51
|
Miller NJ, Sappington TW. Role of dispersal in resistance evolution and spread. CURRENT OPINION IN INSECT SCIENCE 2017; 21:68-74. [PMID: 28822491 DOI: 10.1016/j.cois.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Gene flow via immigration affects rate of evolution of resistance to a pest management tactic, while emigration from a resistant population can spread resistance alleles spatially. Whether resistance detected across the landscape reflects ongoing de novo evolution in different hotspots or spread from a single focal population can determine the most effective mitigation strategy. Pest dispersal dynamics determine the spatio-temporal scale at which mitigation tactics must be applied to contain or reverse resistance in an area. Independent evolution of resistance in different populations appears common but not universal. Conversely, spatial spread appears to be almost inevitable. However, rate and scale of spread depends largely on dispersal dynamics and interplay with factors such as fitness costs, spatially variable selection pressure and whether resistance alleles are spreading through an established population or being carried by populations colonizing new territory.
Collapse
Affiliation(s)
- Nicholas J Miller
- Department of Biology, Illinois Institute of Technology, 298 Life Science Building, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Thomas W Sappington
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
52
|
Streifel MA, Tobin PC, Hunt L, Nadel H, Molongoski JJ, Aukema BH. Landscape-Level Patterns of Elevated FS1 Asian Allele Frequencies in Populations of Gypsy Moth (Lepidoptera: Erebidae) at a Northern U.S. Boundary. ENVIRONMENTAL ENTOMOLOGY 2017; 46:403-412. [PMID: 28334091 DOI: 10.1093/ee/nvx041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 06/06/2023]
Abstract
From a regulatory perspective, Asian gypsy moth is a species complex consisting of three species of Lymantria and two subspecies of Lymantria dispar (L.), differing from the European subspecies, L. dispar dispar (L.), by having consistently flight-capable females. As such, the invasion potential in North America is thought to exceed that of European gypsy moth. USDA-APHIS therefore has a monitoring program to detect Asian gypsy moth at high-risk introduction pathways. Molecular markers are used to improve the diagnosis of Asian gypsy moth. One such marker, which targets the FS1 locus, detects an allele, FS1-A, prevalent in Asian populations but occurring at low frequencies (3-6%) throughout the European gypsy moth's range in North America. However, some locales, such as Minnesota, exhibit elevated FS1-A frequencies. We studied the distribution of the FS1-A allele in northern Minnesota, 2013-2014, assessing spatial patterns in the distribution of the FS1-A allele using Moran's I and using spatial regression techniques to examine if the FS1-A allele was associated with putative movement pathways. We also used time series analysis to discern if temporal patterns in FS1-A or possible introduction events occurred. Our results indicated that FS1-A occurred randomly in space and time. We found no evidence that elevated FS1-A frequencies were associated with movement pathways or possible immigration events into this region over the two years. Elevated frequencies of the FS1-A allele within this region could be due to genetic drift and allelic surfing along the expanding population front, or to selection of physiological or behavioral traits.
Collapse
Affiliation(s)
- Marissa A Streifel
- Department of Entomology, University of Minnesota, 1980 Folwell Av., St. Paul, MN 55108 (; )
| | - Patrick C Tobin
- School of Environmental and Forest Sciences, University of Washington, 123 Anderson Hall, 4000 15th Ave., NE, Seattle, WA 98195
| | - Lucia Hunt
- Minnesota Department of Agriculture, 625 Robert St. N, St. Paul, MN 55155
| | - Hannah Nadel
- USDA APHIS PPQ Science and Technology, Center for Plant Health Science and Technology, 1398 W. Truck Rd., Buzzards Bay, MA 02542 (; )
| | - John J Molongoski
- USDA APHIS PPQ Science and Technology, Center for Plant Health Science and Technology, 1398 W. Truck Rd., Buzzards Bay, MA 02542 (; )
| | - Brian H Aukema
- Department of Entomology, University of Minnesota, 1980 Folwell Av., St. Paul, MN 55108 (; )
| |
Collapse
|
53
|
Rapid trait evolution drives increased speed and variance in experimental range expansions. Nat Commun 2017; 8:14303. [PMID: 28128350 PMCID: PMC5290145 DOI: 10.1038/ncomms14303] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 12/12/2016] [Indexed: 01/11/2023] Open
Abstract
Range expansions are central to two ecological issues reshaping patterns of global biodiversity: biological invasions and climate change. Traditional theory considers range expansion as the outcome of the demographic processes of birth, death and dispersal, while ignoring the evolutionary implications of such processes. Recent research suggests evolution could also play a critical role in determining expansion speed but controlled experiments are lacking. Here we use flour beetles (Tribolium castaneum) to show experimentally that mean expansion speed and stochastic variation in speed are both increased by rapid evolution of traits at the expansion edge. We find that higher dispersal ability and lower intrinsic growth rates evolve at the expansion edge compared with spatially nonevolving controls. Furthermore, evolution of these traits is variable, leading to enhanced variance in speed among replicate population expansions. Our results demonstrate that evolutionary processes must be considered alongside demographic ones to better understand and predict range expansions. Spatial structure provides unique opportunities for evolution during range expansions. Here, the authors show experimentally using the red flour beetle, Tribolium castaneum, that dispersal and growth can evolve through spatial processes, increasing expansion speed and its variance.
Collapse
|
54
|
Ochocki BM, Miller TEX. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat Commun 2017; 8:14315. [PMID: 28128215 PMCID: PMC5290149 DOI: 10.1038/ncomms14315] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 12/12/2016] [Indexed: 01/22/2023] Open
Abstract
Genetic variation in dispersal ability may result in the spatial sorting of alleles during range expansion. Recent theory suggests that spatial sorting can favour the rapid evolution of life history traits at expanding fronts, and therefore modify the ecological dynamics of range expansion. Here we test this prediction by disrupting spatial sorting in replicated invasions of the bean beetle Callosobruchus maculatus across homogeneous experimental landscapes. We show that spatial sorting promotes rapid evolution of dispersal distance, which increases the speed and variability of replicated invasions: after 10 generations of range expansion, invasions subject to spatial sorting spread 8.9% farther and exhibit 41-fold more variable spread dynamics relative to invasions in which spatial sorting is suppressed. Correspondingly, descendants from spatially evolving invasions exhibit greater mean and variance in dispersal distance. Our results reveal an important role for rapid evolution during invasion, even in the absence of environmental filters, and argue for evolutionarily informed forecasts of invasive spread by exotic species or climate change migration by native species. Theory suggests that spatial sorting by dispersal ability can generate evolutionarily accelerated range expansions. Using the bean beetle Callosobruchus maculatus, this study shows that evolution not only increases the speed of range expansion, as predicted, but also increases variability.
Collapse
Affiliation(s)
- Brad M Ochocki
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, 6100 Main Street, MS-170, Houston, Texas 77005-1892, USA
| | - Tom E X Miller
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, 6100 Main Street, MS-170, Houston, Texas 77005-1892, USA
| |
Collapse
|
55
|
Genetic surfing in human populations: from genes to genomes. Curr Opin Genet Dev 2016; 41:53-61. [DOI: 10.1016/j.gde.2016.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/06/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
|
56
|
Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, Poss ML, Reed LK, Storfer A, Whitlock MC. Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions. Am Nat 2016; 188:379-97. [PMID: 27622873 PMCID: PMC5457800 DOI: 10.1086/688018] [Citation(s) in RCA: 443] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Uncovering the genetic and evolutionary basis of local adaptation is a major focus of evolutionary biology. The recent development of cost-effective methods for obtaining high-quality genome-scale data makes it possible to identify some of the loci responsible for adaptive differences among populations. Two basic approaches for identifying putatively locally adaptive loci have been developed and are broadly used: one that identifies loci with unusually high genetic differentiation among populations (differentiation outlier methods) and one that searches for correlations between local population allele frequencies and local environments (genetic-environment association methods). Here, we review the promises and challenges of these genome scan methods, including correcting for the confounding influence of a species' demographic history, biases caused by missing aspects of the genome, matching scales of environmental data with population structure, and other statistical considerations. In each case, we make suggestions for best practices for maximizing the accuracy and efficiency of genome scans to detect the underlying genetic basis of local adaptation. With attention to their current limitations, genome scan methods can be an important tool in finding the genetic basis of adaptive evolutionary change.
