51
|
Genetic structure among Fijian island populations. J Hum Genet 2015; 60:69-75. [PMID: 25566758 DOI: 10.1038/jhg.2014.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 11/08/2022]
Abstract
We examined nine Y chromosome short tandem repeats (Y-STRs) and the mitochondrial DNA (mtDNA) hypervariable segment 1 region in the Fijian island populations of Viti Levu, Vanua Levu, Kadavu, the Lau islands and Rotuma. We found significant genetic structure among these populations for the Y-STRs, both with and without the Rotumans, but not for the mtDNA. We also found that all five populations exhibited the sex-biased admixture associated with areas settled by Austronesian-speaking people, with paternal lineages more strongly associated with Melanesian populations and maternal lineages more strongly associated with Polynesian populations. We also found that the Rotumans in the north and the Lau Islanders in the east were genetically more similar to Polynesian populations than were the other Fijians, but only for the mtDNA. For the Y-STRs, the Rotumans and the Lau Islanders were genetically as similar to Melanesian populations as were the other three populations. Of the five populations, the Rotumans were the most different in almost every regard. Although past genetic studies treated the Fijians as being genetically homogenous despite known geographic, phenotypic, cultural and linguistic variation, our findings show significant genetic variation and a need for a closer examination of individual island populations within Fiji, particularly the Rotumans, in order to better understand the process of the peopling of Fiji and of the surrounding regions.
Collapse
|
52
|
Matisoo-Smith E. Ancient DNA and the human settlement of the Pacific: a review. J Hum Evol 2015; 79:93-104. [PMID: 25556846 DOI: 10.1016/j.jhevol.2014.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/01/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
The Pacific region provides unique opportunities to study human evolution including through analyses of ancient DNA. While some of the earliest studies involving ancient DNA from skeletal remains focused on Pacific samples, in the following 25 years, several factors meant that little aDNA research, particularly research focused on human populations, has emerged. This paper briefly presents the genetic evidence for population origins, reviews what ancient DNA work has been undertaken to address human history and evolution in the Pacific region, and argues that the future is bright but research requires a collaborative approach between academic disciplines but also with local communities.
Collapse
Affiliation(s)
- Elizabeth Matisoo-Smith
- Department of Anatomy and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| |
Collapse
|
53
|
Major transitions in human evolution revisited: a tribute to ancient DNA. J Hum Evol 2014; 79:4-20. [PMID: 25532800 DOI: 10.1016/j.jhevol.2014.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/06/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022]
Abstract
The origin and diversification of modern humans have been characterized by major evolutionary transitions and demographic changes. Patterns of genetic variation within modern populations can help with reconstructing this ∼200 thousand year-long population history. However, by combining this information with genomic data from ancient remains, one can now directly access our evolutionary past and reveal our population history in much greater detail. This review outlines the main recent achievements in ancient DNA research and illustrates how the field recently moved from the polymerase chain reaction (PCR) amplification of short mitochondrial fragments to whole-genome sequencing and thereby revisited our own history. Ancient DNA research has revealed the routes that our ancestors took when colonizing the planet, whom they admixed with, how they domesticated plant and animal species, how they genetically responded to changes in lifestyle, and also, which pathogens decimated their populations. These approaches promise to soon solve many pending controversies about our own origins that are indecipherable from modern patterns of genetic variation alone, and therefore provide an extremely powerful toolkit for a new generation of molecular anthropologists.
Collapse
|
54
|
Ralf A, van Oven M, Zhong K, Kayser M. Simultaneous analysis of hundreds of Y-chromosomal SNPs for high-resolution paternal lineage classification using targeted semiconductor sequencing. Hum Mutat 2014; 36:151-9. [PMID: 25338970 DOI: 10.1002/humu.22713] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/08/2014] [Indexed: 11/06/2022]
Abstract
SNPs from the non-recombining part of the human Y chromosome (Y-SNPs) are informative to classify paternal lineages in forensic, genealogical, anthropological, and evolutionary studies. Although thousands of Y-SNPs were identified thus far, previous Y-SNP multiplex tools target only dozens of markers simultaneously, thereby restricting the provided Y-haplogroup resolution and limiting their applications. Here, we overcome this shortcoming by introducing a high-resolution multiplex tool for parallel genotyping-by-sequencing of 530 Y-SNPs using the Ion Torrent PGM platform, which allows classification of 432 worldwide Y haplogroups. Contrary to previous Y-SNP multiplex tools, our approach covers branches of the entire Y tree, thereby maximizing the paternal lineage classification obtainable. We used a default DNA input amount of 10 ng per reaction but preliminary sensitivity testing revealed positive results from as little as 100 pg input DNA. Furthermore, we demonstrate that sample pooling using barcodes is feasible, allowing increased throughput for lower per-sample costs. In addition to the wetlab protocol, we provide a software tool for automated data quality control and haplogroup classification. The unique combination of ultra-high marker density and high sensitivity achievable from low amounts of potentially degraded DNA makes this new multiplex tool suitable for a wide range of Y-chromosome applications.
Collapse
Affiliation(s)
- Arwin Ralf
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
55
|
Lippold S, Xu H, Ko A, Li M, Renaud G, Butthof A, Schröder R, Stoneking M. Human paternal and maternal demographic histories: insights from high-resolution Y chromosome and mtDNA sequences. INVESTIGATIVE GENETICS 2014; 5:13. [PMID: 25254093 PMCID: PMC4174254 DOI: 10.1186/2041-2223-5-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023]
Abstract
Background Comparisons of maternally-inherited mitochondrial DNA (mtDNA) and paternally-inherited non-recombining Y chromosome (NRY) variation have provided important insights into the impact of sex-biased processes (such as migration, residence pattern, and so on) on human genetic variation. However, such comparisons have been limited by the different molecular methods typically used to assay mtDNA and NRY variation (for example, sequencing hypervariable segments of the control region for mtDNA vs. genotyping SNPs and/or STR loci for the NRY). Here, we report a simple capture array method to enrich Illumina sequencing libraries for approximately 500 kb of NRY sequence, which we use to generate NRY sequences from 623 males from 51 populations in the CEPH Human Genome Diversity Panel (HGDP). We also obtained complete mtDNA genome sequences from the same individuals, allowing us to compare maternal and paternal histories free of any ascertainment bias. Results We identified 2,228 SNPs in the NRY sequences and 2,163 SNPs in the mtDNA sequences. Our results confirm the controversial assertion that genetic differences between human populations on a global scale are bigger for the NRY than for mtDNA, although the differences are not as large as previously suggested. More importantly, we find substantial regional variation in patterns of mtDNA versus NRY variation. Model-based simulations indicate very small ancestral effective population sizes (<100) for the out-of-Africa migration as well as for many human populations. We also find that the ratio of female effective population size to male effective population size (Nf/Nm) has been greater than one throughout the history of modern humans, and has recently increased due to faster growth in Nf than Nm. Conclusions The NRY and mtDNA sequences provide new insights into the paternal and maternal histories of human populations, and the methods we introduce here should be widely applicable for further such studies.
Collapse
Affiliation(s)
- Sebastian Lippold
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Hongyang Xu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany ; Department of Computational Genetics, CAS-MPG Partner Institute for Computational Biology, Shanghai 200031, China
| | - Albert Ko
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Mingkun Li
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany ; Present address: Fondation Mérieux, 17 rue Bourgelat, Lyon 69002, France
| | - Gabriel Renaud
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Anne Butthof
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany ; Present address: Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig D04103, Germany
| | - Roland Schröder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| |
Collapse
|
56
|
Abstract
Sex-biased admixture has been observed in a wide variety of admixed populations. Genetic variation in sex chromosomes and functions of quantities computed from sex chromosomes and autosomes have often been examined to infer patterns of sex-biased admixture, typically using statistical approaches that do not mechanistically model the complexity of a sex-specific history of admixture. Here, expanding on a model of Verdu and Rosenberg (2011) that did not include sex specificity, we develop a model that mechanistically examines sex-specific admixture histories. Under the model, multiple source populations contribute to an admixed population, potentially with their male and female contributions varying over time. In an admixed population descended from two source groups, we derive the moments of the distribution of the autosomal admixture fraction from a specific source population as a function of sex-specific introgression parameters and time. Considering admixture processes that are constant in time, we demonstrate that surprisingly, although the mean autosomal admixture fraction from a specific source population does not reveal a sex bias in the admixture history, the variance of autosomal admixture is informative about sex bias. Specifically, the long-term variance decreases as the sex bias from a contributing source population increases. This result can be viewed as analogous to the reduction in effective population size for populations with an unequal number of breeding males and females. Our approach suggests that it may be possible to use the effect of sex-biased admixture on autosomal DNA to assist with methods for inference of the history of complex sex-biased admixture processes.
