51
|
Seki K, Fujimori T, Savagner P, Hata A, Aikawa T, Ogata N, Nabeshima Y, Kaechoong L. Mouse Snail family transcription repressors regulate chondrocyte, extracellular matrix, type II collagen, and aggrecan. J Biol Chem 2003; 278:41862-70. [PMID: 12917416 PMCID: PMC2253659 DOI: 10.1074/jbc.m308336200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Snail family genes are conserved among species during evolution and encode transcription factors expressed at different stages of development in different tissues. These genes are involved in a broad spectrum of biological functions: cell differentiation, cell motility, cell cycle regulation, and apoptosis. However, little is known about the target genes involved in these functions. Here we show that mouse Snail family members, Snail (Sna) and Slug (Slugh), are involved in chondrocyte differentiation by controlling the expression of type II collagen (Col2a1) and aggrecan. In situ hybridization analysis of developing mouse limb demonstrated that Snail and Slug mRNAs were highly expressed in hypertrophic chondrocytes. Inversely, the expression of collagen type II mRNA disappeared during hypertrophic differentiation. Snail and Slug mRNA expression was down-regulated during differentiation of the mouse chondrogenic cell line ATDC5 and overexpression of exogenous Snail or Slug in ATDC5 cells inhibited expression of collagen type II and aggrecan mRNA. Reporter analysis revealed Snail and Slug suppressed the promoter activity of Col2a1, and the E-boxes in the promoter region were the responsible element. Gel shift assay demonstrated the binding of Snail to the E-box. Because type II collagen and aggrecan are major functional components of extracellular matrix in cartilage, these results suggest an important role for Snail-related transcription repressors during chondrocyte differentiation.
Collapse
Affiliation(s)
- Kenji Seki
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Thellmann M, Hatzold J, Conradt B. The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 2003; 130:4057-71. [PMID: 12874127 DOI: 10.1242/dev.00597] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The NSM cells of the nematode Caenorhabditis elegans differentiate into serotonergic neurons, while their sisters, the NSM sister cells, undergo programmed cell death during embryogenesis. The programmed death of the NSM sister cells is dependent on the cell-death activator EGL-1, a BH3-only protein required for programmed cell death in C. elegans, and can be prevented by a gain-of-function (gf) mutation in the cell-death specification gene ces-1, which encodes a Snail-like DNA-binding protein. Here, we show that the genes hlh-2 and hlh-3, which encode a Daughterless-like and an Achaete-scute-like bHLH protein, respectively, are required to kill the NSM sister cells. A heterodimer composed of HLH-2 and HLH-3, HLH-2/HLH-3, binds to Snail-binding sites/E-boxes in a cis-regulatory region of the egl-1 locus in vitro that is required for the death of the NSM sister cells in vivo. Hence, we propose that HLH-2/HLH-3 is a direct, cell-type specific activator of egl-1 transcription. Furthermore, the Snail-like CES-1 protein can block the death of the NSM sister cells by acting through the same Snail-binding sites/E-boxes in the egl-1 locus. In ces-1(gf) animals, CES-1 might therefore prevent the death of the NSM sister cells by successfully competing with HLH-2/HLH-3 for binding to the egl-1 locus.
Collapse
Affiliation(s)
- Marion Thellmann
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18a, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
53
|
Ikenouchi J, Matsuda M, Furuse M, Tsukita S. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 2003; 116:1959-67. [PMID: 12668723 DOI: 10.1242/jcs.00389] [Citation(s) in RCA: 494] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Snail is a transcription repressor that plays a central role in the epithelium-mesenchyme transition (EMT), by which epithelial cells lose their polarity. Claudins and occludin are integral membrane proteins localized at tight junctions, which are responsible for establishing and maintaining epithelial cell polarity. We examined the relationship between Snail and the promoter activity of claudins and occludin. When Snail was overexpressed in cultured mouse epithelial cells, EMT was induced with concomitant repression of the expression of claudins and occludin not only at the protein but also at the mRNA level. We then isolated the promoters of genes encoding claudins and occludin, in which multiple E-boxes were identified. Transfection experiments with various promoter constructs as well as electrophoretic mobility assays revealed that Snail binds directly to the E-boxes of the promoters of claudin/occludin genes, resulting in complete repression of their promoter activity. Because the gene encoding E-cadherin was also reported to be repressed by Snail, we concluded that EMT was associated with the simultaneous repression of the genes encoding E-cadherin and claudins/occludin (i.e. the expression of adherens and tight junction adhesion molecules, respectively).
