51
|
Marques JP, Sotelo G, Larsson T, Johannesson K, Panova M, Faria R. Comparative mitogenomic analysis of three species of periwinkles: Littorina fabalis, L. obtusata and L. saxatilis. Mar Genomics 2016; 32:41-47. [PMID: 27867038 DOI: 10.1016/j.margen.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/16/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Abstract
The flat periwinkles, Littorina fabalis and L. obtusata, offer an interesting system for local adaptation and ecological speciation studies. In order to provide genomic resources for these species, we sequenced their mitogenomes together with that of the rough periwinkle L. saxatilis by means of next-generation sequencing technologies. The three mitogenomes present the typical repertoire of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a putative control region. Although the latter could not be fully recovered in flat periwinkles using short-reads due to a highly repetitive fragment, in L. saxatilis this problem was overcome with additional long-reads and we were able to assemble the complete mitogenome. Both gene order and nucleotide composition are similar between the three species as well as compared to other Littorinimorpha. A large variance in divergence was observed across mitochondrial regions, with six- to ten-fold difference between the highest and the lowest divergence rates. Based on nucleotide changes on the whole molecule and assuming a molecular clock, L. fabalis and L. obtusata started to diverge around 0.8 Mya (0.4-1.1 Mya). The evolution of the mitochondrial protein-coding genes in the three Littorina species appears mainly influenced by purifying selection as revealed by phylogenetic tests based on dN/dS ratios that did not detect any evidence for positive selection, although some caution is required given the limited power of the dataset and the implemented approaches.
Collapse
Affiliation(s)
- João P Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - Graciela Sotelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - Tomas Larsson
- University of Gothenburg, Department of Marine Sciences, Box 460, SE -405 30 Gothenburg, Sweden.
| | - Kerstin Johannesson
- University of Gothenburg, Department of Marine Sciences, Tjärnö, SE -452 96 Strömstad, Sweden.
| | - Marina Panova
- University of Gothenburg, Department of Marine Sciences, Tjärnö, SE -452 96 Strömstad, Sweden.
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; IBE, Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Pompeu Fabra University, Doctor Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
52
|
Wang Y, Shen Y, Feng C, Zhao K, Song Z, Zhang Y, Yang L, He S. Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude. Sci Rep 2016; 6:29690. [PMID: 27417983 PMCID: PMC4945904 DOI: 10.1038/srep29690] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/23/2016] [Indexed: 01/11/2023] Open
Abstract
Tibetan loaches are the largest group of Tibetan fishes and are well adapted to the Tibetan Plateau. To investigate the origin of Tibetan loaches and their adaptations to the Tibetan Plateau, we determined 32 complete mitochondrial genomes that included 29 Tibetan loach species, two Barbatula species and Schistura longus. By combining these newly determined sequences with other previously published mitochondrial genomes, we assembled a large mitogenomic data set (11,433 bp) of 96 species in the superfamily Cobitoidea, to investigate the phylogenetic status of the genus Triplophysa. The resulting phylogeny strongly supported that the genus Triplophysa forms a monophyletic group within Nemacheilidae. Our molecular dating time suggests that the lineage leading to the Tibetan loaches and other loaches diverged approximately 23.5 Ma, which falls within the period of recent major uplifts of the Tibetan Plateau in the Early Miocene. Selection analyses revealed that the mitochondrial protein-coding genes of Tibetan loaches have larger ratios of nonsynonymous to synonymous substitutions than do those of non-Tibetan loaches, indicating that Tibetan loaches accumulated more nonsynonymous mutations than non-Tibetan loaches and exhibited rapid evolution. Two positively selected sites were identified in the ATP8 and ND1 genes.
Collapse
Affiliation(s)
- Ying Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.,University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanjun Shen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.,University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenguang Feng
- University of the Chinese Academy of Sciences, Beijing 100049, PR China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Zhaobin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yanping Zhang
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics Breeding, Gansu Fishers Research Institute, Lanzhou 730030, PR China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
53
|
Jacobsen MW, da Fonseca RR, Bernatchez L, Hansen MM. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.). Mol Phylogenet Evol 2015; 95:161-70. [PMID: 26654959 DOI: 10.1016/j.ympev.2015.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
Several studies have recently reported evidence for positive selection acting on the mitochondrial genome (mitogenome), emphasizing its potential role in adaptive divergence and speciation. In this study we searched 107 full mitogenomes of recently diverged species and lineages of whitefish (Coregonus ssp.) for signals of positive selection. These salmonids show several distinct morphological and ecological differences that may be associated with energetics and therefore potentially positive selection at the mitogenome level. We found that purifying selection and genetic drift were the predominant evolutionary forces acting on the analyzed mitogenomes. However, the NADH dehydrogenase 2 gene (ND2) showed a highly elevated dN/dS ratio compared to the other mitochondrial genes, which was significantly higher in whitefish compared to other salmonids. We therefore further examined nonsynonymous evolution in ND2 by (i) mapping amino acid changes to a protein model structure which showed that they were located away from key functional residues of the protein, (ii) locating them in the sequences of other species of fish (Salmonidae, Anguillidae, Scombridae and Percidae) only to find pronounced overlap of nonsynonymous regions. We thus conclude that relaxed purifying selection is driving the evolution of ND2 by affecting mostly regions that have lower functional relevance.
