51
|
Modem S, Dicarlo SE, Reddy TR. Fresh Garlic Extract Induces Growth Arrest and Morphological Differentiation of MCF7 Breast Cancer Cells. Genes Cancer 2012; 3:177-86. [PMID: 23050048 DOI: 10.1177/1947601912458581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/29/2012] [Indexed: 01/19/2023] Open
Abstract
Consumption of diets rich in fruits and vegetables is often associated with a reduced risk of developing cancer, particularly breast cancer. Considering that 1 in 8 women in the United States will develop breast cancer in the course of her lifetime, dietary manipulation could have a major impact on the incidence of breast cancer. We report here that fresh extracts of garlic (not boiled) arrested the growth and altered the morphology of MCF7 breast cancer cells. Deregulated levels of E-cadherin, cytokeratin8/18, and β-catenin correlated with the altered phenotype. We propose that early down-regulation of cyclin D1, reduced phosphorylation of ERK1, and increased phosphorylation of eIF2-α triggered the phenotypical changes. Reduced expression of hsp27 and sam68 and elevated levels of Rb and p21 further contributed to the sustained growth reduction. These findings provide a better understanding of the cellular responses to dietary supplements and provide potential options to treat breast cancer.
Collapse
Affiliation(s)
- Suhasini Modem
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | |
Collapse
|
52
|
Click RE. Alteration of GI symptoms in a cow with Johne disease by the dietary organosulfur, 2-mercaptoethanol. Virulence 2012; 3:543-5. [PMID: 23076275 PMCID: PMC3524159 DOI: 10.4161/viru.22090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Sub-phenotypes of inflammatory bowel disease (IBD)-Crohn disease, ulcerative colitis and some cases of irritable bowel syndrome-are generally considered a consequence of gastrointestinal inflammation of unknown etiology. Conventional therapy and more recently biologic agents, all with varying degrees of drawbacks, have resulted in improved control of these diseases. However, as the incidence and prevalence continue to rise, needs for prevention, permanent remission and cures remain unmet, plus there still remain needs for improved control of symptoms, such as pain and diarrhea. The case report herein describes a serendipitous, novel means for curtailing these symptoms associated with a bovine gastrointestinal disease that may have applicability for patients with diseases characterized by abdominal-visceral pain and diarrhea.
Collapse
|
53
|
Photophysical and photochemical studies of sulfur containing phthalocyanine derivatives in the presence of folic acid. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.03.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
54
|
Selenium and its' role in the maintenance of genomic stability. Mutat Res 2012; 733:100-10. [PMID: 22234051 DOI: 10.1016/j.mrfmmm.2011.12.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/11/2011] [Accepted: 12/22/2011] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans, acting as a component of the unusual amino acids, selenocysteine (Se-Cys) and selenomethionine (Se-Met). Where Se levels are low, the cell cannot synthesise selenoproteins, although some selenoproteins and some tissues are prioritised over others. Characterised functions of known selenoproteins, include selenium transport (selenoprotein P), antioxidant/redox properties (glutathione peroxidases (GPxs), thioredoxin reductases and selenoprotein P) and anti-inflammatory properties (selenoprotein S and GPx4). Various forms of Se are consumed as part of a normal diet, or as a dietary supplement. Supplementation of tissue culture media, animal or human diets with moderate levels of certain Se compounds may protect against the formation of DNA adducts, DNA or chromosome breakage, and chromosome gain or loss. Protective effects have also been shown on mitochondrial DNA, and on telomere length and function. Some of the effects of Se compounds on gene expression may relate to modulation of DNA methylation or inhibition of histone deacetylation. Despite a large number of positive effects of selenium and selenoproteins in various model systems, there have now been some human clinical trials that have shown adverse effects of Se supplementation, according to various endpoints. Too much Se is as harmful as too little, with animal models showing a "U"-shaped efficacy curve. Current recommended daily allowances differ among countries, but are generally based on the amount of Se necessary to saturate GPx enzymes. However, increasing evidence suggests that other enzymes may be more important than GPx for Se action, that optimal levels may depend upon the form of Se being ingested, and vary according to genotype. New paradigms, possibly involving nutrigenomic tools, will be necessary to optimise the forms and levels of Se desirable for maximum protection of genomic stability in all humans.
Collapse
|
55
|
Lee Y, Kim H, Lee J, Kim K. Anticancer activity of S-allylmercapto-L-cysteine on implanted tumor of human gastric cancer cell. Biol Pharm Bull 2011; 34:677-81. [PMID: 21532156 DOI: 10.1248/bpb.34.677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Allylmercapto glutathione S-conjugate, S-allylmercapto-L-cysteine (SAMC), which is biotransformed from allyl sulfides and from naturally occurring water-soluble garlic derivatives, has been known to inhibit tumorigenesis. We found that SAMC was able to induce apoptosis in gastric cancer cells in vitro. We report that SAMC inhibited tumor growth rate by 31.36% and 37.78% at doses of 100 and 300 mg/kg, respectively. Apoptosis in the implanted tumor cells was manifested by apoptotic characteristics, including morphological changes of chromatin crescent, cell shrinkage and membrane blebbing. The apoptosis index of 100 mg/kg and 300 mg/kg of SAMC was 20.74 ± 2.50% and 30.61 ± 2.42%, respectively, by terminal deoxy-nucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) staining. The positive rate of B-cell lymphoma 2 (bcl-2) protein expression of control, 100 mg/kg SAMC and 300 mg/kg SAMC was 15.20 ± 1.67%, 10.94 ± 1.57%, and 8.24 ± 1.07%, respectively, by immunohistochemical staining. The positive rate of bax protein expression of control, 100 mg/kg SAMC and 300 mg/kg SAMC was 15.30 ± 1.90%, 23.18 ± 1.81%, and 25.26 ± 3.03%, respectively. We also observed decreases in bcl-2 mRNA and increases in bax mRNA by SAMC in a dose-dependent manner by reverse transcription-polymerase chain reaction (RT-PCR). These results suggest that SAMC may regulate bcl-2 and bax to induce apoptosis in transplanted tumor cells.