Collapse
|
57
|
Duggan AT, Stoneking M. Recent developments in the genetic history of East Asia and Oceania. Curr Opin Genet Dev 2014; 29:9-14. [PMID: 25170982 DOI: 10.1016/j.gde.2014.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/30/2014] [Indexed: 01/11/2023]
Abstract
Recent developments in our understanding of the genetic history of Asia and Oceania have been driven by technological advances. Specifically, our understanding of the past has been augmented by: genome sequences from ancient hominins and ancient modern humans; more comprehensive studies of existing populations (e.g., complete mtDNA genome sequences and genome-wide data) and the development of new statistics and analytical methods to interpret the abundance of new data. We review some of the new discoveries since we entered the age of archaic and modern genomics and how they have changed our understanding of the settlement and subsequent population dynamics in Asia and the Pacific.
Collapse
Affiliation(s)
- Ana T Duggan
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany.
| |
Collapse
|
58
|
Nemat-Gorgani N, Edinur HA, Hollenbach JA, Traherne JA, Dunn PPJ, Chambers GK, Parham P, Norman PJ. KIR diversity in Māori and Polynesians: populations in which HLA-B is not a significant KIR ligand. Immunogenetics 2014; 66:597-611. [PMID: 25139336 DOI: 10.1007/s00251-014-0794-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 12/25/2022]
Abstract
HLA class I molecules and killer cell immunoglobulin-like receptors (KIR) form a diverse system of ligands and receptors that individualize human immune systems in ways that improve the survival of individuals and populations. Human settlement of Oceania by island-hopping East and Southeast Asian migrants started ~3,500 years ago. Subsequently, New Zealand was reached ~750 years ago by ancestral Māori. To examine how this history impacted KIR and HLA diversity, and their functional interaction, we defined at high resolution the allelic and haplotype diversity of the 13 expressed KIR genes in 49 Māori and 34 Polynesians. Eighty KIR variants, including four 'new' alleles, were defined, as were 35 centromeric and 22 telomeric KIR region haplotypes, which combine to give >50 full-length KIR haplotypes. Two new and divergent variant KIR form part of a telomeric KIR haplotype, which appears derived from Papua New Guinea and was probably obtained by the Asian migrants en route to Polynesia. Māori and Polynesian KIR are very similar, but differ significantly from African, European, Japanese, and Amerindian KIR. Māori and Polynesians have high KIR haplotype diversity with corresponding allotype diversity being maintained throughout the KIR locus. Within the population, each individual has a unique combination of HLA class I and KIR. Characterizing Māori and Polynesians is a paucity of HLA-B allotypes recognized by KIR. Compensating for this deficiency are high frequencies (>50 %) of HLA-A allotypes recognized by KIR. These HLA-A allotypes are ones that modern humans likely acquired from archaic humans at a much earlier time.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Isolation, contact and social behavior shaped genetic diversity in West Timor. J Hum Genet 2014; 59:494-503. [PMID: 25078354 PMCID: PMC4521296 DOI: 10.1038/jhg.2014.62] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/17/2023]
Abstract
Timor, an eastern Indonesian island linking mainland Asia with Australia and the Pacific world, had a complex history, including its role as a contact zone between two language families (Austronesian and Trans-New Guinean), as well as preserving elements of a rich Austronesian cultural heritage, such as matrilocal marriage practices. Using an array of biparental (autosomal and X-chromosome single-nucleotide polymorphisms) and uniparental markers (Y chromosome and mitochondrial DNA), we reconstruct a broad genetic profile of Timorese in the Belu regency of West Timor, including the traditional princedom of Wehali, focusing on the effects of cultural practices, such as language and social change, on patterns of genetic diversity. Sex-linked data highlight the different histories and social pressures experienced by women and men. Measures of diversity and population structure show that Timorese men had greater local mobility than women, as expected in matrilocal communities, where women remain in their natal village, whereas men move to the home village of their wife. Reaching further back in time, maternal loci (mitochondrial DNA and the X chromosome) are dominated by lineages with immigrant Asian origins, whereas paternal loci (Y chromosome) tend to exhibit lineages of the earliest settlers in the eastern Indonesian region. The dominance of Asian female lineages is especially apparent in the X chromosome compared with the autosomes, suggesting that women played a paramount role during and after the period of Asian immigration into Timor, perhaps driven by the matrilocal marriage practices of expanding Austronesian communities.
Collapse
|
60
|
Bright JA, Curran JM, Buckleton JS. Modelling PowerPlex® Y stutter and artefacts. Forensic Sci Int Genet 2014; 11:126-36. [DOI: 10.1016/j.fsigen.2014.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/28/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
61
|
Duggan A, Evans B, Friedlaender F, Friedlaender J, Koki G, Merriwether D, Kayser M, Stoneking M. Maternal history of Oceania from complete mtDNA genomes: contrasting ancient diversity with recent homogenization due to the Austronesian expansion. Am J Hum Genet 2014; 94:721-33. [PMID: 24726474 DOI: 10.1016/j.ajhg.2014.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022] Open
Abstract
Archaeology, linguistics, and existing genetic studies indicate that Oceania was settled by two major waves of migration. The first migration took place approximately 40 thousand years ago and these migrants, Papuans, colonized much of Near Oceania. Approximately 3.5 thousand years ago, a second expansion of Austronesian-speakers arrived in Near Oceania and the descendants of these people spread to the far corners of the Pacific, colonizing Remote Oceania. To assess the female contribution of these two human expansions to modern populations and to investigate the potential impact of other migrations, we obtained 1,331 whole mitochondrial genome sequences from 34 populations spanning both Near and Remote Oceania. Our results quantify the magnitude of the Austronesian expansion and demonstrate the homogenizing effect of this expansion on almost all studied populations. With regards to Papuan influence, autochthonous haplogroups support the hypothesis of a long history in Near Oceania, with some lineages suggesting a time depth of 60 thousand years, and offer insight into historical interpopulation dynamics. Santa Cruz, a population located in Remote Oceania, is an anomaly with extreme frequencies of autochthonous haplogroups of Near Oceanian origin; simulations to investigate whether this might reflect a pre-Austronesian versus Austronesian settlement of the island failed to provide unequivocal support for either scenario.
Collapse
|
62
|
Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nat Commun 2014; 5:3513. [PMID: 24781250 PMCID: PMC4007635 DOI: 10.1038/ncomms4513] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 02/26/2014] [Indexed: 01/09/2023] Open
Abstract
The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing. Current methods to identify the geographical origin of humans based on DNA data present limited accuracy. Here, the authors develop a new algorithm, the Genographic Population Structure (GPS), and demonstrate its ability to place worldwide individuals within their country or, in some cases, village of origin.
