51
|
Abstract
During development of biological organisms, multiple complex structures are formed. In many instances, these structures need to exhibit a high degree of order to be functional, although many of their constituents are intrinsically stochastic. Hence, it has been suggested that biological robustness ultimately must rely on complex gene regulatory networks and clean-up mechanisms. Here we explore developmental processes that have evolved inherent robustness against stochasticity. In the context of the Drosophila eye disc, multiple optical units, ommatidia, develop into crystal-like patterns. During the larva-to-pupa stage of metamorphosis, the centers of the ommatidia are specified initially through the diffusion of morphogens, followed by the specification of R8 cells. Establishing the R8 cell is crucial in setting up the geometric, and functional, relationships of cells within an ommatidium and among neighboring ommatidia. Here we study an PDE mathematical model of these spatio-temporal processes in the presence of parametric stochasticity, defining and applying measures that quantify order within the resulting spatial patterns. We observe a universal sigmoidal response to increasing transcriptional noise. Ordered patterns persist up to a threshold noise level in the model parameters. In accordance with prior qualitative observations, as the noise is further increased past a threshold point of no return, these ordered patterns rapidly become disordered. Such robustness in development allows for the accumulation of genetic variation without any observable changes in phenotype. We argue that the observed sigmoidal dependence introduces robustness allowing for sizable amounts of genetic variation and transcriptional noise to be tolerated in natural populations without resulting in phenotype variation.
Collapse
|
52
|
Huang HR, Liu JJ, Xu Y, Lascoux M, Ge XJ, Wright SI. Homeologue-specific expression divergence in the recently formed tetraploid Capsella bursa-pastoris (Brassicaceae). THE NEW PHYTOLOGIST 2018; 220:624-635. [PMID: 30028022 DOI: 10.1111/nph.15299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Following allopolyploid formation, extensive genome evolution occurs, with the eventual loss of many homeologous gene copies. Although this process of diploidization has occurred many times independently, the evolutionary forces determining the probability and rate of gene loss remain poorly understood. Here, we conduct genome and transcriptome sequencing in a broad sample of Chinese accessions of Capsella bursa-pastoris, a recently formed allotetraploid. Our whole genome data reveal three groups of these accessions: an Eastern group from low-altitude regions, a Western group from high-altitude regions, and a much more differentiated Northwestern group. Population differentiation in total expression was limited among closely related populations; by contrast, the relative expression of the two homeologous copies closely mirrors the genome-wide SNP divergence. Consistent with this, we observe a negative correlation between expression changes in the two homeologues. However, genes showing population genomic evidence for adaptive evolution do not show an enrichment for expression divergence between homeologues, providing no clear evidence for adaptive shifts in relative gene expression. Overall, these patterns suggest that neutral drift may contribute to the population differentiation in the expression of the homeologues, and drive eventual gene loss over longer periods of time.
Collapse
Affiliation(s)
- Hui-Run Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jia-Jia Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yong Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, ON, Canada
| |
Collapse
|
53
|
Duveau F, Hodgins-Davis A, Metzger BP, Yang B, Tryban S, Walker EA, Lybrook T, Wittkopp PJ. Fitness effects of altering gene expression noise in Saccharomyces cerevisiae. eLife 2018; 7:37272. [PMID: 30124429 PMCID: PMC6133559 DOI: 10.7554/elife.37272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023] Open
Abstract
Gene expression noise is an evolvable property of biological systems that describes differences in expression among genetically identical cells in the same environment. Prior work has shown that expression noise is heritable and can be shaped by selection, but the impact of variation in expression noise on organismal fitness has proven difficult to measure. Here, we quantify the fitness effects of altering expression noise for the TDH3 gene in Saccharomyces cerevisiae. We show that increases in expression noise can be deleterious or beneficial depending on the difference between the average expression level of a genotype and the expression level maximizing fitness. We also show that a simple model relating single-cell expression levels to population growth produces patterns consistent with our empirical data. We use this model to explore a broad range of average expression levels and expression noise, providing additional insight into the fitness effects of variation in expression noise.
Collapse
Affiliation(s)
- Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot, Paris, France
| | - Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Brian Ph Metzger
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Department of Ecology and Evolution, University of Chicago, Chicago, United States
| | - Bing Yang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Stephen Tryban
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Elizabeth A Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Tricia Lybrook
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
54
|
Signor SA, Nuzhdin SV. The Evolution of Gene Expression in cis and trans. Trends Genet 2018; 34:532-544. [PMID: 29680748 PMCID: PMC6094946 DOI: 10.1016/j.tig.2018.03.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
There is abundant variation in gene expression between individuals, populations, and species. The evolution of gene regulation and expression within and between species is thought to frequently contribute to adaptation. Yet considerable evidence suggests that the primary evolutionary force acting on variation in gene expression is stabilizing selection. We review here the results of recent studies characterizing the evolution of gene expression occurring in cis (via linked polymorphisms) or in trans (through diffusible products of other genes) and their contribution to adaptation and response to the environment. We review the evidence for buffering of variation in gene expression at the level of both transcription and translation, and the possible mechanisms for this buffering. Lastly, we summarize unresolved questions about the evolution of gene regulation.