Collapse
Affiliation(s)
- Yongkyu Lee
- Department of Food and Biotechnology, Dongseo University, Korea.
| | | | | | | |
Collapse
|
56
|
Põldma P, Tõnutare T, Viitak A, Luik A, Moor U. Effect of selenium treatment on mineral nutrition, bulb size, and antioxidant properties of garlic (Allium sativum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5498-503. [PMID: 21495721 DOI: 10.1021/jf200226p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Foliar selenium (Se) treatment of garlic at concentrations of 10, 50, and 100 μg of Se/mL was carried out in open field conditions in 2008 and 2009 in Estonia. Bulb weight and yield structure, content of total Se, S, N, P, K, Ca, and Mg, ascorbic acid content (AAC), pungency, total phenolics, and total antioxidant capacity (TAC) were determined. The highest level of Se decreased total S, K, and Ca in both years; no negative impact on bulb weight was observed. In 2009 Se10 treatment had significantly more bulbs with the largest diameter compared to the other treatments. In 2008, the AAC was decreased by Se50 and the content of total phenolics by all Se treatments; however, TAC was increased. Foliar Se fertilization of garlic at rates of 10-50 μg of Se/mL can be recommended to increase the number of large bulbs and increase bulb antioxidant capacity.
Collapse
Affiliation(s)
- Priit Põldma
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.
| | | | | | | | | |
Collapse
|
57
|
Nguyen N, Sharma A, Nguyen N, Sharma AK, Desai D, Huh SJ, Amin S, Meyers C, Robertson GP. Melanoma chemoprevention in skin reconstructs and mouse xenografts using isoselenocyanate-4. Cancer Prev Res (Phila) 2011; 4:248-58. [PMID: 21097713 PMCID: PMC3210697 DOI: 10.1158/1940-6207.capr-10-0106] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melanoma incidence and mortality rates continue to increase despite the use of sunscreen as well as screening programs for early surgical excision of premalignant lesions. The steady increase in melanoma incidence suggests that additional preventive approaches are needed to augment these existing strategies. One unexplored area involves targeting genes whose deregulation promotes disease development to prevent melanoma. The Akt3 signaling pathway is one key signaling cascade that plays a central role by deregulating apoptosis to promote development of approximately 70% of melanomas. Isoselenocyanate-4 (ISC-4), derived from isothiocyanates by increasing the alkyl chain length and replacing sulfur with selenium, has been developed to target this important signaling pathway in melanomas; however, its chemopreventive potential is unknown. In this study, the chemopreventive efficacy of topical ISC-4 was evaluated in a laboratory-generated human skin melanoma model containing early melanocytic lesion or advanced stage melanoma cell lines and in animals containing invasive xenografted human melanoma. Repeated topical application of ISC-4 reduced tumor cell expansion in the skin model by 80% to 90% and decreased tumor development in animals by approximately 80%. Histologic examination of ISC-4-treated skin showed no obvious damage to skin cells or skin morphology, and treated animals did not exhibit markers indicative of major organ-related toxicity. Mechanistically, ISC-4 prevented melanoma by decreasing Akt3 signaling that lead to a 3-fold increase in apoptosis rates. Thus, topical ISC-4 can delay or slow down melanocytic lesion or melanoma development in preclinical models and could impact melanoma incidence rates if similar results are observed in humans.
Collapse
Affiliation(s)
- Natalie Nguyen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Arati Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Nhung Nguyen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Arun K. Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Dhimant Desai
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Sung Jin Huh
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Gavin P. Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
58
|
Akgül B, Lin KW, Ou Yang HM, Chen YH, Lu TH, Chen CH, Kikuchi T, Chen YT, Tu CPD. Garlic accelerates red blood cell turnover and splenic erythropoietic gene expression in mice: evidence for erythropoietin-independent erythropoiesis. PLoS One 2010; 5:e15358. [PMID: 21206920 PMCID: PMC3012072 DOI: 10.1371/journal.pone.0015358] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 11/15/2010] [Indexed: 01/06/2023] Open
Abstract
Garlic (Allium sativum) has been valued in many cultures both for its health effects and as a culinary flavor enhancer. Garlic's chemical complexity is widely thought to be the source of its many health benefits, which include, but are not limited to, anti-platelet, procirculatory, anti-inflammatory, anti-apoptotic, neuro-protective, and anti-cancer effects. While a growing body of scientific evidence strongly upholds the herb's broad and potent capacity to influence health, the common mechanisms underlying these diverse effects remain disjointed and relatively poorly understood. We adopted a phenotype-driven approach to investigate the effects of garlic in a mouse model. We examined RBC indices and morphologies, spleen histochemistry, RBC half-lives and gene expression profiles, followed up by qPCR and immunoblot validation. The RBCs of garlic-fed mice register shorter half-lives than the control. But they have normal blood chemistry and RBC indices. Their spleens manifest increased heme oxygenase 1, higher levels of iron and bilirubin, and presumably higher CO, a pleiotropic gasotransmitter. Heat shock genes and those critical for erythropoiesis are elevated in spleens but not in bone marrow. The garlic-fed mice have lower plasma erythropoietin than the controls, however. Chronic exposure to CO of mice on garlic-free diet was sufficient to cause increased RBC indices but again with a lower plasma erythropoietin level than air-treated controls. Furthermore, dietary garlic supplementation and CO treatment showed additive effects on reducing plasma erythropoietin levels in mice. Thus, garlic consumption not only causes increased energy demand from the faster RBC turnover but also increases the production of CO, which in turn stimulates splenic erythropoiesis by an erythropoietin-independent mechanism, thus completing the sequence of feedback regulation for RBC metabolism. Being a pleiotropic gasotransmitter, CO may be a second messenger for garlic's other physiological effects.