Collapse
Affiliation(s)
- Magnus W Jacobsen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark.
| | - Rute R da Fonseca
- Department of Bioinformatics and RNA Biology, University of Copenhagen, Ole Maaløesvej 5, 2200 København N, Denmark
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine, Université Laval, Québec, Québec, Canada G1V 0A6
| | - Michael M Hansen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| |
Collapse
|
54
|
Comparative Mitogenomics of the Genus Odontobutis (Perciformes: Gobioidei: Odontobutidae) Revealed Conserved Gene Rearrangement and High Sequence Variations. Int J Mol Sci 2015; 16:25031-49. [PMID: 26492246 PMCID: PMC4632788 DOI: 10.3390/ijms161025031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
To understand the molecular evolution of mitochondrial genomes (mitogenomes) in the genus Odontobutis, the mitogenome of Odontobutis yaluensis was sequenced and compared with those of another four Odontobutis species. Our results displayed similar mitogenome features among species in genome organization, base composition, codon usage, and gene rearrangement. The identical gene rearrangement of trnS-trnL-trnH tRNA cluster observed in mitogenomes of these five closely related freshwater sleepers suggests that this unique gene order is conserved within Odontobutis. Additionally, the present gene order and the positions of associated intergenic spacers of these Odontobutis mitogenomes indicate that this unusual gene rearrangement results from tandem duplication and random loss of large-scale gene regions. Moreover, these mitogenomes exhibit a high level of sequence variation, mainly due to the differences of corresponding intergenic sequences in gene rearrangement regions and the heterogeneity of tandem repeats in the control regions. Phylogenetic analyses support Odontobutis species with shared gene rearrangement forming a monophyletic group, and the interspecific phylogenetic relationships are associated with structural differences among their mitogenomes. The present study contributes to understanding the evolutionary patterns of Odontobutidae species.
Collapse
|
55
|
Luo YJ, Satoh N, Endo K. Mitochondrial gene order variation in the brachiopod Lingula anatina and its implications for mitochondrial evolution in lophotrochozoans. Mar Genomics 2015; 24 Pt 1:31-40. [PMID: 26342990 DOI: 10.1016/j.margen.2015.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 11/18/2022]
Abstract
Vertebrate mitochondrial (mt) genomes display highly conserved gene order and relatively low evolutionary rates. However, these features are variable in marine invertebrates. Here we present the mt genome of the lingulid brachiopod, Lingula anatina, from Amami Island, Japan, as part of the nuclear genome project. We obtain ~2000-fold coverage of the 17.9-kb mt genome using Illumina sequencing, and we identify hypervariable regions within the same individual. Transcriptome analyses show that mt transcripts are polycistronic and expressed differentially. Unexpectedly, we find that the mt gene order of Amami Lingula is completely shuffled compared to that of a specimen from Yanagawa, suggesting that there may be cryptic species. Using breakpoint distance analyses with 101 metazoan mt genomes, we show that the evolutionary history of mt gene order among lophotrochozoans is unique. Analyses of non-synonymous substitution rates reveal that mt protein-coding genes of Lingula have experienced rapid evolution comparable to that expected for interspecific comparisons. Whole genome phylogenetic analyses suggest that mt genomes have limited value for inferring the phylogenetic positions of lophotrochozoans because of their high evolutionary rates in brachiopods and bivalves.
