regulated, and mutations affecting both long and short isoforms are linked to muscle disease in humans. Given these data, we hypothesized that various Cypher isoforms play overlapping and unique roles in striated muscle. To determine the specific role of Cypher isoforms in striated muscle, we generated two mouse lines in which either CypherS or CypherL isoforms were specifically deleted. Mice specifically, deficient in CypherS isoforms had no detectable muscle phenotype. In contrast, selective loss of CypherL isoforms resulted in partial neonatal lethality. Surviving mutants exhibited growth retardation and late-onset dilated cardiomyopathy, which was associated with cardiac fibrosis and calcification, leading to premature adult mortality. At a young age, preceding development of cardiomyopathy, hearts from these mutants exhibited defects in both Z-line ultrastructure and specific aberrations in calcineurin-NFAT and protein kinase C pathways. Earlier onset of cardiac dilation relative to control wild-type mice was observed in young CypherL isoform knockout mice consequent to pressure overload, suggesting a greater susceptibility to the disease. In summary, we have identified unique roles for CypherL isoforms in maintaining Z-line ultrastructure and signaling that are distinct from the roles of CypherS isoforms, while highlighting the contribution of mutations in the long isoforms to the development of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Hongqiang Cheng
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
LIM domains regulate protein kinase C activity: a novel molecular function. Cell Signal 2011; 23:928-34. [PMID: 21266195 DOI: 10.1016/j.cellsig.2011.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/19/2011] [Indexed: 11/23/2022]
Abstract
Enigma homolog protein 1 (ENH1) acts as a scaffold that selectively associates protein kinases and transcription factors with cytoskeletal elements. ENH1 comprises an N-terminal PDZ domain and three C-terminal LIM domains. Through the LIM domains ENH1 interacts with the N-terminal region of protein kinase C βI (PKCβI). Here, we show that when ENH1 is co-expressed, PKCβI is translocated from the cytoplasm to the plasma membrane in the absence of any other stimulation. Moreover expression of ENH1 markedly increases PKCβI activity in the absence of PKC activators. A similar activation of PKCβI was observed with co-expression of Cypher1 or Enigma, but not other LIM proteins. The region including the three LIM domains of ENH1 (residues 415-591) appears to be sufficient for this PKCβI activation. Finally, interaction with ENH1 also increases the activity of PKCα and PKCγ, whereas it reduces PKCζ activity. These findings provide strong evidence that ENH1 activates conventional PKCs by directly binding through its LIM domains. Thus, LIM domains have a novel molecular function: the regulation of PKC activities in a PKC isoform-specific manner.
Collapse
|
65
|
Abstract
During the last 15 years, the perception of the cardiac z-disc has undergone substantial changes. Initially viewed as a structural component at the lateral boundaries of the sarcomere, the cardiac z-disc has increasingly become recognized as a nodal point in cardiomyocyte signal transduction and disease. This minireview thus focuses on novel components and recent developments in z-disc biology and their role in cardiac signaling and disease.
Collapse
Affiliation(s)
- Derk Frank
- Internal Medicine III/Cardiology, University of Kiel, 24105 Kiel, Germany
| | | |
Collapse
|
66
|
Gautel M. The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 2010; 23:39-46. [PMID: 21190822 DOI: 10.1016/j.ceb.2010.12.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 01/01/2023]
Abstract
In striated muscle sarcomeres, the contractile actin and myosin filaments are organised by a subset of specialised cytoskeletal proteins, the sarcomeric cytoskeleton. They include α-actinin, myomesin, and the giant proteins titin, obscurin and nebulin, which combine architectural, mechanical and signalling functions. Mechanics and signalling in the sarcomere appear tightly interdependent, but the exact contributions of the various sarcomeric cytoskeleton proteins to strain handling or signalling are only just emerging. General mechanisms of cytoskeletal mechanics and signalling may be gleaned from the sarcomere as a specialised actomyosin system. Recent work has led to insight into the interactions, structure, and mechanical stability of sarcomeric protein complexes that fulfil both structural and signalling roles.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division and Randall Division for Cell and Molecular Biophysics, London SE1 1UL, United Kingdom.
| |
Collapse
|
67
|
|
68
|
Cheng H, Kimura K, Peter AK, Cui L, Ouyang K, Shen T, Liu Y, Gu Y, Dalton ND, Evans SM, Knowlton KU, Peterson KL, Chen J. Loss of enigma homolog protein results in dilated cardiomyopathy. Circ Res 2010; 107:348-56. [PMID: 20538684 DOI: 10.1161/circresaha.110.218735] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The Z-line, alternatively termed the Z-band or Z-disc, is a highly ordered structure at the border between 2 sarcomeres. Enigma subfamily proteins (Enigma, Enigma homolog protein, and Cypher) of the PDZ-LIM domain protein family are Z-line proteins. Among the Enigma subfamily, Cypher has been demonstrated to play a pivotal role in the structure and function of striated muscle, whereas the role of Enigma homolog protein (ENH) in muscle remains largely unknown. OBJECTIVE We studied the role of Enigma homolog protein in the heart using global and cardiac-specific ENH knockout mouse models. METHODS AND RESULTS We identified new exons and splice isoforms for ENH in the mouse heart. Impaired cardiac contraction and dilated cardiomyopathy were observed in ENH null mice. Mice with cardiac specific ENH deletion developed a similar dilated cardiomyopathy. Like Cypher, ENH interacted with Calsarcin-1, another Z-line protein. Moreover, biochemical studies showed that ENH, Cypher short isoform and Calsarcin-1 are within the same protein complex at the Z-line. Cypher short isoform and Calsarcin-1 proteins are specifically downregulated in ENH null hearts. CONCLUSIONS We have identified an ENH-CypherS-Calsarcin protein complex at the Z-line. Ablation of ENH leads to destabilization of this protein complex and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Hongqiang Cheng
- Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|