Collapse
Affiliation(s)
- Sean Hoban
- Morton Arboretum, Lisle, Illinois 60532; and National Institute for Mathematical and Biological Synthesis (NIMBioS), Knoxville, Tennessee 37966
| | - Joanna L. Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Katie E. Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts 01908
| | - Michael F. Antolin
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Gideon Bradburd
- Museum of Vertebrate Zoology and Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720
| | - David B. Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Mary L. Poss
- Department of Biology and Veterinary and Biomedical Sciences, Penn State University, University Park, Pennsylvania 16802
| | - Laura K. Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35406
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | | |
Collapse
|
57
|
Mona S. On the role played by the carrying capacity and the ancestral population size during a range expansion. Heredity (Edinb) 2016; 118:143-153. [PMID: 27599574 DOI: 10.1038/hdy.2016.73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 01/05/2023] Open
Abstract
Most species are structured and various population genetics models have been proposed to investigate their history. For mathematical tractability, most of these models make the simplifying assumption of equilibrium. Here we focus on the properties of a nonequilibrium spatial explicit model, range expansions (REs). Despite their abundance, many details of their genetic consequences need yet to be fully investigated. The model we studied is characterized by four main parameters: the effective population size of each deme (N), the migration rate per generation per deme (m), the time of the expansion (Texp) and the effective size of the deme from which the expansion started (Nanc). By means of extensive coalescent simulations, we focused on two aspects of range expansions for fixed Nm: (1) the separate influence of N and m and (2) the role of Nanc. We compared our results with an equilibrium stepping stone model and found two main features typical of REs: an excess of rare variants for larger N and a complex interaction between N, Texp and Nanc in shaping the degree of population differentiation (which depends only on Nm in the stepping stone model). Finally, we developed an approximate Bayesian computation approach to jointly estimate N and m and to infer Nanc. When applied to pseudo-observed data sets, we could correctly recover both N and m (but not Nanc), provided a large number of demes were sampled. These findings highlight how it will be possible to estimate the dispersal rate in nonequilibrium metapopulations by using population genetics approaches.
Collapse
Affiliation(s)
- S Mona
- EPHE, PSL Research University, Paris, France.,Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205 - CNRS, MNHN, UPMC, EPHE, Ecole Pratique des Hautes Etudes, Paris Sorbonne Universités, Paris, France
| |
Collapse
|
58
|
Becheler R, Xhaard C, Klein EK, Hayden KJ, Frey P, De Mita S, Halkett F. Genetic signatures of a range expansion in natura: when clones play leapfrog. Ecol Evol 2016; 6:6625-6632. [PMID: 27777735 PMCID: PMC5058533 DOI: 10.1002/ece3.2392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 11/12/2022] Open
Abstract
The genetic consequences of range expansions have generally been investigated at wide geographical and temporal scales, long after the colonization event. A unique ecological system enabled us to both monitor the colonization dynamics and decipher the genetic footprints of expansion over a very short time period. Each year an epidemic of the poplar rust (Melampsora larici‐populina) expands clonally and linearly along the Durance River, in the Alps. The colonization dynamics observed in 2004 showed two phases with different genetic outcomes. Upstream, fast colonization maintained high genetic diversity. Downstream, the colonization wave progressively faltered, diversity eroded, and differentiation increased, as expected under recurrent founder events. In line with the high dispersal abilities of rust pathogens, we provide evidence for leapfrog dispersal of clones. Our results thus emphasize the importance of colonization dynamics in shaping spatial genetic structure in the face of high gene flow.
Collapse
Affiliation(s)
| | - Constance Xhaard
- UMR IAMINRA Université de Lorraine54000 Nancy France; Present address: INSERM U1018, CESP, Univ. Paris-Sud UVSQ, Université Paris-Saclay Institut Gustave Roussy Villejuif France
| | - Etienne K Klein
- UR Biostatistique et Processus Spatiaux INRA 84914 Avignon France
| | - Katherine J Hayden
- UMR IAMINRA Université de Lorraine 54000 Nancy France; Present address: Royal Botanic Garden Edinburgh 20a Inverleith Row Edinburgh EH3 5LR UK
| | - Pascal Frey
- UMR IAM INRA Université de Lorraine 54000 Nancy France
| | | | | |
Collapse
|
59
|
Van Petegem KHP, Renault D, Stoks R, Bonte D. Metabolic adaptations in a range-expanding arthropod. Ecol Evol 2016; 6:6556-6564. [PMID: 27777729 PMCID: PMC5058527 DOI: 10.1002/ece3.2350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/05/2022] Open
Abstract
Despite an increasing number of studies documenting life‐history evolution during range expansions or shifts, we lack a mechanistic understanding of the underlying physiological processes. In this explorative study, we used a metabolomics approach to study physiological changes associated with the recent range expansion of the two‐spotted spider mite (Tetranychus urticae). Mite populations were sampled along a latitudinal gradient from range core to edge and reared under benign common garden conditions for two generations. Using gas chromatography–mass spectrometry, we obtained metabolic population profiles, which showed a gradual differentiation along the latitudinal gradient, indicating (epi)genetic changes in the metabolome in association with range expansion. These changes seemed not related with shifts in the mites’ energetic metabolism, but rather with differential use of amino acids. Particularly, more dispersive northern populations showed lowered concentrations of several essential and nonessential amino acids, suggesting a potential downregulation of metabolic pathways associated with protein synthesis.
Collapse
Affiliation(s)
| | - David Renault
- UMR CNRS 6553 Ecobio Université de Rennes 1 Rennes Cedex France
| | - Robby Stoks
- Evolution and Conservation KU Leuven Leuven Belgium
| | - Dries Bonte
- Department of Biology Ghent University Ghent Belgium
| |
Collapse
|
60
|
Rougemont Q, Gagnaire PA, Perrier C, Genthon C, Besnard AL, Launey S, Evanno G. Inferring the demographic history underlying parallel genomic divergence among pairs of parasitic and nonparasitic lamprey ecotypes. Mol Ecol 2016; 26:142-162. [PMID: 27105132 DOI: 10.1111/mec.13664] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
Understanding the evolutionary mechanisms generating parallel genomic divergence patterns among replicate ecotype pairs remains an important challenge in speciation research. We investigated the genomic divergence between the anadromous parasitic river lamprey (Lampetra fluviatilis) and the freshwater-resident nonparasitic brook lamprey (Lampetra planeri) in nine population pairs displaying variable levels of geographic connectivity. We genotyped 338 individuals with RAD sequencing and inferred the demographic divergence history of each population pair using a diffusion approximation method. Divergence patterns in geographically connected population pairs were better explained by introgression after secondary contact, whereas disconnected population pairs have retained a signal of ancient migration. In all ecotype pairs, models accounting for differential introgression among loci outperformed homogeneous migration models. Generating neutral predictions from the inferred divergence scenarios to detect highly differentiated markers identified greater proportions of outliers in disconnected population pairs than in connected pairs. However, increased similarity in the most divergent genomic regions was found among connected ecotype pairs, indicating that gene flow was instrumental in generating parallelism at the molecular level. These results suggest that heterogeneous genomic differentiation and parallelism among replicate ecotype pairs have partly emerged through restricted introgression in genomic islands.
