51
|
Ahmadi F, Akmar Abdullah SN, Kadkhodaei S, Ijab SM, Hamzah L, Aziz MA, Rahman ZA, Rabiah Syed Alwee SS. Functional characterization of the gene promoter for an Elaeis guineensis phosphate starvation-inducible, high affinity phosphate transporter in both homologous and heterologous model systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:320-335. [PMID: 29653435 DOI: 10.1016/j.plaphy.2018.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Oil palm is grown in tropical soils with low bioavailability of Pi. A cDNA clone specifically expressed under phosphate-starvation condition in oil palm roots was identified as a high-affinity phosphate transporter (EgPHT1). The deduced amino acid sequence has 6 transmembrane domains each at the N- and C-termini separated by a hydrophilic linker. Comparison of promoter motifs within 1500 bp upstream of ATG of 10 promoters from high- and low-affinity phosphate transporter from both dicots and monocots including EgPHT1 was performed. The EgPHT1 promoter was fused to β-glucuronidase (GUS) reporter gene and its activity was analysed by histochemical and fluorometric GUS assays in transiently transformed oil palm tissues and T3 homozygous transgenic Arabidopsis plants. In response to Pi-starvation, no GUS activity was detected in oil palm leaves, but a strong inducible activity was observed in the roots (1.4 times higher than the CaMV35S promoter). GUS was specifically expressed in transgenic Arabidopsis roots under Pi deficiency and starvation of the other macronutrients (N and K) did not induce GUS activity. Eight motifs including ABRERATCAL (abscisic-acid responsive), RHERPATEXPA7 (root hair-specific), SURECOREATSULTR11 (sulfur-deficiency response), LTRECOREATCOR15 (temperature-stress response), MYB2CONSENSUSAT and ACGTATERD1 (water-stress response) as well as two novel motifs, 3 (TAAAAAAA) and 26 (TTTTATGT) identified through pattern discovery, occur at significantly higher frequency (p < 0.05) in the high-than the low-affinity phosphate transporter promoters. The Pi deficiency-responsive elements in EgPHT1 includes the P1BS, W-box, E-box and the G-box. Thus, EgPHT1 is important for improving Pi uptake in oil palm with potential for engineering efficient Pi acquisition.
Collapse
Affiliation(s)
- Farzaneh Ahmadi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Plant Pathology, Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran
| | - Siti Nor Akmar Abdullah
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Saeid Kadkhodaei
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Siti Mariyam Ijab
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Luqman Hamzah
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maheran Abdul Aziz
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Zaharah A Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | |
Collapse
|
52
|
Xu Y, Liu F, Han G, Cheng B. Genome-wide identification and comparative analysis of phosphate starvation-responsive transcription factors in maize and three other gramineous plants. PLANT CELL REPORTS 2018; 37:711-726. [PMID: 29396709 DOI: 10.1007/s00299-018-2262-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/24/2018] [Indexed: 06/07/2023]
Abstract
The present study identified several important candidate Pi regulation genes of maize and provides a better understanding on the generation of PHR genes in gramineous plants. Plants have evolved adaptive responses to cope with low phosphate (Pi) soils. The previous studies have indicated that phosphate starvation response (PHR) genes play central roles in regulating plant Pi starvation responses. However, the investigation of PHR family in gramineous plants is limited. In this study, we identified 64 PHR genes in four gramineous plants, including maize, rice, sorghum, and brachypodium, and conducted systematical analyses on phylogenetic, structure, collinearity, and expression pattern of these PHR genes. Genome synteny analysis revealed that a number of PHR genes were present in the corresponding syntenic blocks of maize, rice, sorghum, and brachypodium, indicating that large-scale duplication events contributed significantly to the expansion and evolution of PHR genes in these gramineous plants. Gene expression analysis showed that many PHR genes were expressed in various tissues, suggesting that these genes are involved in Pi redistribution and allocation. In addition, the expression levels of PHR genes from maize and rice under low Pi stress conditions revealed that some PHRs may play an important role in Pi starvation response. Our results provided a better understanding on the generation of PHR genes in gramineous plants and identified several important candidate Pi regulation genes of maize.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Guomin Han
