51
|
Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM. Heat stress survival in the pre-adult stage of the life cycle in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. J Exp Biol 2013; 216:2953-9. [DOI: 10.1242/jeb.079830] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In insects, pre-adult stages of the life cycle are exposed to variation in temperature that may differ from that in adults. However, the genetic basis for adaptation to environmental temperature could be similar between the pre-adult and the adult stages of the life cycle. Here, we tested quantitative trait loci (QTL) for heat-stress survival in larvae of D. melanogaster, with and without a mild-heat-stress pre-treatment. Two sets of recombinant inbred lines derived from lines artificially selected for high and low levels of knockdown resistance to high temperature in young flies were used as mapping population. There was no apparent increase in heat-shock survival between heat-pretreated and non-pretreated larvae. There was a positive correlation between the two experimental conditions of heat-shock survival (with and without a heat pre-treatment) except for males from one set of lines. Several QTL were identified involving all three major chromosomes. Many QTL for larval thermotolerance overlapped with thermotolerance-QTL identified in previous studies for adults. One new thermotolerance-QTL was found but these QTL explained only a small fraction of the phenotypic variance and were only significant in larvae that received no heat pre-treatment. Several candidate genes mapped within QTL ranges. We discuss an overall co-localization for thermotolerance-QTL between the adult fly in previous studies and the pre-adult stage of the life cycle in this study.
Collapse
|
52
|
Parvy JP, Napal L, Rubin T, Poidevin M, Perrin L, Wicker-Thomas C, Montagne J. Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet 2012; 8:e1002925. [PMID: 22956916 PMCID: PMC3431307 DOI: 10.1371/journal.pgen.1002925] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/13/2012] [Indexed: 02/07/2023] Open
Abstract
Fatty acid (FA) metabolism plays a central role in body homeostasis and related diseases. Thus, FA metabolic enzymes are attractive targets for drug therapy. Mouse studies on Acetyl-coenzymeA-carboxylase (ACC), the rate-limiting enzyme for FA synthesis, have highlighted its homeostatic role in liver and adipose tissue. We took advantage of the powerful genetics of Drosophila melanogaster to investigate the role of the unique Drosophila ACC homologue in the fat body and the oenocytes. The fat body accomplishes hepatic and storage functions, whereas the oenocytes are proposed to produce the cuticular lipids and to contribute to the hepatic function. RNA–interfering disruption of ACC in the fat body does not affect viability but does result in a dramatic reduction in triglyceride storage and a concurrent increase in glycogen accumulation. These metabolic perturbations further highlight the role of triglyceride and glycogen storage in controlling circulatory sugar levels, thereby validating Drosophila as a relevant model to explore the tissue-specific function of FA metabolic enzymes. In contrast, ACC disruption in the oenocytes through RNA–interference or tissue-targeted mutation induces lethality, as does oenocyte ablation. Surprisingly, this lethality is associated with a failure in the watertightness of the spiracles—the organs controlling the entry of air into the trachea. At the cellular level, we have observed that, in defective spiracles, lipids fail to transfer from the spiracular gland to the point of air entry. This phenotype is caused by disrupted synthesis of a putative very-long-chain-FA (VLCFA) within the oenocytes, which ultimately results in a lethal anoxic issue. Preventing liquid entry into respiratory systems is a universal issue for air-breathing animals. Here, we have shown that, in Drosophila, this process is controlled by a putative VLCFA produced within the oenocytes. Fatty acid homeostasis is deregulated in several human diseases, including obesity, diabetes, and most cancers. Therefore, the enzymes that catalyze the reactions of fatty acid metabolism constitute attractive targets for drug therapy. However, the development of novel inhibitors requires extensive analysis of the organ-specific functions of the targeted enzyme. Given the availability of genetic tools, the fruit fly Drosophila is an appropriate model system to investigate the physiological and developmental roles of metabolic enzymes. Here we studied a Drosophila homologue of a rate-limiting enzyme for fatty acid synthesis. We have shown that this enzyme is necessary to control the storage of lipids in the fat tissue, validating our system to study fatty acid metabolism. We further observed that this enzyme is essential in the oenocytes, a group of cells proposed to contribute to the hepatic function and to the formation of the cuticle. Furthermore, we have shown that a putative fatty acid produced in these cells is required to control, at a distance, the watertightness of the respiratory system. In summary, our study identifies a novel fatty acid-mediated signal necessary to prevent liquid accumulation in the respiratory system, a critical issue for all air-breathing animals.
Collapse
Affiliation(s)
- Jean-Philippe Parvy
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
- Université Pierre et Marie Curie- Paris 6, Paris, France
| | - Laura Napal
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Thomas Rubin
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Mickael Poidevin
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | | | | | - Jacques Montagne
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
- * E-mail:
| |
Collapse
|
53
|
Czarnecki J, Nobeli I, Smith AM, Shepherd AJ. A text-mining system for extracting metabolic reactions from full-text articles. BMC Bioinformatics 2012; 13:172. [PMID: 22823282 PMCID: PMC3475109 DOI: 10.1186/1471-2105-13-172] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 06/30/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Increasingly biological text mining research is focusing on the extraction of complex relationships relevant to the construction and curation of biological networks and pathways. However, one important category of pathway - metabolic pathways - has been largely neglected.Here we present a relatively simple method for extracting metabolic reaction information from free text that scores different permutations of assigned entities (enzymes and metabolites) within a given sentence based on the presence and location of stemmed keywords. This method extends an approach that has proved effective in the context of the extraction of protein-protein interactions. RESULTS When evaluated on a set of manually-curated metabolic pathways using standard performance criteria, our method performs surprisingly well. Precision and recall rates are comparable to those previously achieved for the well-known protein-protein interaction extraction task. CONCLUSIONS We conclude that automated metabolic pathway construction is more tractable than has often been assumed, and that (as in the case of protein-protein interaction extraction) relatively simple text-mining approaches can prove surprisingly effective. It is hoped that these results will provide an impetus to further research and act as a useful benchmark for judging the performance of more sophisticated methods that are yet to be developed.