Collapse
Affiliation(s)
- Quentin Rougemont
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugène Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université de Montpellier, 2 Rue des Chantiers, F-34200, Sète, France
| | - Charles Perrier
- CEFE-CNRS, Centre D'Ecologie Fonctionnelle et Evolutive, Route de Mende, 34090, Montpellier, France
| | - Clémence Genthon
- Plateforme génomique INRA GenoToul Chemin de Borderouge - Auzeville, 31320, Castanet-Tolosan, France
| | - Anne-Laure Besnard
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| | - Sophie Launey
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| | - Guillaume Evanno
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| |
Collapse
|
61
|
Streicher JW, McEntee JP, Drzich LC, Card DC, Schield DR, Smart U, Parkinson CL, Jezkova T, Smith EN, Castoe TA. Genetic surfing, not allopatric divergence, explains spatial sorting of mitochondrial haplotypes in venomous coralsnakes. Evolution 2016; 70:1435-49. [DOI: 10.1111/evo.12967] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/30/2016] [Accepted: 05/16/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Jeffrey W. Streicher
- Department of Life Sciences The Natural History Museum London United Kingdom
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona
- Department of Biology University of Texas at Arlington Arlington Texas
| | - Jay P. McEntee
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona
- Department of Biology University of Florida Gainesville Florida
| | - Laura C. Drzich
- Department of Biology University of Texas at Arlington Arlington Texas
| | - Daren C. Card
- Department of Biology University of Texas at Arlington Arlington Texas
| | - Drew R. Schield
- Department of Biology University of Texas at Arlington Arlington Texas
| | - Utpal Smart
- Department of Biology University of Texas at Arlington Arlington Texas
| | | | - Tereza Jezkova
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona
| | - Eric N. Smith
- Department of Biology University of Texas at Arlington Arlington Texas
| | - Todd A. Castoe
- Department of Biology University of Texas at Arlington Arlington Texas
| |
Collapse
|
62
|
Gralka M, Stiewe F, Farrell F, Möbius W, Waclaw B, Hallatschek O. Allele surfing promotes microbial adaptation from standing variation. Ecol Lett 2016; 19:889-98. [PMID: 27307400 DOI: 10.1111/ele.12625] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/08/2016] [Accepted: 04/18/2016] [Indexed: 01/19/2023]
Abstract
The coupling of ecology and evolution during range expansions enables mutations to establish at expanding range margins and reach high frequencies. This phenomenon, called allele surfing, is thought to have caused revolutions in the gene pool of many species, most evidently in microbial communities. It has remained unclear, however, under which conditions allele surfing promotes or hinders adaptation. Here, using microbial experiments and simulations, we show that, starting with standing adaptive variation, range expansions generate a larger increase in mean fitness than spatially uniform population expansions. The adaptation gain results from 'soft' selective sweeps emerging from surfing beneficial mutations. The rate of these surfing events is shown to sensitively depend on the strength of genetic drift, which varies among strains and environmental conditions. More generally, allele surfing promotes the rate of adaptation per biomass produced, which could help developing biofilms and other resource-limited populations to cope with environmental challenges.
Collapse
Affiliation(s)
- Matti Gralka
- Departments of Physics and Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Fabian Stiewe
- Biophysics and Evolutionary Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, 37077, Göttingen, Germany
| | - Fred Farrell
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, UK
| | - Wolfram Möbius
- Departments of Physics and Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Bartlomiej Waclaw
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, UK.,Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh, UK
| | - Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
63
|
Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions? Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2015.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
64
|
Peischl S, Kirkpatrick M, Excoffier L. Expansion load and the evolutionary dynamics of a species range. Am Nat 2016; 185:E81-93. [PMID: 25811091 DOI: 10.1086/680220] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Expanding populations incur a mutation burden, the so-called expansion load. Using a mixture of individual-based simulations and analytical modeling, we study the expansion load process in models where population growth depends on the population's fitness (i.e., hard selection). We show that expansion load can severely slow down expansions and limit a species' range, even in the absence of environmental variation. We also study the effect of recombination on the dynamics of a species range and on the evolution of mean fitness on the wave front. If recombination is strong, mean fitness on front approaches an equilibrium value at which the effects of fixed mutations cancel each other out. The equilibrium rate at which new demes are colonized is similar to the rate at which beneficial mutations spread through the core. Without recombination, the dynamics is more complex, and beneficial mutations from the core of the range can invade the front of the expansion, which results in irregular and episodic expansion. Although the rate of adaptation is generally higher in recombining organisms, the mean fitness on the front may be larger in the absence of recombination because high-fitness individuals from the core have a higher chance to invade the front. Our findings have important consequences for the evolutionary dynamics of species ranges as well as on the role and the evolution of recombination during range expansions.
Collapse
Affiliation(s)
- Stephan Peischl
- Institute of Ecology and Evolution, University of Berne, 3012 Berne, Switzerland; and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
65
|
Adrian-Kalchhauser I, Hirsch PE, Behrmann-Godel J, N'Guyen A, Watzlawczyk S, Gertzen S, Borcherding J, Burkhardt-Holm P. The invasive bighead goby Ponticola kessleri displays large-scale genetic similarities and small-scale genetic differentiation in relation to shipping patterns. Mol Ecol 2016; 25:1925-43. [PMID: 26928748 DOI: 10.1111/mec.13595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Colonization events, range expansions and species invasions leave genetic signatures in the genomes of invasive organisms and produce intricate special patterns. Predictions have been made as to how those patterns arise, but only very rarely, genetic processes can be monitored in real time during range expansions. In an attempt to change that, we track a very recently established invasive population of a fish species, the bighead goby Ponticola kessleri, with high temporal and spatial resolution through 2 years to identify patterns over time. We then compare Swiss and German samples of bighead goby along the river Rhine using microsatellites, mitochondrial D-loop sequences and geometric morphometrics to investigate geographic patterns. We detect weak temporal and strong geographic patterns in the data, which are inconsistent with isolation by distance and indicate long range transport. In search of an explanation for our observations, we analyse the vector properties and travel patterns of commercial vessels on the river Rhine. We present evidence that freshwater cargo ships and tankers are plausible vectors for larvae of invasive goby species. We also present indications that cargo ships and tankers act as differential vectors for this species. In summary, we present genetic data at unique temporal resolution from a vertebrate invasion front and substantiate the paramount role of commercial shipping in freshwater fish translocations.
Collapse
Affiliation(s)
- I Adrian-Kalchhauser
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - P E Hirsch
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.,Research Centre for Sustainable Energy and Water Supply, University of Basel, Peter Merian Weg 6, CH-4002, Basel, Switzerland
| | - J Behrmann-Godel
- Limnological Institute, University of Konstanz, Mainaustrasse 252, D-78457, Konstanz, Germany
| | - A N'Guyen
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - S Watzlawczyk
- Zoological Institute of the University of Cologne, Department of General Ecology & Limnology, Ecological Field Station Grietherbusch, D-50923, Cologne, Germany
| | - S Gertzen
- Zoological Institute of the University of Cologne, Department of General Ecology & Limnology, Ecological Field Station Grietherbusch, D-50923, Cologne, Germany
| | - J Borcherding
- Zoological Institute of the University of Cologne, Department of General Ecology & Limnology, Ecological Field Station Grietherbusch, D-50923, Cologne, Germany
| | - P Burkhardt-Holm
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.,Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, Canada
| |
Collapse
|
66
|
Phillips BL, Shine R, Tingley R. The genetic backburn: using rapid evolution to halt invasions. Proc Biol Sci 2016; 283:20153037. [PMID: 26911962 DOI: 10.1098/rspb.2015.3037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The impact of an invasive species depends upon the extent of area across which it ultimately spreads. A powerful strategy for limiting impact, then, is to limit spread, and this can most easily be achieved by managing or reinforcing natural barriers to spread. Using a simulation model, we show that rapid evolutionary increases in dispersal can render permeable an otherwise effective barrier. On the other hand, we also show that, once the barrier is reached, and if it holds, resultant evolutionary decreases in dispersal rapidly make the barrier more effective. Finally, we sketch a strategy--the genetic backburn--in which low-dispersal individuals from the range core are translocated to the nearside of the barrier ahead of the oncoming invasion. We find that the genetic backburn--by preventing invasion front genotypes reaching the barrier, and hastening the evolutionary decrease in dispersal--can make barriers substantially more effective. In our simulations, the genetic backburn never reduced barrier strength, however, the improvement to barrier strength was negligible when there was substantial long-distance dispersal, or when there was no genetic variation for dispersal distance. The improvement in barrier strength also depended on the trade-off between dispersal and competitive ability, with a stronger trade-off conferring greater power to the genetic backburn.
