51
|
Okamoto K, Isohashi F. Macromolecular translocation inhibitor II (Zn(2+)-binding protein, parathymosin) interacts with the glucocorticoid receptor and enhances transcription in vivo. J Biol Chem 2005; 280:36986-93. [PMID: 16150697 DOI: 10.1074/jbc.m506056200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macromolecular translocation inhibitor II (MTI-II), which was first identified as an in vitro inhibitor of binding between the highly purified glucocorticoid receptor (GR) and isolated nuclei, is an 11.5-kDa Zn(2+)-binding protein that is also known as ZnBP or parathymosin. MTI-II is a small nuclear acidic protein that is highly conserved in rats, cows, and humans and widely distributed in mammalian tissues, yet its physiological function is unknown. To elucidate its in vivo function in relation to GR, we transiently transfected mammalian cells with an expression plasmid encoding MTI-II. Unexpectedly, we found that the expression of MTI-II enhances the transcriptional activity of GR. The magnitude of the transcriptional enhancement induced by MTI-II is comparable with that induced by the steroid receptor coactivator SRC-1. In contrast, MTI-II had little effect on the transcriptional activity of estrogen receptor. Immunoprecipitation analysis showed that in the presence of glucocorticoid hormone, GR coprecipitates with MTI-II, and, vice versa, MTI-II coprecipitates with GR. The expression of various deletion mutants of MTI-II revealed that the central acidic domain is essential for the enhancement of GR-dependent transcription. Microscopic analysis of MTI-II fused to green fluorescent protein and GR fused to red fluorescent protein in living HeLa cells showed that MTI-II colocalizes with GR in discrete subnuclear domains in a hormone-dependent manner. Coexpression of MTI-II with the coactivator SRC-1 or p300 further enhances GR-dependent transcription. Immunoprecipitation analysis showed that in the presence of glucocorticoid hormone, p300 and CREB-binding protein are coprecipitated with MTI-II. Furthermore, the knockdown of endogenous MTI-II by RNAi reduces the transcriptional activity of GR in cells. Moreover, expression of MTI-II enhances the glucocorticoid-dependent transcription of the endogenous glucocorticoid-inducible enzyme in cells. Taken together, these results indicate that MTI-II enhances GR-dependent transcription via a direct interaction with GR in vivo. Thus, MTI-II is a new member of the GR-coactivator complex.
Collapse
Affiliation(s)
- Kazuki Okamoto
- Department of Biochemistry, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | | |
Collapse
|
52
|
Chen C, Li M, Yang H, Chai H, Fisher W, Yao Q. Roles of thymosins in cancers and other organ systems. World J Surg 2005; 29:264-70. [PMID: 15706436 DOI: 10.1007/s00268-004-7817-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thymosins are small peptides, originally identified from the thymus, but now known to be more widely distributed in many tissues and cells. Thymosins are divided into three main groups, alpha-, beta-, : and gamma-thymosins, based on their isoelectric points. alpha-thymosins (ProTalpha, Talphal) have nuclear localization and are involved in transcription and/or DNA replications; whereas beta-thymosins (Tbeta4, Tbeta10, Tbetal5) have cytoplasmic localization and show high affinity to G-actin for cell mobility. Furthermore, it is well known that both alpha- and beta-thymosins play important roles in modulating immune response, vascular biology, and cancer pathogenesis. More importantly, thymosins may have significant clinical applications. They may serve as molecular markers for the diagnosis and prognosis of certain diseases. In addition, they could be molecular targets of certain diseases or be used as therapeutic agents to treat certain diseases. However, the molecular mechanisms of action of thymosins are largely unknown. This review not only presents recent advances of basic science research of thymosins and their clinical applications but provides thoughtful views for future directions of investigation on thymosins.
Collapse
Affiliation(s)
- Changyi Chen
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA,
| | | | | | | | | | | |
Collapse
|
53
|
Li KJ, Shiau AL, Chiou YY, Yo YT, Wu CL. Transgenic overexpression of prothymosin α induces development of polycystic kidney disease11See Editorial by Gattone, p. 2063. Kidney Int 2005; 67:1710-22. [PMID: 15840017 DOI: 10.1111/j.1523-1755.2005.00268.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Polycystic kidney disease (PKD) is a genetic disorder characterized by development of renal cysts and progressive renal dysfunction. Renal tissues from both PKD patients and rodent models of PKD show elevated c-myc expression. Prothymosin alpha (ProT) is positively regulated by c-myc through binding to the E box of its promoter. Through creating transgenic mice and clinical studies, we sought to investigate whether ProT overexpression contributes to PKD development. METHODS ProT heterozygous and homozygous transgenic mice were generated and characterized. Morphologic, histologic, immunohistochemical, and biochemical analyses of the transgenic mice were performed. RESULTS Two transgenic lines that represented integration at two different loci of the chromosomes were generated. ProT overexpression in the kidneys of homozygous transgenic mice induced a PKD phenotype, which included polycystic kidneys, elevated blood urea nitrogen (BUN), and lethality at about 10 days of age. Similar overexpression pattern of ProT was noted in cystic kidneys of the transgenic mice as well as in human autosomal-recessive PKD (ARPKD) and autosomal-dominant PKD (ADPKD) kidneys. ProT protein levels in the kidneys and urine as well as renal mRNA level of epithelial growth factor receptor (EGFR) of homozygous ProT transgenic mice were significantly higher than heterozygous or nontransgenic littermates. Furthermore, the heterozygous transgenic mice at 17 months of age also developed mild cystic kidneys. CONCLUSION Transgenic mice overexpressing ProT represent a novel model for PKD and may provide insights into PKD development. ProT, like c-myc and EGFR, may contribute to the development of renal cysts and may be a potential noninvasive diagnostic molecule of PKD.
Collapse
Affiliation(s)
- Kuo-Jung Li
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
54
|
Martic G, Karetsou Z, Kefala K, Politou AS, Clapier CR, Straub T, Papamarcaki T. Parathymosin affects the binding of linker histone H1 to nucleosomes and remodels chromatin structure. J Biol Chem 2005; 280:16143-50. [PMID: 15716277 DOI: 10.1074/jbc.m410175200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Linker histone H1 is the major factor that stabilizes higher order chromatin structure and modulates the action of chromatin-remodeling enzymes. We have previously shown that parathymosin, an acidic, nuclear protein binds to histone H1 in vitro and in vivo. Confocal laser scanning microscopy reveals a nuclear punctuate staining of the endogenous protein in interphase cells, which is excluded from dense heterochromatic regions. Using an in vitro chromatin reconstitution system under physiological conditions, we show here that parathymosin (ParaT) inhibits the binding of H1 to chromatin in a dose-dependent manner. Consistent with these findings, H1-containing chromatin assembled in the presence of ParaT has reduced nucleosome spacing. These observations suggest that interaction of the two proteins might result in a conformational change of H1. Fluorescence spectroscopy and circular dichroism-based measurements on mixtures of H1 and ParaT confirm this hypothesis. Human sperm nuclei challenged with ParaT become highly decondensed, whereas overexpression of green fluorescent protein- or FLAG-tagged protein in HeLa cells induces global chromatin decondensation and increases the accessibility of chromatin to micrococcal nuclease digestion. Our data suggest a role of parathymosin in the remodeling of higher order chromatin structure through modulation of H1 interaction with nucleosomes and point to its involvement in chromatin-dependent functions.