Collapse
|
63
|
Human genetics of the Kula Ring: Y-chromosome and mitochondrial DNA variation in the Massim of Papua New Guinea. Eur J Hum Genet 2014; 22:1393-403. [PMID: 24619143 DOI: 10.1038/ejhg.2014.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 02/06/2023] Open
Abstract
The island region at the southeastern-most tip of New Guinea and its inhabitants known as Massim are well known for a unique traditional inter-island trading system, called Kula or Kula Ring. To characterize the Massim genetically, and to evaluate the influence of the Kula Ring on patterns of human genetic variation, we analyzed paternally inherited Y-chromosome (NRY) and maternally inherited mitochondrial (mt) DNA polymorphisms in >400 individuals from this region. We found that the nearly exclusively Austronesian-speaking Massim people harbor genetic ancestry components of both Asian (AS) and Near Oceanian (NO) origin, with a proportionally larger NO NRY component versus a larger AS mtDNA component. This is similar to previous observations in other Austronesian-speaking populations from Near and Remote Oceania and suggests sex-biased genetic admixture between Asians and Near Oceanians before the occupation of Remote Oceania, in line with the Slow Boat from Asia hypothesis on the expansion of Austronesians into the Pacific. Contrary to linguistic expectations, Rossel Islanders, the only Papuan speakers of the Massim, showed a lower amount of NO genetic ancestry than their Austronesian-speaking Massim neighbors. For the islands traditionally involved in the Kula Ring, a significant correlation between inter-island travelling distances and genetic distances was observed for mtDNA, but not for NRY, suggesting more male- than female-mediated gene flow. As traditionally only males take part in the Kula voyages, this finding may indicate a genetic signature of the Kula Ring, serving as another example of how cultural tradition has shaped human genetic diversity.
Collapse
|
64
|
Zeng Z, Rowold DJ, Garcia-Bertrand R, Calderon S, Regueiro M, Li L, Zhong M, Herrera RJ. Taiwanese aborigines: genetic heterogeneity and paternal contribution to Oceania. Gene 2014; 542:240-7. [PMID: 24613753 DOI: 10.1016/j.gene.2014.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
In the present study, for the first time, 293 Taiwanese aboriginal males from all nine major tribes (Ami, Atayal, Bunun, Rukai, Paiwan, Saisat, Puyuma, Tsou, Yami) were genotyped with 17 YSTR loci in a attend to reveal migrational patterns connected with the Austronesian expansion. We investigate the paternal genetic relationships of these Taiwanese aborigines to 42 Asia-Pacific reference populations, geographically selected to reflect various locations within the Austronesian domain. The Tsou and Puyuma tribes exhibit the lowest (0.1851) and the highest (0.5453) average total genetic diversity, respectively. Further, the fraction of unique haplotypes is also relatively high in the Puyuma (86.7%) and low in Tsou (33.3%) suggesting different demographic histories. Multidimensional scaling (MDS) and analysis of molecular variance (AMOVA) revealed several notable findings: 1) the Taiwan indigenous populations are highly diverse. In fact, the level of inter-population heterogeneity displayed by the Taiwanese aboriginal populations is close to that exhibited among all 51 Asia-Pacific populations examined; 2) the asymmetrical contribution of the Taiwanese aborigines to the Oceanic groups. Ami, Bunun and Saisiyat tribes exhibit the strongest paternal links to the Solomon and Polynesian island communities, whereas most of the remaining Taiwanese aboriginal groups are more genetically distant to these Oceanic inhabitants; 3) the present YSTR analyses does not reveal a strong paternal affinity of the nine Taiwanese tribes to their continental Asian neighbors. Overall, our current findings suggest that, perhaps, only a few of the tribes were involved in the migration out of Taiwan.
Collapse
Affiliation(s)
- Zhaoshu Zeng
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, China
| | - Diane J Rowold
- Foundation for Applied Molecular Science (FfAME), Gainesville, FL 32601, USA
| | | | - Silvia Calderon
- Department of Dentistry, New York University, New York, NY, USA
| | | | - Li Li
- Department of Obstetrics & Gynecology, Zhengzhou Central Hospital, Zhengzhou University, China
| | - Mingxia Zhong
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, China
| | | |
Collapse
|
65
|
Hyperuricaemia in the Pacific: why the elevated serum urate levels? Rheumatol Int 2013; 34:743-57. [PMID: 24378761 DOI: 10.1007/s00296-013-2922-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/13/2013] [Indexed: 12/22/2022]
Abstract
Pacific Island populations, particularly those of Polynesian descent, have a high prevalence of hyperuricaemia and gout. This is due to an inherently higher urate level among these populations with a demonstrated genetic predisposition. While an excess of urate can cause pathology, urate is also important for human health. It has been implicated as an antioxidant, has a neuroprotective role and is involved in innate immune responses. This paper provides a brief review of urate levels worldwide, with a particular focus on island Southeast Asia and the Pacific. We then present possible evolutionary explanations for the elevated serum urate levels among Pacific populations in the context of the physiological importance of urate and of the settlement history of the region. Finally, we propose that ancestry may play a significant role in hyperuricaemia in these populations and that exposure to malaria prior to population expansion into the wider Pacific may have driven genetic selection for variants contributing to high serum urate.
Collapse
|
66
|
Heyer E, Georges M, Pachner M, Endicott P. Genetic diversity of four Filipino negrito populations from Luzon: comparison of male and female effective population sizes and differential integration of immigrants into Aeta and Agta communities. Hum Biol 2013; 85:189-208. [PMID: 24297226 DOI: 10.3378/027.085.0310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/05/2022]
Abstract
Genetic data corresponding to four negrito populations (two Aeta and two Agta; n = 120) from the Luzon region of the Philippines have been analyzed. These data comprise mitochondrial DNA (mtDNA) hypervariable segment 1 haplotypes and haplogroups, Y-chromosome haplogroups and short tandem repeats (STRs), autosomal STRs, and X-chromosome STRs. The genetic diversity and structure of the populations were investigated at a local, regional, and interregional level. We found a high level of autosomal differentiation, combined with no significant reduction in diversity, consistent with long-term settlement of the Luzon region by the ancestors of the Agta and Aeta followed by reduced gene flow between these two ethnolinguistic groups. Collectively, the Aeta have a much higher ratio of female:male effective population size than do the Agta, a finding that supports phylogenetic analysis of their mtDNA and Y-chromosome haplogroups, which suggests different genetic sex-biased contributions from putative Austronesian source populations. We propose that factors of social organization that led to the reduction in Agta female effective population size may also be linked to the limited incorporation of female lineages associated with the settlement of the Philippines by Austronesian speakers; conversely, the reduction in Aeta male effective population size, relative to females, could be indicative of a limited incorporation of male lineages associated with this demographic process.
Collapse
Affiliation(s)
- E Heyer
- UMR7206, EcoAnthropologie et Ethnobiologie, MNHN, CNRS, Université Paris Diderot, Paris, France
| | | | | | | |
Collapse
|
67
|
Turner JW. Kinship matters: structures of alliance, indigenous foragers, and the Austronesian diaspora. Hum Biol 2013; 85:359-82. [PMID: 24297233 DOI: 10.3378/027.085.0317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/05/2022]
Abstract
The study of kinship systems has direct relevance for the field of human genetics and the study of microevolution in human populations. Some types of postmarital residence rules--rules requiring a married couple to live with or near relatives of the husband or wife--will have consequences for the distribution of mitochondrial DNA and Y chromosome lineages. Rules that proscribe or encourage marriage with close kin will also have consequences for allele frequency. A preference for marrying at a distance, both socially and geographically, creates alliances that can have survival value for individuals and groups in an environment of periodic or unpredictable scarcity. This article considers the nature of early contact between the indigenous foraging populations of the Philippines and Austronesian speaking settlers who began arriving ~4,500-4,000 BP. It argues that when the first Austronesians arrived they brought with them a kinship system based on symmetrical exchange between descent-based groups. It considers why such a system was gradually changed into the bilateral kinship systems that characterize the various peoples of the Philippines today, "negrito" and non-negrito alike.