Collapse
Affiliation(s)
- Ben L Phillips
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia College of Marine and Environmental Science, James Cook University, Townsville, Queensland, Australia
| | - Richard Shine
- School of Environmental and Life Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Reid Tingley
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
67
|
Brandvain Y, Wright SI. The Limits of Natural Selection in a Nonequilibrium World. Trends Genet 2016; 32:201-210. [PMID: 26874998 DOI: 10.1016/j.tig.2016.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Evolutionary theory predicts that factors such as a small population size or low recombination rate can limit the action of natural selection. The emerging field of comparative population genomics offers an opportunity to evaluate these hypotheses. However, classical theoretical predictions assume that populations are at demographic equilibrium. This assumption is likely to be violated in the very populations researchers use to evaluate selection's limits: populations that have experienced a recent shift in population size and/or effective recombination rates. Here we highlight theory and data analyses concerning limitations on the action of natural selection in nonequilibrial populations and argue that substantial care is needed to appropriately test whether species and populations show meaningful differences in selection efficacy. A move toward model-based inferences that explicitly incorporate nonequilibrium dynamics provides a promising approach to more accurately contrast selection efficacy across populations and interpret its significance.
Collapse
Affiliation(s)
- Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
68
|
Chuang A, Peterson CR. Expanding population edges: theories, traits, and trade-offs. GLOBAL CHANGE BIOLOGY 2016; 22:494-512. [PMID: 26426311 DOI: 10.1111/gcb.13107] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/13/2015] [Accepted: 09/17/2015] [Indexed: 05/28/2023]
Abstract
Recent patterns of global change have highlighted the importance of understanding the dynamics and mechanisms of species range shifts and expansions. Unique demographic features, spatial processes, and selective pressures can result in the accumulation and evolution of distinctive phenotypic traits at the leading edges of expansions. We review the characteristics of expanding range margins and highlight possible mechanisms for the appearance of phenotypic differences between individuals at the leading edge and core of the range. The development of life history traits that increase dispersal or reproductive ability is predicted by theory and supported with extensive empirical evidence. Many examples of rapid phenotypic change are associated with trade-offs that may influence the persistence of the trait once expansion ends. Accounting for the effects of edge phenotypes and related trade-offs could be critical for predicting the spread of invasive species and population responses to climate change.
Collapse
Affiliation(s)
- Angela Chuang
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Christopher R Peterson
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
69
|
How Obstacles Perturb Population Fronts and Alter Their Genetic Structure. PLoS Comput Biol 2015; 11:e1004615. [PMID: 26696601 PMCID: PMC4690605 DOI: 10.1371/journal.pcbi.1004615] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle's shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call 'geometry-enhanced genetic drift', complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the effects expected from complex environments with many obstacles.
Collapse
|
70
|
Lindenau JDR, Salzano FM, Hurtado AM, Hill KR, Petzl-Erler ML, Tsuneto LT, Hutz MH. Variability of innate immune system genes in Native American populations-relationship with history and epidemiology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:722-8. [PMID: 26667372 DOI: 10.1002/ajpa.22917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/27/2015] [Accepted: 11/23/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The immune system of a host, defending him/her against invading pathogens, has two main subsystems: innate immunity and acquired immunity. There are several evidences showing that Native American populations are immunologically different from non-Native populations. Our aim was to describe the variability of innate immune system genes in Native American populations. MATERIALS AND METHODS We investigated heterozygozities and patterns of population differentiation (FST ) of 14 polymorphisms related to the innate immune response in five Native American populations (Aché, Guarani-Kaiowá, Guarani-Ñandeva, Kaingang, and Xavante) and the results were compared with the three major world population data (YRI, CEU, and CHB) available at the 1,000 genomes database. RESULTS Mean heterozygosities ranged between 0.241 ± 0.057 (Aché) and 0.343 ± 0.033 (Kaingang), but no significant differences were observed (Friedman test, P = 0.197). Mean heterozygosities were also not significantly different when Amerindians were pooled and compared with the 1000 genomes populations (Friedman test, P = 0.506). When the Native American populations were grouped as Amerindians, a significantly higher FST value (0.194) was observed between the Amerindian and African populations. The Ewens-Watterson neutrality test showed that these markers are not under strong selective pressure. DISCUSSION Native American populations present similar levels of heterozygosity as those of other continents, but are different from Africans in the frequency of polymorphisms of innate immune genes. This higher differentiation is probably due to demographic processes that occurred during the out-of-Africa event.
Collapse
Affiliation(s)
- Juliana Dal-Ri Lindenau
- Departamento De Genética, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Francisco Mauro Salzano
- Departamento De Genética, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ana Magdalena Hurtado
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-2402
| | - Kim R Hill
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-2402
| | | | - Luiza Tamie Tsuneto
- Departamento De Análises Clínicas, Universidade Estadual De Maringá, Maringá, PR, Brazil
| | - Mara Helena Hutz
- Departamento De Genética, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
71
|
Julca I, Droby S, Sela N, Marcet-Houben M, Gabaldón T. Contrasting Genomic Diversity in Two Closely Related Postharvest Pathogens: Penicillium digitatum and Penicillium expansum. Genome Biol Evol 2015; 8:218-27. [PMID: 26672008 PMCID: PMC4758248 DOI: 10.1093/gbe/evv252] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Penicillium digitatum and Penicillium expansum are two closely related fungal plant pathogens causing green and blue mold in harvested fruit, respectively. The two species differ in their host specificity, being P. digitatum restricted to citrus fruits and P. expansum able to infect a wide range of fruits after harvest. Although host-specific Penicillium species have been found to have a smaller gene content, it is so far unclear whether these different host specificities impact genome variation at the intraspecific level. Here we assessed genome variation across four P. digitatum and seven P. expansum isolates from geographically distant regions. Our results show very high similarity (average 0.06 SNPs [single nucleotide polymorphism] per kb) between globally distributed isolates of P. digitatum pointing to a recent expansion of a single lineage. This low level of genetic variation found in our samples contrasts with the higher genetic variability observed in the similarly distributed P. expansum isolates (2.44 SNPs per kb). Patterns of polymorphism in P. expansum indicate that recombination exists between genetically diverged strains. Consistent with the existence of sexual recombination and heterothallism, which was unknown for this species, we identified the two alternative mating types in different P. expansum isolates. Patterns of polymorphism in P. digitatum indicate a recent clonal population expansion of a single lineage that has reached worldwide distribution. We suggest that the contrasting patterns of genomic variation between the two species reflect underlying differences in population dynamics related with host specificities and related agricultural practices. It should be noted, however, that this results should be confirmed with a larger sampling of strains, as new strains may broaden the diversity so far found in P. digitatum.