Collapse
Affiliation(s)
- Jan Czarnecki
- Department of Biological Sciences and Institute of Molecular and Structural Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Irene Nobeli
- Department of Biological Sciences and Institute of Molecular and Structural Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Adrian M Smith
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LG, UK
| | - Adrian J Shepherd
- Department of Biological Sciences and Institute of Molecular and Structural Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| |
Collapse
|
54
|
Gomez FH, Loeschcke V, Norry FM. QTL for survival to UV-C radiation in Drosophila melanogaster. Int J Radiat Biol 2012; 89:583-9. [PMID: 22788381 DOI: 10.3109/09553002.2012.711503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The aim of this study was to investigate tolerance to UV-C (ultraviolet C, 280-100 nm) radiation in Drosophila melanogaster, implementing a quantitative trait locus (QTL) mapping approach. This is of interest to test for genetic variation in survival to UV (ultraviolet) radiation. MATERIALS AND METHODS We performed a QTL scan in D. melanogaster recombinant inbred lines (RIL) constructed from parental stocks derived from a crossing between northern and southern hemisphere populations that segregated substantial genetic variation in thermal resistance in a previous study. Here, two experimental treatments were implemented: Continuous and cyclic UV-C radiation. RESULTS Significant QTL were detected on all three major chromosomes. Among these, multiple trait composite interval mapping revealed a significant QTL in the pericentromeric region of chromosome 2, a genome region consistently implicated in thermotolerance in previous studies. CONCLUSIONS This study shows substantial genetic variation for UV-C radiation resistance in D. melanogaster, with QTL for survival to UV-C radiation generally overlapping with major thermotolerance QTL. The genetic architecture of UV-C radiation resistance appears to be more complex in continuously irradiated individuals.
Collapse
Affiliation(s)
- Federico H Gomez
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | | | | |
Collapse
|
55
|
Gómez FH, Norry FM. Is the number of possible QTL for asymmetry phenotypes dependent on thermal stress? J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2011.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
56
|
Nucleoporin98-96 function is required for transit amplification divisions in the germ line of Drosophila melanogaster. PLoS One 2011; 6:e25087. [PMID: 21949861 PMCID: PMC3174998 DOI: 10.1371/journal.pone.0025087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 08/23/2011] [Indexed: 11/25/2022] Open
Abstract
Production of specialized cells from precursors depends on a tightly regulated sequence of proliferation and differentiation steps. In the gonad of Drosophila melanogaster, the daughters of germ line stem cells (GSC) go through precisely four rounds of transit amplification divisions to produce clusters of 16 interconnected germ line cells before entering a stereotypic differentiation cascade. Here we show that animals harbouring a transposon insertion in the center of the complex nucleoporin98-96 (nup98-96) locus had severe defects in the early steps of this developmental program, ultimately leading to germ cell loss and sterility. A phenotypic analysis indicated that flies carrying the transposon insertion, designated nup98-962288, had dramatically reduced numbers of germ line cells. In contrast to controls, mutant testes contained many solitary germ line cells that had committed to differentiation as well as abnormally small clusters of two, four or eight differentiating germ line cells. This indicates that mutant GSCs rather differentiated than self-renewed, and that these GSCs and their daughters initiated the differentiation cascade after zero, or less than four rounds of amplification divisions. This phenotype remained unaffected by hyper-activation of signalling pathways that normally result in excessive proliferation of GSCs and their daughters. Expression of wildtype nup98-96 specifically in the germ line cells of mutant animals fully restored development of the GSC lineage, demonstrating that the effect of the mutation is cell-autonomous. Nucleoporins are the structural components of the nucleopore and have also been implicated in transcriptional regulation of specific target genes. The nuclear envelopes of germ cells and general nucleocytoplasmic transport in nup98-96 mutant animals appeared normal, leading us to propose that Drosophila nup98-96 mediates the transport or transcription of targets required for the developmental timing between amplification and differentiation.
Collapse
|
57
|
Defays R, Gómez FH, Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM. Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster. Exp Gerontol 2011; 46:819-26. [PMID: 21798333 DOI: 10.1016/j.exger.2011.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/04/2011] [Accepted: 07/11/2011] [Indexed: 02/02/2023]
Abstract
Longevity is a typical quantitative trait which is influenced by multiple genes. Here we explore the genetic variation in longevity of Drosophila melanogaster in both mildly heat-stressed and control flies. Quantitative trait loci (QTL) analysis for longevity was performed in a single-sex environment at 25°C with and without a mild heat-stress pre-treatment, using a previously reported set of recombinant inbred lines (RIL). QTL regions for longevity in heat-stressed flies overlapped with QTL for longevity in control flies. All longevity QTL co-localized with QTL for longevity identified in previous studies using very different sets of RIL in mixed sex environments, though the genome is nearly saturated with QTL for longevity when considering all previous studies. Heat stress decreased the number of significant QTL for longevity if compared to the control environment. Our mild heat-stress pre-treatment had a beneficial effect (hormesis) more often in shorter-lived than in longer-lived RIL.
Collapse
Affiliation(s)
- Raquel Defays
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C-1428-EHA) Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
58
|
Tan Y, Yamada-Mabuchi M, Arya R, St Pierre S, Tang W, Tosa M, Brachmann C, White K. Coordinated expression of cell death genes regulates neuroblast apoptosis. Development 2011; 138:2197-206. [PMID: 21558369 DOI: 10.1242/dev.058826] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Properly regulated apoptosis in the developing central nervous system is crucial for normal morphogenesis and homeostasis. In Drosophila, a subset of neural stem cells, or neuroblasts, undergo apoptosis during embryogenesis. Of the 30 neuroblasts initially present in each abdominal hemisegment of the embryonic ventral nerve cord, only three survive into larval life, and these undergo apoptosis in the larvae. Here, we use loss-of-function analysis to demonstrate that neuroblast apoptosis during embryogenesis requires the coordinated expression of the cell death genes grim and reaper, and possibly sickle. These genes are clustered in a 140 kb region of the third chromosome and show overlapping patterns of expression. We show that expression of grim, reaper and sickle in embryonic neuroblasts is controlled by a common regulatory region located between reaper and grim. In the absence of grim and reaper, many neuroblasts survive the embryonic period of cell death and the ventral nerve cord becomes massively hypertrophic. Deletion of grim alone blocks the death of neuroblasts in the larvae. The overlapping activity of these multiple cell death genes suggests that the coordinated regulation of their expression provides flexibility in this crucial developmental process.