Collapse
Affiliation(s)
- Bünyamin Akgül
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Turkey
| | - Kai-Wei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
| | - Hui-Mei Ou Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- National Genotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- Taiwan Mouse Clinic, National Phenotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Tzu-Huan Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- National Genotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- National Genotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Tateki Kikuchi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- Taiwan Mouse Clinic, National Phenotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- National Genotyping Center, Academia Sinica, Taipei, Taiwan Authority
| | - Chen-Pei D. Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Authority
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
59
|
Ibáñez E, Plano D, Font M, Calvo A, Prior C, Palop JA, Sanmartín C. Synthesis and antiproliferative activity of novel symmetrical alkylthio- and alkylseleno-imidocarbamates. Eur J Med Chem 2010; 46:265-74. [PMID: 21115210 DOI: 10.1016/j.ejmech.2010.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/18/2010] [Accepted: 11/06/2010] [Indexed: 01/18/2023]
Abstract
The study described here concerns the synthesis of a series of thirty new symmetrically substituted imidothiocarbamate and imidoselenocarbamate derivatives and their evaluation for antitumoral activity in vitro against a panel of five human tumor cell lines: breast adenocarcinoma (MCF-7), colon carcinoma (HT-29), lymphocytic leukemia (K-562), hepatocarcinoma (Hep-G2), prostate cancer (PC-3) and one non-malignant mammary gland-derived cell line (MCF-10A). The GI(50) values for eighteen of the compounds were below 10 μM in at least one cell line. Two cancer cells (MCF-7 and HT-29) proved to be the most sensitive to five compounds (1b, 2b, 3b, 4b and 5b), with growth inhibition in the nanomolar range, and compounds 1b, 3b, 7b, 8b and 9b gave values of less than 1 μM. In addition, all of the aforementioned compounds exhibited lower GI(50) values than some of the standard chemotherapeutic drugs used as references. The results also reveal that the nature of the aliphatic chain (methyl is better than benzyl) at the selenium position and the nature of the heteroatom (Se better than S) have a marked influence on the antiproliferative activity of the compounds. These findings reinforce our earlier hypothesis concerning the determinant role of the selenomethyl group as a scaffold for the biological activity of this type of compound. Considering both the cytotoxic parameters and the selectivity index (which was compared in MCF-7 and MCF-10A cells), compounds 2b and 8b (with a selenomethyl moiety) displayed the best profiles, with GI(50) values ranging from 0.34 nM to 6.07 μM in the five cell lines tested. Therefore, compounds 2b and 8b were evaluated by flow cytometric analysis for their effects on cell cycle distribution and apoptosis in MCF-7 cells. 2b was the most active, with an apoptogenic effect similar to camptothecin, which was used as a positive control. Both of them provoked cell cycle arrest leading to the accumulation of cells in either G(2)/M and S phase. These two compounds can therefore be considered as the most promising candidates for the development of novel generations of antitumor agents.
Collapse
Affiliation(s)
- Elena Ibáñez
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
60
|
Pospieszny T, Wyrzykiewicz E. Thio Analogs of Pyrimidine Bases: Synthesis And Spectroscopic Study of New Potentially Biologically Active Disulfides of N, O-( N, N- or O, O-)-Di- and N, N, O-Tri-( o-, m-, and p-)bromobenzyl-2-thiouracils. PHOSPHORUS SULFUR 2010. [DOI: 10.1080/10426500903501470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tomasz Pospieszny
- a Faculty of Chemistry , Adam Mickiewicz University , Poznan, Poland
| | | |
Collapse
|
61
|
Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol 2010; 84:919-38. [PMID: 20871980 DOI: 10.1007/s00204-010-0595-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
Selenium (Se) is an essential dietary component for animals including humans and is regarded as a protective agent against cancer. Although the mode of anticancer action of Se is not fully understood yet, several mechanisms, such as antioxidant protection by selenoenzymes, specific inhibition of tumor cell growth by Se metabolites, modulation of cell cycle and apoptosis, and effect on DNA repair have all been proposed. Despite the unsupported results of the last SELECT trial, the cancer-preventing activity of Se was demonstrated in majority of the epidemiological studies. Moreover, recent studies suggest that Se has a potential to be used not only in cancer prevention but also in cancer treatment where in combination with other anticancer drugs or radiation, it can increase efficacy of cancer therapy. In combating cancer cells, Se acts as pro-oxidant rather than antioxidant, inducing apoptosis through the generation of oxidative stress. Thus, the inorganic Se compound, sodium selenite (SeL), due to its prooxidant character, represents a promising alternative for cancer therapy. However, this Se compound is highly toxic compared to organic Se forms. Thus, the unregulated intake of dietary or pharmacological Se supplements mainly in the form of SeL has a potential to expose the body tissues to the toxic levels of Se with subsequent negative consequences on DNA integrity. Hence, due to a broad interest to exploit the positive effects of Se on human health and cancer therapy, studies investigating the negative effects such as toxicity and DNA damage induction resulting from high Se intake are also highly required. Here, we review a role of Se in cancer prevention and cancer therapy, as well as mechanisms underlying Se-induced toxicity and DNA injury. Since Saccharomyces cerevisiae has proven a powerful tool for addressing some important questions regarding Se biology, a part of this review is devoted to this model system.
Collapse
|
62
|
Desai D, Sinha I, Null K, Wolter W, Suckow MA, King T, Amin S, Sinha R. Synthesis and antitumor properties of selenocoxib-1 against rat prostate adenocarcinoma cells. Int J Cancer 2010; 127:230-8. [PMID: 19918950 DOI: 10.1002/ijc.25033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hormone refractory prostate cancer poses a huge problem and standard of care chemotherapy has not been very successful. We used a novel strategy to combine properties of 2 well-studied class of compounds (selenium and COX-2 inhibitor) and examined the resulting effectiveness against prostate cancer. Bearing in mind that sulfonamide moiety and pyrazole ring is important for the proapoptotic activity of Celecoxib, we synthesized a selenium derivative, Selenocoxib-1, by modifying Celecoxib at position 3 of the pyrazole ring. The PAIII cells derived from a metastatic prostate tumor that arose spontaneously in a Lobund-Wistar (LW) rat were used to examine the efficacy of Selenocoxib-1 in vitro. In addition, human metastatic prostate cancer cells, PC-3M, were tested for antitumor effect of Selenocoxib-1 in vitro. The IC(50) in PAIII and PC-3M cells for Selenocoxib-1 was about 5 microM, while for Celecoxib it was more than 20 microM. Selenocoxib-1 induced apoptosis in a dose-dependent manner in the PAIII cells. COX-2 expression in PAIII cells was downregulated by Celecoxib and Selenocoxib-1 at 20 and 5 microM, respectively; the COX-2 activity was, however, not affected by Selenocoxib-1. Following treatment with Selenocoxib-1, PAIII cells resulted in dose-dependent decrease in HIF-1alpha, p-AKT and Bcl-2 levels. A reduction in weights was observed in subcutaneous tumors produced by PAIII cells pretreated with Selenocoxib-1 as compared to Celecoxib in LW rats. Further, following 1 week Selenocoxib-1 treatment of PAIII tumors resulted in significant reduction of tumor weights. This study demonstrates that Selenocoxib-1 is more effective against prostate cancer than Celecoxib.