Collapse
Affiliation(s)
- Goran Martic
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
55
|
Karetsou Z, Martic G, Tavoulari S, Christoforidis S, Wilm M, Gruss C, Papamarcaki T. Prothymosin alpha associates with the oncoprotein SET and is involved in chromatin decondensation. FEBS Lett 2005; 577:496-500. [PMID: 15556635 DOI: 10.1016/j.febslet.2004.09.091] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 09/23/2004] [Indexed: 11/26/2022]
Abstract
Prothymosin alpha (ProTalpha) is a histone H1-binding protein that interacts with the transcription coactivator CREB-binding protein and potentiates transcription. Based on coimmunoprecipitation and mammalian two-hybrid assays, we show here that ProTalpha forms a complex with the oncoprotein SET. ProTalpha efficiently decondenses human sperm chromatin, while overexpression of GFP-ProTalpha in mammalian cells results in global chromatin decondensation. These results indicate that decondensation of compacted chromatin fibers is an important step in the mechanism of ProTalpha function.
Collapse
Affiliation(s)
- Zoe Karetsou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 451 10 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
56
|
Nair SS, Mishra SK, Yang Z, Balasenthil S, Kumar R, Vadlamudi RK. Potential Role of a Novel Transcriptional Coactivator PELP1 in Histone H1 Displacement in Cancer Cells. Cancer Res 2004; 64:6416-23. [PMID: 15374949 DOI: 10.1158/0008-5472.can-04-1786] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The estrogen receptor plays an important role in breast cancer progression. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), also called modulator of nongenomic activity of estrogen receptor (MNAR), a novel coactivator of estrogen receptor, modulates estrogen receptor transactivation functions. The mechanisms by which PELP1 modulates estrogen receptor genomic functions is not known. Here, using biochemical and scanning confocal microscopic analysis, we have demonstrated nuclear localization and functional implications of PELP1. Subnuclear fractionation showed PELP1 association with chromatin and nuclear matrix fractions. Ligand stimulation promoted recruitment of PELP1 to 17beta-estradiol responsive promoters, its colocalization with acetylated H3, and increased PELP1-associated histone acetyltransferase enzymatic activity. Far Western analysis revealed that PELP1 interacts with histone 1 and 3, with more preference toward histone 1. Using deletion analysis, we have identified the PELP1 COOH-terminal region as the histone 1 binding site. The PELP1 mutant lacking histone 1-binding domain acts as a dominant-negative and blocks estrogen receptor alpha-mediated transcription. Chromatin immunoprecipitation analysis showed a cyclic association and dissociation of PELP1 with the promoter, with recruitment of histone 1 and PELP1 occurring in opposite phases. PELP1 overexpression increased the micrococcal nuclease sensitivity of estrogen response element-containing nucleosomes. Our results provide novel insights about the transcription regulation of PELP1 and suggest that PELP1 participates in chromatin remodeling activity via displacement of histone 1 in cancer cells.
Collapse
Affiliation(s)
- Sujit S Nair
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
Much work has been focused on the pathways that restore the integrity of the genome after different kinds of lesions, especially double-strand breaks. A classical method to investigate double-strand break repair is the incubation of a DNA substrate with cell-free extracts. In these end-joining assays, the DNA is efficiently ligated by the proteins present in the extract, generating circular molecules and/or multimers. In contrast, using a similar in vitro system, we detected DNA cleavage rather than end ligation. When comparing our results with previous works, a paradox emerges: lower amounts of DNA become multimerized instead of degraded and higher amounts of DNA are degraded rather than multimerized. Here, we have demonstrated that when the DNA/protein ratio is low enough, the DNA-binding proteins of the nuclear extract protect the DNA substrate, avoiding DNA degradation and vice versa. Therefore, the variation of the DNA/protein ratio is enough to switch the outcome of the experiment from a DNA cleavage assay to a typical end-joining assay.
Collapse
Affiliation(s)
- Miguel G Blanco
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, A Coruna, Spain
| | | | | |
Collapse
|
58
|
Hannappel E, Huff T. The thymosins. Prothymosin alpha, parathymosin, and beta-thymosins: structure and function. VITAMINS AND HORMONES 2003; 66:257-96. [PMID: 12852257 DOI: 10.1016/s0083-6729(03)01007-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The studies on thymosins were initiated in 1965, when the group of A. White searched for thymic factors responsible for the physiological functions of thymus. To restore thymic functions in thymic-deprived or immunodeprived animals, as well as in humans with primary immuno-deficiency diseases and in immunosuppressed patients, a standardized extract from bovine thymus gland called thymosin fraction 5 was prepared. Thymosin fraction 5 indeed improved immune response. It turned out that thymosin fraction 5 consists of a mixture of small polypeptides. Later on, several of these peptides (polypeptide beta 1, thymosin alpha 1, prothymosin alpha, parathymosin, and thymosin beta 4) were isolated and tested for their biological activity. The research of many groups has indicated that none of the isolated peptides is really a thymic hormone; nevertheless, they are biologically important peptides with diverse intracellular and extracellular functions. Studies on these functions are still in progress. The current status of knowledge of structure and functions of the thymosins is discussed in this review.
Collapse
Affiliation(s)
- Ewald Hannappel
- Institute for Biochemistry/Faculty of Medicine, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | |
Collapse
|
59
|
Abstract
The estrogen receptor (ER), a member of the nuclear hormone receptor superfamily, is a hormone-regulated transcription factor that mediates the effects of estrogens and antiestrogens in breast cancer and other estrogen target cells. Because of the role of estrogens in promoting the growth and progression of breast cancer, there is great interest in exploring ways to functionally inactivate the ER, thereby suppressing ER-mediated gene expression and cell proliferation. These approaches have involved the use of antiestrogens such as tamoxifen, dominant negative ERs and, more recently, the use of corepressors. Through the use of two-hybrid screening, we have recently identified a selective repressor of estrogen receptor activity (REA). This protein is recruited to the hormone-occupied ER and selectively represses its transcriptional activity but not the other steroid and non-steroid nuclear receptors. REA also interacts with a protein, prothymosin-alpha (PTalpha), that selectively enhances ER transcriptional activity by recruiting the repressive REA protein away from ER. Analysis of the mechanisms underlying the activities of these two proteins highlights a new role for REA and PTalpha as activity-modulating proteins that confer receptor specificity.
Collapse
Affiliation(s)
- Paolo G V Martini
- Department of Molecular and Integrative Physiology, College of Medicine, University of Illinois, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
60
|
Abstract
Eukaryotic DNA is organized in a complex structure called chromatin. Although a primary function of chromatin is compaction of DNA, this must done such that the underlying DNA is potentially accessible to factor-mediated regulatory responses. Chromatin structure clearly plays a dominant role in regulating much of eukaryotic transcription. The demonstration that reversible covalent modification of the core histones contribute to transcriptional activation and repression by altering chromatin structure and the identification of numerous ATP-dependent chromatin remodeling enzymes provide strong support for this view. Chromatin is much more dynamic than was previously thought and regulation of the dynamic properties of chromatin is a key aspect of gene regulation. This review will focus on recent attempts to elucidate the specific contribution of histone H1 to chromatin-mediated regulation of gene expression.
Collapse
Affiliation(s)
- David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, 39216, USA.
| |
Collapse
|
61
|
Sarandeses CS, Covelo G, Díaz-Jullien C, Freire M. Prothymosin alpha is processed to thymosin alpha 1 and thymosin alpha 11 by a lysosomal asparaginyl endopeptidase. J Biol Chem 2003; 278:13286-93. [PMID: 12554742 DOI: 10.1074/jbc.m213005200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymosin alpha(1) (T alpha(1)) and thymosin T alpha(11) (T alpha(11)) are polypeptides with immunoregulatory properties first isolated from thymic extracts, corresponding to the first 28 and 35 amino acid residues, respectively, of prothymosin alpha (ProT alpha), a protein involved in chromatin remodeling. It has been widely supposed that these polypeptides are not natural products of the in vivo processing of ProT alpha, since neither was found in extracts in which proteolysis was prevented. Here we show that a lysosomal asparaginyl endopeptidase is able to process ProT alpha to generate T alpha(1) and T alpha(11). In view of its catalytic properties and structural and immunological analyses, this protease was identified as mammalian legumain. It selectively cleaves some of the asparaginyl-glycine residues in the ProT alpha sequence; specifically, Asn(28)-Gly(29) and Asn(35)-Gly(36) residues are cleaved with similar efficiency in vitro to generate T alpha(1) and T alpha(11), respectively. By contrast T alpha(1) is the main product detected in vivo, free in the cytosol, at concentrations similar to that of ProT alpha. The data here reported demonstrate that T alpha(1) is not an artifact but rather is naturally present in diverse mammalian tissues and raise the possibility that it has a functional role.