- National Engineering Laboratory of Crop Stress Resistance, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
53
|
Wang Z, Zheng Z, Song L, Liu D. Functional Characterization of Arabidopsis PHL4 in Plant Response to Phosphate Starvation. FRONTIERS IN PLANT SCIENCE 2018; 9:1432. [PMID: 30327661 PMCID: PMC6174329 DOI: 10.3389/fpls.2018.01432] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/10/2018] [Indexed: 05/09/2023]
Abstract
Plants have evolved an array of adaptive responses to cope with phosphate (Pi) starvation. These responses are mainly controlled at the transcriptional level. In Arabidopsis, PHR1, a member of the MYB-CC transcription factor family, is a key component of the central regulatory system controlling plant transcriptional responses to Pi starvation. Its homologs in the MYB-CC family, PHL1 (PHR1-LIKE 1), PHL2, and perhaps also PHL3, act redundantly with PHR1 to regulate plant Pi starvation responses. The functions of PHR1's closest homolog in this family, PHL4, however, have not been characterized due to the lack of its null mutant. In this work, we generated two phl4 null mutants using the CRISPR/Cas9 technique and investigated the functions of PHL4 in plant responses to Pi starvation. The results indicated that the major developmental, physiological, and molecular responses of the phl4 mutants to Pi starvation did not significantly differ from those of the wild type. By comparing the phenotypes of the phr1 single mutant and phr1phl1 and phr1phl4 double mutants, we found that PHL4 also acts redundantly with PHR1 to regulate plant Pi responses, but that its effects are weaker than those of PHL1. We also found that the overexpression of PHL4 suppresses plant development under both Pi-sufficient and -deficient conditions. Taken together, the results indicate that PHL4 has only a minor role in the regulation of plant responses to Pi starvation and is a negative regulator of plant development.
Collapse
|
54
|
Liu A, Contador CA, Fan K, Lam HM. Interaction and Regulation of Carbon, Nitrogen, and Phosphorus Metabolisms in Root Nodules of Legumes. FRONTIERS IN PLANT SCIENCE 2018; 9:1860. [PMID: 30619423 PMCID: PMC6305480 DOI: 10.3389/fpls.2018.01860] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/30/2018] [Indexed: 05/19/2023]
Abstract
Members of the plant family Leguminosae (Fabaceae) are unique in that they have evolved a symbiotic relationship with rhizobia (a group of soil bacteria that can fix atmospheric nitrogen). Rhizobia infect and form root nodules on their specific host plants before differentiating into bacteroids, the symbiotic form of rhizobia. This complex relationship involves the supply of C4-dicarboxylate and phosphate by the host plants to the microsymbionts that utilize them in the energy-intensive process of fixing atmospheric nitrogen into ammonium, which is in turn made available to the host plants as a source of nitrogen, a macronutrient for growth. Although nitrogen-fixing bacteroids are no longer growing, they are metabolically active. The symbiotic process is complex and tightly regulated by both the host plants and the bacteroids. The metabolic pathways of carbon, nitrogen, and phosphate are heavily regulated in the host plants, as they need to strike a fine balance between satisfying their own needs as well as those of the microsymbionts. A network of transporters for the various metabolites are responsible for the trafficking of these essential molecules between the two partners through the symbiosome membrane (plant-derived membrane surrounding the bacteroid), and these are in turn regulated by various transcription factors that control their expressions under different environmental conditions. Understanding this complex process of symbiotic nitrogen fixation is vital in promoting sustainable agriculture and enhancing soil fertility.
Collapse
Affiliation(s)
- Ailin Liu
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carolina A. Contador
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kejing Fan
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Hon-Ming Lam,
| |
Collapse
|