Collapse
|
68
|
Capredon M, Brucato N, Tonasso L, Choesmel-Cadamuro V, Ricaut FX, Razafindrazaka H, Rakotondrabe AB, Ratolojanahary MA, Randriamarolaza LP, Champion B, Dugoujon JM. Tracing Arab-Islamic inheritance in Madagascar: study of the Y-chromosome and mitochondrial DNA in the Antemoro. PLoS One 2013; 8:e80932. [PMID: 24278350 PMCID: PMC3838347 DOI: 10.1371/journal.pone.0080932] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022] Open
Abstract
Madagascar is located at the crossroads of the Asian and African worlds and is therefore of particular interest for studies on human population migration. Within the large human diversity of the Great Island, we focused our study on a particular ethnic group, the Antemoro. Their culture presents an important Arab-Islamic influence, but the question of an Arab biological inheritance remains unresolved. We analyzed paternal (n=129) and maternal (n=135) lineages of this ethnic group. Although the majority of Antemoro genetic ancestry comes from sub-Saharan African and Southeast Asian gene pools, we observed in their paternal lineages two specific haplogroups (J1 and T1) linked to Middle Eastern origins. This inheritance was restricted to some Antemoro sub-groups. Statistical analyses tended to confirm significant Middle Eastern genetic contribution. This study gives a new perspective to the large human genetic diversity in Madagascar.
Collapse
Affiliation(s)
- Mélanie Capredon
- Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, CNRS and Université Paul Sabatier Toulouse III, UMR5288, Toulouse, France
- Centre de recherche littéraire et historique de l’Océan Indien (CRLHOI), Département d’ethnologie, Université de La Réunion, Saint-Denis, France
- Department of Pediatrics, CHU Sainte Justine, Faculty of Medecine, University of Montreal, Quebec, Canada
- *
| | - Nicolas Brucato
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Laure Tonasso
- Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, CNRS and Université Paul Sabatier Toulouse III, UMR5288, Toulouse, France
| | - Valérie Choesmel-Cadamuro
- Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, CNRS and Université Paul Sabatier Toulouse III, UMR5288, Toulouse, France
| | - François-Xavier Ricaut
- Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, CNRS and Université Paul Sabatier Toulouse III, UMR5288, Toulouse, France
| | - Harilanto Razafindrazaka
- Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, CNRS and Université Paul Sabatier Toulouse III, UMR5288, Toulouse, France
| | | | - Mamisoa Adelta Ratolojanahary
- Laboratoire d'Anthropologie Patrimoine -Transformations sociales- Transculturalité (LAP2T), Université Antananarivo, Antananarivo, Madagascar
| | - Louis-Paul Randriamarolaza
- Laboratoire d'Anthropologie Patrimoine -Transformations sociales- Transculturalité (LAP2T), Université Antananarivo, Antananarivo, Madagascar
| | - Bernard Champion
- Centre de recherche littéraire et historique de l’Océan Indien (CRLHOI), Département d’ethnologie, Université de La Réunion, Saint-Denis, France
| | - Jean-Michel Dugoujon
- Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, CNRS and Université Paul Sabatier Toulouse III, UMR5288, Toulouse, France
| |
Collapse
|
69
|
Edinur H, Dunn P, Hammond L, Selwyn C, Brescia P, Askar M, Reville P, Velickovic Z, Lea R, Chambers G. HLA and MICA polymorphism in Polynesians and New Zealand Maori: Implications for ancestry and health. Hum Immunol 2013; 74:1119-29. [DOI: 10.1016/j.humimm.2013.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 06/07/2013] [Indexed: 11/27/2022]
|
70
|
|
71
|
Wang CC, Li H. Inferring human history in East Asia from Y chromosomes. INVESTIGATIVE GENETICS 2013; 4:11. [PMID: 23731529 PMCID: PMC3687582 DOI: 10.1186/2041-2223-4-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/19/2013] [Indexed: 02/06/2023]
Abstract
East Asia harbors substantial genetic, physical, cultural and linguistic diversity, but the detailed structures and interrelationships of those aspects remain enigmatic. This question has begun to be addressed by a rapid accumulation of molecular anthropological studies of the populations in and around East Asia, especially by Y chromosome studies. The current Y chromosome evidence suggests multiple early migrations of modern humans from Africa via Southeast Asia to East Asia. After the initial settlements, the northward migrations during the Paleolithic Age shaped the genetic structure in East Asia. Subsequently, recent admixtures between Central Asian immigrants and northern East Asians enlarged the genetic divergence between southern and northern East Asia populations. Cultural practices, such as languages, agriculture, military affairs and social prestige, also have impacts on the genetic patterns in East Asia. Furthermore, application of Y chromosome analyses in the family genealogy studies offers successful showcases of the utility of genetics in studying the ancient history.
Collapse
Affiliation(s)
- Chuan-Chao Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, China
| | - Hui Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, China
| |
Collapse
|
72
|
Tommaseo-Ponzetta M, Mona S, Calabrese F, Konrad G, Vacca E, Attimonelli M. Mountain Pygmies of Western New Guinea: A Morphological and Molecular Approach. Hum Biol 2013; 85:285-308. [DOI: 10.3378/027.085.0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/05/2022]
|
73
|
Roewer L, Nothnagel M, Gusmão L, Gomes V, González M, Corach D, Sala A, Alechine E, Palha T, Santos N, Ribeiro-Dos-Santos A, Geppert M, Willuweit S, Nagy M, Zweynert S, Baeta M, Núñez C, Martínez-Jarreta B, González-Andrade F, Fagundes de Carvalho E, da Silva DA, Builes JJ, Turbón D, Lopez Parra AM, Arroyo-Pardo E, Toscanini U, Borjas L, Barletta C, Ewart E, Santos S, Krawczak M. Continent-wide decoupling of Y-chromosomal genetic variation from language and geography in native South Americans. PLoS Genet 2013; 9:e1003460. [PMID: 23593040 PMCID: PMC3623769 DOI: 10.1371/journal.pgen.1003460] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/04/2013] [Indexed: 01/07/2023] Open
Abstract
Numerous studies of human populations in Europe and Asia have revealed a concordance between their extant genetic structure and the prevailing regional pattern of geography and language. For native South Americans, however, such evidence has been lacking so far. Therefore, we examined the relationship between Y-chromosomal genotype on the one hand, and male geographic origin and linguistic affiliation on the other, in the largest study of South American natives to date in terms of sampled individuals and populations. A total of 1,011 individuals, representing 50 tribal populations from 81 settlements, were genotyped for up to 17 short tandem repeat (STR) markers and 16 single nucleotide polymorphisms (Y-SNPs), the latter resolving phylogenetic lineages Q and C. Virtually no structure became apparent for the extant Y-chromosomal genetic variation of South American males that could sensibly be related to their inter-tribal geographic and linguistic relationships. This continent-wide decoupling is consistent with a rapid peopling of the continent followed by long periods of isolation in small groups. Furthermore, for the first time, we identified a distinct geographical cluster of Y-SNP lineages C-M217 (C3*) in South America. Such haplotypes are virtually absent from North and Central America, but occur at high frequency in Asia. Together with the locally confined Y-STR autocorrelation observed in our study as a whole, the available data therefore suggest a late introduction of C3* into South America no more than 6,000 years ago, perhaps via coastal or trans-Pacific routes. Extensive simulations revealed that the observed lack of haplogroup C3* among extant North and Central American natives is only compatible with low levels of migration between the ancestor populations of C3* carriers and non-carriers. In summary, our data highlight the fact that a pronounced correlation between genetic and geographic/cultural structure can only be expected under very specific conditions, most of which are likely not to have been met by the ancestors of native South Americans. In the largest population genetic study of South Americans to date, we analyzed the Y-chromosomal makeup of more than 1,000 male natives. We found that the male-specific genetic variation of Native Americans lacks any clear structure that could sensibly be related to their geographic and/or linguistic relationships. This finding is consistent with a rapid initial peopling of South America, followed by long periods of isolation in small tribal groups. The observed continent-wide decoupling of geography, spoken language, and genetics contrasts strikingly with previous reports of such correlation from many parts of Europe and Asia. Moreover, we identified a cluster of Native American founding lineages of Y chromosomes, called C-M217 (C3*), within a restricted area of Ecuador in North-Western South America. The same haplogroup occurs at high frequency in Central, East, and North East Asia, but is virtually absent from North (except Alaska) and Central America. Possible scenarios for the introduction of C-M217 (C3*) into Ecuador may thus include a coastal or trans-Pacific route, an idea also supported by occasional archeological evidence and the recent coalescence of the C3* haplotypes, estimated from our data to have occurred some 6,000 years ago.