Collapse
Affiliation(s)
- Ying Tan
- CBRC, Massachusetts General Hospital/Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Haeussler M, Gerner M, Bergman CM. Annotating genes and genomes with DNA sequences extracted from biomedical articles. Bioinformatics 2011; 27:980-6. [PMID: 21325301 PMCID: PMC3065681 DOI: 10.1093/bioinformatics/btr043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 01/07/2023] Open
Abstract
MOTIVATION Increasing rates of publication and DNA sequencing make the problem of finding relevant articles for a particular gene or genomic region more challenging than ever. Existing text-mining approaches focus on finding gene names or identifiers in English text. These are often not unique and do not identify the exact genomic location of a study. RESULTS Here, we report the results of a novel text-mining approach that extracts DNA sequences from biomedical articles and automatically maps them to genomic databases. We find that ∼20% of open access articles in PubMed central (PMC) have extractable DNA sequences that can be accurately mapped to the correct gene (91%) and genome (96%). We illustrate the utility of data extracted by text2genome from more than 150 000 PMC articles for the interpretation of ChIP-seq data and the design of quantitative reverse transcriptase (RT)-PCR experiments. CONCLUSION Our approach links articles to genes and organisms without relying on gene names or identifiers. It also produces genome annotation tracks of the biomedical literature, thereby allowing researchers to use the power of modern genome browsers to access and analyze publications in the context of genomic data. AVAILABILITY AND IMPLEMENTATION Source code is available under a BSD license from http://sourceforge.net/projects/text2genome/ and results can be browsed and downloaded at http://text2genome.org.
Collapse
|
60
|
Wei Q, Collier N. Towards classifying species in systems biology papers using text mining. BMC Res Notes 2011; 4:32. [PMID: 21294879 PMCID: PMC3045319 DOI: 10.1186/1756-0500-4-32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 02/04/2011] [Indexed: 11/10/2022] Open
Abstract
Background In recent years high throughput methods have led to a massive expansion in the free text literature on molecular biology. Automated text mining has developed as an application technology for formalizing this wealth of published results into structured database entries. However, database curation as a task is still largely done by hand, and although there have been many studies on automated approaches, problems remain in how to classify documents into top-level categories based on the type of organism being investigated. Here we present a comparative analysis of state of the art supervised models that are used to classify both abstracts and full text articles for three model organisms. Results Ablation experiments were conducted on a large gold standard corpus of 10,000 abstracts and full papers containing data on three model organisms (fly, mouse and yeast). Among the eight learner models tested, the best model achieved an F-score of 97.1% for fly, 88.6% for mouse and 85.5% for yeast using a variety of features that included gene name, organism frequency, MeSH headings and term-species associations. We noted that term-species associations were particularly effective in improving classification performance. The benefit of using full text articles over abstracts was consistently observed across all three organisms. Conclusions By comparing various learner algorithms and features we presented an optimized system that automatically detects the major focus organism in full text articles for fly, mouse and yeast. We believe the method will be extensible to other organism types.
Collapse
Affiliation(s)
- Qi Wei
- Department of Informatics, The Graduate University for Advanced Studies (Sokendai), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo.
| | | |
Collapse
|
61
|
Jaeger S, Sers CT, Leser U. Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction. BMC Genomics 2010; 11:717. [PMID: 21171995 PMCID: PMC3017542 DOI: 10.1186/1471-2164-11-717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 12/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While the number of newly sequenced genomes and genes is constantly increasing, elucidation of their function still is a laborious and time-consuming task. This has led to the development of a wide range of methods for predicting protein functions in silico. We report on a new method that predicts function based on a combination of information about protein interactions, orthology, and the conservation of protein networks in different species. RESULTS We show that aggregation of these independent sources of evidence leads to a drastic increase in number and quality of predictions when compared to baselines and other methods reported in the literature. For instance, our method generates more than 12,000 novel protein functions for human with an estimated precision of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or only one function annotated. We also verified our predictions on a set of genes that play an important role in colorectal cancer (MLH1, PMS2, EPHB4 ) and could confirm more than 73% of them based on evidence in the literature. CONCLUSIONS The combination of different methods into a single, comprehensive prediction method infers thousands of protein functions for every species included in the analysis at varying, yet always high levels of precision and very good coverage.
Collapse
Affiliation(s)
- Samira Jaeger
- Knowledge Management in Bioinformatics, Humboldt-Universitat zu Berlin Unter den Linden 6, 10099 Berlin, Germany.
| | | | | |
Collapse
|
62
|
Wang H, Zheng H, Browne F, Glass DH, Azuaje F. Integration of Gene Ontology-based similarities for supporting analysis of protein–protein interaction networks. Pattern Recognit Lett 2010. [DOI: 10.1016/j.patrec.2010.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Kuklinski NJ, Berglund EC, Engelbrektsson J, Ewing AG. Biogenic amines in microdissected brain regions of Drosophila melanogaster measured with micellar electrokinetic capillary chromatography-electrochemical detection. Anal Chem 2010; 82:7729-35. [PMID: 20738098 PMCID: PMC2939159 DOI: 10.1021/ac101603d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Micellar electrokinetic chromatography with electrochemical detection has been used to quantify biogenic amines in microdissected Drosophila melanogaster brains and brain regions. The effects of pigment from the relatively large fly eyes on the separation have been examined to find that the red pigment from the compound eye masks much of the signal from biogenic amines. The brains of white mutant flies, which have characteristically low pigment in the eyes, have a significantly simplified separation profile in comparison to the red-eyed, wild-type, Canton S fly. Yet, the white mutant flies were found to have significantly less amounts of dopamine, l-3,4-dihydroxyphenylalanine (L-DOPA), salsolinol, and N-acetyltyramine in their dissected brains when compared to dissected brains of Canton S flies. In addition, significant variation has been observed in the dissected brains between individual flies that might be related to changes in neurotransmitter turnover. The transgenic GFP fly line (TH-GFP), for which the overall profile of biogenic amines is not found to be significantly different from Canton S, can be used to visualize the location of dopamine neurons. Biogenic amines were then quantified in three brain regions observed to have dopamine levels, the central brain, optic lobes, and posterior superiormedial protocerebrum (PPM1) region.