Collapse
Affiliation(s)
- Dhimant Desai
- Penn State College of Medicine, Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Emmert SW, Desai D, Amin S, Richie JP. Enhanced Nrf2-dependent induction of glutathione in mouse embryonic fibroblasts by isoselenocyanate analog of sulforaphane. Bioorg Med Chem Lett 2010; 20:2675-9. [PMID: 20304643 PMCID: PMC2929643 DOI: 10.1016/j.bmcl.2010.01.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Epidemiological and laboratory studies have highlighted the potent chemopreventive effectiveness of both dietary selenium and cruciferous vegetables, particularly broccoli. Sulforaphane (SFN), an isothiocyanate, was identified as the major metabolite of broccoli responsible for its anti-cancer properties. An important mechanism for SFN chemoprevention is through the enhancement of glutathione (GSH), the most abundant antioxidant in animals and an important target in chemoprevention. Enhancement of GSH biosynthetic enzymes including the rate-limiting glutamate cysteine ligase (GCL), as well as other Phase II detoxification enzymes results from SFN-mediated induction of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway. While isothiocyanate compounds such as SFN are among the most potent Nrf2 inducers known, we hypothesized that substitution of sulfur with selenium in the isothiocyanate functional group of SFN would result in an isoselenocyanate compound (SFN-isoSe) with enhanced Nrf2 induction capability. Here we report that SFN-isoSe activated an ARE-luciferase reporter in HepG2 cells more potently than SFN. It was also found that SFN-isoSe induced GCL and GSH in MEF cells in an Nrf2-dependent manner. Finally, we provide evidence that SFN-isoSe was more effective in killing HepG2 cancer cells, yet was less toxic to non-cancer MEF cells, than SFN. These data support our hypothesis, and suggest that SFN-isoSe and potentially other isoselenocyanates may be highly effective chemoprotective agents in vivo due to their ability to induce Nrf2 with low toxicity in normal cells and high efficiency at killing cancer cells.
Collapse
Affiliation(s)
- Sans W. Emmert
- Department of Public Health Sciences, Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - John P. Richie
- Department of Public Health Sciences, Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| |
Collapse
|
64
|
Shin HA, Cha YY, Park MS, Kim JM, Lim YC. Diallyl sulfide induces growth inhibition and apoptosis of anaplastic thyroid cancer cells by mitochondrial signaling pathway. Oral Oncol 2010; 46:e15-8. [DOI: 10.1016/j.oraloncology.2009.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 11/29/2022]
|
65
|
Desai D, Madhunapantula SV, Gowdahalli K, Sharma A, Chandagaludoreswamy R, El-Bayoumy K, Robertson GP, Amin S. Synthesis and characterization of a novel iNOS/Akt inhibitor Se,Se'-1,4-phenylenebis(1,2-ethanediyl)bisisoselenourea (PBISe)--against colon cancer. Bioorg Med Chem Lett 2010; 20:2038-43. [PMID: 20153642 PMCID: PMC2892985 DOI: 10.1016/j.bmcl.2009.09.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/15/2009] [Accepted: 09/17/2009] [Indexed: 12/18/2022]
Abstract
Our studies demonstrate that substitution of sulfur with selenium in known iNOS inhibitor increases the compound's potency by several folds in variety of different cancers cell lines tested. Hence, this approach may be used as a strategy to increase the efficacy of the anticancer agents.
Collapse
Affiliation(s)
- Dhimant Desai
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Aviello G, Abenavoli L, Borrelli F, Capasso R, Izzo AA, Lembo F, Romano B, Capasso F. Garlic: Empiricism or Science? Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900401231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Garlic (Allium sativum L. fam. Alliaceae) is one of the best-researched, best-selling herbal remedies and is also commonly used as a food and a spice. Garlic constituents include enzymes (for example, alliinase) and sulfur-containing compounds, including alliin, and compounds produced enzymatically from alliin (for example, allicin). Traditionally, it has been employed to treat infections, wounds, diarrhea, rheumatism, heart disease, diabetes, and many other disorders. Experimentally, it has been shown to exert antilipidemic, antihypertensive, antineoplastic, antibacterial, immunostimulant and hypoglycemic actions. Clinically, garlic has been evaluated for a number of conditions, including hypertension, hypercholesterolemia, intermittent claudication, diabetes, rheumatoid arthritis, common cold, as an insect repellent, and for the prevention of arteriosclerosis and cancer. Systematic reviews are available for the possible antilipidemic, antihypertensive, antithrombotic and chemopreventive effects. However, the clinical evidence is far from compelling. Garlic appears to be generally safe although allergic reactions may occur.
Collapse
Affiliation(s)
- Gabriella Aviello
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Ludovico Abenavoli
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, Catanzaro, Italy
| | - Francesca Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Angelo Antonio Izzo
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Barbara Romano
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Francesco Capasso
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
67
|
Stepnik M, Stetkiewicz J, Krajnow A, Domeradzka K, Gradecka-Meesters D, Arkusz J, Stańczyk M, Palus J, Dziubałtowska E, Sobala W, Gromadzińska J, Wasowicz W, Rydzyński K. Carcinogenic effect of arsenate in C57BL/6J/Han mice and its modulation by different dietary selenium status. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:2143-2152. [PMID: 19577296 DOI: 10.1016/j.ecoenv.2009.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 05/28/2023]
Abstract
In this study, carcinogenic effects of arsenate in female C57BL/6J/Han mice exposed in drinking water to 50, 200 or 500microgAs/L for 24 months were investigated. All animals were fed low-selenium diet, however half of them were supplemented with sodium selenite in drinking water (200microgSe/L) to ensure the normal dietary level of selenium. Glutathione peroxidase activity in erythrocytes and plasma as well as selenium concentration in plasma after 3, 6, 12 and 18 months in satellite groups showed considerable decrease in animals from non-selenium supplemented groups in comparison to supplemented groups. A clear arsenic concentration-dependent increase in the number of malignant lymphoma associated with increase in the risk of death was observed (hazard ratio=0.91, 1.46, and 2.24, for 50, 200 and 500microgAs/L, respectively). No significant influence of selenium dietary status on arsenic carcinogenicity was shown. A significant association between selenium supplementation status and increased risk of death of the animals from causes other than malignant tumors was found (HR=1.79, p=0.04).