Collapse
Affiliation(s)
- Junichi Ikenouchi
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
54
|
Locascio A, Vega S, de Frutos CA, Manzanares M, Nieto MA. Biological potential of a functional human SNAIL retrogene. J Biol Chem 2002; 277:38803-9. [PMID: 12151403 DOI: 10.1074/jbc.m205358200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Snail genes encode zinc finger transcription factors required for the development of vertebrate and invertebrate embryos. They trigger epithelial to mesenchymal transitions (EMTs), thereby allowing epithelial cells to emigrate from their place of origin and form tissues such as the mesoderm and the neural crest. Snail genes are also involved in the EMTs responsible for the acquisition of invasiveness during tumor progression. This aspect of their activity is associated with their ability to directly repress E-cadherin transcription. Here we describe the existence of an active human Snail retrogene, inserted within an intron of a novel evolutionarily conserved gene and expressed in different human tissues and cell lines. Functional analyses in cell culture show that this retrogene maintains the potential to induce EMTs, conferring migratory and invasive properties to epithelial cells. In light of this data, we have renamed it SNAIL-like, a new player that must be considered in both physiological and pathological studies of SNAIL function in humans.
Collapse
Affiliation(s)
- Annamaria Locascio
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Av. Doctor Arce 37, 28002 Madrid, Spain
| | | | | | | | | |
Collapse
|
55
|
Abstract
The Snail superfamily of zinc-finger transcription factors is involved in processes that imply pronounced cell movements, both during embryonic development and in the acquisition of invasive and migratory properties during tumour progression. Different family members have also been implicated in the signalling cascade that confers left right identity, as well as in the formation of appendages, neural differentiation, cell division and cell survival.
Collapse
|
56
|
Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 2001; 21:8184-8. [PMID: 11689706 PMCID: PMC99982 DOI: 10.1128/mcb.21.23.8184-8188.2001] [Citation(s) in RCA: 473] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Snail family genes encode DNA binding zinc finger proteins that act as transcriptional repressors. Mouse embryos deficient for the Snail (Sna) gene exhibit defects in the formation of the mesoderm germ layer. In Sna(-/-) mutant embryos, a mesoderm layer forms and mesodermal marker genes are induced but the mutant mesoderm is morphologically abnormal. Lacunae form within the mesoderm layer of the mutant embryos, and cells lining these lacunae retain epithelial characteristics. These cells resemble a columnar epithelium and have apical-basal polarity, with microvilli along the apical surface and intercellular electron-dense adhesive junctions that resemble adherens junctions. E-cadherin expression is retained in the mesoderm of the Sna(-/-) embryos. These defects are strikingly similar to the gastrulation defects observed in snail-deficient Drosophila embryos, suggesting that the mechanism of repression of E-cadherin transcription by Snail family proteins may have been present in the metazoan ancestor of the arthropod and mammalian lineages.
Collapse
Affiliation(s)
- E A Carver
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | |
Collapse
|
57
|
Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 2001; 23:912-23. [PMID: 11598958 DOI: 10.1002/bies.1132] [Citation(s) in RCA: 535] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several molecular mechanisms contribute directly and mechanically to the loss of epithelial phenotype. During epithelial-mesenchymal transition (EMT), adherens junctions and desmosomes are at least partially dissociated. At the same time, a massive cytoskeleton reorganization takes place, involving the rho family and the remodeling of the actin microfilament mesh. Numerous pathways have been described in vitro that control phenotype transition in specific cell models. In vivo developmental studies suggest that transcriptional control, activated by a specific pathway involving Ras, Src and potentially the Wnt pathway, is an essential step. Recent functional and localization experiments indicate that the slug/snail family of transcription factors functions overall as an epithelial phenotype repressor and could represent a key EMT contributor.