Collapse
Affiliation(s)
- Nicholas J. Kuklinski
- Department of Chemistry, The Pennsylvania State University, 125 Chemistry Building, University Park, PA 16802, USA
- Department of Chemistry, University of Gothenburg, Kemivägen 10, SE-412 96, Göteborg, Sweden
| | - E. Carina Berglund
- Department of Chemistry, University of Gothenburg, Kemivägen 10, SE-412 96, Göteborg, Sweden
| | - Johan Engelbrektsson
- Department of Chemistry, University of Gothenburg, Kemivägen 10, SE-412 96, Göteborg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry, The Pennsylvania State University, 125 Chemistry Building, University Park, PA 16802, USA
- Department of Chemistry, University of Gothenburg, Kemivägen 10, SE-412 96, Göteborg, Sweden
| |
Collapse
|
64
|
Bruckner S, Hüffner F, Karp RM, Shamir R, Sharan R. Topology-free querying of protein interaction networks. J Comput Biol 2010; 17:237-52. [PMID: 20377443 DOI: 10.1089/cmb.2009.0170] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the network querying problem, one is given a protein complex or pathway of species A and a protein-protein interaction network of species B; the goal is to identify subnetworks of B that are similar to the query in terms of sequence, topology, or both. Existing approaches mostly depend on knowledge of the interaction topology of the query in the network of species A; however, in practice, this topology is often not known. To address this problem, we develop a topology-free querying algorithm, which we call Torque. Given a query, represented as a set of proteins, Torque seeks a matching set of proteins that are sequence-similar to the query proteins and span a connected region of the network, while allowing both insertions and deletions. The algorithm uses alternatively dynamic programming and integer linear programming for the search task. We test Torque with queries from yeast, fly, and human, where we compare it to the QNet topology-based approach, and with queries from less studied species, where only topology-free algorithms apply. Torque detects many more matches than QNet, while giving results that are highly functionally coherent.
Collapse
Affiliation(s)
- Sharon Bruckner
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
65
|
Kuklinski NJ, Berglund EC, Ewing AG. Micellar capillary electrophoresis--electrochemical detection of neurochemicals from Drosophila. J Sep Sci 2010; 33:388-93. [PMID: 20063357 DOI: 10.1002/jssc.200900634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The fruit fly is one of the most heavily studied model organisms for genetics research and has significantly contributed to the molecular, cellular, and evolutionary understandings of human behavior. Recent research in the analytical chemistry of the fruit fly has focused on developing methods to obtain highly sensitive chemical quantification information of Drosophila melanogaster, especially looking at the nervous system. We provide a brief overview of work in the area of CE of the fly head and brain.
Collapse
Affiliation(s)
- Nicholas J Kuklinski
- Department of Chemistry, The Pennsylvania State University, University Park, USA
| | | | | |
Collapse
|
66
|
Activation of sterol regulatory element binding proteins in the absence of Scap in Drosophila melanogaster. Genetics 2010; 185:189-98. [PMID: 20176975 DOI: 10.1534/genetics.110.114975] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The escort factor Scap is essential in mammalian cells for regulated activation of sterol regulatory element binding proteins (SREBPs). SREBPs are membrane-bound transcription factors. Cells lacking Scap cannot activate SREBP. They are therefore deficient in the transcription of numerous genes involved in lipid synthesis and uptake; they cannot survive in the absence of exogenous lipid. Here we report that, in contrast to mammalian cells, Drosophila completely lacking dscap are viable. Flies lacking dscap emerge at approximately 70% of the expected rate and readily survive as homozygous stocks. These animals continue to cleave dSREBP in some tissues. Transcription of dSREBP target genes in dscap mutant larvae is reduced compared to wild type. It is greater than in mutants lacking dSREBP and remains responsive to dietary lipids in dscap mutants. Flies lacking dscap do not require the caspase Drice to activate dSREBP. This contrasts with ds2p mutants. ds2p encodes a protease that releases the transcription factor domain of dSREBP from the membrane. Larvae doubly mutant for dscap and ds2p exhibit phenotypes similar to those of ds2p single mutants. Thus, dScap and dS2P, essential components of the SREBP activation machinery in mammalian cells, are dispensable in Drosophila owing to different compensatory mechanisms.
Collapse
|
67
|
Drosophila RB proteins repress differentiation-specific genes via two different mechanisms. Mol Cell Biol 2010; 30:2563-77. [PMID: 20176807 DOI: 10.1128/mcb.01075-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The RB and E2F proteins play important roles in the regulation of cell division, cell death, and development by controlling the expression of genes involved in these processes. The mechanisms of repression by the retinoblastoma protein (pRB) have been extensively studied at cell cycle-regulated promoters. However, little is known about developmentally regulated E2F/RB genes. Here, we have taken advantage of the simplicity of the E2F/RB pathway in flies to inspect the regulation of differentiation-specific target genes. These genes are repressed by dE2F2/RBF and a recently identified RB-containing complex, dREAM/MMB, in a cell type- and cell cycle-independent manner. Our studies indicate that the mechanism of repression differs from that of cell cycle-regulated genes. We find that two different activities are involved in their regulation and that in proliferating cells, both are required to maintain repression. First, dE2F2/RBF and dREAM/MMB employ histone deacetylase (HDAC) activities at promoter regions. Remarkably, we have also uncovered an unconventional mechanism of repression by the Polycomb group (PcG) protein Enhancer of zeste [E(Z)], which is involved in silencing of these genes through the dimethylation of histone H3 Lys27 at nucleosomes located downstream of the transcription start sites (TSS).
Collapse
|
68
|
Duchrow T, Shtatland T, Guettler D, Pivovarov M, Kramer S, Weissleder R. Enhancing navigation in biomedical databases by community voting and database-driven text classification. BMC Bioinformatics 2009; 10:317. [PMID: 19799796 PMCID: PMC2768718 DOI: 10.1186/1471-2105-10-317] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 10/03/2009] [Indexed: 11/29/2022] Open
Abstract
Background The breadth of biological databases and their information content continues to increase exponentially. Unfortunately, our ability to query such sources is still often suboptimal. Here, we introduce and apply community voting, database-driven text classification, and visual aids as a means to incorporate distributed expert knowledge, to automatically classify database entries and to efficiently retrieve them. Results Using a previously developed peptide database as an example, we compared several machine learning algorithms in their ability to classify abstracts of published literature results into categories relevant to peptide research, such as related or not related to cancer, angiogenesis, molecular imaging, etc. Ensembles of bagged decision trees met the requirements of our application best. No other algorithm consistently performed better in comparative testing. Moreover, we show that the algorithm produces meaningful class probability estimates, which can be used to visualize the confidence of automatic classification during the retrieval process. To allow viewing long lists of search results enriched by automatic classifications, we added a dynamic heat map to the web interface. We take advantage of community knowledge by enabling users to cast votes in Web 2.0 style in order to correct automated classification errors, which triggers reclassification of all entries. We used a novel framework in which the database "drives" the entire vote aggregation and reclassification process to increase speed while conserving computational resources and keeping the method scalable. In our experiments, we simulate community voting by adding various levels of noise to nearly perfectly labelled instances, and show that, under such conditions, classification can be improved significantly. Conclusion Using PepBank as a model database, we show how to build a classification-aided retrieval system that gathers training data from the community, is completely controlled by the database, scales well with concurrent change events, and can be adapted to add text classification capability to other biomedical databases. The system can be accessed at .