Collapse
Affiliation(s)
- Lutz Roewer
- Institute of Legal Medicine and Forensic Sciences, Department of Forensic Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Paraskevis D, Magiorkinis G, Magiorkinis E, Ho SYW, Belshaw R, Allain JP, Hatzakis A. Dating the origin and dispersal of hepatitis B virus infection in humans and primates. Hepatology 2013; 57:908-16. [PMID: 22987324 DOI: 10.1002/hep.26079] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED The origin of hepatitis B virus (HBV) infection in humans and other primates remains largely unresolved. Understanding the origin of HBV is crucial because it provides a framework for studying the burden, and subsequently the evolution, of HBV pathogenicity with respect to changes in human population size and life expectancy. To investigate this controversy we examined the relationship between HBV phylogeny and genetic diversity of modern humans, investigated the timescale of global HBV dispersal, and tested the hypothesis of HBV-human co-divergence. We find that the global distribution of HBV genotypes and subgenotypes are consistent with the major prehistoric modern human migrations. We calibrate the HBV molecular clock using the divergence times of different indigenous human populations based on archaeological and genetic evidence and show that HBV jumped into humans around 33,600 years ago; 95% higher posterior density (HPD): 22,000-47,100 years ago (estimated substitution rate: 2.2 × 10(-6) ; 95% HPD: 1.5-3.0 × 10(-6) substitutions/site/year). This coincides with the origin of modern non-African humans. Crucially, the most pronounced increase in the HBV pandemic correlates with the global population increase over the last 5,000 years. We also show that the non-human HBV clades in orangutans and gibbons resulted from cross-species transmission events from humans that occurred no earlier than 6,100 years ago. CONCLUSION Our study provides, for the first time, an estimated timescale for the HBV epidemic that closely coincides with dates of human dispersals, supporting the hypothesis that HBV has been co-expanding and co-migrating with human populations for the last 40,000 years. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
75
|
Mirabal S, Cadenas AM, Garcia-Bertrand R, Herrera RJ. Ascertaining the role of Taiwan as a source for the Austronesian expansion. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 150:551-64. [PMID: 23440864 DOI: 10.1002/ajpa.22226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/14/2012] [Indexed: 01/15/2023]
Abstract
Taiwanese aborigines have been deemed the ancestors of Austronesian speakers which are currently distributed throughout two-thirds of the globe. As such, understanding their genetic distribution and diversity as well as their relationship to mainland Asian groups is important to consolidating the numerous models that have been proposed to explain the dispersal of Austronesian speaking peoples into Oceania. To better understand the role played by the aboriginal Taiwanese in this diaspora, we have analyzed a total of 451 individuals belonging to nine of the tribes currently residing in Taiwan, namely the Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, and the Yami from Orchid Island off the coast of Taiwan across 15 autosomal short tandem repeat loci. In addition, we have compared the genetic profiles of these tribes to populations from mainland China as well as to collections at key points throughout the Austronesian domain. While our results suggest that Daic populations from Southern China are the likely forefathers of the Taiwanese aborigines, populations within Taiwan show a greater genetic impact on groups at the extremes of the current domain than populations from Indonesia, Mainland, or Southeast Asia lending support to the "Out of Taiwan" hypothesis. We have also observed that specific Taiwanese aboriginal groups (Paiwan, Puyuma, and Saisiyat), and not all tribal populations, have highly influenced genetic distributions of Austronesian populations in the pacific and Madagascar suggesting either an asymmetric migration out of Taiwan or the loss of certain genetic signatures in some of the Taiwanese tribes due to endogamy, isolation, and/or drift.
Collapse
Affiliation(s)
- Sheyla Mirabal
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
76
|
Duggan AT, Stoneking M. A highly unstable recent mutation in human mtDNA. Am J Hum Genet 2013; 92:279-84. [PMID: 23313375 DOI: 10.1016/j.ajhg.2012.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/19/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022] Open
Abstract
An A-to-G transition at position 16247 in the human mtDNA genome denotes haplogroup B4a1a1a and its sublineages. Informally known as the "Polynesian motif," this haplogroup has been widely used as a marker in Oceania of genetic affiliation with the Austronesian expansion. The 16247G allele has arisen only once in the human mtDNA phylogeny, about 7,000 thousand years ago, and is nearly fixed in Remote Oceania. We analyzed 536 complete mtDNA genome sequences from the Solomon Islands from haplogroup B4a1a1 and associated subhaplogroups and found multiple independent back mutations from 16247G to 16247A. We also find elevated levels of heteroplasmy at this position in samples with the 16247G allele, suggesting the ongoing occurrence of somatic back-mutations and/or transmission of heteroplasmy. Moreover, the G allele is predicted to introduce a novel stem-loop structure in the DNA sequence that may be structurally unfavorable, thereby accounting for the remarkable number of back-mutations observed at the 16247G allele in this short evolutionary time span. More generally, haplogroup-calling scripts result in inaccurate haplogroup calls involving the back-mutation and need to be supplemented with other types of analyses; this may be true for other mtDNA lineages because no other lineage has been investigated to the same extent (over 500 complete mtDNA sequences).
Collapse
Affiliation(s)
- Ana T Duggan
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | | |
Collapse
|
77
|
Tumonggor MK, Karafet TM, Hallmark B, Lansing JS, Sudoyo H, Hammer MF, Cox MP. The Indonesian archipelago: an ancient genetic highway linking Asia and the Pacific. J Hum Genet 2013; 58:165-73. [PMID: 23344321 DOI: 10.1038/jhg.2012.154] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Indonesia, an island nation linking mainland Asia with the Pacific world, hosts a wide range of linguistic, ethnic and genetic diversity. Despite the complexity of this cultural environment, genetic studies in Indonesia remain surprisingly sparse. Here, we report mitochondrial DNA (mtDNA) and associated Y-chromosome diversity for the largest cohort of Indonesians examined to date-2740 individuals from 70 communities spanning 12 islands across the breadth of the Indonesian archipelago. We reconstruct 50 000 years of population movements, from mitochondrial lineages reflecting the very earliest settlers in island southeast Asia, to Neolithic population dispersals. Historic contacts from Chinese, Indians, Arabs and Europeans comprise a noticeable fraction of Y-chromosome variation, but are not reflected in the maternally inherited mtDNA. While this historic immigration favored men, patterns of genetic diversity show that women moved more widely in earlier times. However, measures of population differentiation signal that Indonesian communities are trending away from the matri- or ambilocality of early Austronesian societies toward the more common practice of patrilocal residence today. Such sex-specific dispersal patterns remain even after correcting for the different mutation rates of mtDNA and the Y chromosome. This detailed palimpsest of Indonesian genetic diversity is a direct outcome of the region's complex history of immigration, transitory migrants and populations that have endured in situ since the region's first settlement.