Collapse
Affiliation(s)
- P Savagner
- Equipe Genome et Cancer, UMR CNRS 5535, CRLC Val d'Aurelle-Paul Larmarque, 34298 Montpellier, cedex 5, France.
| |
Collapse
|
58
|
Abstract
The neural crest is an intriguing cell population that gives rise to many derivatives which are all generated far from their final destinations. From its induction to the delamination of the cells, multiple signalling pathways converge to regulate the expression of effector genes, the products of which endow the cells with invasive and migratory properties reminiscent of those displayed by malignant cells in tumours. As such, the neural crest constitutes an excellent model to study cell migration.
Collapse
Affiliation(s)
- M A Nieto
- Instituto Cajal, CSIC, Doctor Arce, 37, 28002, Madrid, Spain.
| |
Collapse
|
59
|
Barradeau S, Imaizumi-Scherrer T, Weiss MC, Faust DM. Muscle-regulated expression and determinants for neuromuscular junctional localization of the mouse RIalpha regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 2001; 98:5037-42. [PMID: 11296260 PMCID: PMC33159 DOI: 10.1073/pnas.081393598] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2000] [Indexed: 11/18/2022] Open
Abstract
In skeletal muscle, transcription of the gene encoding the mouse type Ialpha (RIalpha) subunit of the cAMP-dependent protein kinase is initiated from the alternative noncoding first exons 1a and 1b. Here, we report that activity of the promoter upstream of exon 1a (Pa) depends on two adjacent E boxes (E1 and E2) in NIH 3T3-transfected fibroblasts as well as in intact muscle. Both basal activity and MyoD transactivation of the Pa promoter require binding of the upstream stimulating factors (USF) to E1. E2 binds either an unknown protein in a USF/E1 complex-dependent manner or MyoD. Both E2-bound proteins seem to function as repressors, but with different strengths, of the USF transactivation potential. Previous work has shown localization of the RIalpha protein at the neuromuscular junction. Using DNA injection into muscle of plasmids encoding segments of RIalpha or RIIalpha fused to green fluorescent protein, we demonstrate that anchoring at the neuromuscular junction is specific to RIalpha subunits and requires the amino-terminal residues 1-81. Mutagenesis of Phe-54 to Ala in the full-length RIalpha-green fluorescent protein template abolishes localization, indicating that dimerization of RIalpha is essential for anchoring. Moreover, two other hydrophobic residues, Val-22 and Ile-27, are crucial for localization of RIalpha at the neuromuscular junction. These amino acids are involved in the interaction of the Caenorhabditis elegans type Ialpha homologue R(CE) with AKAP(CE) and for in vitro binding of RIalpha to dual A-kinase anchoring protein 1. We also show enrichment of dual A-kinase anchoring protein 1 at the neuromuscular junction, suggesting that it could be responsible for RIalpha tethering at this site.
Collapse
Affiliation(s)
- S Barradeau
- Unité de Génétique de la Différenciation, Département de Biologie Moléculaire, Institut Pasteur, Unité de Recherche Associée 1773 du Centre National de la Recherche Scientifique, 25, Rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
60
|
Nakakura EK, Watkins DN, Schuebel KE, Sriuranpong V, Borges MW, Nelkin BD, Ball DW. Mammalian Scratch: a neural-specific Snail family transcriptional repressor. Proc Natl Acad Sci U S A 2001; 98:4010-5. [PMID: 11274425 PMCID: PMC31170 DOI: 10.1073/pnas.051014098] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the Snail family of zinc finger transcription factors are known to play critical roles in neurogenesis in invertebrates, but none of these factors has been linked to vertebrate neuronal differentiation. We report the isolation of a gene encoding a mammalian Snail family member that is restricted to the nervous system. Human and murine Scratch (Scrt) share 81% and 69% identity to Drosophila Scrt and the Caenorhabditis elegans neuronal antiapoptotic protein, CES-1, respectively, across the five zinc finger domain. Expression of mammalian Scrt is predominantly confined to the brain and spinal cord, appearing in newly differentiating, postmitotic neurons and persisting into postnatal life. Additional expression is seen in the retina and, significantly, in neuroendocrine (NE) cells of the lung. In a parallel fashion, we detect hScrt expression in lung cancers with NE features, especially small cell lung cancer. hScrt shares the capacity of other Snail family members to bind to E-box enhancer motifs, which are targets of basic helix--loop--helix (bHLH) transcription factors. We show that hScrt directly antagonizes the function of heterodimers of the proneural bHLH protein achaete-scute homolog-1 and E12, leading to active transcriptional repression at E-box motifs. Thus, Scrt has the potential to function in newly differentiating, postmitotic neurons and in cancers with NE features by modulating the action of bHLH transcription factors critical for neuronal differentiation.