Collapse
Affiliation(s)
- Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
56
|
Strohm JHT, Gwiazdowski RA, Hanner R. Fast fish face fewer mitochondrial mutations: Patterns of dN/dS across fish mitogenomes. Gene 2015; 572:27-34. [PMID: 26149654 DOI: 10.1016/j.gene.2015.06.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/17/2015] [Accepted: 06/27/2015] [Indexed: 01/26/2023]
Abstract
Mitochondrial DNA is routinely used to answer a variety of biological questions; and there is growing evidence suggesting that its accumulation of mutations is influenced by life history, effective population size and cellular energy requirements. This study examines the influence of phylogenetic patterns of metabolic activity on the evolution of mitochondrial DNA in fishes, given energy requirements associated with high performance versus sedentary life histories. It was determined that all 13 protein coding genes of the mitogenome experience a relaxation of purifying selection in sedentary fishes. This phenomenon was not detected in nuclear housekeeping genes, suggesting that it can be explained by the energy requirements of these groups, and possibly their effective population sizes. This study also examined the subunit binding sites of two subunits of cytochrome c oxidase (COXI and COXIII), and did not detect any differences in selection between these groups of fishes. These cytochrome c oxidase subunits interact with subunits that are encoded by the nuclear genome and it has been suggested that a unique form of coevolution occurs between these genomes in order to maintain function, and may have implications for speciation. Although this was not a main focus of this study, our preliminary results suggest that substitutions in subunit binding site regions are rare. The results from this study add to the growing literature on the complex relationship between mitochondrial DNA and the evolution of life histories across the tree of life.
Collapse
Affiliation(s)
- Jeff H T Strohm
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Ontario, Canada.
| | - Rodger A Gwiazdowski
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robert Hanner
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Ontario, Canada
| |
Collapse
|
57
|
Rato C, Harris DJ, Perera A, Carvalho SB, Carretero MA, Rödder D. A Combination of Divergence and Conservatism in the Niche Evolution of the Moorish Gecko, Tarentola mauritanica (Gekkota: Phyllodactylidae). PLoS One 2015; 10:e0127980. [PMID: 26000981 PMCID: PMC4441378 DOI: 10.1371/journal.pone.0127980] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/21/2015] [Indexed: 11/30/2022] Open
Abstract
The quantification of realized niche overlap and the integration of species distribution models (SDMs) with calibrated phylogenies to study niche evolution are becoming not only powerful tools to understand speciation events, but can also be used as proxies regarding the delimitation of cryptic species. We applied these techniques in order to unravel how the fundamental niche evolved during cladogenesis within the Tarentola mauritanica species-complex. Our results suggest that diversification within this complex, during the Miocene and Pleistocene, is associated with both niche divergence and niche conservatism, with a pattern that varies depending on whether the variables involved are related to the mean or seasonality of temperature and humidity. Moreover, climatic variables related to humidity and temperature seasonality were involved in the niche shift and genetic diversification of the European/North African clade during the Pleistocene and in its maintenance in a fundamental niche distinct from that of the remaining members of the group. This study further highlights the need for a taxonomic revision of the T. mauritanica species-complex.
Collapse
Affiliation(s)
- Catarina Rato
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairão, Vila do Conde, Portugal
| | - David James Harris
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairão, Vila do Conde, Portugal
| | - Ana Perera
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairão, Vila do Conde, Portugal
| | - Silvia B. Carvalho
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairão, Vila do Conde, Portugal
| | - Miguel A. Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairão, Vila do Conde, Portugal
| | - Dennis Rödder
- Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| |
Collapse
|
58
|
Dong F, Zou FS, Lei FM, Liang W, Li SH, Yang XJ. Testing hypotheses of mitochondrial gene-tree paraphyly: unravelling mitochondrial capture of the Streak-breasted Scimitar Babbler (Pomatorhinus ruficollis) by the Taiwan Scimitar Babbler (Pomatorhinus musicus). Mol Ecol 2014; 23:5855-67. [DOI: 10.1111/mec.12981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Feng Dong
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming 650223 China
| | - Fa-Sheng Zou
- South China Institute of Endangered Animals; Guangzhou 510260 China
| | - Fu-Min Lei
- Key Laboratory of Zoological Systematics and Evolution; Institute of Zoology; Chinese Academy of Sciences; Beijing 100101 China
| | - Wei Liang
- Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology; College of Life Sciences; Hainan Normal University; Haikou 571158 China
| | - Shou-Hsien Li
- Department of Life Science; National Taiwan Normal University; Taipei 116 Taiwan
| | - Xiao-Jun Yang
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; Kunming 650223 China
| |
Collapse
|
59
|
Malyarchuk B, Derenko M, Denisova G. A mitogenomic phylogeny and genetic history of sable (Martes zibellina). Gene 2014; 550:56-67. [PMID: 25110108 DOI: 10.1016/j.gene.2014.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/29/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022]
Abstract
We assessed phylogeny of sable (Martes zibellina, Linnaeus, 1758) by sequence analysis of nearly complete, new mitochondrial genomes in 36 specimens from different localities in northern Eurasia (Primorye, Khabarovsk and Krasnoyarsk regions, the Kamchatka Peninsula, the Kuril Islands and the Urals). Phylogenetic analysis of mtDNA sequences demonstrates that two clades, A and BC, radiated about 200-300 thousandyears ago (kya) according to results of Bayesian molecular clock and RelTime analyses of different mitogenome alignments (nearly complete mtDNA sequences, protein-coding region, and synonymous sites), while the age estimates of clades A, B and C fall within the Late Pleistocene (~50-140 kya). Bayesian skyline plots (BSPs) of sable population size change based on analysis of nearly complete mtDNAs show an expansion around 40 kya in the warm Karganian time, without a decline of population size around the Last Glacial Maximum (21 kya). The BSPs based on synonymous clock rate indicate that M. zibellina experienced demographic expansions later, approximately 22 kya. The A2a clade that colonized Kamchatka ~23-50 kya (depending on the mutation rate used) survived the last glaciation there as demonstrated by the BSP analysis. In addition, we have found evidence of positive selection acting at ND4 and cytochrome b genes, thereby suggesting adaptive evolution of the A2a clade in Kamchatka.