Collapse
|
78
|
Verdu P, Becker NSA, Froment A, Georges M, Grugni V, Quintana-Murci L, Hombert JM, Van der Veen L, Le Bomin S, Bahuchet S, Heyer E, Austerlitz F. Sociocultural behavior, sex-biased admixture, and effective population sizes in Central African Pygmies and non-Pygmies. Mol Biol Evol 2013; 30:918-37. [PMID: 23300254 DOI: 10.1093/molbev/mss328] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter-gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown. Using population genetics and approximate Bayesian computation approaches, we inferred male and female effective population sizes, sex-specific migration, and admixture rates in 23 Central African Pygmy and non-Pygmy populations, genotyped for autosomal, X-linked, Y-linked, and mitochondrial markers. We found much larger effective population sizes and migration rates among non-Pygmy populations than among Pygmies, in agreement with the recent expansions and migrations of non-Pygmies and, conversely, the isolation and stationary demography of Pygmy groups. We found larger effective sizes and migration rates for males than for females for Pygmies, and vice versa for non-Pygmies. Thus, although most Pygmy populations have patrilocal customs, their sex-specific genetic patterns resemble those of matrilocal populations. In fact, our results are consistent with a lower prevalence of polygyny and patrilocality in Pygmies compared with non-Pygmies and a potential female transmission of reproductive success in Pygmies. Finally, Pygmy populations showed variable admixture levels with the non-Pygmies, with often much larger introgression from male than from female lineages. Social discrimination against Pygmies triggering complex movements of spouses in intermarriages can explain these male-biased admixture patterns in a patrilocal context. We show how gender-related sociocultural phenomena can determine highly variable sex-specific demography among populations, and how population genetic approaches contrasting chromosomal types allow inferring detailed human sex-specific demographic history.
Collapse
Affiliation(s)
- Paul Verdu
- Department of Biology, Stanford University, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Buckley CD. Investigating cultural evolution using phylogenetic analysis: the origins and descent of the southeast Asian tradition of warp ikat weaving. PLoS One 2012; 7:e52064. [PMID: 23272211 PMCID: PMC3525544 DOI: 10.1371/journal.pone.0052064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/08/2012] [Indexed: 02/04/2023] Open
Abstract
The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data.
Collapse
|
80
|
Population genetic structure and origins of Native Hawaiians in the multiethnic cohort study. PLoS One 2012; 7:e47881. [PMID: 23144833 PMCID: PMC3492381 DOI: 10.1371/journal.pone.0047881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/18/2012] [Indexed: 01/31/2023] Open
Abstract
The population genetic structure of Native Hawaiians has yet to be comprehensively studied, and the ancestral origins of Polynesians remain in question. In this study, we utilized high-resolution genome-wide SNP data and mitochondrial genomes of 148 and 160 Native Hawaiians, respectively, to characterize their population structure of the nuclear and mitochondrial genomes, ancestral origins, and population expansion. Native Hawaiians, who self-reported full Native Hawaiian heritage, demonstrated 78% Native Hawaiian, 11.5% European, and 7.8% Asian ancestry with 99% belonging to the B4 mitochondrial haplogroup. The estimated proportions of Native Hawaiian ancestry for those who reported mixed ancestry (i.e. 75% and 50% Native Hawaiian heritage) were found to be consistent with their self-reported heritage. A significant proportion of Melanesian ancestry (mean = 32%) was estimated in 100% self-reported Native Hawaiians in an ADMIXTURE analysis of Asian, Melanesian, and Native Hawaiian populations of K = 2, where K denotes the number of ancestral populations. This notable proportion of Melanesian admixture supports the “Slow-Boat” model of migration of ancestral Polynesian populations from East Asia to the Pacific Islands. In addition, approximately 1,300 years ago a single, strong expansion of the Native Hawaiian population was estimated. By providing important insight into the underlying population structure of Native Hawaiians, this study lays the foundation for future genetic association studies of this U.S. minority population.
Collapse
|
81
|
Lachance MA, Rosa CA, Carvajal EJ, Freitas LFD, Bowles JM. Saccharomycopsis fodiens sp. nov., a rare predacious yeast from three distant localities. Int J Syst Evol Microbiol 2012; 62:2793-2798. [DOI: 10.1099/ijs.0.043109-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three strains representing a novel yeast species were recovered as part of independent collections from flower-associated nitidulid beetles in Australia, Costa Rica and the Galapagos Islands, Ecuador. Analysis of the D1/D2 domains of the large subunit rRNA gene indicated that the species belongs to the genus Saccharomycopsis, although the formation of ascospores was not observed. The yeast is capable of necrotrophic parasitism by means of infection pegs when mixed with other yeasts or filamentous fungi. Of particular interest is the fact that despite the large distances separating the isolation sites of the three strains, other strains of the species have not been recovered in other samples of flower-associated nitidulids even though these habitats have been sampled extensively. It is suggested that the dispersal of the yeast may be linked to human historical factors. The name Saccharomycopsis fodiens sp. nov. is proposed for the yeast. The type strain is UWOPS 95-697.4T ( = CBS 8332T = NRRL Y-48786T).
Collapse
Affiliation(s)
- Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Carlos A. Rosa
- Department of Microbiology, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Enrique Javier Carvajal
- Colección de Levaduras Quito Católica, Centro Neotropical para Investigación de la Biomasa, Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Biológicas, CP 17-01-2184, Quito, Ecuador
| | - Larissa F. D. Freitas
- Department of Microbiology, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jane M. Bowles
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
82
|
Complete mitochondrial DNA genome sequences from the first New Zealanders. Proc Natl Acad Sci U S A 2012; 109:18350-4. [PMID: 23091021 DOI: 10.1073/pnas.1209896109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The dispersal of modern humans across the globe began ~65,000 y ago when people first left Africa and culminated with the settlement of East Polynesia, which occurred in the last 1,000 y. With the arrival of Polynesian canoes only 750 y ago, Aotearoa/New Zealand became the last major landmass to be permanently settled by humans. We present here complete mitochondrial genome sequences of the likely founding population of Aotearoa/New Zealand recovered from the archaeological site of Wairau Bar. These data represent complete mitochondrial genome sequences from ancient Polynesian voyagers and provide insights into the genetic diversity of human populations in the Pacific at the time of the settlement of East Polynesia.
Collapse
|
83
|
Pemberton TJ, Li FY, Hanson EK, Mehta NU, Choi S, Ballantyne J, Belmont JW, Rosenberg NA, Tyler-Smith C, Patel PI. Impact of restricted marital practices on genetic variation in an endogamous Gujarati group. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 149:92-103. [PMID: 22729696 DOI: 10.1002/ajpa.22101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/07/2012] [Indexed: 12/15/2022]
Abstract
Recent studies have examined the influence on patterns of human genetic variation of a variety of cultural practices. In India, centuries-old marriage customs have introduced extensive social structuring into the contemporary population, potentially with significant consequences for genetic variation. Social stratification in India is evident as social classes that are defined by endogamous groups known as castes. Within a caste, there exist endogamous groups known as gols (marriage circles), each of which comprises a small number of exogamous gotra (lineages). Thus, while consanguinity is strictly avoided and some randomness in mate selection occurs within the gol, gene flow is limited with groups outside the gol. Gujarati Patels practice this form of "exogamic endogamy." We have analyzed genetic variation in one such group of Gujarati Patels, the Chha Gaam Patels (CGP), who comprise individuals from six villages. Population structure analysis of 1,200 autosomal loci offers support for the existence of distinctive multilocus genotypes in the CGP with respect to both non-Gujaratis and other Gujaratis, and indicates that CGP individuals are genetically very similar. Analysis of Y-chromosomal and mitochondrial haplotypes provides support for both patrilocal and patrilineal practices within the gol, and a low-level of female gene flow into the gol. Our study illustrates how the practice of gol endogamy has introduced fine-scale genetic structure into the population of India, and contributes more generally to an understanding of the way in which marriage practices affect patterns of genetic variation.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Kenny EE, Timpson NJ, Sikora M, Yee MC, Moreno-Estrada A, Eng C, Huntsman S, Burchard EG, Stoneking M, Bustamante CD, Myles S. Melanesian blond hair is caused by an amino acid change in TYRP1. Science 2012; 336:554. [PMID: 22556244 DOI: 10.1126/science.1217849] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally blond hair is rare in humans and found almost exclusively in Europe and Oceania. Here, we identify an arginine-to-cysteine change at a highly conserved residue in tyrosinase-related protein 1 (TYRP1) as a major determinant of blond hair in Solomon Islanders. This missense mutation is predicted to affect catalytic activity of TYRP1 and causes blond hair through a recessive mode of inheritance. The mutation is at a frequency of 26% in the Solomon Islands, is absent outside of Oceania, represents a strong common genetic effect on a complex human phenotype, and highlights the importance of examining genetic associations worldwide.