Collapse
Affiliation(s)
- Timo Duchrow
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol 2009; 563:123-40. [PMID: 19597783 DOI: 10.1007/978-1-60761-175-2_7] [Citation(s) in RCA: 510] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The availability of whole genome sequences from various model organisms and increasing experimental data and literatures stimulated the evolution of a systems approach for biological research. The development of computational tools and algorithms to study biological pathway networks has made great progress in helping analyze research data. Pathway databases become an integral part of such an approach. This chapter first discusses how biological knowledge is represented, particularly the importance of ontologies or standards in systems biology research. Next, we use PANTHER Pathway as an example to illustrate how ontologies and standards play a role in data modeling, data entry, and data display. Last, we describe the usage of such systems. We also describe the computational tools that utilize PANTHER Pathway information to analyze gene expression experimental data.
Collapse
Affiliation(s)
- Huaiyu Mi
- Evolutionary Systems Biology Group, SRI International, Menlo Park, CA, USA
| | | |
Collapse
|
70
|
Szuplewski S, Sandmann T, Hietakangas V, Cohen SM. Drosophila Minus is required for cell proliferation and influences Cyclin E turnover. Genes Dev 2009; 23:1998-2003. [PMID: 19723762 DOI: 10.1101/gad.1822409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Turnover of cyclins plays a major role in oscillatory cyclin-dependent kinase (Cdk) activity and control of cell cycle progression. Here we present a novel cell cycle regulator, called minus, which influences Cyclin E turnover in Drosophila. minus mutants produce defects in cell proliferation, some of which are attributable to persistence of Cyclin E. Minus protein can interact physically with Cyclin E and the SCF Archipelago/Fbw7/Cdc4 ubiquitin-ligase complex. Minus does not affect dMyc, another known SCF(Ago) substrate in Drosophila. We propose that Minus contributes to cell cycle regulation in part by selectively controlling turnover of Cyclin E.
Collapse
|
71
|
Functional analysis of saxophone, the Drosophila gene encoding the BMP type I receptor ortholog of human ALK1/ACVRL1 and ACVR1/ALK2. Genetics 2009; 183:563-79, 1SI-8SI. [PMID: 19620392 DOI: 10.1534/genetics.109.105585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In metazoans, bone morphogenetic proteins (BMPs) direct a myriad of developmental and adult homeostatic events through their heterotetrameric type I and type II receptor complexes. We examined 3 existing and 12 newly generated mutations in the Drosophila type I receptor gene, saxophone (sax), the ortholog of the human Activin Receptor-Like Kinase1 and -2 (ALK1/ACVRL1 and ALK2/ACVR1) genes. Our genetic analyses identified two distinct classes of sax alleles. The first class consists of homozygous viable gain-of-function (GOF) alleles that exhibit (1) synthetic lethality in combination with mutations in BMP pathway components, and (2) significant maternal effect lethality that can be rescued by an increased dosage of the BMP encoding gene, dpp+. In contrast, the second class consists of alleles that are recessive lethal and do not exhibit lethality in combination with mutations in other BMP pathway components. The alleles in this second class are clearly loss-of-function (LOF) with both complete and partial loss-of-function mutations represented. We find that one allele in the second class of recessive lethals exhibits dominant-negative behavior, albeit distinct from the GOF activity of the first class of viable alleles. On the basis of the fact that the first class of viable alleles can be reverted to lethality and on our ability to independently generate recessive lethal sax mutations, our analysis demonstrates that sax is an essential gene. Consistent with this conclusion, we find that a normal sax transcript is produced by saxP, a viable allele previously reported to be null, and that this allele can be reverted to lethality. Interestingly, we determine that two mutations in the first class of sax alleles show the same amino acid substitutions as mutations in the human receptors ALK1/ACVRl-1 and ACVR1/ALK2, responsible for cases of hereditary hemorrhagic telangiectasia type 2 (HHT2) and fibrodysplasia ossificans progressiva (FOP), respectively. Finally, the data presented here identify different functional requirements for the Sax receptor, support the proposal that Sax participates in a heteromeric receptor complex, and provide a mechanistic framework for future investigations into disease states that arise from defects in BMP/TGF-beta signaling.
Collapse
|
72
|
Abstract
A fundamental assumption of models for the maintenance of genetic variation by environmental heterogeneity is that selection favours different genotypes in different environments. Here, I use a method for measuring total fitness of chromosomal heterozygotes in Drosophila melanogaster to assess genotype-environment interaction for fitness across two ecologically relevant environments, medium with and without added ethanol. Two-third chromosomes are compared, one from a population selected for ethanol tolerance, and the other from a control population. The results show strong crossing of reaction norms for outbred, total fitness, with the chromosome from the ethanol-adapted population increasing fitness on ethanol-supplemented food, but decreasing fitness on regular food, relative to the chromosome from the control population. Although I did not map the fitness effects below the chromosome level, the method could be adapted for quantitative trait locus mapping, to determine whether a substantial proportion of fitness variation is contributed by loci at which different alleles are favoured in different environments.
Collapse
Affiliation(s)
- James D Fry
- Department of Biology, University of Rochester, Rochester NY 14627-0211, USA.
| |
Collapse
|
73
|
Yosef N, Kupiec M, Ruppin E, Sharan R. A complex-centric view of protein network evolution. Nucleic Acids Res 2009; 37:e88. [PMID: 19465379 PMCID: PMC2709590 DOI: 10.1093/nar/gkp414] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The recent availability of protein-protein interaction networks for several species makes it possible to study protein complexes in an evolutionary context. In this article, we present a novel network-based framework for reconstructing the evolutionary history of protein complexes. Our analysis is based on generalizing evolutionary measures for single proteins to the level of whole subnetworks, comprehensively considering a broad set of computationally derived complexes and accounting for both sequence and interaction changes. Specifically, we compute sets of orthologous complexes across species, and use these to derive evolutionary rate and age measures for protein complexes. We observe significant correlations between the evolutionary properties of a complex and those of its member proteins, suggesting that protein complexes form early in evolution and evolve as coherent units. Additionally, our approach enables us to directly quantify the extent to which gene duplication has played a role in the evolution of complexes. We find that about one quarter of the sets of orthologous complexes have originated from evolutionary cores of homodimers that underwent duplication and divergence, testifying to the important role of gene duplication in protein complex evolution.