Collapse
Affiliation(s)
- Concepción S Sarandeses
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | |
Collapse
|
62
|
Knight JS, Lan K, Subramanian C, Robertson ES. Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines. J Virol 2003; 77:4261-72. [PMID: 12634383 PMCID: PMC150657 DOI: 10.1128/jvi.77.7.4261-4272.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is a known regulatory transcription factor that has been shown to interact with histone deacetylase 1 (HDAC1) when cotransfected in human cell lines and by in vitro binding experiments. Previous studies have shown that EBNA3C interacts with p300 and prothymosin alpha (ProTalpha) in EBV-infected cells and may be involved in recruiting acetyltransferases to the chromatin for acetylation of histones and transcriptional activation. EBNA3C has also been shown to function as a repressor of transcription when directed to promoters. In this report, we show that EBNA3C complexed with ProTalpha can also recruit deacetylase activity and associates in a complex that includes HDAC1 and HDAC2 in human B cells. A complex of EBNA3C and ProTalpha coimmunoprecipitated with HDAC1 and HDAC2 in cell lines stably expressing EBNA3C. Additionally, this complex associated with the mSin3A and NCoR corepressors in EBNA3C-expressing cell lines and may function in a complex with additional transcription factors known to be repressors of transcription. EBNA3C in complex with ProTalpha recruited deacetylase activity in cell lines stably expressing EBNA3C, and this activity was shown to be partially sensitive to trichostatin A (TSA). This suggests an association with other deacetylases that are insensitive to the general inhibitory effects of TSA, as the entire activity was not abolished in multiple assays. The association between EBNA3C and the corepressors as well as HDACs is likely to depend on the presence of ProTalpha in the complex. Immunoprecipitation with anti-ProTalpha antibody immunoprecipitated EBNA3C and the other repressors, whereas immunoprecipitation with anti-EBNA3C antibody resulted in little or no association with these molecules associated with transcription repression. Clearly, EBNA3C functions as a component of a number of dynamic complexes which function in repression and activation of transcription.
Collapse
MESH Headings
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/virology
- Cell Line
- Cell Transformation, Viral
- Epstein-Barr Virus Nuclear Antigens/chemistry
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/metabolism
- Histone Deacetylases/metabolism
- Humans
- Models, Biological
- Nuclear Proteins/metabolism
- Nuclear Receptor Co-Repressor 1
- Precipitin Tests
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Protein Structure, Tertiary
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Repressor Proteins/metabolism
- Sin3 Histone Deacetylase and Corepressor Complex
- Thymosin/analogs & derivatives
- Thymosin/genetics
- Thymosin/metabolism
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jason S Knight
- Department of Microbiology and Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
63
|
Alekseev OM, Bencic DC, Richardson RT, Widgren EE, O'Rand MG. Overexpression of the Linker histone-binding protein tNASP affects progression through the cell cycle. J Biol Chem 2003; 278:8846-52. [PMID: 12509435 DOI: 10.1074/jbc.m210352200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NASP is an H1 histone-binding protein that is cell cycle-regulated and occurs in two major forms: tNASP, found in gametes, embryonic cells, and transformed cells; and sNASP, found in all rapidly dividing somatic cells (Richardson, R. T., Batova, I. N., Widgren, E. E., Zheng, L. X., Whitfield, M., Marzluff, W. F., and O'Rand, M. G. (2000) J. Biol. Chem. 275, 30378-30386). When full-length tNASP fused to green fluorescent protein (GFP) is transiently transfected into HeLa cells, it is efficiently transported into the nucleus within 2 h after translation in the cytoplasm, whereas the NASP nuclear localization signal (NLS) deletion mutant (NASP-DeltaNLS-GFP) is retained in the cytoplasm. In HeLa cells synchronized by a double thymidine block and transiently transfected to overexpress full-length tNASP or NASP-DeltaNLS, progression through the G(1)/S border is delayed. Cells transiently transfected to overexpress the histone-binding site (HBS) deletion mutant (NASP-DeltaHBS) or sNASP were not delayed in progression through the G(1)/S border. By using a DNA supercoiling assay, in vitro binding data demonstrate that H1 histone-tNASP complexes can transfer H1 histones to DNA, whereas NASP-DeltaHBS cannot. Measurement of NASP mobility in the nucleus by fluorescence recovery after photobleaching indicates that NASP mobility is virtually identical to that reported for H1 histones. These data suggest that NASP-H1 complexes exist in the nucleus and that tNASP can influence cell cycle progression through the G(1)/S border through mediation of DNA-H1 histone binding.
Collapse
Affiliation(s)
- Oleg M Alekseev
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill 27599-7090, USA
| | | | | | | | | |
Collapse
|
64
|
Bianco NR, Montano MM. Regulation of prothymosin alpha by estrogen receptor alpha: molecular mechanisms and relevance in estrogen-mediated breast cell growth. Oncogene 2002; 21:5233-44. [PMID: 12149645 DOI: 10.1038/sj.onc.1205645] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2002] [Revised: 05/03/2002] [Accepted: 05/07/2002] [Indexed: 12/25/2022]
Abstract
Prothymosin alpha (PTalpha) is a small highly acidic protein found in the nuclei of virtually all mammalian tissues. Its high conservation in mammals and wide tissue distribution suggest an essential biological role. While the exact mechanism of action of PTalpha remains elusive, the one constant has been its relationship with the proliferative state of the cell and its requirement for cellular growth and survival. Recently PTalpha was found to promote transcriptional activity by sequestering the anticoactivator, REA from the Estrogen Receptor (ER) complex. We now report that Estradiol (E2) upregulates PTalpha mRNA and protein expression. Further studies indicate that ERalpha regulates PTalpha gene transcriptional activity. We have also delimited the region of PTalpha gene promoter involved in ERalpha-mediated transcriptional regulation and identified a novel ERalpha-binding element. Increased intracellular PTalpha expression in the presence of estrogens is accompanied by increased nuclear/decreased cytoplasmic localization. Increased nuclear expression of PTalpha is correlated with increased proliferation as measured by expression of Ki67 nuclear antigen. Conversely, inhibition of nuclear PTalpha expression in breast cancer cells using antisense methodology resulted in the inhibition of E2-induced breast cancer cell proliferation. Overall these studies underscore the importance of PTalpha in estrogen-induced breast cell proliferation.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Breast Neoplasms/metabolism
- Cell Division/physiology
- Chloramphenicol O-Acetyltransferase/metabolism
- DNA Primers/chemistry
- Electrophoretic Mobility Shift Assay
- Estradiol/pharmacology
- Estrogen Receptor alpha
- Gene Deletion
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Mutagenesis, Site-Directed
- Polymerase Chain Reaction
- Prohibitins
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Messenger/metabolism
- Receptors, Estrogen/physiology
- Retroviridae
- Thymosin/analogs & derivatives
- Thymosin/genetics
- Thymosin/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Nicole R Bianco
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, OH 44122, USA
| | | |
Collapse
|
65
|
de la Fuente C, Santiago F, Deng L, Eadie C, Zilberman I, Kehn K, Maddukuri A, Baylor S, Wu K, Lee CG, Pumfery A, Kashanchi F. Gene expression profile of HIV-1 Tat expressing cells: a close interplay between proliferative and differentiation signals. BMC BIOCHEMISTRY 2002; 3:14. [PMID: 12069692 PMCID: PMC116586 DOI: 10.1186/1471-2091-3-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Accepted: 06/10/2002] [Indexed: 11/15/2022]
Abstract
BACKGROUND Expression profiling holds great promise for rapid host genome functional analysis. It is plausible that host expression profiling in an infection could serve as a universal phenotype in virally infected cells. Here, we describe the effect of one of the most critical viral activators, Tat, in HIV-1 infected and Tat expressing cells. We utilized microarray analysis from uninfected, latently HIV-1 infected cells, as well as cells that express Tat, to decipher some of the cellular changes associated with this viral activator. RESULTS Utilizing uninfected, HIV-1 latently infected cells, and Tat expressing cells, we observed that most of the cellular host genes in Tat expressing cells were down-regulated. The down-regulation in Tat expressing cells is most apparent on cellular receptors that have intrinsic receptor tyrosine kinase (RTK) activity and signal transduction members that mediate RTK function, including Ras-Raf-MEK pathway. Co-activators of transcription, such as p300/CBP and SRC-1, which mediate gene expression related to hormone receptor genes, were also found to be down-regulated. Down-regulation of receptors may allow latent HIV-1 infected cells to either hide from the immune system or avoid extracellular differentiation signals. Some of the genes that were up-regulated included co-receptors for HIV-1 entry, translation machinery, and cell cycle regulatory proteins. CONCLUSIONS We have demonstrated, through a microarray approach, that HIV-1 Tat is able to regulate many cellular genes that are involved in cell signaling, translation and ultimately control the host proliferative and differentiation signals.