Collapse
Affiliation(s)
- Irene Julca
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Universitat Autònoma De Barcelona, Spain
| | - Samir Droby
- Department of Postharvest Science, ARO, the Volcani Center, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, The Volcani Center, Bet Dagan, Israel
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana De Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
72
|
Cobben M, Verboom J, Opdam P, Hoekstra R, Jochem R, Smulders M. Spatial sorting and range shifts: Consequences for evolutionary potential and genetic signature of a dispersal trait. J Theor Biol 2015; 373:92-9. [DOI: 10.1016/j.jtbi.2015.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 01/19/2023]
|
73
|
Peischl S, Excoffier L. Expansion load: recessive mutations and the role of standing genetic variation. Mol Ecol 2015; 24:2084-94. [DOI: 10.1111/mec.13154] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Stephan Peischl
- Institute of Ecology and Evolution; University of Berne; Berne 3012 Switzerland
- Swiss Institute of Bioinformatics; Lausanne 1015 Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution; University of Berne; Berne 3012 Switzerland
- Swiss Institute of Bioinformatics; Lausanne 1015 Switzerland
| |
Collapse
|
74
|
Mitochondrial DNA genetic diversity and LCT-13910 and deltaF508 CFTR alleles typing in the medieval sample from Poland. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2015; 66:229-50. [PMID: 25896719 DOI: 10.1016/j.jchb.2014.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 11/10/2014] [Indexed: 11/22/2022]
Abstract
We attempted to confirm the resemblance of a local medieval population and to reconstruct their contribution to the formation of the modern Polish population at the DNA level. The HVR I mtDNA sequence and two nuclear alleles, LCT-13910C/T SNP and deltaF508 CFTR, were chosen as markers since the distribution of selected nuclear alleles varies among ethnic groups. A total of 47 specimens were selected from a medieval cemetery in Cedynia (located in the western Polish lowland). Regarding the HVR I profile, the analyzed population differed from the present-day population (P = 0.045, F(st) = 0.0103), in contrast to lactase persistence (LP) based on the LCT-13910T allele, thus indicating the lack of notable frequency changes of this allele during the last millennium (P = 0.141). The sequence of the HVR I mtDNA fragment allowed to identify six major haplogroups including H, U5, T, K, and HV0 within the medieval population of Cedynia which are common in today's central Europe. An analysis of haplogroup frequency and its comparison with modern European populations shows that the studied medieval population is more closely related to Finno-Ugric populations than to the present Polish population. Identification of less common haplogroups, i.e., Z and U2, both atypical of the modern Polish population and of Asian origin, provides evidence for some kind of connections between the studied and foreign populations. Furthermore, a comparison of the available aDNA sequences from medieval Europe suggests that populations differed from one another and a number of data from other locations are required to find out more about the features of the medieval gene pool profile.
Collapse
|
75
|
|
76
|
Osnas EE, Hurtado PJ, Dobson AP. Evolution of pathogen virulence across space during an epidemic. Am Nat 2015; 185:332-42. [PMID: 25674688 DOI: 10.1086/679734] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We explore pathogen virulence evolution during the spatial expansion of an infectious disease epidemic in the presence of a novel host movement trade-off, using a simple, spatially explicit mathematical model. This work is motivated by empirical observations of the Mycoplasma gallisepticum invasion into North American house finch (Haemorhous mexicanus) populations; however, our results likely have important applications to other emerging infectious diseases in mobile hosts. We assume that infection reduces host movement and survival and that across pathogen strains the severity of these reductions increases with pathogen infectiousness. Assuming these trade-offs between pathogen virulence (host mortality), pathogen transmission, and host movement, we find that pathogen virulence levels near the epidemic front (that maximize wave speed) are lower than those that have a short-term growth rate advantage or that ultimately prevail (i.e., are evolutionarily stable) near the epicenter and where infection becomes endemic (i.e., that maximize the pathogen basic reproductive ratio). We predict that, under these trade-offs, less virulent pathogen strains will dominate the periphery of an epidemic and that more virulent strains will increase in frequency after invasion where disease is endemic. These results have important implications for observing and interpreting spatiotemporal epidemic data and may help explain transient virulence dynamics of emerging infectious diseases.
Collapse
Affiliation(s)
- Erik E Osnas
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544
| | | | | |
Collapse
|
77
|
Abstract
When a neutral mutation arises in an invading population, it quickly either dies out or ‘surfs’, i.e. it comes to occupy almost all the habitat available at its time of origin. Beneficial mutations can also surf, as can deleterious mutations over finite time spans. We develop descriptive statistical models that quantify the relationship between the probability that a mutation will surf and demographic parameters for a cellular automaton model of surfing. We also provide a simple analytic model that performs well at predicting the probability of surfing for neutral and beneficial mutations in one dimension. The results suggest that factors – possibly including even abiotic factors – that promote invasion success may also increase the probability of surfing and associated adaptive genetic change, conditioned on such success.
Collapse
Affiliation(s)
- Judith R Miller
- Department of Mathematics, Georgetown University Washington, DC, USA
| |
Collapse
|
78
|
Antoniazza S, Kanitz R, Neuenschwander S, Burri R, Gaigher A, Roulin A, Goudet J. Natural selection in a postglacial range expansion: the case of the colour cline in the European barn owl. Mol Ecol 2014; 23:5508-23. [PMID: 25294501 DOI: 10.1111/mec.12957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Gradients of variation--or clines--have always intrigued biologists. Classically, they have been interpreted as the outcomes of antagonistic interactions between selection and gene flow. Alternatively, clines may also establish neutrally with isolation by distance (IBD) or secondary contact between previously isolated populations. The relative importance of natural selection and these two neutral processes in the establishment of clinal variation can be tested by comparing genetic differentiation at neutral genetic markers and at the studied trait. A third neutral process, surfing of a newly arisen mutation during the colonization of a new habitat, is more difficult to test. Here, we designed a spatially explicit approximate Bayesian computation (ABC) simulation framework to evaluate whether the strong cline in the genetically based reddish coloration observed in the European barn owl (Tyto alba) arose as a by-product of a range expansion or whether selection has to be invoked to explain this colour cline, for which we have previously ruled out the actions of IBD or secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 locations genotyped at 22 microsatellites loci, we first determined how barn owls colonized Europe after the last glaciation. Using these results in new simulations on the evolution of the colour phenotype, and assuming various genetic architectures for the colour trait, we demonstrate that the observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a powerful method to disentangle the respective roles of selection and drift in range expansions, we conclude that the formation of the colour cline observed in the barn owl must be due to natural selection.
Collapse
Affiliation(s)
- Sylvain Antoniazza
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
79
|
Goodsman DW, Cooke B, Coltman DW, Lewis MA. The genetic signature of rapid range expansions: How dispersal, growth and invasion speed impact heterozygosity and allele surfing. Theor Popul Biol 2014; 98:1-10. [PMID: 25201435 DOI: 10.1016/j.tpb.2014.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022]
Abstract
As researchers collect spatiotemporal population and genetic data in tandem, models that connect demography and dispersal to genetics are increasingly relevant. The dominant spatiotemporal model of invasion genetics is the stepping-stone model which represents a gradual range expansion in which individuals jump to uncolonized locations one step at a time. However, many range expansions occur quickly as individuals disperse far from currently colonized regions. For these types of expansion, stepping-stone models are inappropriate. To more accurately reflect wider dispersal in many organisms, we created kernel-based models of invasion genetics based on integrodifference equations. Classic theory relating to integrodifference equations suggests that the speed of range expansions is a function of population growth and dispersal. In our simulations, populations that expanded at the same speed but with spread rates driven by dispersal retained more heterozygosity along axes of expansion than range expansions with rates of spread that were driven primarily by population growth. To investigate surfing we introduced mutant alleles in wave fronts of simulated range expansions. In our models based on random mating, surfing alleles remained at relatively low frequencies and surfed less often compared to previous results based on stepping-stone simulations with asexual reproduction.