Collapse
Affiliation(s)
- Nir Yosef
- The Blavatnik School of Computer Science, Department of Molecular Microbiology and Biotechnology and School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | |
Collapse
|
74
|
Miyo T, Oguma Y. Contributions of three-site mutations in acetylcholinesterase and cytochrome P450 to genetic variation in susceptibility to organophosphate insecticides within a natural population of Drosophila melanogaster. POPUL ECOL 2009. [DOI: 10.1007/s10144-009-0157-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
75
|
Amarneh B, Matthews KA, Rawson RB. Activation of sterol regulatory element-binding protein by the caspase Drice in Drosophila larvae. J Biol Chem 2009; 284:9674-82. [PMID: 19224859 PMCID: PMC2665088 DOI: 10.1074/jbc.m900346200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/17/2009] [Indexed: 11/06/2022] Open
Abstract
During larval development in Drosophila melanogaster, transcriptional activation of target genes by sterol regulatory element-binding protein (dSREBP) is essential for survival. In all cases studied to date, activation of SREBPs requires sequential proteolysis of the membrane-bound precursor by site-1 protease (S1P) and site-2 protease (S2P). Cleavage by S2P, within the first membrane-spanning helix of SREBP, releases the transcription factor. In contrast to flies lacking dSREBP, flies lacking dS2P are viable. The Drosophila effector caspase Drice cleaves dSREBP, and cleavage requires an Asp residue at position 386, in the cytoplasmic juxtamembrane stalk. The initiator caspase Dronc does not cleave dSREBP, but animals lacking dS2P require both drice and dronc to complete development. They do not require Dcp1, although this effector caspase also can cleave dSREBP in vitro. Cleavage of dSREBP by Drice releases the amino-terminal transcription factor domain of dSREBP to travel to the nucleus where it mediates the increased transcription of target genes needed for lipid synthesis and uptake. Drice-dependent activation of dSREBP explains why flies lacking dS2P are viable, and flies lacking dSREBP itself are not.
Collapse
Affiliation(s)
- Bilal Amarneh
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| | | | | |
Collapse
|
76
|
Lee HG, Rohila S, Han KA. The octopamine receptor OAMB mediates ovulation via Ca2+/calmodulin-dependent protein kinase II in the Drosophila oviduct epithelium. PLoS One 2009; 4:e4716. [PMID: 19262750 PMCID: PMC2650798 DOI: 10.1371/journal.pone.0004716] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/04/2009] [Indexed: 11/18/2022] Open
Abstract
Ovulation is an essential physiological process in sexual reproduction; however, the underlying cellular mechanisms are poorly understood. We have previously shown that OAMB, a Drosophila G-protein-coupled receptor for octopamine (the insect counterpart of mammalian norepinephrine), is required for ovulation induced upon mating. OAMB is expressed in the nervous and reproductive systems and has two isoforms (OAMB-AS and OAMB-K3) with distinct capacities to increase intracellular Ca2+ or intracellular Ca2+ and cAMP in vitro. Here, we investigated tissue specificity and intracellular signals required for OAMB's function in ovulation. Restricted OAMB expression in the adult oviduct epithelium, but not the nervous system, reinstated ovulation in oamb mutant females, in which either OAMB isoform was sufficient for the rescue. Consistently, strong immunoreactivities for both isoforms were observed in the wild-type oviduct epithelium. To delineate the cellular mechanism by which OAMB regulates ovulation, we explored protein kinases functionally interacting with OAMB by employing a new GAL4 driver with restricted expression in the oviduct epithelium. Conditional inhibition of Ca2+/Calmodulin-dependent protein kinase II (CaMKII), but not protein kinase A or C, in the oviduct epithelium inhibited ovulation. Moreover, constitutively active CaMKII, but not protein kinase A, expressed only in the adult oviduct epithelium fully rescued the oamb female's phenotype, demonstrating CaMKII as a major downstream molecule conveying the OAMB's ovulation signal. This is consistent with the ability of both OAMB isoforms, whose common intracellular signal in vitro is Ca2+, to reinstate ovulation in oamb females. These observations reveal the critical roles of the oviduct epithelium and its cellular components OAMB and CaMKII in ovulation. It is conceivable that the OAMB-mediated cellular activities stimulated upon mating are crucial for secretory activities suitable for egg transfer from the ovary to the uterus.
Collapse
Affiliation(s)
- Hyun-Gwan Lee
- The Huck Institute Genetics Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Suman Rohila
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyung-An Han
- The Huck Institute Genetics Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
77
|
Makos MA, Kim YC, Han KA, Heien ML, Ewing AG. In vivo electrochemical measurements of exogenously applied dopamine in Drosophila melanogaster. Anal Chem 2009; 81:1848-54. [PMID: 19192966 PMCID: PMC2787772 DOI: 10.1021/ac802297b] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon-fiber microelectrodes coupled with electrochemical detection have been used extensively for the analysis of biogenic amines. In order to determine the functional role of these amines, in vivo studies have primarily used rats and mice as model organisms. Here, we report on the development of these microanalytical techniques for in vivo electrochemical detection of dopamine in the adult Drosophila melanogaster central nervous system (CNS). A triple-barrel micropipet injector was used to exogenously apply three different concentrations of dopamine, and a cylindrical carbon-fiber microelectrode was placed in the protocerebral anterior medial brain area where dopamine neurons are densely populated. Background-subtracted fast-scan cyclic voltammetry was used to measure dopamine concentration in the fly CNS. Distinct differences are shown for the clearance of exogenously applied dopamine in the brains of wild type flies versus fumin (fmn) mutants lacking a functional dopamine transporter. The current response due to oxidation of dopamine increased significantly from baseline for wild type flies following cocaine incubation. Interestingly, the current remained unchanged for mutant flies under the same conditions. These data confirm the accepted theory that cocaine blocks dopamine transporter function and validates the use of in vivo electrochemical methods to monitor dopamine uptake in Drosophila. Furthermore, after incubation with tetrodotoxin (TTX), a sodium channel blocker, there was a significant increase in peak oxidation current in the wild type flies; however, the current did not significantly change in the fmn mutant. These data suggest that factors that affect neuronal activity via ion channels such as TTX also influence the function of the dopamine transporter in Drosophila.