Collapse
Affiliation(s)
- Maciej Stepnik
- Nofer Institute of Occupational Medicine, 8 Sw. Teresy Street, 91-348 Łódź, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Ghadi FE, Ghara AR, Bhattacharyya S, Dhawan DK. Selenium as a chemopreventive agent in experimentally induced colon carcinogenesis. World J Gastrointest Oncol 2009; 1:74-81. [PMID: 21160778 PMCID: PMC2999095 DOI: 10.4251/wjgo.v1.i1.74] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 02/05/2023] Open
Abstract
AIM: To elucidate the chemopreventive efficacy of selenium during experimentally induced colon carcinogenesis.
METHODS: Thirty-two male wistar rats were divided into four groups: group I (normal control); group II [1,2-dimethylhydrazine (DMH) treated]; group III (selenium treated); and group IV (DMH + selenium treated). Groups II and IV were given subcutaneous injections of DMH (30 mg/kg body weight) every week for 20 wk. Selenium, in the form of sodium selenite, was given to groups III and IV at 1 ppm in drinking water ad libitum for 20 wk. At the end of the study, rats were sacrificed and their colons were analyzed for the development of tumors, antioxidant enzyme levels and histological changes.
RESULTS: 100% of the DMH treated rats developed tumors, which was reduced to 60% upon simultaneous selenium supplementation. Similarly, tumor multiplicity decreased to 1.1 following selenium supplementation to DMH treated rats. Levels of lipid peroxidation, glutathione-S-transferase, superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) decreased following DMH treatment, whereas levels of glutathione (GSH) and glutathione reductase (GR) significantly increased in DMH treated rats. Selenium administration to DMH treated rats led to an increase in the levels of lipid peroxidation, SOD, catalase, glutathione-S-transferase and GPx, but decreased the levels of GSH and GR. Histopathological studies on DMH treated rats revealed dysplasia of the colonic histoarchitecture, which showed signs of improvement following selenium treatment.
CONCLUSION: The study suggests the antioxidative potential of selenium is a major factor in providing protection from development of experimentally induced colon carcinogenesis.
Collapse
Affiliation(s)
- Fereshteh Ezzati Ghadi
- Fereshteh Ezzati Ghadi, Abdollah Ramzani Ghara, Devinder Kumar Dhawan, Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, PIN-160014, India
| | | | | | | |
Collapse
|
69
|
Synthesis and pharmacological screening of several aroyl and heteroaroyl selenylacetic acid derivatives as cytotoxic and antiproliferative agents. Molecules 2009; 14:3313-38. [PMID: 19783927 PMCID: PMC6254723 DOI: 10.3390/molecules14093313] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/04/2009] [Accepted: 08/27/2009] [Indexed: 11/24/2022] Open
Abstract
The synthesis and cytotoxic activity of a series of twenty six aroyl and heteroaroyl selenylacetic acid derivatives of general formula Ar-CO-Se-CH2-COOH or Heterar-CO-Se-CH2-COOH are reported. The synthesis was carried out by reaction of acyl chlorides with sodium hydrogen selenide, prepared in situ, and this led to the formation of sodium aroylselenides that subsequently reacted with α-bromoacetic acid to produce the corresponding selenylacetic acid derivatives. All of the compounds were tested against a prostate cancer cell line (PC-3) and some of the more active compounds were assessed against a panel of four human cancer cell lines (CCRF-CEM, HTB-54, HT-29, MCF-7) and one mammary gland-derived non-malignant cell line (184B5). Some of the compounds exhibited remarkable cytotoxic and antiproliferative activities against MCF-7 and PC-3 that were higher than those of the reference compounds doxorubicin and etoposide, respectively. For example, in MCF-7 when Ar = phenyl, 3,5-dimethoxyphenyl or benzyl the TGI values were 3.69, 4.18 and 6.19 μM. On the other hand, in PC-3 these compounds showed values of 6.8, 4.0 and 2.9 μM. Furthermore, benzoylselenylacetic acid did not provoke apoptosis nor did it perturb the cell cycle in MCF-7.
Collapse
|
70
|
Iciek M, Kwiecień I, Włodek L. Biological properties of garlic and garlic-derived organosulfur compounds. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:247-265. [PMID: 19253339 DOI: 10.1002/em.20474] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Medicinal properties of garlic (Allium sativum) have been widely known and used since ancient times till the present. Garlic enhances immune functions and has antibacterial, antifungal and antivirus activities. It is known to prevent platelet aggregation, and to have hypotensive and cholesterol- and triglyceride-lowering properties, although the latter features have been questioned. This review is focused on anticancer efficacy of Allium sativum, and attempts to explain the mechanisms of this action. Medicinal properties of garlic rely upon organosulfur compounds mostly derived from alliin. Organosulfur compounds originating from garlic inhibit carcinogen activation, boost phase 2 detoxifying processes, cause cell cycle arrest mostly in G2/M phase, stimulate the mitochondrial apoptotic pathway, increase acetylation of histones. Garlic-derived sulfur compounds influence also gap-junctional intercellular communication and participate in the development of multidrug resistance. This review presents also other little known aspects of molecular action of garlic-derived compounds, like modulation of cellular redox state, involvement in signal transduction and post-translational modification of proteins by sulfane sulfur or by formation of mixed disulfides (S-thiolation reactions).
Collapse
Affiliation(s)
- Małgorzata Iciek
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kraków, Poland
| | | | | |
Collapse
|
71
|
Nian H, Delage B, Ho E, Dashwood RH. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:213-221. [PMID: 19197985 PMCID: PMC2701665 DOI: 10.1002/em.20454] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Histone deacetylase (HDAC) inhibitors reactivate epigenetically-silenced genes in cancer cells, triggering cell cycle arrest and apoptosis. Recent evidence suggests that dietary constituents can act as HDAC inhibitors, such as the isothiocyanates found in cruciferous vegetables and the allyl compounds present in garlic. Broccoli sprouts are a rich source of sulforaphane (SFN), an isothiocyanate that is metabolized via the mercapturic acid pathway and inhibits HDAC activity in human colon, prostate, and breast cancer cells. In mouse preclinical models, SFN inhibited HDAC activity and induced histone hyperacetylation coincident with tumor suppression. Inhibition of HDAC activity also was observed in circulating peripheral blood mononuclear cells obtained from people who consumed a single serving of broccoli sprouts. Garlic organosulfur compounds can be metabolized to allyl mercaptan (AM), a competitive HDAC inhibitor that induced rapid and sustained histone hyperacetylation in human colon cancer cells. Inhibition of HDAC activity by AM was associated with increased histone acetylation and Sp3 transcription factor binding to the promoter region of the P21WAF1 gene, resulting in elevated p21 protein expression and cell cycle arrest. Collectively, the results from these studies, and others reviewed herein, provide new insights into the relationships between reversible histone modifications, diet, and cancer chemoprevention.
