51
|
Jia H, Liu G, Li J, Zhang J, Sun P, Zhao S, Zhou X, Lu M, Hu J. Genome resequencing reveals demographic history and genetic architecture of seed salinity tolerance in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4308-4320. [PMID: 32242238 PMCID: PMC7475257 DOI: 10.1093/jxb/eraa172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/01/2020] [Indexed: 05/07/2023]
Abstract
Populus euphratica is a dominant tree species in desert riparian forests and possesses extraordinary adaptation to salinity stress. Exploration of its genomic variation and molecular underpinning of salinity tolerance is important for elucidating population evolution and identifying stress-related genes. Here, we identify approximately 3.15 million single nucleotide polymorphisms using whole-genome resequencing. The natural populations of P. euphratica in northwest China are divided into four distinct clades that exhibit strong geographical distribution patterns. Pleistocene climatic fluctuations and tectonic deformation jointly shaped the extant genetic patterns. A seed germination rate-based salinity tolerance index was used to evaluate seed salinity tolerance of P. euphratica and a genome-wide association study was implemented. A total of 38 single nucleotide polymorphisms were associated with seed salinity tolerance and were located within or near 82 genes. Expression profiles showed that most of these genes were regulated under salt stress, revealing the genetic complexity of seed salinity tolerance. Furthermore, DEAD-box ATP-dependent RNA helicase 57 and one undescribed gene (CCG029559) were demonstrated to improve the seed salinity tolerance in transgenic Arabidopsis. These results provide new insights into the demographic history and genetic architecture of seed salinity tolerance in desert poplar.
Collapse
Affiliation(s)
- Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | | | - Jianbo Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xun Zhou
- Beijing Novogene Co. Ltd, Beijing, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Correspondence: or
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Correspondence: or
| |
Collapse
|
52
|
Pedersen O, Revsbech NP, Shabala S. Microsensors in plant biology: in vivo visualization of inorganic analytes with high spatial and/or temporal resolution. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3941-3954. [PMID: 32253437 DOI: 10.1093/jxb/eraa175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
This Expert View provides an update on the recent development of new microsensors, and briefly summarizes some novel applications of existing microsensors, in plant biology research. Two major topics are covered: (i) sensors for gaseous analytes (O2, CO2, and H2S); and (ii) those for measuring concentrations and fluxes of ions (macro- and micronutrients and environmental pollutants such as heavy metals). We show that application of such microsensors may significantly advance understanding of mechanisms of plant-environmental interaction and regulation of plant developmental and adaptive responses under adverse environmental conditions via non-destructive visualization of key analytes with high spatial and/or temporal resolution. Examples included cover a broad range of environmental situations including hypoxia, salinity, and heavy metal toxicity. We highlight the power of combining microsensor technology with other advanced biophysical (patch-clamp, voltage-clamp, and single-cell pressure probe), imaging (MRI and fluorescent dyes), and genetic techniques and approaches. We conclude that future progress in the field may be achieved by applying existing microsensors for important signalling molecules such as NO and H2O2, by improving selectivity of existing microsensors for some key analytes (e.g. Na, Mg, and Zn), and by developing new microsensors for P.
Collapse
Affiliation(s)
- Ole Pedersen
- Department of Biology, University of Copenhagen, Denmark
- School of Agriculture and Environment, The University of Western Australia, Australia
| | - Niels Peter Revsbech
- Aarhus University Centre for Water Technology, Department of Bioscience, Aarhus University, Denmark
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, China
| |
Collapse
|
53
|
Cui J, Pottosin I, Lamade E, Tcherkez G. What is the role of putrescine accumulated under potassium deficiency? PLANT, CELL & ENVIRONMENT 2020; 43:1331-1347. [PMID: 32017122 DOI: 10.1111/pce.13740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 05/25/2023]
Abstract
Biomarker metabolites are of increasing interest in crops since they open avenues for precision agriculture, whereby nutritional needs and stresses can be monitored optimally. Putrescine has the potential to be a useful biomarker to reveal potassium (K+ ) deficiency. In fact, although this diamine has also been observed to increase during other stresses such as drought, cold or heavy metals, respective changes are comparably low. Due to its multifaceted biochemical properties, several roles for putrescine under K+ deficiency have been suggested, such as cation balance, antioxidant, reactive oxygen species mediated signalling, osmolyte or pH regulator. However, the specific association of putrescine build-up with low K+ availability in plants remains poorly understood, and possible regulatory roles must be consistent with putrescine concentration found in plant tissues. We hypothesize that the massive increase of putrescine upon K+ starvation plays an adaptive role. A distinction of putrescine function from that of other polyamines (spermine, spermidine) may be based either on its specificity or (which is probably more relevant under K+ deficiency) on a very high attainable concentration of putrescine, which far exceeds those for spermidine and spermine. putrescine and its catabolites appear to possess a strong potential in controlling cellular K+ and Ca2+ , and mitochondria and chloroplasts bioenergetics under K+ stress.
Collapse
Affiliation(s)
- Jing Cui
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Igor Pottosin
- Biomedical Centre, University of Colima, Colima, Mexico
| | - Emmanuelle Lamade
- UPR34 Performance des systèmes de culture des plantes pérennes, Département PERSYST, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
54
|
Tanveer M, Shabala S. Neurotransmitters in Signalling and Adaptation to Salinity Stress in Plants. NEUROTRANSMITTERS IN PLANT SIGNALING AND COMMUNICATION 2020. [DOI: 10.1007/978-3-030-54478-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
55
|
Ding C, Zhang W, Li D, Dong Y, Liu J, Huang Q, Su X. Effect of Overexpression of JERFs on Intracellular K +/Na + Balance in Transgenic Poplar ( Populus alba × P. berolinensis) Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:1192. [PMID: 32922413 PMCID: PMC7456863 DOI: 10.3389/fpls.2020.01192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Salt stress is one of the main factors that affect both growth and development of plants. Maintaining K+/Na+ balance in the cytoplasm is important for metabolism as well as salt resistance in plants. In the present study, we monitored the growth (height and diameter) of transgenic Populus alba × P. berolinensis trees (ABJ01) carrying JERF36s gene (a tomato jasmonic/ethylene responsive factors gene) over 4 years, which showed faster growth and significant salt tolerance compared with non-transgenic poplar trees (9#). The expression of NHX1 and SOS1 genes that encode Na+/H+ antiporters in the vacuole and plasma membranes was measured in leaves under NaCl stress. Non-invasive micro-test techniques (NMT) were used to analyse ion flux of Na+, K+, and H+ in the root tip of seedlings under treatment with100 mM NaCl for 7, 15, and 30 days. Results showed that the expression of NHX1 and SOS1 was much higher in ABJ01 compared with 9#, and the Na+ efflux and H+ influx fluxes of root were remarkable higher in ABJ01 than in 9#, but K+ efflux exhibited lower level. All above suggest that salt stress induces NHX1 and SOS1 to a greater expression level in ABJ01, resulting in the accumulation of Na+/H+ antiporter to better maintain K+/Na+ balance in the cytoplasm of this enhanced salt resistant variety. This may help us to better understand the mechanism of transgenic poplars with improving salt tolerance by overexpressing JERF36s and could provide a basis for future breeding programs aimed at improving salt resistance in transgenic poplar.
Collapse
Affiliation(s)
- Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yufeng Dong
- Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Shandong Academy of Forestry, Jinan, China
| | - Junlong Liu
- Industry of Timber and Bamboo, Anhui Academy of Forestry, Hefei, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Qinjun Huang, ; Xiaohua Su,
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Qinjun Huang, ; Xiaohua Su,
| |
Collapse
|