Collapse
Affiliation(s)
- Monique A. Makos
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Young-Cho Kim
- Department of Biology, The Pennsylvania State University, PA 16802, USA
| | - Kyung-An Han
- Department of Biology, The Pennsylvania State University, PA 16802, USA
| | - Michael L. Heien
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew G. Ewing
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Göteborg University, SE-41296, Göteborg, Sweden
| |
Collapse
|
78
|
Loevenich SN, Brunner E, King NL, Deutsch EW, Stein SE, The FlyBase Consortium, Aebersold R, Hafen E. The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation. BMC Bioinformatics 2009; 10:59. [PMID: 19210778 PMCID: PMC2648944 DOI: 10.1186/1471-2105-10-59] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 02/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments. RESULTS In this manuscript, we present the Drosophila melanogaster PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal http://www.drosophila-peptideatlas.org allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s) in which it was observed. CONCLUSION PeptideAtlas is an open access database for the Drosophila community that has several features and applications that support (1) reduction of the complexity inherently associated with performing targeted proteomic studies, (2) designing and accelerating shotgun proteomics experiments, (3) confirming or questioning gene models, and (4) adjusting gene models such that they are in line with observed Drosophila peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert.
Collapse
Affiliation(s)
- Sandra N Loevenich
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
- Center for Model Organism Proteomes, University of Zurich, 8057 Zurich, Switzerland
- Ph.D. Program in Molecular Life Sciences, University of Zurich, 8093 Zurich, Switzerland
| | - Erich Brunner
- Center for Model Organism Proteomes, University of Zurich, 8057 Zurich, Switzerland
| | - Nichole L King
- Institute for Systems Biology, Seattle, WA 98103-8904, USA
- Incorporated Research Institutions for Seismology, Data Management Center, Seattle, WA 98105, USA
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, WA 98103-8904, USA
| | - Stephen E Stein
- National Institute of Standards & Technology, Gaithersburg, MD 20899-8380, USA
| | | | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
- Institute for Systems Biology, Seattle, WA 98103-8904, USA
- Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
- Center for Systems Physiology and Metabolic Diseases, ETH Zurich, 8093 Zurich, Switzerland
| | - Ernst Hafen
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
Collaborators
W Gelbart, L Bitsoi, M Crosby, A Dirkmaat, D Emmert, L S Gramates, K Falls, R Kulathinal, B Matthews, M Roark, S Russo, A Schroeder, S St Pierre, K Wiley, H Zhang, P Zhou, M Zytkovicz, N Brown, P Leyland, P McQuilton, S Marygold, G Millburn, D Osumi-Sutherland, R Stefancsik, S Tweedie, T Kaufman, K Matthews, J Goodman, G Grumbling, V Strelets, R Wilson,
Collapse
|
79
|
Abstract
The Bioverse is a framework for creating, warehousing and presenting biological information based on hierarchical levels of organisation. The framework is guided by a deeper philosophy of desiring to represent all relationships between all components of biological systems towards the goal of a wholistic picture of organismal biology. Data from various sources are combined into a single repository and a uniform interface is exposed to access it. The power of the approach of the Bioverse is that, due to its inclusive nature, patterns emerge from the acquired data and new predictions are made. The implementation of this repository (beginning with acquisition of source data, processing in a pipeline, and concluding with storage in a relational database) and interfaces to the data contained in it, from a programmatic application interface to a user friendly web application, are discussed.
Collapse
|
80
|
|
81
|
Alternative processing of sterol regulatory element binding protein during larval development in Drosophila melanogaster. Genetics 2008; 181:119-28. [PMID: 19015545 DOI: 10.1534/genetics.108.093450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sterol regulatory element binding protein (SREBP) is a major transcriptional regulator of lipid metabolism. Nuclear Drosophila SREBP (dSREBP) is essential for larval development in Drosophila melanogaster but dispensable in adults. dSREBP(-) larvae die at second instar owing to loss of dSREBP-mediated transcription but survive to adulthood when fed fatty acids. Activation of SREBP requires two separate cleavages. Site-1 protease (S1P) cleaves in the luminal loop of the membrane-bound SREBP precursor, cutting it in two. The NH(2)- and COOH-terminal domains remain membrane bound owing to their single membrane-spanning helices. The NH(2)-terminal cleavage product is the substrate for site-2 protease (S2P), which cleaves within its membrane-spanning helix to release the transcription factor. In mice, loss of S1P is lethal but the consequences of loss of S2P in animals remain undefined. All known functions of SREBP require its cleavage by S2P. We isolated Drosophila mutants that eliminate all dS2P function (dS2P(-)). Unexpectedly, larvae lacking dS2P are viable. They are deficient in transcription of some dSREBP target genes but less so than larvae lacking dSREBP. Despite loss of dS2P, dSREBP is processed in mutant larvae. Therefore, larvae have an alternative cleavage mechanism for producing transcriptionally active dSREBP, and this permits survival of dS2P mutants.
Collapse
|
82
|
Lyulcheva E, Taylor E, Michael M, Vehlow A, Tan S, Fletcher A, Krause M, Bennett D. Drosophila pico and its mammalian ortholog lamellipodin activate serum response factor and promote cell proliferation. Dev Cell 2008; 15:680-90. [PMID: 19000833 PMCID: PMC2691947 DOI: 10.1016/j.devcel.2008.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 08/06/2008] [Accepted: 09/30/2008] [Indexed: 12/19/2022]
Abstract
MIG-10/RIAM/lamellipodin (MRL) proteins link activated Ras-GTPases with actin regulatory Ena/VASP proteins to induce local changes in cytoskeletal dynamics and cell motility. MRL proteins alter monomeric (G):filamentous (F) actin ratios, but the impact of these changes had not been fully appreciated. We report here that the Drosophila MRL ortholog, pico, is required for tissue and organismal growth. Reduction in pico levels resulted in reduced cell division rates, growth retardation, increased G:F actin ratios and lethality. Conversely, pico overexpression reduced G:F actin ratios and promoted tissue overgrowth in an epidermal growth factor (EGF) receptor (EGFR)-dependent manner. Consistently, in HeLa cells, lamellipodin was required for EGF-induced proliferation. We show that pico and lamellipodin share the ability to activate serum response factor (SRF), a transcription factor that responds to reduced G:F-actin ratios via its co-factor Mal. Genetics data indicate that mal/SRF levels are important for pico-mediated tissue growth. We propose that MRL proteins link EGFR activation to mitogenic SRF signaling via changes in actin dynamics.