Collapse
Affiliation(s)
- Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
55
|
Hong J, Brandt N, Abdul-Rahman F, Yang A, Hughes T, Gresham D. An incoherent feedforward loop facilitates adaptive tuning of gene expression. eLife 2018; 7:e32323. [PMID: 29620523 PMCID: PMC5903863 DOI: 10.7554/elife.32323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression.
Collapse
Affiliation(s)
- Jungeui Hong
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
- Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Nathan Brandt
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
| | - Farah Abdul-Rahman
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
| | - Ally Yang
- Banting and Best Department of Medical Research, Donnelly CentreUniversity of TorontoTorontoCanada
| | - Tim Hughes
- Banting and Best Department of Medical Research, Donnelly CentreUniversity of TorontoTorontoCanada
| | - David Gresham
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
| |
Collapse
|
56
|
Duveau F, Toubiana W, Wittkopp PJ. Fitness Effects of Cis-Regulatory Variants in the Saccharomyces cerevisiae TDH3 Promoter. Mol Biol Evol 2018; 34:2908-2912. [PMID: 28961929 DOI: 10.1093/molbev/msx224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Variation in gene expression is widespread within and between species, but fitness consequences of this variation are generally unknown. Here, we use mutations in the Saccharomyces cerevisiae TDH3 promoter to assess how changes in TDH3 expression affect cell growth. From these data, we predict the fitness consequences of de novo mutations and natural polymorphisms in the TDH3 promoter. Nearly all mutations and polymorphisms in the TDH3 promoter were found to have no significant effect on fitness in the environment assayed, suggesting that the wild-type allele of this promoter is robust to the effects of most new cis-regulatory mutations.
Collapse
Affiliation(s)
- Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - William Toubiana
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon-1, Lyon, France
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
57
|
Wang M, Uebbing S, Ellegren H. Bayesian Inference of Allele-Specific Gene Expression Indicates Abundant Cis-Regulatory Variation in Natural Flycatcher Populations. Genome Biol Evol 2017; 9:1266-1279. [PMID: 28453623 PMCID: PMC5434935 DOI: 10.1093/gbe/evx080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Polymorphism in cis-regulatory sequences can lead to different levels of expression for the two alleles of a gene, providing a starting point for the evolution of gene expression. Little is known about the genome-wide abundance of genetic variation in gene regulation in natural populations but analysis of allele-specific expression (ASE) provides a means for investigating such variation. We performed RNA-seq of multiple tissues from population samples of two closely related flycatcher species and developed a Bayesian algorithm that maximizes data usage by borrowing information from the whole data set and combines several SNPs per transcript to detect ASE. Of 2,576 transcripts analyzed in collared flycatcher, ASE was detected in 185 (7.2%) and a similar frequency was seen in the pied flycatcher. Transcripts with statistically significant ASE commonly showed the major allele in >90% of the reads, reflecting that power was highest when expression was heavily biased toward one of the alleles. This would suggest that the observed frequencies of ASE likely are underestimates. The proportion of ASE transcripts varied among tissues, being lowest in testis and highest in muscle. Individuals often showed ASE of particular transcripts in more than one tissue (73.4%), consistent with a genetic basis for regulation of gene expression. The results suggest that genetic variation in regulatory sequences commonly affects gene expression in natural populations and that it provides a seedbed for phenotypic evolution via divergence in gene expression.
Collapse
Affiliation(s)
- Mi Wang
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Severin Uebbing
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| |
Collapse
|
58
|
Rhoné B, Mariac C, Couderc M, Berthouly-Salazar C, Ousseini IS, Vigouroux Y. No Excess of Cis-Regulatory Variation Associated with Intraspecific Selection in Wild Pearl Millet (Cenchrus americanus). Genome Biol Evol 2017; 9:388-397. [PMID: 28137746 PMCID: PMC5381623 DOI: 10.1093/gbe/evx004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Several studies suggest that cis-regulatory mutations are the favorite target of evolutionary changes, one reason being that cis-regulatory mutations might have fewer deleterious pleiotropic effects than protein-coding mutations. A review of the process also suggests that this bias towards adaptive cis-regulatory variation might be less pronounced at the intraspecific level compared with the interspecific level. In this study, we assessed the contribution of cis-regulatory variation to adaptation at the intraspecific level using populations of wild pearl millet (Cenchrus americanus ssp. monodii) sampled along an environmental gradient in Niger. From RNA sequencing of hybrids to assess allele-specific expression, we identified genes with cis-regulatory divergence between two parental accessions collected in contrasted environmental conditions. This revealed that ∼15% of transcribed genes showed cis-regulatory variation. Intersecting the gene set exhibiting cis-regulatory variation with the gene set identified as targets of selection revealed no excess of cis-acting mutations among the selected genes. We additionally found no excess of cis-regulatory variation among genes associated with adaptive traits. As our approach relied on methods identifying mainly genes submitted to strong selection pressure or with high phenotypic effect, the contribution of cis-regulatory changes to soft selection or polygenic adaptive traits remains to be tested. However our results favor the hypothesis that enrichment of adaptive cis-regulatory divergence builds up over time. For short evolutionary time-scales, cis-acting mutations are not predominantly involved in adaptive evolution associated with strong selective signal.