Collapse
Affiliation(s)
- Cynthia de la Fuente
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Francisco Santiago
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Longwen Deng
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Carolyne Eadie
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Irene Zilberman
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Kylene Kehn
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Anil Maddukuri
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Shanese Baylor
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Kaili Wu
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Chee Gun Lee
- Department of Biochemistry and Molecular Biology UMDNJ-New Jersey Medical School Newark, NJ 07103, USA
| | - Anne Pumfery
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| | - Fatah Kashanchi
- Department of Biochemistry and Molecular Biology George Washington University School of Medicine Washington DC, 20037, USA
| |
Collapse
|
66
|
Subramanian C, Hasan S, Rowe M, Hottiger M, Orre R, Robertson ES. Epstein-Barr virus nuclear antigen 3C and prothymosin alpha interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. J Virol 2002; 76:4699-708. [PMID: 11967287 PMCID: PMC136123 DOI: 10.1128/jvi.76.10.4699-4708.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus nuclear antigen 3C (EBNA3C), encoded by Epstein-Barr virus (EBV), is essential for mediating transformation of human B lymphocytes. Previous studies demonstrated that EBNA3C interacts with a small, nonhistone, highly acidic, high-mobility group-like nuclear protein prothymosin alpha (ProT(alpha)) and the transcriptional coactivator p300 in complexes from EBV-infected cells. These complexes were shown to be associated with histone acetyltransferase (HAT) activity in that they were able to acetylate crude histones in vitro. In this report we show that ProT(alpha) interacts with p300 similarly to p53 and other known oncoproteins at the CH1 amino-terminal domain as well as at a second domain downstream of the bromodomain which includes the CH3 region and HAT domain. Similarly, EBNA3C also interacts with p300 at regions which include the CH1 and CH3/HAT domains, suggesting that ProT(alpha) and EBNAC3C may interact in a complex with p300. We also show that ProT(alpha) activates transcription when targeted to promoters by fusion to the GAL4 DNA binding domain and that this activation is enhanced by the addition of an exogenous source of p300 under the control of a heterologous promoter. This overall activity is down-modulated in the presence of EBNA3C. These results further establish the interaction of cellular coactivator p300 with ProT(alpha) and demonstrate that the associated activities resulting from this interaction, which plays a role in acetylation of histones and coactivation, can be regulated by EBNA3C. Furthermore, this study establishes for the first time a transcriptional role for ProT(alpha) in recruitment or stabilization of coactivator p300, as well as other basal transcription factors, at the nucleosomes for regulation of transcription.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Microbiology and Immunology and the Comprehensive Cancer and Geriatrics Center, University of Michigan Medical School, Ann Arbor, Michigan 48109-0934, USA
| | | | | | | | | | | |
Collapse
|
67
|
Karetsou Z, Kretsovali A, Murphy C, Tsolas O, Papamarcaki T. Prothymosin alpha interacts with the CREB-binding protein and potentiates transcription. EMBO Rep 2002; 3:361-6. [PMID: 11897665 PMCID: PMC1084059 DOI: 10.1093/embo-reports/kvf071] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prothymosin alpha (ProTalpha) is a histone H1-binding protein localized in sites of active transcription in the nucleus. We report here that ProTalpha physically interacts with the CREB-binding protein (CBP), which is a versatile transcription co-activator. Confocal laser scanning microscopy reveals that ProTalpha partially colocalizes with CBP in discrete subnuclear domains. Using transient transfections, we show that ProTalpha synergizes with CBP and stimulates AP1- and NF-kappaB-dependent transcription. Furthermore, overexpression of ProTalpha enhances the transactivation potential of CBP. These findings reveal a new function for ProTalpha in transcription activation, probably through CBP-mediated recruitment to different promoters.
Collapse
Affiliation(s)
- Zoe Karetsou
- Laboratory of Biological Chemistry, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | | | | | | | |
Collapse
|
68
|
Parseghian MH, Newcomb RL, Hamkalo BA. Distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin II: distribution in human adult fibroblasts. J Cell Biochem 2002; 83:643-59. [PMID: 11746507 DOI: 10.1002/jcb.1224] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
For nearly twenty years researchers have observed changes in the histone H1 subtype content of tissues as an organism develops into an adult. To better understand the consequences of such changes, immunofractionation of chromatin using previously characterized antibodies specific for human H1 subtypes was employed in the analysis of a fibroblast cell strain derived from a 37-year-old individual. DNAs isolated from immunoprecipitates were probed for the existence of a variety of DNA sequences. The results presented lend further support to a previously-proposed model (Parseghian et al. [2000] Chromosome Res 8:405-424) in which transcription of a sequence is accompanied by the selective depletion of subtypes. The data also suggest that there is more total H1 on actively transcribed sequences in these cells as compared to fetal fibroblasts and that there is less difference in the subtype compositions of active genes vs. inactive sequences in this strain. Specifically, the consequences of these changes appear to correlate with the attenuation of the heat shock response in aging fibroblasts. In a broader context, these results could explain why there are reductions in transcription in cells from mature tissue that approach senescence.