Collapse
Affiliation(s)
- Boris Malyarchuk
- Institute of Biological Problems of the North, Magadan, 685000 Russia.
| | - Miroslava Derenko
- Institute of Biological Problems of the North, Magadan, 685000 Russia
| | - Galina Denisova
- Institute of Biological Problems of the North, Magadan, 685000 Russia
| |
Collapse
|
60
|
Jacobsen MW, Pujolar JM, Gilbert MTP, Moreno-Mayar JV, Bernatchez L, Als TD, Lobon-Cervia J, Hansen MM. Speciation and demographic history of Atlantic eels (Anguilla anguilla and A. rostrata) revealed by mitogenome sequencing. Heredity (Edinb) 2014; 113:432-42. [PMID: 24865601 DOI: 10.1038/hdy.2014.44] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 12/30/2022] Open
Abstract
Processes leading to speciation in oceanic environments without obvious physical barriers remain poorly known. European and American eel (Anguilla anguilla and A. rostrata) spawn in partial sympatry in the Sargasso Sea. Larvae are advected by the Gulf Stream and other currents towards the European/North African and North American coasts, respectively. We analyzed 104 mitogenomes from the two species along with mitogenomes of other Anguilla and outgroup species. We estimated divergence time between the two species to identify major events involved in speciation. We also considered two previously stated hypotheses: one where the ancestral species was present in only one continent but was advected across the Atlantic by ocean current changes and another where population declines during Pleistocene glaciations led to increasing vicariance, facilitating speciation. Divergence time was estimated to ∼3.38 Mya, coinciding with the closure of the Panama Gateway that led to reinforcement of the Gulf Stream. This could have advected larvae towards European/North African coasts, in which case American eel would be expected to be the ancestral species. This scenario could, however, not be unequivocally confirmed by analyses of dN/dS, nucleotide diversity and effective population size estimates. Extended bayesian skyline plots showed fluctuations of effective population sizes and declines during glaciations, and thus also lending support to the importance of vicariance during speciation. There was evidence for positive selection at the ATP6 and possibly ND5 genes, indicating a role in speciation. The findings suggest an important role of ocean current changes in speciation of marine organisms.
Collapse
Affiliation(s)
- M W Jacobsen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - J M Pujolar
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - M T P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - J V Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - L Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Québec, Québec Canada
| | - T D Als
- 1] Department of Biomedicine-Human Genetics, Aarhus University, Aarhus C, Denmark [2] National Institute of Aquatic Resources, Section for Marine Living Resources, Technical University of Denmark, Silkeborg, Denmark
| | - J Lobon-Cervia
- Javier Lobon-Cervia, National Museum of Natural Sciences (CSIC), C/ José Gutierrez Abascal, Madrid, Spain
| | - M M Hansen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
61
|
Chong RA, Mueller RL. Evolution along the mutation gradient in the dynamic mitochondrial genome of salamanders. Genome Biol Evol 2014; 5:1652-60. [PMID: 23918809 PMCID: PMC3787671 DOI: 10.1093/gbe/evt119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitochondria are intracellular organelles where oxidative phosphorylation is carried out to complete ATP synthesis. Mitochondria have their own genome; in metazoans, this is a small, circular molecule encoding 13 electron transport proteins, 22 tRNAs, and 2 rRNAs. In invertebrates, mitochondrial gene rearrangement is common, and it is correlated with increased substitution rates. In vertebrates, mitochondrial gene rearrangement is rare, and its relationship to substitution rate remains unexplored. Mitochondrial genes can also show spatial variation in substitution rates around the genome due to the mechanism of mtDNA replication, which produces a mutation gradient. To date, however, the strength of the mutation gradient and whether movement along the gradient in rearranged (or otherwise modified) genomes impacts genic substitution rates remain unexplored in the majority of vertebrates. Salamanders include both normal mitochondrial genomes and independently derived rearrangements and expansions, providing a rare opportunity to test the effects of large-scale changes to genome architecture on vertebrate mitochondrial gene sequence evolution. We show that: 1) rearranged/expanded genomes have higher substitution rates; 2) most genes in rearranged/expanded genomes maintain their position along the mutation gradient, substitution rates of the genes that do move are unaffected by their new position, and the gradient in salamanders is weak; and 3) genomic rearrangements/expansions occur independent of levels of selective constraint on genes. Together, our results demonstrate that large-scale changes to genome architecture impact mitochondrial gene evolution in predictable ways; however, despite these impacts, the same functional constraints act on mitochondrial protein-coding genes in both modified and normal genomes.