Collapse
Affiliation(s)
- Eimear E Kenny
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Ballantyne KN, Keerl V, Wollstein A, Choi Y, Zuniga SB, Ralf A, Vermeulen M, de Knijff P, Kayser M. A new future of forensic Y-chromosome analysis: Rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci Int Genet 2012; 6:208-18. [DOI: 10.1016/j.fsigen.2011.04.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 04/08/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
86
|
Increased Y-chromosome resolution of haplogroup O suggests genetic ties between the Ami aborigines of Taiwan and the Polynesian Islands of Samoa and Tonga. Gene 2012; 492:339-48. [DOI: 10.1016/j.gene.2011.10.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 11/22/2022]
|
87
|
NAKA IZUMI, OHASHI JUN, KIMURA RYOSUKE, FURUSAWA TAKURO, YAMAUCHI TARO, NAKAZAWA MINATO, NATSUHARA KAZUMI, ATAKA YUJI, NISHIDA NAO, ISHIDA TAKAFUMI, INAOKA TSUKASA, MATSUMURA YASUHIRO, OHTSUKA RYUTARO. DRD4 VNTR polymorphism in Oceanic populations. ANTHROPOL SCI 2012. [DOI: 10.1537/ase.110901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- IZUMI NAKA
- Doctoral Program in Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba
| | - JUN OHASHI
- Doctoral Program in Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba
| | - RYOSUKE KIMURA
- Transdisciplinary Research Organization for Subtropical and Island Studies, University of the Ryukyus, Nakagami
| | - TAKURO FURUSAWA
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto
| | - TARO YAMAUCHI
- Graduate School of Health Sciences, Hokkaido University, Sapporo
| | - MINATO NAKAZAWA
- Department of Public Health, Graduate School of Medical Sciences, Gunma University, Maebashi
| | | | - YUJI ATAKA
- School of Policy Studies, Kwansei Gakuin University, Sanda
| | - NAO NISHIDA
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo
- Research Center for Hepatitis and Immunology, International Medical Center of Japan Konodai Hospital, Ichikawa
| | - TAKAFUMI ISHIDA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo
| | - TSUKASA INAOKA
- Department of Human Ecology, Faculty of Agriculture, Saga University, Saga
| | | | | |
Collapse
|
88
|
Reich D, Patterson N, Kircher M, Delfin F, Nandineni MR, Pugach I, Ko AMS, Ko YC, Jinam TA, Phipps ME, Saitou N, Wollstein A, Kayser M, Pääbo S, Stoneking M. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am J Hum Genet 2011; 89:516-28. [PMID: 21944045 DOI: 10.1016/j.ajhg.2011.09.005] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/08/2011] [Accepted: 09/08/2011] [Indexed: 01/10/2023] Open
Abstract
It has recently been shown that ancestors of New Guineans and Bougainville Islanders have inherited a proportion of their ancestry from Denisovans, an archaic hominin group from Siberia. However, only a sparse sampling of populations from Southeast Asia and Oceania were analyzed. Here, we quantify Denisova admixture in 33 additional populations from Asia and Oceania. Aboriginal Australians, Near Oceanians, Polynesians, Fijians, east Indonesians, and Mamanwa (a "Negrito" group from the Philippines) have all inherited genetic material from Denisovans, but mainland East Asians, western Indonesians, Jehai (a Negrito group from Malaysia), and Onge (a Negrito group from the Andaman Islands) have not. These results indicate that Denisova gene flow occurred into the common ancestors of New Guineans, Australians, and Mamanwa but not into the ancestors of the Jehai and Onge and suggest that relatives of present-day East Asians were not in Southeast Asia when the Denisova gene flow occurred. Our finding that descendants of the earliest inhabitants of Southeast Asia do not all harbor Denisova admixture is inconsistent with a history in which the Denisova interbreeding occurred in mainland Asia and then spread over Southeast Asia, leading to all its earliest modern human inhabitants. Instead, the data can be most parsimoniously explained if the Denisova gene flow occurred in Southeast Asia itself. Thus, archaic Denisovans must have lived over an extraordinarily broad geographic and ecological range, from Siberia to tropical Asia.
Collapse
Affiliation(s)
- David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Marquis-Nicholson R, Aftimos S, Ashton F, Love JM, Stone P, McFarlane J, George AM, Love DR. Pseudotrisomy 13 syndrome: Use of homozygosity mapping to target candidate genes. Gene 2011; 486:37-40. [DOI: 10.1016/j.gene.2011.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 12/01/2022]
|
90
|
Ballantyne KN, van Oven M, Ralf A, Stoneking M, Mitchell RJ, van Oorschot RAH, Kayser M. MtDNA SNP multiplexes for efficient inference of matrilineal genetic ancestry within Oceania. Forensic Sci Int Genet 2011; 6:425-36. [PMID: 21940232 DOI: 10.1016/j.fsigen.2011.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 01/22/2023]
Abstract
Human mitochondrial DNA (mtDNA) is a convenient marker for tracing matrilineal bio-geographic ancestry and is widely applied in forensic, genealogical and anthropological studies. In forensic applications, DNA-based ancestry inference can be useful for finding unknown suspects by concentrating police investigations in cases where autosomal STR profiling was unable to provide a match, or can help provide clues in missing person identification. Although multiplexed mtDNA single nucleotide polymorphism (SNP) assays to infer matrilineal ancestry at a (near) continental level are already available, such tools are lacking for the Oceania region. Here, we have developed a hierarchical system of three SNaPshot multiplexes for genotyping 26 SNPs defining all major mtDNA haplogroups for Oceania (including Australia, Near Oceania and Remote Oceania). With this system, it was possible to conclusively assign 74% of Oceanian individuals to their Oceanian matrilineal ancestry in an established literature database (after correcting for obvious external admixture). Furthermore, in a set of 161 genotyped individuals collected in Australia, Papua New Guinea and Fiji, 87.6% were conclusively assigned an Oceanian matrilineal origin. For the remaining 12.4% of the genotyped samples either a Eurasian origin was detected indicating likely European admixture (1.9%), the identified haplogroups are shared between Oceania and S/SE-Asia (5%), or the SNPs applied did not allow a geographic inference to be assigned (5.6%). Sub-regional assignment within Oceania was possible for 32.9% of the individuals genotyped: 49.5% of Australians were assigned an Australian origin and 13.7% of the Papua New Guineans were assigned a Near Oceanian origin, although none of the Fijians could be assigned a specific Remote Oceanian origin. The low assignment rates of Near and Remote Oceania are explained by recent migrations from Asia via Near Oceania into Remote Oceania. Combining the mtDNA multiplexes for Oceania introduced here with those we developed earlier for all other continental regions, global matrilineal bio-geographic ancestry assignment from DNA is now achievable in a highly efficient way that is also suitable for applications with limited material such as forensic case work.
Collapse
Affiliation(s)
- Kaye N Ballantyne
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
91
|
Scholes C, Siddle K, Ducourneau A, Crivellaro F, Järve M, Rootsi S, Bellatti M, Tabbada K, Mormina M, Reidla M, Villems R, Kivisild T, Lahr MM, Migliano AB. Genetic diversity and evidence for population admixture in Batak Negritos from Palawan. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:62-72. [DOI: 10.1002/ajpa.21544] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
92
|
Oskarsson MCR, Klütsch CFC, Boonyaprakob U, Wilton A, Tanabe Y, Savolainen P. Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proc Biol Sci 2011; 279:967-74. [PMID: 21900326 PMCID: PMC3259930 DOI: 10.1098/rspb.2011.1395] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the late stages of the global dispersal of dogs, dingoes appear in the Australian archaeological record 3500 years BP, and dogs were one of three domesticates brought with the colonization of Polynesia, but the introduction routes to this region remain unknown. This also relates to questions about human history, such as to what extent the Polynesian culture was introduced with the Austronesian expansion from Taiwan or adopted en route, and whether pre-Neolithic Australia was culturally influenced by the surrounding Neolithic world. We investigate these questions by mapping the distribution of the mtDNA founder haplotypes for dingoes (A29) and ancient Polynesian dogs (Arc1 and Arc2) in samples across Southern East Asia (n = 424) and Island Southeast Asia (n = 219). All three haplotypes were found in South China, Mainland Southeast Asia and Indonesia but absent in Taiwan and the Philippines, and the mtDNA diversity among dingoes indicates an introduction to Australia 4600–18 300 years BP. These results suggest that Australian dingoes and Polynesian dogs originate from dogs introduced to Indonesia via Mainland Southeast Asia before the Neolithic, and not from Taiwan together with the Austronesian expansion. This underscores the complex origins of Polynesian culture and the isolation from Neolithic influence of the pre-Neolithic Australian culture.