Collapse
Affiliation(s)
- M H Parseghian
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, USA
| | | | | |
Collapse
|
69
|
Aniello F, Branno M, De Rienzo G, Ferrara D, Palmiero C, Minucci S. First evidence of prothymosin alpha in a non-mammalian vertebrate and its involvement in the spermatogenesis of the frog Rana esculenta. Mech Dev 2002; 110:213-7. [PMID: 11744386 DOI: 10.1016/s0925-4773(01)00569-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cDNA clone encoding for a Prothymosin alpha (Prot-alpha) has been isolated and characterized from the testis of the frog Rana esculenta. Frog Prothymosin alpha (fProt-alpha) predicted a 109 amino acid protein with a high homology to the mammalian Prot-alpha. fProt-alpha contains 28 aspartic and 25 glutamic acid residues and presents the typical basic KKQK amino acid sequence in the close carboxyl terminal region. Northern blot analysis revealed that fProt-alpha is highly expressed in the testis. A different expression of fProt-alpha transcript was found during the frog reproductive cycle with a peak in September/October in concomitance with germ cell maturation, strongly suggesting a role for this protein in the testicular activity. In situ hybridization evidenced that the only germ cells expressing fProt-alpha are the primary and secondary spermatocytes; in addition, the hybridization signal was stronger in the October testis. Taken together, our findings indicate that fProt-alpha might contribute to the efficiency of frog spermatogenesis with a role during the meiosis. This study is the first report on the isolation and characterization of a Prot-alpha in a non-mammalian vertebrate. In addition, our results indicate that the testis of the frog R. esculenta may be a useful model to increase the knowledge concerning the physiological role of Prot-alpha in vertebrates.
Collapse
Affiliation(s)
- Francesco Aniello
- Dipartimento di Genetica, Biologia Generale e Molecolare Università degli Studi di Napoli Federico II - Via Mezzocannone 8, 80138 Naples, Italy
| | | | | | | | | | | |
Collapse
|
70
|
Piñeiro A, Begoña Bugia M, Pilar Arias M, Cordero OJ, Nogueira M. Identification of receptors for prothymosin alpha on human lymphocytes. Biol Chem 2001; 382:1473-82. [PMID: 11727831 DOI: 10.1515/bc.2001.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prothymosin alpha (ProTalpha) is a highly conserved and widely distributed protein whose physiological functions remain elusive. In previous work we identified high and low affinity-binding sites for ProTalpha in lymphoid cells. Here we demonstrate, by affinity cross-linking and affinity chromatography, the existence of three binding partners (31, 29, and 19 kDa) for ProTalpha in the membrane of PHA-activated lymphoblasts. These surface molecules possess the expected affinity and specificity for a ProTalpha receptor. Examination of the expression of this complex of molecules by flow cytometry reveals that they bind ProTalpha in a specific and saturable way. In addition, the distribution of the receptor on the cell surface was studied by fluorescence microscopy; a cap-like structure at one of the poles of the cells was identified. These results represent a new and promising approach in the research on ProTalpha, opening the way toward the understanding of the molecular mechanism of action of this protein.
Collapse
Affiliation(s)
- A Piñeiro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
71
|
Martini PG, Katzenellenbogen BS. Regulation of prothymosin alpha gene expression by estrogen in estrogen receptor-containing breast cancer cells via upstream half-palindromic estrogen response element motifs. Endocrinology 2001; 142:3493-501. [PMID: 11459795 DOI: 10.1210/endo.142.8.8314] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prothymosin alpha (PTalpha), a protein associated with cell proliferation and chromatin remodeling, and found to selectively enhance ER transcriptional activity by interacting with a repressor of ER activity, is shown to be a primary response gene to estrogen. Prothymosin alpha mRNA was rapidly increased by estrogen, followed by a 6-fold increase in prothymosin alpha protein content in ER-containing breast cancer cells. Analysis of the prothymosin alpha promoter and 5'-flanking region, and electrophoretic gel mobility shift studies showed the strong inducibility by the estradiol-ER complex to be mediated by two consensus half-palindromic estrogen response elements at -750 and -1051, which directly bind the ER. Estrogenic stimulation of prothymosin alpha required a DNA binding form of ER with a functional activation function-2 domain. The prothymosin alpha 5'-regulatory region also contains multiple Sp1 sites. Although addition of Sp1 did not further enhance estradiol-ER stimulated prothymosin alpha transcriptional activity in breast cancer cells, transfection and response element mutagenesis studies using Drosophila cells, which are deficient in Sp1, revealed that Sp1 and the estradiol occupied-ER can each activate the prothymosin alpha gene independently of the other and act in an additive manner. These observations, documenting robust prothymosin alpha up-regulation by the estradiol-ER complex via widely spaced half-palindromic estrogen response element motifs, are reminiscent of those shown previously for the ovalbumin gene and suggest that the use of multiple half response elements may be a more common mode for regulation of gene expression by the ER than previously appreciated. In addition, these observations suggest interrelationships between cell proliferation and gene transcriptional activities and indicate a positive mechanism by which PTalpha, which increases ER transcriptional effectiveness, is itself up-regulated by the estrogen-ER complex.
Collapse
Affiliation(s)
- P G Martini
- Department of Molecular and Integrative Physiology, University of Illinois and College of Medicine, Urbana, Illinois 61801, USA
| | | |
Collapse
|
72
|
Parseghian MH, Hamkalo BA. A compendium of the histone H1 family of somatic subtypes: An elusive cast of characters and their characteristics. Biochem Cell Biol 2001. [DOI: 10.1139/o01-099] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The last 35 years has seen a substantial amount of information collected about the somatic H1 subtypes, yet much of this work has been overshadowed by research into highly divergent isoforms of H1, such as H5. Reports from several laboratories in the past few years have begun to call into question some of the traditional views regarding the general function of linker histones and their heterogeneity. Hence, the impression in some circles is that less is known about these ubiquitous nuclear proteins as compared with the core histones. The goal of the following review is to acquaint the reader with the ubiquitous somatic H1s by categorizing them and their characteristics into several classes. The reasons for our current state of misunderstanding is put into a historical context along with recent controversies centering on the role of H1 in the nucleus. Finally, we propose a model that may explain the functional role of H1 heterogeneity in chromatin compaction.Key words: histone H1, linker histones, chromatin organization, chromatin compaction, heat shock.
Collapse
|
73
|
Gunjan A, Sittman DB, Brown DT. Core histone acetylation is regulated by linker histone stoichiometry in vivo. J Biol Chem 2001; 276:3635-40. [PMID: 11062242 DOI: 10.1074/jbc.m007590200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the relationship between linker histone stoichiometry and the acetylation of core histones in vivo. Exponentially growing cell lines induced to overproduce either of two H1 variants, H1(0) or H1c, displayed significantly reduced rates of incorporation of [(3)H]acetate into all four core histones. Pulse-chase experiments indicated that the rates of histone deacetylation were similar in all cell lines. These effects were also observed in nuclei isolated from these cells upon labeling with [(3)H]acetyl-CoA. Nuclear extracts prepared from control and H1-overexpressing cell lines displayed similar levels of histone acetylation activity on chromatin templates prepared from control cells. In contrast, extracts prepared from control cells were significantly less active on chromatin templates prepared from H1-overexpressing cells than on templates prepared from control cells. Reduced levels of acetylation in H1-overproducing cell lines do not appear to depend on higher order chromatin structure, because it persists even after digestion of the chromatin with micrococcal nuclease. The results suggest that alterations in chromatin structure, resulting from changes in linker histone stoichiometry may modulate the levels or rates of core histone acetylation in vivo.
Collapse
Affiliation(s)
- A Gunjan
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | |
Collapse
|
74
|
Orre RS, Cotter MA, Subramanian C, Robertson ES. Prothymosin alpha functions as a cellular oncoprotein by inducing transformation of rodent fibroblasts in vitro. J Biol Chem 2001; 276:1794-9. [PMID: 11036085 DOI: 10.1074/jbc.m008560200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothymosin alpha (ProTalpha), a cellular molecule known to be associated with cell proliferation, is transcriptionally up-regulated on expression of c-myc and interacts with histones in vitro and associates with histone H1 in cells. Previous studies have also shown that ProTalpha is involved in chromatin remodeling. Recent studies have shown that ProTalpha interacts with the acetyl transferase p300 and an essential Epstein-Barr virus protein, EBNA3C, involved in regulation of viral and cellular transcription. These studies suggest a potential involvement in regulation of histone acetylation through the association with these cellular and viral factors. In the current studies, we show that heterologous expression of ProTalpha in the Rat-1 rodent fibroblast cell line results in increased proliferation, loss of contact inhibition, anchorage-independent growth, and decreased serum dependence. These phenotypic changes seen in transfected Rat-1 cells are similar to those observed with a known oncoprotein, Ras, expressed under the control of a heterologous promoter and are characteristic oncogenic growth properties. These results demonstrate that the ProTalpha gene may function as an oncogene when stably expressed in Rat-1 cells and may be an important downstream cellular target for inducers of cellular transformation, which may include Epstein-Barr virus and c-myc.