Collapse
|
62
|
Melo-Ferreira J, Vilela J, Fonseca MM, da Fonseca RR, Boursot P, Alves PC. The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression. Genome Biol Evol 2014; 6:886-96. [PMID: 24696399 PMCID: PMC4007550 DOI: 10.1093/gbe/evu059] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread. Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may have influenced the occurrence and consequences of the many reported cases of massive mtDNA introgression. However, the origin of adaptation remains elusive.
Collapse
Affiliation(s)
- José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
| | - Joana Vilela
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Portugal
| | - Miguel M. Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Spain
| | - Rute R. da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Portugal
| | - Pierre Boursot
- Institut des Sciences de l’Evolution, Université Montpellier 2, CNRS, IRD, France
| | - Paulo C. Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula
| |
Collapse
|
63
|
Malyarchuk BA, Derenko MV, Denisova GA. Episodes of adaptive evolution of mitochondrial genome in asiatic salamanders (Amphibia, Caudata, Hynobiidae). RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414020070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
64
|
Ai WM, Chen SB, Chen X, Shen XJ, Shen YY. Parallel evolution of IDH2 gene in cetaceans, primates and bats. FEBS Lett 2014; 588:450-4. [PMID: 24374336 DOI: 10.1016/j.febslet.2013.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 02/05/2023]
Abstract
Cetaceans and primates both have large brains that require large amounts of aerobic energy metabolism. In bats, the cost of flight makes locomotion energetically demanding. These mammalian groups may represent three independent evolutionary origins of an energy-demanding lifestyle in mammals. IDH2 encodes an enzyme in the tricarboxylic acid cycle in the mitochondrion, which plays a key role in aerobic energy metabolism. In this study, we cloned and sequenced this gene in two cetaceans, and 19 bat species, and compared the data with available primate sequences to test its evolution. We found significant signals of parallel evolution in this gene among these three groups. Parallel evolution of this gene may reflect their parallel evolution towards a higher demand for energy.
Collapse
Affiliation(s)
- Wei-Ming Ai
- Department of Marine Science, School of Life Science, Wenzhou Medical College, Wenzhou 325035, China
| | - Shao-Bo Chen
- Department of Marine Science, School of Life Science, Wenzhou Medical College, Wenzhou 325035, China
| | - Xiao Chen
- Department of Marine Science, School of Life Science, Wenzhou Medical College, Wenzhou 325035, China; Guangxi Key Lab for Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai 536000, China
| | - Xue-Juan Shen
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China
| | - Yong-Yi Shen
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
65
|
Feng P, Zhao H, Lu X. Evolution of mitochondrial DNA and its relation to basal metabolic rate. ACTA ACUST UNITED AC 2014; 26:566-71. [DOI: 10.3109/19401736.2013.873895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
66
|
Chen X, Shen YY, Zhang YP. [Review of mtDNA in molecular evolution studies]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2013; 33:566-73. [PMID: 23266975 DOI: 10.3724/sp.j.1141.2012.06566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondria are old organelles found in most eukaryotic cells. Due to its rapid mutation ratio, mitochondrial DNA (mtDNA) has been widely used as a DNA marker in molecular studies and has long been suggested to undergo neutral evolution or purifying selection. Mitochondria produces 95% of the adenosine triphosphate (ATP) needed for locomotion, and heat for thermoregulation. Recent studies had found that mitochondria play critical roles in energy metabolism, and proved that functional constraints acting on mitochondria, due to energy metabolism and/or thermoregulation, influence the evolution of mtDNA. This review summarizes mitochondrial genome composition, evolution, and its applications in molecular evolution studies (reconstruction of species phylogenesis, the relationship between biological energy metabolism and mtDNA evolution, and the mtDNA codon reassignment influences the adaptation in different creatures).