Collapse
Affiliation(s)
- Devin W Goodsman
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2E9.
| | - Barry Cooke
- Canadian Forest Service, Northern Forestry Centre, 5320 122 Street Northwest, Edmonton, Alberta, Canada T6H 3S5.
| | - David W Coltman
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2E9.
| | - Mark A Lewis
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2E9; Mathematical and Statistical Sciences, 632 CAB, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
| |
Collapse
|
80
|
Impact of range expansions on current human genomic diversity. Curr Opin Genet Dev 2014; 29:22-30. [PMID: 25156518 DOI: 10.1016/j.gde.2014.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 12/19/2022]
Abstract
The patterns of population genetic diversity depend to a large extent on past demographic history. Most human populations are known to have gone recently through a series of range expansions within and out of Africa, but these spatial expansions are rarely taken into account when interpreting observed genomic diversity, possibly because they are difficult to model. Here we review available evidence in favour of range expansions out of Africa, and we discuss several of their consequences on neutral and selected diversity, including some recent observations on an excess of rare neutral and selected variants in large samples. We further show that in spatially subdivided populations, the sampling strategy can severely impact the resulting genetic diversity and be confounded by past demography. We conclude that ignoring the spatial structure of human population can lead to some misinterpretations of extant genetic diversity.
Collapse
|
81
|
Distribution of nuclear mitochondrial pseudogenes in three pollinator fig wasps associated with Ficus pumila. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2014. [DOI: 10.1016/j.actao.2013.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
82
|
Hoban S. An overview of the utility of population simulation software in molecular ecology. Mol Ecol 2014; 23:2383-401. [DOI: 10.1111/mec.12741] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/22/2014] [Accepted: 03/26/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Sean Hoban
- National Institute for Mathematical and Biological Synthesis; University of Tennessee; 1122 Volunteer Blvd. Suite 110A Knoxville TN 37996-3410 USA
| |
Collapse
|
83
|
Brown AMV, Huynh LY, Bolender CM, Nelson KG, McCutcheon JP. Population genomics of a symbiont in the early stages of a pest invasion. Mol Ecol 2014; 23:1516-1530. [PMID: 23841878 DOI: 10.1111/mec.12366] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/06/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
Invasive species often depend on microbial symbionts, but few studies have examined the evolutionary dynamics of symbionts during the early stages of an invasion. The insect Megacopta cribraria and its bacterial nutritional symbiont Candidatus Ishikawaella capsulata invaded the southeastern US in 2009. While M. cribraria was initially discovered on wild kudzu plants, it was found as a pest on soybeans within 1 year of infestation. Because prior research suggests Ishikawaella confers the pest status--that is, the ability to thrive on soybeans--in some Megacopta species, we performed a genomic study on Ishikawaella from US. Megacopta cribraria populations to understand the role of the symbiont in driving host plant preferences. We included Ishikawaella samples collected in the first days of the invasion in 2009 and from 23 locations across the insect's 2011 US range. The 0.75 Mb symbiont genome revealed only 47 fixed differences from the pest-conferring Ishikawaella in Japan, with only one amino acid change in a nutrition-provisioning gene. This similarity, along with a lack of fixed substitutions in the US symbiont population, indicates that Ishikawella likely arrived in the US capable of being a soybean pest. Analyses of allele frequency changes between 2009 and 2011 uncover signatures of both positive and negative selection and suggest that symbionts on soybeans and kudzu experience differential selection for genes related to nutrient provisioning. Our data reveal the evolutionary trajectory of an important insect-bacteria symbiosis in the early stages of an invasion, highlighting the role microbial symbionts may play in the spread of invasive species.
Collapse
Affiliation(s)
- Amanda M V Brown
- Division of Biological Sciences, University of Montana, 32 Campus Drive, HS104, Missoula, MT, 59812, USA
| | - Lynn Y Huynh
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Caitlin M Bolender
- Division of Biological Sciences, University of Montana, 32 Campus Drive, HS104, Missoula, MT, 59812, USA
| | - Kelly G Nelson
- Division of Biological Sciences, University of Montana, 32 Campus Drive, HS104, Missoula, MT, 59812, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, 32 Campus Drive, HS104, Missoula, MT, 59812, USA
| |
Collapse
|
84
|
The deleterious mutation load is insensitive to recent population history. Nat Genet 2014; 46:220-4. [PMID: 24509481 PMCID: PMC3953611 DOI: 10.1038/ng.2896] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/16/2014] [Indexed: 01/07/2023]
Abstract
Human populations have undergone dramatic changes in population size in the past 100,000 years, including recent rapid growth. How these demographic events have affected the burden of deleterious mutations in individuals and the frequencies of disease mutations in populations remains unclear. We use population genetic models to show that recent human demography has likely had little impact on the average burden of deleterious mutations. This prediction is supported by two exome sequence datasets showing that individuals of west African and European ancestry carry very similar burdens of damaging mutations. We further show that for many diseases, rare alleles are unlikely to contribute a large fraction of the heritable variation, and therefore the impact of recent growth is likely to be modest. However, for those diseases that have a direct impact on fitness, strongly deleterious rare mutations likely do play an important role, and recent growth will have increased their impact.
Collapse
|
85
|
Polimanti R, Iorio A, Piacentini S, Manfellotto D, Fuciarelli M. Human pharmacogenomic variation of antihypertensive drugs: from population genetics to personalized medicine. Pharmacogenomics 2014; 15:157-67. [DOI: 10.2217/pgs.13.231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: To investigate the human pharmacogenetic variation related to antihypertensive drugs, providing a survey of functional interpopulation differences in hypertension pharmacogenes. Materials & methods: The study was divided into two stages. In the first stage, we analyzed 1249 variants located in 57 hypertension pharmacogenes. This first-stage analysis confirmed that geographic origin strongly affects hypertension pharmacogenomic variation and that 31 pharmacogenes are geographically differentiated. In the second stage, we focused our attention on the ethnic-differentiated pharmacogenes, investigating 55,521 genetic variants. In silico analyses were performed to predict the effect of genetic variation. Results: Our analyses indicated functional interpopulation differences, suggesting insight into the mechanisms of antihypertensive drug response. Moreover, our data suggested that rare variants mainly determine the functionality of genes related to antihypertensive drugs. Conclusion: Our study provided important knowledge about the genetics of the antihypertensive drug response, suggesting that next-generation sequencing technologies may develop reliable pharmacogenetic tests for antihypertensive drugs. Original submitted 19 September 2013; Revision submitted 14 November 2013
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome, Italy
| | - Andrea Iorio
- Clinical Pathophysiology Center, AFaR – “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Sara Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome, Italy
| | - Dario Manfellotto
- Clinical Pathophysiology Center, AFaR – “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Maria Fuciarelli
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome, Italy
| |
Collapse
|
86
|
Berthouly-Salazar C, Hui C, Blackburn TM, Gaboriaud C, van Rensburg BJ, van Vuuren BJ, Le Roux JJ. Long-distance dispersal maximizes evolutionary potential during rapid geographic range expansion. Mol Ecol 2013; 22:5793-804. [DOI: 10.1111/mec.12538] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Cécile Berthouly-Salazar
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; Private Bag X1 Stellenbosch 7602 South Africa
| | - Cang Hui
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; Private Bag X1 Stellenbosch 7602 South Africa
| | - Tim M. Blackburn
- Institute of Zoology; Zoological Society of London; Regent's Park London NW1 4RY UK
- Distinguished Scientist Fellowship Program; King Saud University; Riyadh 1145 Saudi Arabia
| | - Coline Gaboriaud
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; Private Bag X1 Stellenbosch 7602 South Africa
| | - Berndt J. van Rensburg
- Department of Zoology and Entomology; Centre for Invasion Biology; University of Pretoria; Private Bag X20 Hatfield 0028 South Africa
| | - Bettine Jansen van Vuuren
- Centre for Invasion Biology; Department of Zoology; University of Johannesburg; P.O. Box 524 Auckland Park 2006 South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; Private Bag X1 Stellenbosch 7602 South Africa
| |
Collapse
|
87
|
Peischl S, Dupanloup I, Kirkpatrick M, Excoffier L. On the accumulation of deleterious mutations during range expansions. Mol Ecol 2013; 22:5972-82. [PMID: 24102784 DOI: 10.1111/mec.12524] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022]
Abstract
We investigate the effect of spatial range expansions on the evolution of fitness when beneficial and deleterious mutations cosegregate. We perform individual-based simulations of 1D and 2D range expansions and complement them with analytical approximations for the evolution of mean fitness at the edge of the expansion. We find that deleterious mutations accumulate steadily on the wave front during range expansions, thus creating an expansion load. Reduced fitness due to the expansion load is not restricted to the wave front, but occurs over a large proportion of newly colonized habitats. The expansion load can persist and represent a major fraction of the total mutation load for thousands of generations after the expansion. The phenomenon of expansion load may explain growing evidence that populations that have recently expanded, including humans, show an excess of deleterious mutations. To test the predictions of our model, we analyse functional genetic diversity in humans and find patterns that are consistent with our model.