Collapse
Affiliation(s)
- R S Orre
- Department of Microbiology and Immunology and Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | |
Collapse
|
75
|
Trumbore MW, Berger SL. Prothymosin alpha is a nonspecific facilitator of nuclear processes: studies of run-on transcription. Protein Expr Purif 2000; 20:414-20. [PMID: 11087681 DOI: 10.1006/prep.2000.1332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of prothymosin alpha on transcriptional elongation has been examined. The addition of prothymosin alpha to COS-1 and NIH3T3 cell nuclei engaged in run-on transcription stimulated RNA synthesis approximately two- to threefold in a dose-dependent manner. Polyglutamic acid or a random polypeptide composed of glutamic acid, alanine, and tyrosine, did not substitute for prothymosin alpha. Enhanced transcription occurred in the presence of high and low doses of actinomycin D and in the presence of alpha-amanitin, but not in nuclear extracts. The stimulatory effect was dependent on a limiting concentration of one nucleoside triphosphate and was nearly abrogated by saturating levels of precursors. In the presence of Sarkosyl, which itself increases transcription, prothymosin alpha was almost ineffectual. The data are consistent with a model in which prothymosin alpha does not interact directly with polymerases but, instead, nonspecifically decreases the barriers to diffusion of charged molecules in electrostatically charged environments.
Collapse
Affiliation(s)
- M W Trumbore
- Section on Genes and Gene Products, National Cancer Institute, National Institutes of Health, Building 8, Room 311A, Bethesda, Maryland 20892-0480, USA
| | | |
Collapse
|
76
|
Enkemann SA, Ward RD, Berger SL. Mobility within the nucleus and neighboring cytosol is a key feature of prothymosin-alpha. J Histochem Cytochem 2000; 48:1341-55. [PMID: 10990488 DOI: 10.1177/002215540004801005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prothymosin alpha is a small, unfolded, negatively charged, poorly antigenic mammalian protein with a potent nuclear localization signal. Although it is apparently essential for growth, its precise function is unknown. We examined the location and behavior of the protein bearing different epitope tags using in situ immunolocalization in COS-1 and NIH3T3 cells. Tagged prothymosin alpha appeared to be punctate and widely dispersed throughout the nucleus, with the exception of the nucleolus. A tiny cytoplasmic component, which persisted in the presence of cycloheximide and actinomycin D during interphase, became pronounced immediately before, during, and after mitosis. When nuclear uptake was abrogated, small tagged prothymosin alpha molecules, but not prothymosin alpha fused to beta-galactosidase, accumulated significantly in the cytoplasm. Tagged prothymosin alpha shared domains with mobile proteins such as Ran, transportin, and karyopherin beta, which also traverse the nuclear membrane, and co-localized with active RNA polymerase II. Mild digitonin treatment resulted in nuclei devoid of prothymosin alpha. The data do not support tight binding to any nuclear component. Therefore, we propose that prothymosin alpha is a highly diffusible bolus of salt and infer that it facilitates movement of charged molecules in highly charged environments within and near the nucleus.
Collapse
Affiliation(s)
- S A Enkemann
- Section on Genes and Gene Products, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
77
|
Zlatanova J, Caiafa P, Van Holde K. Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J 2000; 14:1697-704. [PMID: 10973918 DOI: 10.1096/fj.99-0869rev] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, the connection between chromatin structure and its transcriptional activity has attracted considerable experimental effort. The post-translational modifications to both the core histones and the linker histones are finely tuned through interactions with transcriptional regulators and change chromatin structure in a way to allow transcription to occur. Here we review evidence for the involvement of linker histones in transcriptional regulation and suggest a scenario in which the reversible and controllable binding/displacement of proteins of this class to the nucleosome entry/exit point determine the accessibility of the nucleosomal DNA to the transcriptional machinery.
Collapse
Affiliation(s)
- J Zlatanova
- Biochip Technology Center, Argonne National Laboratory, Argonne, Illinois 60439-4833, USA.
| | | | | |
Collapse
|
78
|
Abstract
Prothymosin alpha (ProTalpha) is a highly acidic and small protein of only 111 amino acids with an unusual primary structure. One would expected it to play an essential role in the organism, as it has a wide distribution and is high conserved among mammals, yet its exact function remains elusive. Despite the number of effects described for ProTalpha, intracellular and extracellular, none are accepted as its physiological role. Furthermore, many other aspects of its biology still remain obscure. In this review, we discuss the structural properties, location, gene family, functions and immunomodulatory activities of and cellular receptors for ProTalpha. These topics are addressed in an attempt to reconcile opposing outlooks while emphasizing those points where scant investigations do exist. We have also re-evaluated some previous results in light of the structural properties of ProTalpha and have found that molecular mimetism could be the underlying basis. This molecular mimicry hypothesis provides a clue that must not be overlooked for a realistic appraisal of future results.
Collapse
Affiliation(s)
- A Piñeiro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela. 15706, Santiago de Compostela, Spain
| | | | | |
Collapse
|
79
|
Martini PG, Delage-Mourroux R, Kraichely DM, Katzenellenbogen BS. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity. Mol Cell Biol 2000; 20:6224-32. [PMID: 10938099 PMCID: PMC86097 DOI: 10.1128/mcb.20.17.6224-6232.2000] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We find that prothymosin alpha (PTalpha) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTalpha interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTalpha, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTalpha increases the magnitude of ERalpha transcriptional activity three- to fourfold. It shows lesser enhancement of ERbeta transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTalpha or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTalpha (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTalpha or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTalpha, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTalpha to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain its ability to selectively enhance ER transcriptional activity. These findings highlight a new role for PTalpha as a coregulator activity-modulating protein that confers receptor specificity. Proteins such as PTalpha represent an additional regulatory component that defines a novel paradigm enabling receptor-selective enhancement of transcriptional activity by coactivators.
Collapse
Affiliation(s)
- P G Martini
- Departments of Molecular and Integrative Physiology and Cell and Structural Biology, University of Illinois and College of Medicine, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
80
|
Chichkova NV, Evstafieva AG, Lyakhov IG, Tsvetkov AS, Smirnova TA, Karapetian RN, Karger EM, Vartapetian AB. Divalent metal cation binding properties of human prothymosin alpha. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4745-52. [PMID: 10903508 DOI: 10.1046/j.1432-1327.2000.01529.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The divalent cation binding properties of human prothymosin alpha, an abundant nuclear protein involved in cell proliferation, were evaluated. By using prothymosin alpha retardation on a weak cation chelating resin charged with various divalent cations, specific binding of Zn2+ ions by prothymosin alpha was observed. This finding was further confirmed by the equilibrium dialysis analysis which demonstrated that, within the micromolar range of Zn2+ concentrations, prothymosin alpha could bind up to three zinc ions in the presence of 100 mM NaCl and up to 13 zinc ions in the absence of NaCl. Equilibrium dialysis analysis also revealed that prothymosin alpha could bind Ca2+, although the parameters of Ca2+ binding by prothymosin alpha were less pronounced than those of Zn2+ binding in terms of the number of metal ions bound, the KD values, and the resistance of the bound metal ions to 100 mM NaCl. The effects of Zn2+ and Ca2+ on the interaction of prothymosin alpha with its putative partners, Rev of HIV type 1 and histone H1, were examined. We demonstrated that Rev binds prothymosin alpha, and that prothymosin alpha binding to Rev but not to histone H1 was significantly enhanced in the presence of zinc and calcium ions. Our data suggest that the modes of prothymosin alpha interaction with Rev and histone H1 are distinct and that the observed zinc and calcium-binding properties of prothymosin alpha might be functionally relevant.