Collapse
Affiliation(s)
- Hui Nian
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Barbara Delage
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, Oregon
| | - Roderick H. Dashwood
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
72
|
|
73
|
Sharma A, Sharma AK, Madhunapantula SV, Desai D, Huh SJ, Mosca P, Amin S, Robertson GP. Targeting Akt3 signaling in malignant melanoma using isoselenocyanates. Clin Cancer Res 2009; 15:1674-85. [PMID: 19208796 PMCID: PMC2766355 DOI: 10.1158/1078-0432.ccr-08-2214] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Melanoma is the most invasive and deadly form of skin cancer. Few agents are available for treating advanced disease to enable long-term patient survival, which is driving the search for new compounds inhibiting deregulated pathways causing melanoma. Akt3 is an important target in melanomas because its activity is increased in approximately 70% of tumors, decreasing apoptosis in order to promote tumorigenesis. EXPERIMENTAL DESIGN Because naturally occurring products can be effective anticancer agents, a library was screened to identify Akt3 pathway inhibitors. Isothiocyanates were identified as candidates, but low potency requiring high concentrations for therapeutic efficacy made them unsuitable. Therefore, more potent analogs called isoselenocyanates were created using the isothiocyanate backbone but increasing the alkyl chain length and replacing sulfur with selenium. Efficacy was measured on cultured cells and tumors by quantifying proliferation, apoptosis, toxicity, and Akt3 pathway inhibition. RESULTS Isoselenocyanates significantly decreased Akt3 signaling in cultured melanoma cells and tumors. Compounds having 4 to 6 carbon alkyl side chains with selenium substituted for sulfur, called ISC-4 and ISC-6, respectively, decreased tumor development by approximately 60% compared with the corresponding isothiocyanates, which had no effect. No changes in animal body weight or in blood parameters indicative of liver-, kidney-, or cardiac-related toxicity were observed with isoselenocyanates. Mechanistically, isoselenocyanates ISC-4 and ISC-6 decreased melanoma tumorigenesis by causing an approximately 3-fold increase in apoptosis. CONCLUSIONS Synthetic isoselenocyanates are therapeutically effective for inhibiting melanoma tumor development by targeting Akt3 signaling to increase apoptosis in melanoma cells with negligible associated systemic toxicity.
Collapse
Affiliation(s)
- Arati Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Arun K. Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Dhimant Desai
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Sung Jin Huh
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Paul Mosca
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, Lehigh Valley and Health Network, Allentown, PA 18034
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Gavin P. Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
74
|
Lin L, Sheng J, Momin RK, Du Q, Huang Z. Facile synthesis and anti-tumor cell activity of Se-containing nucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2009; 28:56-66. [PMID: 19116870 DOI: 10.1080/15257770802581765] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many organic compounds containing selenium have shown anticancer effects and some have been used in chemoprevention of cancers and other diseases. Though Se-containing amino acids are generally used for these purposes, the natural nucleosides may also be used as Se-carriers for these important applications. Therefore, we describe here the convenient synthesis of the new 3'-MeSe-thymidine nucleoside and the other uridine and thymidine derivatives modified with MeSe at the 2' and 5' positions, and report their anti-tumor activity against prostate cancer cell lines. Our work demonstrates for the first time anticancer activity of the methylseleno nucleosides.
Collapse
Affiliation(s)
- Lina Lin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
75
|
Ibrahim SS, Nassar NN. Diallyl sulfide protects against N-nitrosodiethylamine-induced liver tumorigenesis: role of aldose reductase. World J Gastroenterol 2008; 14:6145-53. [PMID: 18985804 PMCID: PMC2761575 DOI: 10.3748/wjg.14.6145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 09/20/2008] [Accepted: 09/27/2008] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the protective effect of diallyl sulfide (DAS) against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. METHODS Male Wistar rats received either NDEA or NDEA together with DAS as protection. Liver energy metabolism was assessed in terms of lactate, pyruvate, lactate/pyruvate, ATP levels, lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD) activities. In addition, membrane disintegration of the liver cells was evaluated by measuring lipid-peroxidation products, measured as malondialdehyde (MDA); nitric oxide (NO) levels; glucose-6-phosphatase (G6Pase), catalase (CAT) and superoxide dismutase (SOD) activities. Liver DNA level, glutathione-S-transferase (GST) and cytochrome c oxidase activities were used as DNA fragmentation indices. Aldose reductase (AR) activity was measured as an index for cancer cells resistant to chemotherapy and histopathological examination was performed on liver sections from different groups. RESULTS NDEA significantly disturbed liver functions and most of the aforementioned indices. Treatment with DAS significantly restored liver functions and hepatocellular integrity; improved parameters of energy metabolism and suppressed free-radical generation. CONCLUSION We provide evidence that DAS exerts a protective role on liver functions and tissue integrity in face of enhanced tumorigenesis caused by NDEA, as well as improving cancer-cell sensitivity to chemotherapy. This is mediated through combating oxidative stress of free radicals, improving the energy metabolic state of the cell, and enhancing the activity of G6Pase, GST and AR enzymes.