Collapse
Affiliation(s)
- S Peischl
- Institute of Ecology and Evolution, University of Berne, 3012, Berne, Switzerland; Section of Integrative Biology, University of Texas, Austin, TX, 78712, USA; Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | | | | | | |
Collapse
|
88
|
Kubisch A, Holt RD, Poethke HJ, Fronhofer EA. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00706.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
89
|
Bocedi G, Atkins KE, Liao J, Henry RC, Travis JMJ, Hellmann JJ. Effects of local adaptation and interspecific competition on species' responses to climate change. Ann N Y Acad Sci 2013; 1297:83-97. [PMID: 23905876 DOI: 10.1111/nyas.12211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Local adaptation and species interactions have been shown to affect geographic ranges; therefore, we need models of climate impact that include both factors. To identify possible dynamics of species when including these factors, we ran simulations of two competing species using an individual-based, coupled map-lattice model using a linear climatic gradient that varies across latitude and is warmed over time. Reproductive success is governed by an individual's adaptation to local climate as well as its location relative to global constraints. In exploratory experiments varying the strength of adaptation and competition, competition reduces genetic diversity and slows range change, although the two species can coexist in the absence of climate change and shift in the absence of competitors. We also found that one species can drive the other to extinction, sometimes long after climate change ends. Weak selection on local adaptation and poor dispersal ability also caused surfing of cooler-adapted phenotypes from the expanding margin backwards, causing loss of warmer-adapted phenotypes. Finally, geographic ranges can become disjointed, losing centrally-adapted genotypes. These initial results suggest that the interplay between local adaptation and interspecific competition can significantly influence species' responses to climate change, in a way that demands future research.
Collapse
Affiliation(s)
- Greta Bocedi
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
Dispersal biology at an invasion front differs from that of populations within the range core, because novel evolutionary and ecological processes come into play in the nonequilibrium conditions at expanding range edges. In a world where species' range limits are changing rapidly, we need to understand how individuals disperse at an invasion front. We analyzed an extensive dataset from radio-tracking invasive cane toads (Rhinella marina) over the first 8 y since they arrived at a site in tropical Australia. Movement patterns of toads in the invasion vanguard differed from those of individuals in the same area postcolonization. Our model discriminated encamped versus dispersive phases within each toad's movements and demonstrated that pioneer toads spent longer periods in dispersive mode and displayed longer, more directed movements while they were in dispersive mode. These analyses predict that overall displacement per year is more than twice as far for toads at the invasion front compared with those tracked a few years later at the same site. Studies on established populations (or even those a few years postestablishment) thus may massively underestimate dispersal rates at the leading edge of an expanding population. This, in turn, will cause us to underpredict the rates at which invasive organisms move into new territory and at which native taxa can expand into newly available habitat under climate change.
Collapse
|
91
|
Piacentini S, Polimanti R, De Angelis F, Iorio A, Fuciarelli M. Phenotype versus Genotype Methods for Copy Number Variant Analysis of Glutathione S-Transferases M1. Ann Hum Genet 2013; 77:409-15. [DOI: 10.1111/ahg.12025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Sara Piacentini
- Department of Biology; University of Rome “Tor Vergata”; Rome Italy
| | - Renato Polimanti
- Department of Biology; University of Rome “Tor Vergata”; Rome Italy
| | | | - Andrea Iorio
- Clinical Pathophysiology Center; AFaR-“San Giovanni Calibita” Fatebenefratelli Hospital; Rome Italy
| | - Maria Fuciarelli
- Department of Biology; University of Rome “Tor Vergata”; Rome Italy
| |
Collapse
|
92
|
Polimanti R, Piacentini S, Manfellotto D, Fuciarelli M. Human genetic variation of CYP450 superfamily: analysis of functional diversity in worldwide populations. Pharmacogenomics 2013; 13:1951-60. [PMID: 23215887 DOI: 10.2217/pgs.12.163] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIM The present study aimed to investigate the human genetic diversity of the CYP450 superfamily in order to identify functional interethnic differences and analyze the role of CYP450 enzymes in human adaptation. MATERIALS & METHODS A computational analysis of genetic and functional differences of the 57 CYP450 genes was performed using the Human Genome Diversity Project and HapMap data; comprising approximately 1694 individuals belonging to 62 human populations. RESULTS Twenty-six CYP450 SNPs with F-statistics significantly different than the general distribution were identified. Some showed high differentiation among human populations, suggesting that functional interethnic differences may be present. Indeed, some of these are significantly associated with drug response or disease risk. Furthermore, our data highlighted that TBXAS1 and genes in CYP3A cluster may have a role in some processes of human adaptation. CONCLUSION Our study provided an analysis of genetic diversity of CYP450 superfamily, identifying functional differences among ethnic groups and their related clinical phenotypes.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Biology, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | | | | | | |
Collapse
|
93
|
White TA, Perkins SE, Heckel G, Searle JB. Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol 2013; 22:2971-85. [PMID: 23701376 DOI: 10.1111/mec.12343] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/03/2013] [Indexed: 12/17/2022]
Abstract
Range expansions are extremely common, but have only recently begun to attract attention in terms of their genetic consequences. As populations expand, demes at the wave front experience strong genetic drift, which is expected to reduce genetic diversity and potentially cause 'allele surfing', where alleles may become fixed over a wide geographical area even if their effects are deleterious. Previous simulation models show that range expansions can generate very strong selective gradients on dispersal, reproduction, competition and immunity. To investigate the effects of range expansion on genetic diversity and adaptation, we studied the population genomics of the bank vole (Myodes glareolus) in Ireland. The bank vole was likely introduced in the late 1920s and is expanding its range at a rate of ~2.5 km/year. Using genotyping-by-sequencing, we genotyped 281 bank voles at 5979 SNP loci. Fourteen sample sites were arranged in three transects running from the introduction site to the wave front of the expansion. We found significant declines in genetic diversity along all three transects. However, there was no evidence that sites at the wave front had accumulated more deleterious mutations. We looked for outlier loci with strong correlations between allele frequency and distance from the introduction site, where the direction of correlation was the same in all three transects. Amongst these outliers, we found significant enrichment for genic SNPs, suggesting the action of selection. Candidates for selection included several genes with immunological functions and several genes that could influence behaviour.