Collapse
Affiliation(s)
- Bénédicte Rhoné
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France.,Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, Lyon, France
| | - Cédric Mariac
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France
| | - Marie Couderc
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France
| | - Cécile Berthouly-Salazar
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France.,Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LMI LAPSE), Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Issaka Salia Ousseini
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France.,Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LMI LAPSE), Centre de Recherche de Bel Air, Dakar, Sénégal.,Biology Department, Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (UMR DIADE), Université Montpellier, France.,Université Abdou Moumouni de Niamey, Niger
| | - Yves Vigouroux
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France.,Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LMI LAPSE), Centre de Recherche de Bel Air, Dakar, Sénégal.,Biology Department, Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (UMR DIADE), Université Montpellier, France
| |
Collapse
|
59
|
Metzger BPH, Wittkopp PJ, Coolon JD. Evolutionary Dynamics of Regulatory Changes Underlying Gene Expression Divergence among Saccharomyces Species. Genome Biol Evol 2017; 9:843-854. [PMID: 28338820 PMCID: PMC5604594 DOI: 10.1093/gbe/evx035] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
Heritable changes in gene expression are important contributors to phenotypic differences within and between species and are caused by mutations in cis-regulatory elements and trans-regulatory factors. Although previous work has suggested that cis-regulatory differences preferentially accumulate with time, technical restrictions to closely related species and limited comparisons have made this observation difficult to test. To address this problem, we used allele-specific RNA-seq data from Saccharomyces species and hybrids to expand both the evolutionary timescale and number of species in which the evolution of regulatory divergence has been investigated. We find that as sequence divergence increases, cis-regulatory differences do indeed become the dominant type of regulatory difference between species, ultimately becoming a better predictor of expression divergence than trans-regulatory divergence. When both cis- and trans-regulatory differences accumulate for the same gene, they more often have effects in opposite directions than in the same direction, indicating widespread compensatory changes underlying the evolution of gene expression. The frequency of compensatory changes within and between species and the magnitude of effect for the underlying cis- and trans-regulatory differences suggests that compensatory changes accumulate primarily due to selection against divergence in gene expression as a result of weak stabilizing selection on gene expression levels. These results show that cis-regulatory differences and compensatory changes in regulation play increasingly important roles in the evolution of gene expression as time increases.
Collapse
Affiliation(s)
- Brian P H Metzger
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Joseph D Coolon
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI.,Department of Biology, Wesleyan University, Middletown, CT
| |
Collapse
|
60
|
Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus. G3-GENES GENOMES GENETICS 2017; 7:165-178. [PMID: 27836907 PMCID: PMC5217106 DOI: 10.1534/g3.116.033241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located expression quantitative trait loci (eQTL) underlying the variation in gene expression in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis- and trans-regulatory regions. Trans-eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot colocated with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not colocate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.
Collapse
|
61
|
Thompson DA, Cubillos FA. Natural gene expression variation studies in yeast. Yeast 2016; 34:3-17. [PMID: 27668700 DOI: 10.1002/yea.3210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 11/06/2022] Open
Abstract
The rise of sequence information across different yeast species and strains is driving an increasing number of studies in the emerging field of genomics to associate polymorphic variants, mRNA abundance and phenotypic differences between individuals. Here, we gathered evidence from recent studies covering several layers that define the genotype-phenotype gap, such as mRNA abundance, allele-specific expression and translation efficiency to demonstrate how genetic variants co-evolve and define an individual's genome. Moreover, we exposed several antecedents where inter- and intra-specific studies led to opposite conclusions, probably owing to genetic divergence. Future studies in this area will benefit from the access to a massive array of well-annotated genomes and new sequencing technologies, which will allow the fine breakdown of the complex layers that delineate the genotype-phenotype map. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Francisco A Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Nucleus for Fungal Integrative and Synthetic Biology.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|