Collapse
|
76
|
Prasain JK, Barnes S. Metabolism and bioavailability of flavonoids in chemoprevention: current analytical strategies and future prospectus. Mol Pharm 2008; 4:846-64. [PMID: 18052086 DOI: 10.1021/mp700116u] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Flavonoids are structurally diverse and among the most ubiquitous groups of dietary polyphenols distributed in various fruits and vegetables. Many have been proposed to be bioactive compounds in the diet that are responsible for lowering the risk of cancer and have been used in chemoprevention studies using animal models of this disease. As for any xenobiotic, to evaluate the potential risks and benefits of bioflavonoids to human health, an understanding of the physiological behavior of these compounds following oral ingestion is needed as well as their absorption, distribution, metabolism, and excretion (ADME). The study on metabolism and bioavailability is very important in defining the pharmacological and toxicological profile of these compounds. Due to great structural diversity among flavonoids, these profiles differ greatly from one compound to another, so that the most abundant polyphenols in our diet are not necessarily the ones that reach target tissues. Therefore, careful analysis of flavonoids and their metabolites in biological systems is critical. Mass spectrometry in various combinations with chromatographic methods has been a mainstay in applications that involve profiling and quantification of metabolites in complex biological samples. Because of its speed, sensitivity and specificity, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the technology of choice for sample analysis. This review describes the chemistry of polyphenols and flavonoids, their ADME, and the various mass spectrometry-based strategies used in the analysis of flavonoids, including future trends in this field.
Collapse
Affiliation(s)
- Jeevan K Prasain
- Department of Pharmacology & Toxicology, Purdue--UAB Botanicals Center for Age-Related Disease, UAB Center for Nutrient-Gene Interaction in Cancer Prevention, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | |
Collapse
|
77
|
Abstract
Diabetes affects a large segment of the population worldwide, and the prevalence of this disease is rapidly increasing. Despite the availability of medication for diabetes, traditional remedies are desirable and are currently being investigated. Garlic (Allium sativum), which is a common cooking spice and has a long history as a folk remedy, has been reported to have antidiabetic activity. However, there is no general agreement on the use of garlic for antidiabetic purposes, primarily because of a lack of scientific evidence from human studies and inconsistent data from animal studies. The validity of data from previous studies of the hypoglycemic effect of garlic in diabetic animals and the preventive effects of garlic on diabetes complications are discussed in this review. The role of garlic as both an insulin secretagogue and as an insulin sensitizer is reviewed. Evidence suggests that garlic's antioxidative, antiinflammatory, and antiglycative properties are responsible for garlic's role in preventing diabetes progression and the development of diabetes-related complications. Large-scale clinical studies with diabetic patients are warranted to confirm the usefulness of garlic in the treatment and prevention of diabetes.
Collapse
Affiliation(s)
- Cheng-Tzu Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan, PR China.
| | | | | |
Collapse
|
78
|
Kabirov K, Kapetanovic I, Lyubimov A. Direct determination of selenium in rat blood plasma by Zeeman atomic absorption spectrometry. Chem Biol Interact 2008; 171:152-8. [DOI: 10.1016/j.cbi.2007.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 11/23/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022]
|
79
|
Bardia A, Tleyjeh IM, Cerhan JR, Sood AK, Limburg PJ, Erwin PJ, Montori VM. Efficacy of antioxidant supplementation in reducing primary cancer incidence and mortality: systematic review and meta-analysis. Mayo Clin Proc 2008; 83:23-34. [PMID: 18173999 DOI: 10.4065/83.1.23] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To estimate the association between antioxidant use and primary cancer incidence and mortality and to evaluate these effects across specific antioxidant compounds, target organs, and participant subgroups. METHODS Multiple electronic databases (MEDLINE, Cochrane Controlled Clinical Trials Register, EMBASE, Science Citation Index) were searched from their dates of inception until August 2005 to identify eligible randomized clinical trials. Random effects meta-analyses estimated pooled relative risks (RRs) and 95% confidence intervals (CIs) that described the effect of antioxidants vs placebo on cancer incidence and cancer mortality. RESULTS Twelve eligible trials, 9 of high methodological quality, were identified (total subject population, 104,196). Antioxidant supplementation did not significantly reduce total cancer incidence (RR, 0.99; 95% CI, 0.94-1.04) or mortality (RR, 1.03; 95% CI, 0.92-1.15) or any site-specific cancer incidence. Beta carotene supplementation was associated with an increase in the incidence of cancer among smokers (RR, 1.10; 95% CI, 1.03-1.10) and with a trend toward increased cancer mortality (RR, 1.16; 95% CI, 0.98-1.37). Selenium supplementation was associated with reduced cancer incidence in men (RR, 0.77; 95% CI, 0.64-0.92) but not in women (RR, 1.00; 95% CI, 0.89-1.13, value for interaction, P< .001) and with reduced cancer mortality (RR, 0.78; 95% CI, 0.65-0.94). Vitamin E supplementation had no apparent effect on overall cancer incidence (RR, 0.99; 95% CI, 0.94-1.04) or cancer mortality (RR, 1.04; 95% CI, 0.97-1.12). CONCLUSION Beta carotene supplementation appeared to increase cancer incidence and cancer mortality among smokers, whereas vitamin E supplementation had no effect. Selenium supplementation might have anticarcinogenic effects in men and thus requires further research.
Collapse
Affiliation(s)
- Aditya Bardia
- Department of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Kumaraguruparan R, Seshagiri PB, Hara Y, Nagini S. Chemoprevention of rat mammary carcinogenesis by black tea polyphenols: modulation of xenobiotic-metabolizing enzymes, oxidative stress, cell proliferation, apoptosis, and angiogenesis. Mol Carcinog 2007; 46:797-806. [PMID: 17415784 DOI: 10.1002/mc.20309] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chemoprevention of dietary constituents has emerged as a cost-effective approach to control the incidence of breast cancer. The present study was therefore designed to evaluate the chemopreventive efficacy of black tea polyphenols (Polyphenon-B) during the preinitiation phase of 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary carcinogenesis using xenobiotic-metabolizing enzymes, cellular redox status, cell proliferation, apoptosis, and angiogenesis as biomarkers of chemoprevention. Intragastric administration of DMBA induced adenocarcinomas that showed enhanced activities of phase I carcinogen activation and phase II detoxification enzymes with increased lipid and protein oxidation and decrease in antioxidant status. This was associated with increased cell proliferation, angiogenesis, and evasion of apoptosis as revealed by upregulation of proliferating cell nuclear antigen (PCNA), Bcl-2, and vascular endothelial growth factor (VEGF), and downregulation of Bax, caspase 3, and poly(ADP-ribose) polymerase (PARP). Dietary administration of Polyphenon-B effectively suppressed the incidence of mammary tumors as evidenced by modulation of xenobiotic-metabolizing enzymes and oxidant-antioxidant status, inhibition of cell proliferation and angiogenesis, and induction of apoptosis. The present study provides evidence that Polyphenon-B exerts multifunctional inhibitory effects on DMBA-induced mammary carcinogenesis and suggests that it can be developed as a potential chemopreventive agent.