Collapse
Affiliation(s)
- Xing Chen
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | | | | |
Collapse
|
67
|
Malyarchuk B, Derenko M, Denisova G. Phylogeny and genetic history of the Siberian salamander (Salamandrella keyserlingii, Dybowski, 1870) inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2013; 67:348-57. [PMID: 23415986 DOI: 10.1016/j.ympev.2013.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/28/2013] [Accepted: 02/03/2013] [Indexed: 11/15/2022]
Abstract
We assessed phylogeny of the Siberian salamander (Salamandrella keyserlingii, Dybowski, 1870), the most northern ectothermic, terrestrial vertebrate in Eurasia, by sequence analysis of complete mitochondrial genomes in 26 specimens from different localities (China, Khabarovsk region, Sakhalin, Yakutia, Magadan region, Chukotka, Kamchatka, Ural, European part of Russia). In addition, a complete mitochondrial genome of the Schrenck salamander, Salamandrella schrenckii, was determined for the first time. Bayesian phylogenetic analysis of the entire mtDNA genomes of S. keyserlingii demonstrates that two haplotype clades, AB and C, radiated about 1.4 million years ago (Mya). Bayesian skyline plots of population size change through time show an expansion around 250 thousand years ago (kya) and then a decline around the Last Glacial Maximum (25 kya) with subsequent restoration of population size. Climatic changes during the Quaternary period have dramatically affected the population genetic structure of the Siberian salamanders. In addition, complete mtDNA sequence analysis allowed us to recognize that the vast area of Northern Eurasia was colonized only by the Siberian salamander clade C1b during the last 150 kya. Meanwhile, we were unable to find evidence of molecular adaptation in this clade by analyzing the whole mitochondrial genomes of the Siberian salamanders.
Collapse
Affiliation(s)
- Boris Malyarchuk
- Institute of Biological Problems of the North, Magadan 685000, Russia.
| | | | | |
Collapse
|
68
|
Zhang S, Han J, Zhong D, Wang T. Analysis of selective constraints on mitochondrial DNA, flight ability and physiological index on avian. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:1498-1501. [PMID: 24109983 DOI: 10.1109/embc.2013.6609796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For most of the birds in the word, they can be divided into two main groups, i.e. resident birds and migratory ones. Most of the energy required for long-distance migration is supplied by mitochondria via oxidative phosphorylation. Therefore, the evolutionary constraints acted on the mitochondria DNA (mtDNA) are considered to vary with the locomotive abilities and flight speed. The flight speed is assumed to increase with mass and wing loading according to the fundamental aerodynamic theories, which is common between aves and aircrafts. We compared 148 avian mitochondrial genomes and main physiological parameters. More nonsynonymous nucleotide substitutions than synonymous ones are accumulated in low-speed and flightless birds rather than high-speed flying birds. No matter how the speed is obtained, directly measured or estimated through physiological index. Our results demonstrated that, besides artificial and environmental factors, selective constraints relevant to flight ability play an essential role in the evolution of mtDNA, even it might cause the extinction of avian species.
Collapse
|
69
|
Chong RA, Mueller RL. Low metabolic rates in salamanders are correlated with weak selective constraints on mitochondrial genes. Evolution 2012; 67:894-9. [PMID: 23461338 DOI: 10.1111/j.1558-5646.2012.01830.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondria are the site for the citric acid cycle and oxidative phosphorylation (OXPHOS), the final steps of ATP synthesis via cellular respiration. Each mitochondrion contains its own genome; in vertebrates, this is a small, circular DNA molecule that encodes 13 subunits of the multiprotein OXPHOS electron transport complexes. Vertebrate lineages vary dramatically in metabolic rates; thus, functional constraints on mitochondrial-encoded proteins likely differ, potentially impacting mitochondrial genome evolution. Here, we examine mitochondrial genome evolution in salamanders, which have the lowest metabolic requirements among tetrapods. We show that salamanders experience weaker purifying selection on protein-coding sequences than do frogs, a comparable amphibian clade with higher metabolic rates. In contrast, we find no evidence for weaker selection against mitochondrial genome expansion in salamanders. Together, these results suggest that different aspects of mitochondrial genome evolution (i.e., nucleotide substitution, accumulation of noncoding sequences) are differently affected by metabolic variation across tetrapod lineages.