Collapse
Affiliation(s)
- Thomas A White
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, Ithaca, NY 14853-2701, USA.
| | | | | | | |
Collapse
|
94
|
The fate of cooperation during range expansions. PLoS Comput Biol 2013; 9:e1002994. [PMID: 23555227 PMCID: PMC3610630 DOI: 10.1371/journal.pcbi.1002994] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/04/2013] [Indexed: 01/08/2023] Open
Abstract
Species expand their geographical ranges following an environmental change, long range dispersal, or a new adaptation. Range expansions not only bring an ecological change, but also affect the evolution of the expanding species. Although the dynamics of deleterious, neutral, and beneficial mutations have been extensively studied in expanding populations, the fate of alleles under frequency-dependent selection remains largely unexplored. The dynamics of cooperative alleles are particularly interesting because selection can be both frequency and density dependent, resulting in a coupling between population and evolutionary dynamics. This coupling leads to an increase in the frequency of cooperators at the expansion front, and, under certain conditions, the entire front can be taken over by cooperators. Thus, a mixed population wave can split into an expansion wave of only cooperators followed by an invasion wave of defectors. After the splitting, cooperators increase in abundance by expanding into new territories faster than they are invaded by defectors. Our results not only provide an explanation for the maintenance of cooperation but also elucidate the effect of eco-evolutionary feedback on the maintenance of genetic diversity during range expansions. When cooperators do not split away, we find that defectors can spread much faster with cooperators than they would be able to on their own or by invading cooperators. This enhanced rate of expansion in mixed waves could counterbalance the loss of genetic diversity due to the founder effect for mutations under frequency-dependent selection. Although we focus on cooperator-defector interactions, our analysis could also be relevant for other systems described by reaction-diffusion equations. Cooperation is beneficial for the species as a whole, but, at the level of an individual, defection pays off. Natural selection is then expected to favor defectors and eliminate cooperation. This prediction is in stark contrast with the abundance of cooperation at all levels of biological systems: from bacterial biofilms to ecosystems and human societies. Several explanations have been proposed to resolve this paradox, including direct reciprocity and group selection. Our work, however, builds upon an observation that natural selection on cooperators might depend both on their relative frequency in the population and on the population density. We find that this feedback between the population and evolutionary dynamics can substantially increase the frequency of cooperators at the front of an expanding population, and can even lead to a splitting of cooperators from defectors. After splitting, only cooperators colonize new territories, while defectors slowly invade them from behind. Since range expansions are very common in nature, our work provides a new explanation of the maintenance of cooperation. More generally, the phenomena we describe could be of interest in other situations when coexisting entities spread in space, be it species in ecology or diffusing and reacting molecules in chemical kinetics.
Collapse
|
95
|
Nullmeier J, Hallatschek O. The coalescent in boundary-limited range expansions. Evolution 2013; 67:1307-20. [PMID: 23617910 DOI: 10.1111/evo.12037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/15/2012] [Indexed: 11/30/2022]
Abstract
Habitat ranges of most species shift over time, for instance due to climate change, human intervention, or adaptation. These demographic changes often have drastic population genetic effects, such as a stochastic resampling of the gene pool through the "surfing" phenomenon. Most models assume that the speed of range expansions is only limited by the dispersal ability of the colonizing species and its reproductive potential. While such models of "phenotype-limited" expansions apply to species invasions, it is clear that many range expansions are limited rather by the slow motion of habitat boundaries, as driven for instance by global warming. Here, we develop a coalescent model to study the genetic impact of such "boundary-limited" range expansions. Our simulations and analysis show that the resulting loss of genetic diversity is markedly lower than in species invasions if large carrying capacities can be maintained up to the habitat frontier. Counterintuitively, we find that the total loss of diversity does not depend on the speed of the range expansion: Slower expansions have a smaller rate of loss, but also last longer. Boundary-limited range expansions exhibit a characteristic genetic footprint and should therefore be distinguished from range expansions limited only by intrinsic characteristics of the species.
Collapse
Affiliation(s)
- Jens Nullmeier
- Biophysics and Evolutionary Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, 37073 Göttingen, Germany
| | | |
Collapse
|
96
|
Affiliation(s)
- Thomas A. White
- Department of Ecology and Evolutionary Biology; Cornell University; Corson Hall Ithaca New York 14853-2701 USA
- CMPG Lab; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 CH-3012 Bern Switzerland
| | - Sarah E. Perkins
- Cardiff School of Biosciences; Biomedical Sciences Building Museum Avenue Cardiff CF10 3AX UK
| |
Collapse
|
97
|
Bénichou O, Calvez V, Meunier N, Voituriez R. Front acceleration by dynamic selection in Fisher population waves. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041908. [PMID: 23214616 DOI: 10.1103/physreve.86.041908] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/15/2012] [Indexed: 06/01/2023]
Abstract
We introduce a minimal model of population range expansion in which the phenotypes of individuals present no selective advantage and differ only in their diffusion rate. We show that such neutral phenotypic variability (i.e., that does not modify the growth rate) alone can yield phenotype segregation at the front edge, even in absence of genetic noise, and significantly impact the dynamical properties of the expansion wave. We present an exact asymptotic traveling wave solution and show analytically that phenotype segregation accelerates the front propagation. The results are compatible with field observations such as invasions of cane toads in Australia or bush crickets in Britain.
Collapse
Affiliation(s)
- O Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS/UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| | | | | | | |
Collapse
|
98
|
Abstract
In the last few years, two paradigms underlying human evolution have crumbled. Modern humans have not totally replaced previous hominins without any admixture, and the expected signatures of adaptations to new environments are surprisingly lacking at the genomic level. Here we review current evidence about archaic admixture and lack of strong selective sweeps in humans. We underline the need to properly model differential admixture in various populations to correctly reconstruct past demography. We also stress the importance of taking into account the spatial dimension of human evolution, which proceeded by a series of range expansions that could have promoted both the introgression of archaic genes and background selection.
Collapse
Affiliation(s)
- Isabel Alves
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Population and Conservation Genetics Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Anna Šrámková Hanulová
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Matthieu Foll
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laurent Excoffier
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
99
|
Dudley JT, Kim Y, Liu L, Markov GJ, Gerold K, Chen R, Butte AJ, Kumar S. Human genomic disease variants: a neutral evolutionary explanation. Genome Res 2012; 22:1383-94. [PMID: 22665443 PMCID: PMC3409252 DOI: 10.1101/gr.133702.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.
Collapse
Affiliation(s)
- Joel T Dudley
- Program in Biomedical Informatics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Allee effect promotes diversity in traveling waves of colonization. Proc Natl Acad Sci U S A 2012; 109:8828-33. [PMID: 22611189 DOI: 10.1073/pnas.1201695109] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most mathematical studies on expanding populations have focused on the rate of range expansion of a population. However, the genetic consequences of population expansion remain an understudied body of theory. Describing an expanding population as a traveling wave solution derived from a classical reaction-diffusion model, we analyze the spatio-temporal evolution of its genetic structure. We show that the presence of an Allee effect (i.e., a lower per capita growth rate at low densities) drastically modifies genetic diversity, both in the colonization front and behind it. With an Allee effect (i.e., pushed colonization waves), all of the genetic diversity of a population is conserved in the colonization front. In the absence of an Allee effect (i.e., pulled waves), only the furthest forward members of the initial population persist in the colonization front, indicating a strong erosion of the diversity in this population. These results counteract commonly held notions that the Allee effect generally has adverse consequences. Our study contributes new knowledge to the surfing phenomenon in continuous models without random genetic drift. It also provides insight into the dynamics of traveling wave solutions and leads to a new interpretation of the mathematical notions of pulled and pushed waves.
Collapse
|