Collapse
Affiliation(s)
- R Kumaraguruparan
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | | | | |
Collapse
|
81
|
Cuello S, Ramos S, Mateos R, Martín MA, Madrid Y, Cámara C, Bravo L, Goya L. Selenium methylselenocysteine protects human hepatoma HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide. Anal Bioanal Chem 2007; 389:2167-78. [PMID: 17952420 DOI: 10.1007/s00216-007-1626-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 11/27/2022]
Abstract
Selenium methylselenocysteine (Se-MeSeCys) is a common selenocompound in the diet with a tested chemopreventive effect. This study investigated the potential protective effect of Se-MeSeCys against a chemical oxidative stress induced by tert-butyl hydroperoxide (t-BOOH) on human hepatoma HepG2 cells. Speciation of selenium derivatives by liquid chromatography-inductively coupled plasma mass spectrometry depicts Se-MeSeCys as the only selenocompound in the cell culture. Cell viability (lactate dehydrogenase) and markers of oxidative status--concentration of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS) and activity of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR)--were evaluated. Pretreatment of cells with Se-MeSeCys for 20 h completely prevented the enhanced cell damage, MDA concentration and GR and GPx activity and the decreased GSH induced by t-BOOH but did not prevent increased ROS generation. The results show that treatment of HepG2 cells with concentrations of Se-MeSeCys in the nanomolar to micromolar range confers a significant protection against an oxidative insult.
Collapse
Affiliation(s)
- Susana Cuello
- Departamento de Química Analítica, Facultad de Químicas, Universidad Complutense, 28040, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Plano D, Sanmartín C, Moreno E, Prior C, Calvo A, Palop JA. Novel potent organoselenium compounds as cytotoxic agents in prostate cancer cells. Bioorg Med Chem Lett 2007; 17:6853-9. [PMID: 17964158 DOI: 10.1016/j.bmcl.2007.10.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 11/30/2022]
Abstract
A series of 17 symmetrical substituted imidothiocarbamate and imidoselenocarbamate derivatives has been synthesized by reacting appropriately substituted acyl chlorides with alkyl imidothiocarbamates and alkyl imidoselenocarbamates. The antitumoral activities of the compounds were evaluated in vitro by examining their cytotoxic effects against human prostate cancer cells (PC-3). Five compounds showed interesting activity levels and 3p (IC(50)=1.85 microM) was 7.3 times more active than the standard etoposide used in the treatment of prostate cancer and emerges as the most interesting compound.
Collapse
Affiliation(s)
- Daniel Plano
- Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica, University of Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
83
|
Ngo SNT, Williams DB, Cobiac L, Head RJ. Does garlic reduce risk of colorectal cancer? A systematic review. J Nutr 2007; 137:2264-9. [PMID: 17885009 DOI: 10.1093/jn/137.10.2264] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the 3rd leading cause of cancer death in the United States and the 2nd leading cause of cancer death in Australia. Environmental factors play important roles in the multiple-stage process of CRC and nutritional intervention has been identified as playing a major role in its prevention. The aim of this study was to review systematically the scientific evidence from all studies conducted over the last decade that examined effects of garlic on CRC. Levels of evidence were ranked from level I to level V according to study designs and the quality of each study was assessed against a set of quality criteria based on those used by the National Health and Medical Research Council in Australia. One randomized controlled trial (RCT, level II) reported a statistically significant 29% reduction in both size and number of colon adenomas in CRC patients taking aged garlic extract. Five of 8 case control/cohort studies (level III) suggested a protective effect of high intake of raw/cooked garlic and 2 of 8 of these studies suggested a protective effect for distal colon. A published meta-analysis (level III) of 7 of these studies confirmed this inverse association, with a 30% reduction in relative risk. Eleven animal studies (level V) demonstrated a significant anticarcinogenic effect of garlic and/or its active constituents. On balance, there is consistent scientific evidence derived from RCT of animal studies reporting protective effects of garlic on CRC despite great heterogeneity of measures of intakes among human epidemiological studies.
Collapse
Affiliation(s)
- Suong N T Ngo
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5000 Australia.
| | | | | | | |
Collapse
|
84
|
Howard EW, Ling MT, Chua CW, Cheung HW, Wang X, Wong YC. Garlic-derived S-allylmercaptocysteine is a novel in vivo antimetastatic agent for androgen-independent prostate cancer. Clin Cancer Res 2007; 13:1847-56. [PMID: 17363541 DOI: 10.1158/1078-0432.ccr-06-2074] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There is epidemiologic evidence that high garlic consumption decreases the incidence of prostate cancer, and compounds isolated from garlic have been shown to have cancer-preventive and tumor-suppressive effects. Recent in vitro studies in our laboratory have shown that garlic-derived organosulfur compound S-allylmercaptocysteine suppresses invasion and cell motility of androgen-independent prostate cancer cells via the up-regulation of cell-adhesion molecule E-cadherin. S-allylmercaptocysteine is therefore a potential antimetastatic drug with broad clinical applications that we tested in vivo for the first time in this study. EXPERIMENTAL DESIGN We used a newly established fluorescent orthotopic androgen-independent prostate cancer mouse model to assess the ability of S-allylmercaptocysteine to inhibit tumor growth and dissemination. RESULTS We showed that oral S-allylmercaptocysteine not only inhibited the growth of primary tumors by up to 71% (P < 0.001) but also reduced the number of lung and adrenal metastases by as much as 85.5% (P = 0.001) without causing notable toxicity. This metastatic suppression was accompanied by a 91% reduction of viable circulating tumor cells (P = 0.041), suggesting that S-allylmercaptocysteine prevents dissemination by decreasing tumor cell intravasation. CONCLUSIONS Our results provide in vivo evidence supporting the potential use of S-allylmercaptocysteine as an E-cadherin up-regulating antimetastatic agent for the treatment of androgen-independent prostate cancer. This is the first report of the in vivo antimetastatic properties of garlic, which may also apply to other cancer types.
Collapse
Affiliation(s)
- Edward W Howard
- Cancer Biology Group, Department of Anatomy, Faculty of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|