Collapse
Affiliation(s)
- Rebecca A Chong
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA.
| | | |
Collapse
|
70
|
Liu SQ, Mayden RL, Zhang JB, Yu D, Tang QY, Deng X, Liu HZ. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution. Gene 2012; 508:60-72. [PMID: 22868207 DOI: 10.1016/j.gene.2012.07.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/15/2012] [Accepted: 07/23/2012] [Indexed: 02/08/2023]
Abstract
The superfamily Cobitoidea of the order Cypriniformes is a diverse group of fishes, inhabiting freshwater ecosystems across Eurasia and North Africa. The phylogenetic relationships of this well-corroborated natural group and diverse clade are critical to not only informing scientific communities of the phylogeny of the order Cypriniformes, the world's largest freshwater fish order, but are key to every area of comparative biology examining the evolution of traits, functional structures, and breeding behaviors to their biogeographic histories, speciation, anagenetic divergence, and divergence time estimates. In the present study, two mitochondrial gene sequences (COI, ND4+5) and four single-copy nuclear gene segments (RH1, RAG1, EGR2B, IRBP) were used to infer the phylogenetic relationships of the Cobitoidea as reconstructed from maximum likelihood (ML) and partitioned Bayesian Analysis (BA). Analyses of the combined mitochondrial/nuclear gene datasets revealed five strongly supported monophyletic Cobitoidea families and their sister-group relationships: Botiidae+(Vaillantellidae+(Cobitidae+(Nemacheilidae+Balitoridae))). These recovered relationships are in agreement with previous systematic studies on the order Cypriniformes and/or those focusing on the superfamily Cobitoidea. Using these relationships, our analyses revealed pattern lineage- or ecological-group-specific evolution of these genes for the Cobitoidea. These observations and results corroborate the hypothesis that these group-specific-ancestral ecological characters have contributed in the diversification and/or adaptations within these groups. Positive selections were detected in RH1 of nemacheilids and in RAG1 of nemacheilids and genus Vaillantella, which indicated that evolution of RH1 (related to eye's optic sense) and RAG1 (related to immunity) genes appeared to be important for the diversification of these groups. The balitorid lineage (those species inhabiting fast-flowing riverine habitats) had, as compared with other cobitoid lineages, significantly different dN/dS, dN and dS values for ND4 and IRBP genes. These significant differences are usually indicative of weaker selection pressure, and lineage-specific evolution on genes along the balitorid lineage. Furthermore, within Cobitoidea, excluding balitorids, species living in subtropics had significantly higher dN/dS values in RAG1 and IRBP genes than those living in temperate and tropical zones. Among tropical cobitoids, genes COI, ND5, EGR2B, IRBP and RH1, had a significantly higher mean dS value than those species in subtropical and temperate groups. These findings suggest that the evolution of these genes could also be ecological-group-specific and may have played an important role in the adaptive evolution and diversification of these groups. Thus, we hypothesize that the genes included in the present study were actively involved in lineage- and/or ecological-group-specific evolutionary processes of the highly diverse Cobitoidea. These two evolutionary patterns, both subject to further testing, are hypothesized as integral in the diversification with this major clade of the world's most diverse group of freshwater fishes.
Collapse
Affiliation(s)
- Si-Qing Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China.
| | | | | | | | | | | | | |
Collapse
|
71
|
Ma C, Yang P, Jiang F, Chapuis MP, Shali Y, Sword GA, Kang L. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Mol Ecol 2012; 21:4344-58. [PMID: 22738353 DOI: 10.1111/j.1365-294x.2012.05684.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The migratory locust, Locusta migratoria, is the most widely distributed grasshopper species in the world. However, its global genetic structure and phylogeographic relationships have not been investigated. In this study, we explored the worldwide genetic structure and phylogeography of the locust populations based on the sequence information of 65 complete mitochondrial genomes and three mitochondrial genes of 263 individuals from 53 sampling sites. Although this locust can migrate over long distances, our results revealed high genetic differentiation among the geographic populations. The populations can be divided into two different lineages: the Northern lineage, which includes individuals from the temperate regions of the Eurasian continent, and the Southern lineage, which includes individuals from Africa, southern Europe, the Arabian region, India, southern China, South-east Asia and Australia. An analysis of population genetic diversity indicated that the locust species originated from Africa. Ancestral populations likely separated into Northern and Southern lineages 895 000 years ago by vicariance events associated with Pleistocene glaciations. These two lineages evolved in allopatry and occupied their current distributions in the world via distinct southern and northern dispersal routes. Genetic differences, caused by the long-term independent diversification of the two lineages, along with other factors, such as geographic barriers and temperature limitations, may play important roles in maintaining the present phylogeographic patterns. Our phylogeographic evidence challenged the long-held view of multiple subspecies in the locust species and tentatively divided it into two subspecies, L. m. migratoria and L. m. migratorioides.