Collapse
Affiliation(s)
- N V Chichkova
- Belozersky Institute of Physico-Chemical Biology and Center of Molecular Medicine, Moscow State University, Russia
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Cotter MA, Robertson ES. Modulation of histone acetyltransferase activity through interaction of epstein-barr nuclear antigen 3C with prothymosin alpha. Mol Cell Biol 2000; 20:5722-35. [PMID: 10891508 PMCID: PMC86050 DOI: 10.1128/mcb.20.15.5722-5735.2000] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is essential for EBV-dependent immortalization of human primary B lymphocytes. Genetic analysis indicated that amino acids 365 to 992 are important for EBV-mediated immortalization of B lymphocytes. We demonstrate that this region of EBNA3C critical for immortalization interacts with prothymosin alpha (ProTalpha), a cellular protein previously identified to be important for cell division and proliferation. This interaction maps to a region downstream of amino acid 365 known to be involved in transcription regulation and critical for EBV-mediated transformation of primary B lymphocytes. Additionally, we show that EBNA3C also interacts with p300, a cellular acetyltransferase. This interaction suggests a possible role in regulation of histone acetylation and chromatin remodeling. An increase in histone acetylation was observed in EBV-transformed lymphoblastoid cell lines, which is consistent with increased cellular gene expression. These cells express the entire repertoire of latent nuclear antigens, including EBNA3C. Expression of EBNA3C in cells with increased acetyltransferase activity mediated by the EBV transactivator EBNA2 results in down-modulation of this activity in a dose-responsive manner. The interactions of EBNA3C with ProTalpha and p300 provide new evidence implicating this essential EBV protein EBNA3C in modulating the acetylation of cellular factors, including histones. Hence, EBNA3C plays a critical role in balancing cellular transcriptional events by linking the biological property of mediating inhibition of EBNA2 transcription activation and the observed histone acetyltransferase activity, thereby orchestrating immortalization of EBV-infected cells.
Collapse
Affiliation(s)
- M A Cotter
- Department of Microbiology and Immunology and Cellular and Molecular Biology Program, University of Michigan Medical School, University of Michigan Medical Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
82
|
Iannicola C, Moreno S, Oliverio S, Nardacci R, Ciofi-Luzzatto A, Piacentini M. Early alterations in gene expression and cell morphology in a mouse model of Huntington's disease. J Neurochem 2000; 75:830-9. [PMID: 10899961 DOI: 10.1046/j.1471-4159.2000.0750830.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several mouse models for Huntington's disease (HD) have been produced to date. Based on differences in strain, promoter, construct, and number of glutamines, these models have provided a broad spectrum of neurological symptoms, ranging from simple increases in aggressiveness with no signs of neuropathology, to tremors and seizures in absence of degeneration, to neurological symptoms in the presence of gliosis and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling) positivity, and finally to selective striatal damage associated with electrophysiological and behavioral abnormalities. We decided to analyze the morphology of striatum and hippocampus from a mouse transgenic line obtained by microinjection of exon 1 from the HD gene after introduction of a very high number of CAG repeat units. We found a massive darkening and compacting of striatal and hippocampal neurons in affected mice, associated with a lower degree of more classical apoptotic cell condensation. We then explored whether this morphology could be explained with alterations in gene expression by hybridizing normal and affected total brain RNA to a panel of 588 known mouse cDNAs. We show that some genes are significantly and consistently up-regulated and that others are down-regulated in the affected brains. Here we discuss the possible significance of these alterations in neuronal morphology and gene expression.
Collapse
Affiliation(s)
- C Iannicola
- Department of Biology, University of Rome "Tor Vergata" Rome, Italy.
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
Embryonic stem (ES) cells are derived from the inner cell mass of blastocysts, and in response to retinoic acid (RA) are induced to differentiate to form some of the first distinguishable cell types of early mammalian development. This makes ES cells an attractive model system for studying the initial developmental decisions that occur during embryogenesis and the molecular genetics and associated mechanisms underlying these decisions. Additionally, ES cells are of significant interest to those characterizing various gene functions utilizing transgenic and gene-targeting techniques. With the advent of DNA microarray technology, which allows for the study of expression patterns of a large number of genes simultaneously within a cell type, there is an efficient means of gaining critical insights to the expression, regulation, and function of genes involved in mammalian development for which information is not currently available. To this end, we have utilized Clontech's Atlas Mouse cDNA Expression Arrays to examine the expression of 588 known regulatory genes in D3 ES cells and their RA-induced differentiated progeny. We report that nearly 50% of the regulatory genes are expressed in D3 and/or D3-differentiated cells. Of these genes, the steady-state levels of 18 are down-regulated and 61 are up-regulated by a factor of 2.5-fold or greater. These changes in gene expression are highly reproducible and represent changes in the expression of a variety of molecular markers, including: transcription factors, growth factors and their receptors, cytoskeletal and extracellular matrix proteins, cell surface antigens, and intracellular signal transduction modulators and effectors.
Collapse
Affiliation(s)
- D L Kelly
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | |
Collapse
|
84
|
Vareli K, Frangou-Lazaridis M, van der Kraan I, Tsolas O, van Driel R. Nuclear distribution of prothymosin alpha and parathymosin: evidence that prothymosin alpha is associated with RNA synthesis processing and parathymosin with early DNA replication. Exp Cell Res 2000; 257:152-61. [PMID: 10854063 DOI: 10.1006/excr.2000.4857] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prothymosin alpha and parathymosin are two ubiquitous small acidic nuclear proteins that are thought to be involved in cell cycle progression, proliferation, and cell differentiation. In an effort to investigate the molecular function of the two proteins, we studied their spatial distribution by indirect immunofluorescence labeling and confocal scanning laser microscopy in relation to nuclear components involved in transcription, translation, and splicing. Results indicate that both proteins exhibit a punctuated nuclear distribution and are excluded by nucleoli. The distribution of prothymosin alpha in the nucleus is related to that of transcription sites, whereas the distribution of parathymosin correlates with early replication sites. This implies that prothymosin alpha and parathymosin are involved in transcription and replication, respectively. In addition to the punctate distribution, prothymosin alpha also is found concentrated in 1-6 nuclear domains per cell. These domains are found in more than 80% of randomly growing T24 human bladder carcinoma cells. They have a diameter of 0.2-2.5 microm, their size being inversely related to the number of domains per cell. The domains disappear during mitosis and the protein is excluded from the metaphase chromosomes. Double-labeling experiments associate these prothymosin alpha domains with PML and CstF64 containing nuclear bodies, but not with hnRNP-I containing domains or coiled bodies.