Collapse
Affiliation(s)
- Mattias C R Oskarsson
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, 106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
93
|
|
94
|
Stoneking M, Krause J. Learning about human population history from ancient and modern genomes. Nat Rev Genet 2011; 12:603-14. [PMID: 21850041 DOI: 10.1038/nrg3029] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome-wide data, both from SNP arrays and from complete genome sequencing, are becoming increasingly abundant and are now even available from extinct hominins. These data are providing new insights into population history; in particular, when combined with model-based analytical approaches, genome-wide data allow direct testing of hypotheses about population history. For example, genome-wide data from both contemporary populations and extinct hominins strongly support a single dispersal of modern humans from Africa, followed by two archaic admixture events: one with Neanderthals somewhere outside Africa and a second with Denisovans that (so far) has only been detected in New Guinea. These new developments promise to reveal new stories about human population history, without having to resort to storytelling.
Collapse
Affiliation(s)
- Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany.
| | | |
Collapse
|
95
|
Delfin F, Myles S, Choi Y, Hughes D, Illek R, van Oven M, Pakendorf B, Kayser M, Stoneking M. Bridging Near and Remote Oceania: mtDNA and NRY Variation in the Solomon Islands. Mol Biol Evol 2011; 29:545-64. [DOI: 10.1093/molbev/msr186] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
96
|
|
97
|
Hollis-Moffatt JE, Gow PJ, Harrison AA, Highton J, Jones PBB, Stamp LK, Dalbeth N, Merriman TR. The SLC2A9 nonsynonymous Arg265His variant and gout: evidence for a population-specific effect on severity. Arthritis Res Ther 2011; 13:R85. [PMID: 21658257 PMCID: PMC3218899 DOI: 10.1186/ar3356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/26/2011] [Accepted: 06/09/2011] [Indexed: 11/15/2022] Open
Abstract
Introduction The C allele of the nonsynonymous Arg265His (rs3733591) variant of SLC2A9 confers risk for gout in Han Chinese, Solomon Island and Japanese samples, with a stronger role in tophaceous gout. There is no evidence for an association with gout in Caucasian populations. In the present study, we tested rs3733591 for association with gout in New Zealand (NZ) Māori, Pacific Island and Caucasian samples. Methods Rs3733591 was genotyped across gout patients (n = 229, 232 and 327 NZ Māori, Pacific Island and Caucasian samples, respectively) and non-gout controls (n = 343, 174 and 638 Māori, Pacific Island and Caucasian samples, respectively). Further Caucasian sample sets consisting of 67 cases and 4,712 controls as well as 153 cases and 6,969 controls were obtained from the Framingham Heart Study and the Atherosclerosis Risk in Communities study, respectively. The Polynesian samples were analyzed according to Eastern and Western Polynesian ancestry. Results No evidence for risk conferred by the C allele of rs3733591 with gout was found in the sample sets of NZ Māori (odd ratio (OR) = 0.98, P = 0.86), Eastern Polynesians (OR = 0.99, P = 0.92), Western Polynesians (OR = 1.16, P = 0.36) or combined Caucasians (OR = 1.15, P = 0.13). The C allele was significantly overrepresented in Māori tophaceous cases compared to cases without tophi (OR = 2.21, P = 0.008), but not in the other ancestral groupings. Conclusions Noting that our study's power was limited for detecting weak genetic effects, we were unable to replicate associations of rs3733591 with gout in Eastern Polynesian, Western Polynesian and Caucasian samples. However, consistent with a previous study of Han Chinese and Solomon Island populations, our data suggest that rs3733591 could be a marker of severe gout in some populations. Our results also suggest that the effect of this variant is population-specific, further confirming population heterogeneity regarding the association of SLC2A9 with gout.
Collapse
Affiliation(s)
- Jade E Hollis-Moffatt
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9012, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Improving human forensics through advances in genetics, genomics and molecular biology. Nat Rev Genet 2011; 12:179-92. [PMID: 21331090 DOI: 10.1038/nrg2952] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Forensic DNA profiling currently allows the identification of persons already known to investigating authorities. Recent advances have produced new types of genetic markers with the potential to overcome some important limitations of current DNA profiling methods. Moreover, other developments are enabling completely new kinds of forensically relevant information to be extracted from biological samples. These include new molecular approaches for finding individuals previously unknown to investigators, and new molecular methods to support links between forensic sample donors and criminal acts. Such advances in genetics, genomics and molecular biology are likely to improve human forensic case work in the near future.
Collapse
|
99
|
van Oven M, Vermeulen M, Kayser M. Multiplex genotyping system for efficient inference of matrilineal genetic ancestry with continental resolution. INVESTIGATIVE GENETICS 2011; 2:6. [PMID: 21429198 PMCID: PMC3078086 DOI: 10.1186/2041-2223-2-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/23/2011] [Indexed: 12/17/2022]
Abstract
Background In recent years, phylogeographic studies have produced detailed knowledge on the worldwide distribution of mitochondrial DNA (mtDNA) variants, linking specific clades of the mtDNA phylogeny with certain geographic areas. However, a multiplex genotyping system for the detection of the mtDNA haplogroups of major continental distribution that would be desirable for efficient DNA-based bio-geographic ancestry testing in various applications is still missing. Results Three multiplex genotyping assays, based on single-base primer extension technology, were developed targeting a total of 36 coding-region mtDNA variants that together differentiate 43 matrilineal haplo-/paragroups. These include the major diagnostic haplogroups for Africa, Western Eurasia, Eastern Eurasia and Native America. The assays show high sensitivity with respect to the amount of template DNA: successful amplification could still be obtained when using as little as 4 pg of genomic DNA and the technology is suitable for medium-throughput analyses. Conclusions We introduce an efficient and sensitive multiplex genotyping system for bio-geographic ancestry inference from mtDNA that provides resolution on the continental level. The method can be applied in forensics, to aid tracing unknown suspects, as well as in population studies, genealogy and personal ancestry testing. For more complete inferences of overall bio-geographic ancestry from DNA, the mtDNA system provided here can be combined with multiplex systems for suitable autosomal and, in the case of males, Y-chromosomal ancestry-sensitive DNA markers.
Collapse
Affiliation(s)
- Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
100
|
Pugach I, Matveyev R, Wollstein A, Kayser M, Stoneking M. Dating the age of admixture via wavelet transform analysis of genome-wide data. Genome Biol 2011; 12:R19. [PMID: 21352535 PMCID: PMC3188801 DOI: 10.1186/gb-2011-12-2-r19] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/13/2011] [Accepted: 02/25/2011] [Indexed: 12/31/2022] Open
Abstract
We describe a PCA-based genome scan approach to analyze genome-wide admixture structure, and introduce wavelet transform analysis as a method for estimating the time of admixture. We test the wavelet transform method with simulations and apply it to genome-wide SNP data from eight admixed human populations. The wavelet transform method offers better resolution than existing methods for dating admixture, and can be applied to either SNP or sequence data from humans or other species.
Collapse
Affiliation(s)
- Irina Pugach
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, D-04103, Germany.
| | | | | | | | | |
Collapse
|