Collapse
Affiliation(s)
- Chuan Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
72
|
Malyarchuk BA. Selective processes and adaptive evolution of the cytochrome b gene in salamanders of the genus Salamandrella. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412040084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
73
|
Malyarchuk BA. Gene conversion in the mitochondrial genome on interspecific hybridization in voles of the Clethrionomys genus. BIOCHEMISTRY. BIOKHIMIIA 2012; 77:518-523. [PMID: 22813593 DOI: 10.1134/s0006297912050124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The phenomenon of interspecific hybridization accompanied by transfer of the mitochondrial genome from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (Cl. glareolus) in northeastern Europe is well known already for 25 years. However, the possibility of recombination between homologous segments of maternal and paternal mtDNAs of the voles during fertilization was not previously studied. Analysis of data on variability of nucleotide sequences of the mitochondrial gene for cytochrome b in populations of red-backed and bank voles in the area of their sympatry has shown that as a result of interspecific hybridization, the mitochondrial gene pool of bank voles contains not only mtDNA haplotypes of red-backed vole females, but also mtDNA haplotypes of bank voles bearing short nucleotide tracts of red-backed vole mtDNA. This finding supports the hypothesis that an incomplete elimination of red-backed vole paternal mtDNA during the interspecific hybridization between bank vole females and red-backed vole males leads to the gene conversion of bank vole maternal mtDNA tracts by homologous ones of mtDNA of red-backed vole males.
Collapse
Affiliation(s)
- B A Malyarchuk
- Institute of Biological Problems of the North, Far-Eastern Branch of the Russian Academy of Sciences, ul. Portovaya 18, 685000 Magadan, Russia.
| |
Collapse
|
74
|
JACOBSEN MAGNUSW, HANSEN MICHAELM, ORLANDO LUDOVIC, BEKKEVOLD DORTE, BERNATCHEZ LOUIS, WILLERSLEV ESKE, GILBERT MTHOMASP. Mitogenome sequencing reveals shallow evolutionary histories and recent divergence time between morphologically and ecologically distinct European whitefish (Coregonusspp.). Mol Ecol 2012; 21:2727-42. [DOI: 10.1111/j.1365-294x.2012.05561.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
75
|
Williams EP, Peer AC, Miller TJ, Secor DH, Place AR. A phylogeny of the temperate seabasses (Moronidae) characterized by a translocation of the mt-nd6 gene. JOURNAL OF FISH BIOLOGY 2012; 80:110-130. [PMID: 22220893 DOI: 10.1111/j.1095-8649.2011.03158.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The entire mitochondrial genome of the striped bass Morone saxatilis was sequenced together with the mitochondrial (mt) control regions of the white bass Morone chrysops, white perch Morone americana, yellow bass Morone mississippiensis, spotted seabass Dicentrarchus punctatus, European seabass Dicentrarchus labrax and the Japanese seabass Lateolabrax japonicus. The resultant 17 580 base pair circular genome of M. saxatilis contains 38 genes (13 proteins, 23 transfer RNAs and two ribosomal RNAs) and a control region bordered by the proline and phenylalanine mitochondrial tRNAs. Gene arrangement was similar to other vertebrates, except that the mt-nd6 gene was found within the control region rather than the canonical position between the mt-nd5 and mt-cyb genes. This translocation was found in all the Morone and Dicentrarchus species studied without functional copies or pseudogenes in the ancestral position. In L. japonicus, the mt-nd6 gene was found in the canonical position without evidence of an mt-nd6 gene in the control region. A Bayesian analysis of these and published mt-nd6 sequences from 45 other Perciformes grouped the Morone and Dicentrarchus species monophyletically with a probability of 1·00 with respect to L. japonicus and all other perciforms, and placed the Dicentrarchus species in the basal position. These data reinforce current placement of L. japonicus outside the Moronidae and provide a clear evolutionary character to define this family. The phylogeny of the Moronidae presented here also supports the hypothesis of an anadromous common ancestor to this family that gave rise to the North American estuarine and freshwater species. A series of tandem repeats previously reported in M. saxatilis was found in the control region of all Morone species between the mt-nd6 and mt-rnr1 genes, but not in either Dicentrarchus species, which reinforces the continued use of these two separate genera.
Collapse
Affiliation(s)
- E P Williams
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | | | | | | | | |
Collapse
|