Collapse
Affiliation(s)
- E K Nakakura
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Hemavathy K, Ashraf SI, Ip YT. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 2000; 257:1-12. [PMID: 11054563 DOI: 10.1016/s0378-1119(00)00371-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The existence of homologous genes in diverse species is intriguing. A detailed comparison of the structure and function of gene families may provide important insights into gene regulation and evolution. An unproven assumption is that homologous genes have a common ancestor. During evolution, the original function of the ancestral gene might be retained in the different species which evolved along separate courses. In addition, new functions could have developed as the sequence began to diverge. This may also explain partly the presence of multipurpose genes, which have multiple functions at different stages of development and in different tissues. The Drosophila gene snail is a multipurpose gene; it has been demonstrated that snail is critical for mesoderm formation, for CNS development, and for wing cell fate determination. The related vertebrate Snail and Slug genes have also been proposed to participate in mesoderm formation, neural crest cell migration, carcinogenesis, and apoptosis. In this review, we will discuss the Snail/Slug family of regulators in species ranging from insect to human. We will present the protein structures, expression patterns, and functions based on molecular genetic analyses. We will also include the studies that helped to elucidate the molecular mechanisms of repression and the relationship between the conserved and divergent functions of these genes. Moreover, the studies may enable us to trace the evolution of this gene family.
Collapse
Affiliation(s)
- K Hemavathy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
62
|
Mitchell-Felton H, Hunter RB, Stevenson EJ, Kandarian SC. Identification of weight-bearing-responsive elements in the skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) gene. J Biol Chem 2000; 275:23005-11. [PMID: 10811813 DOI: 10.1074/jbc.m003678200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The skeletal muscle sarco(endo)plasmic reticulum calcium ATPase (SERCA1) gene is transactivated as early as 2 days after the removal of weight-bearing (Peters, D. G., Mitchell-Felton, H., and Kandarian, S. C. (1999) Am. J. Physiol. 276, C1218-C1225), but the transcriptional mechanisms are elusive. Here, the rat SERCA1 5' flank and promoter region (-3636 to +172 base pairs) was comprehensively examined using in vivo somatic gene transfer into rat soleus muscles (n = 804) to identify region(s) that are both necessary and sufficient for sensitivity to weight-bearing. In all, 40 different SERCA1 reporter plasmids were constructed and tested. Several different regions of the SERCA1 5' flank were sufficient to confer a transcriptional response to 7 days of muscle unloading when placed upstream of a heterologous promoter. Two of these regions were analyzed further because they were necessary for the unloading response of -3636 to +172, as demonstrated using internal deletion constructs. Deletion analysis of these regions (-1373 to -1158 and -330 to +172) suggested that unloading responsiveness corresponded to CACC sites and E-boxes. Mutagenesis of cis-elements in the first region showed that a specific CACC box (-1262) was involved in SERCA1 transactivation and a nearby E-box (-1248) was also implicated. Constructs containing trimerized CACC sites and E-boxes showed that the presence of both elements is required to activate transcription. This is the first identification of specific cis-elements required for the regulation of a Ca(2+) handling gene by changes in muscle loading condition.
Collapse
Affiliation(s)
- H Mitchell-Felton
- Department of Health Sciences, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|