Collapse
Affiliation(s)
- K Vareli
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Greece
| | | | | | | | | |
Collapse
|
85
|
Enkemann SA, Wang RH, Trumbore MW, Berger SL. Functional discontinuities in prothymosin alpha caused by caspase cleavage in apoptotic cells. J Cell Physiol 2000; 182:256-68. [PMID: 10623890 DOI: 10.1002/(sici)1097-4652(200002)182:2<256::aid-jcp15>3.0.co;2-n] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Our study examines the effect of apoptosis on prothymosin alpha, an abundant, nuclear protein intimately involved with proliferation of all mammalian cells. When HeLa cells were treated with actinomycin D, with etoposide, or with staurosporine following synchronization with hydroxyurea, they underwent apoptosis based on several specific criteria, including fragmentation of DNA and activation of specific caspases. Similarly treated NIH3T3 cells arrested and displayed no indicators of apoptosis. In HeLa, but not in NIH3T3 cells, prothymosin alpha levels declined precipitously and a truncated version of the protein was formed. The following observations implicate caspase activity: (1) The truncated polypeptide arose only in the treated HeLa cell cultures. (2) The appearance of the truncated polypeptide coincided with the activation of caspase 3 and the cleavage of poly(ADP-ribose) polymerase, a known caspase substrate. (3) Carbobenzoxy-DEVD-fluoromethylketone, a cell-permeable caspase 3 inhibitor, blocked cleavage and degradation of prothymosin alpha. (4) The same inhibitor, when added to mixed extracts of apoptotic and normal cells, prevented cleavage of intact prothymosin alpha. (5) Recombinant caspase 3 and, to a much lesser extent, caspase 7 truncated purified prothymosin alpha. (6) In HeLa cells, cleavage occurred at three overlapping caspase 3-like sites with the consensus sequence D-X-X-D and released 10 to 14 residues from the carboxyl terminus, including the core nuclear localization signal. Two immediate consequences of the cleavage were observed: truncated prothymosin alpha was no longer confined to the nucleus and it was deficient in phosphate. These data suggest that the disabling of prothymosin alpha is a significant event in apoptosis. J. Cell. Physiol. 182:256-268, 2000. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- S A Enkemann
- Section on Genes and Gene Products, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
86
|
Trompeter HI, Schiermeyer A, Blankenburg G, Hennig E, Söling HD. Factors involved in the cell density-dependent regulation of nuclear/cytoplasmic distribution of the 11.5-kDa Zn(2+)-binding protein (parathymosin-alpha) in rat hepatocytes. J Cell Sci 1999; 112 ( Pt 22):4113-22. [PMID: 10547370 DOI: 10.1242/jcs.112.22.4113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although the 11.5 kDa Zn(2+)-binding protein (ZnBP, parathymosin-alpha) possesses a functional bipartite nuclear localization signal it was found in most tissues in the cytoplasm. The cultivation of freshly isolated rat hepatocytes for 24 hours under standard conditions was associated with an almost complete translocation of ZnBP from the cytoplasm to the nuclei. Here we demonstrate, that this translocation is negatively correlated with cell density. The translocation of ZnBP to the nucleus can be inhibited or abolished by inhibitors of protein synthesis (cycloheximide) or transcription (actinomycin D). Moreover, cycloheximide can induce a relocation of ZnBP to the cytoplasm when applied after the appearance of ZnBP in the nuclei. DMSO, an inhibitor of dedifferentiation of cultured hepatocytes, abolishes also the translocation of ZnBP into the nucleus. Thinly seeded cells keep their ZnBP in the cytoplasm if they are co-cultured with plasma membranes from Morris MH7777 hepatoma cells or antibodies against E-cadherin indicating the involvement of cell adhesion proteins. We have enriched a protein from the cytosol of fresh hepatocytes which inhibits the translocation of ZnBP, but not that of albumin-NLS into the nucleus in a permeabilized cell system. Such an activity could not be found in the cytoplasm of permanent cell lines which harbor ZnBP only in the nucleus. A model for the regulation of the nuclear import of ZnBP is proposed.
Collapse
Affiliation(s)
- H I Trompeter
- Abteilung Klinische Biochemie, Universität Göttingen, Germany
| | | | | | | | | |
Collapse
|
87
|
Abstract
Prothymosin alpha (ProT alpha) is a highly acidic protein widely distributed in mammalian cells. Since its discovery in 1984, the biological role of this protein has been controversial. Initially, ProT alpha was considered a thymic factor with a hormonal-like role in the maturation of T-lymphocytes. However, molecular and cellular analyses led to conclude that ProT alpha is a nuclear protein required in proliferation events while failing to show a clear immunological effect. The involvement of ProT alpha in changes in the compaction state of chromatin has been recently elucidated with the demonstration that this protein induces the unfolding of chromatin fibres in a process that seems to be mediated by the interaction of ProT alpha with histone H1. This finding opens up new perspectives in the study of the dynamics of the genetic material in mammalian cells. Furthermore, the relationship between ProT alpha and apoptosis as well as with proliferation makes this protein an attractive target in the search for modulators of cell death and tumour growth.
Collapse
Affiliation(s)
- F Segade
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
88
|
Gunjan A, Brown DT. Overproduction of histone H1 variants in vivo increases basal and induced activity of the mouse mammary tumor virus promoter. Nucleic Acids Res 1999; 27:3355-63. [PMID: 10454644 PMCID: PMC148570 DOI: 10.1093/nar/27.16.3355] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BALB/c 3T3 cell lines containing integrated copies of the MMTV promoter driving a reporter gene were constructed. Expression vectors in which either of two H1 variants, H10 or H1c, were under control of an inducible promoter were introduced into these lines. Surprisingly, overproduction of either variant resulted in a dramatic increase in basal and hormone-induced expression from the MMTV promoter. H1 overproduction also slowed the loss of MMTV promoter activity associated with prolonged hormone treatment. Transiently transfected MMTV reporter genes, which do not adopt a phased nucleosomal arrangement, do not display increased activity upon H1 overproduction. Thus the effects observed for stable constructs most likely represents a direct effect of H1 on a chromatin-mediated process specific to the nucleosomal structure of the integrated constructs. Induction of increased levels of acetylated core histones by treatment with trichostatin A also potentiated MMTV activity and this effect was additive to that caused by H1 overproduction. However, the effects of TSA treatment, in control or H1-overproducing cells, were eliminated by inhibiting protein synthesis. TSA treatment does not necessarily potentiate MMTV promoter activity by increasing core histone acetylation within the MMTV promoter but perhaps by altering the synthesis of an unlinked transcriptional regulator.
Collapse
Affiliation(s)
- A Gunjan
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | |
Collapse
|
89
|
Enkemann SA, Pavur KS, Ryazanov AG, Berger SL. Does prothymosin alpha affect the phosphorylation of elongation factor 2? J Biol Chem 1999; 274:18644-50. [PMID: 10373476 DOI: 10.1074/jbc.274.26.18644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothymosin alpha is a small, acidic, essential nuclear protein that plays a poorly defined role in the proliferation and survival of mammalian cells. Recently, Vega et al. proposed that exogenous prothymosin alpha can specifically increase the phosphorylation of eukaryotic elongation factor 2 (eEF-2) in extracts of NIH3T3 cells (Vega, F. V., Vidal, A., Hellman, U., Wernstedt, C., and Domínguez, F. (1998) J. Biol. Chem. 273, 10147-10152). Using similar lysates prepared by four methods (detergent lysis, Dounce homogenization, digitonin permeabilization, and sonication) and three preparations of prothymosin alpha, one of which was purified by gentle means (the native protein, and a histidine-tagged recombinant prothymosin alpha expressed either in bacteria or in COS cells), we failed to find a response. A reconstituted system composed of eEF-2, recombinant eEF-2 kinase, calmodulin, and calcium was also unaffected by prothymosin alpha. However, unlike our optimized buffer, Vega's system included a phosphatase inhibitor, 50 mM fluoride, which when evaluated in our laboratories severely reduced phosphorylation of all species. Under these conditions, any procedure that decreases the effective fluoride concentration will relieve the inhibition and appear to activate. Our data do not support a direct relationship between the function of prothymosin alpha and the phosphorylation of eEF-2.
Collapse
Affiliation(s)
- S A Enkemann
- Section on Genes and Gene Products, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|