Collapse
Affiliation(s)
- Ekaterina Lyulcheva
- Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, UK
- School of Biological Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Eleanor Taylor
- Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, UK
- School of Biological Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Magdalene Michael
- Randall Division of Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne Vehlow
- Randall Division of Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Shengjiang Tan
- Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, UK
- School of Biological Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Adam Fletcher
- Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, UK
| | - Matthias Krause
- Randall Division of Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Daimark Bennett
- Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, UK
- School of Biological Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
83
|
Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B. QuantPrime--a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 2008; 9:465. [PMID: 18976492 PMCID: PMC2612009 DOI: 10.1186/1471-2105-9-465] [Citation(s) in RCA: 396] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 11/01/2008] [Indexed: 11/21/2022] Open
Abstract
Background Medium- to large-scale expression profiling using quantitative polymerase chain reaction (qPCR) assays are becoming increasingly important in genomics research. A major bottleneck in experiment preparation is the design of specific primer pairs, where researchers have to make several informed choices, often outside their area of expertise. Using currently available primer design tools, several interactive decisions have to be made, resulting in lengthy design processes with varying qualities of the assays. Results Here we present QuantPrime, an intuitive and user-friendly, fully automated tool for primer pair design in small- to large-scale qPCR analyses. QuantPrime can be used online through the internet or on a local computer after download; it offers design and specificity checking with highly customizable parameters and is ready to use with many publicly available transcriptomes of important higher eukaryotic model organisms and plant crops (currently 295 species in total), while benefiting from exon-intron border and alternative splice variant information in available genome annotations. Experimental results with the model plant Arabidopsis thaliana, the crop Hordeum vulgare and the model green alga Chlamydomonas reinhardtii show success rates of designed primer pairs exceeding 96%. Conclusion QuantPrime constitutes a flexible, fully automated web application for reliable primer design for use in larger qPCR experiments, as proven by experimental data. The flexible framework is also open for simple use in other quantification applications, such as hydrolyzation probe design for qPCR and oligonucleotide probe design for quantitative in situ hybridization. Future suggestions made by users can be easily implemented, thus allowing QuantPrime to be developed into a broad-range platform for the design of RNA expression assays.
Collapse
Affiliation(s)
- Samuel Arvidsson
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
84
|
Strub BR, Parkes TL, Mukai ST, Bahadorani S, Coulthard AB, Hall N, Phillips JP, Hilliker AJ. Mutations of the withered (whd) gene in Drosophila melanogaster confer hypersensitivity to oxidative stress and are lesions of the carnitine palmitoyltransferase I (CPT I) gene. Genome 2008; 51:409-20. [PMID: 18521119 DOI: 10.1139/g08-023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Since some oxygen defense mutants of Drosophila melanogaster exhibit a crinkled wing phenotype, a screen was performed on strains bearing mutant alleles conferring a visible wing phenotype to determine whether any were hypersensitive to oxidative stress. One mutant, withered (whd), was found to be sensitive to both dietary paraquat and hyperoxia. New alleles of whd were induced on a defined genetic background and strains carrying these alleles were also found to be sensitive to oxidative stress. To identify the product of the whd gene we used a sequence-based positional candidate approach and by this method we determined that whd encodes carnitine palmitoyltransferase I (CPT I), an enzyme of the outer mitochondrial membrane that is required for the import of long-chain fatty acids into the mitochondria for beta-oxidation. Although this function is not vital under laboratory conditions, whd adults were found to be highly sensitive to starvation and to heavy metal toxicity relative to controls. This work uncovers a novel relationship between fatty acid metabolism and reactive oxygen metabolism. Further, these results in conjunction with past research on whd and on mammalian CPT I support the hypothesis that CPT I serves a vital function in the response to thymine supplementation.
Collapse
Affiliation(s)
- Benjamin R Strub
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
High baselines of transcription factor activities represent fundamental obstacles to regulated signaling. Here we show that in Drosophila, quenching of basal activator protein 1 (AP-1) transcription factor activity serves as a prerequisite to its tight spatial and temporal control by the JNK (Jun N-terminal kinase) signaling cascade. Our studies indicate that the novel raw gene product is required to limit AP-1 activity to leading edge epidermal cells during embryonic dorsal closure. In addition, we provide the first evidence that the epidermis has a Basket JNK-independent capacity to activate AP-1 targets and that raw function is required broadly throughout the epidermis to antagonize this activity. Finally, our mechanistic studies of the three dorsal-open group genes [raw, ribbon (rib), and puckered (puc)] indicate that these gene products provide at least two tiers of JNK/AP-1 regulation. In addition to Puckered phosphatase function in leading edge epidermal cells as a negative-feedback regulator of JNK signaling, the three dorsal-open group gene products (Raw, Ribbon, and Puckered) are required more broadly in the dorsolateral epidermis to quench a basal, signaling-independent activity of the AP-1 transcription factor.
Collapse
|
86
|
Ray P, Shringarpure S, Kolar M, Xing EP. CSMET: comparative genomic motif detection via multi-resolution phylogenetic shadowing. PLoS Comput Biol 2008; 4:e1000090. [PMID: 18535663 PMCID: PMC2396503 DOI: 10.1371/journal.pcbi.1000090] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 04/28/2008] [Indexed: 11/19/2022] Open
Abstract
Functional turnover of transcription factor binding sites (TFBSs), such as whole-motif loss or gain, are common events during genome evolution. Conventional probabilistic phylogenetic shadowing methods model the evolution of genomes only at nucleotide level, and lack the ability to capture the evolutionary dynamics of functional turnover of aligned sequence entities. As a result, comparative genomic search of non-conserved motifs across evolutionarily related taxa remains a difficult challenge, especially in higher eukaryotes, where the cis-regulatory regions containing motifs can be long and divergent; existing methods rely heavily on specialized pattern-driven heuristic search or sampling algorithms, which can be difficult to generalize and hard to interpret based on phylogenetic principles. We propose a new method: Conditional Shadowing via Multi-resolution Evolutionary Trees, or CSMET, which uses a context-dependent probabilistic graphical model that allows aligned sites from different taxa in a multiple alignment to be modeled by either a background or an appropriate motif phylogeny conditioning on the functional specifications of each taxon. The functional specifications themselves are the output of a phylogeny which models the evolution not of individual nucleotides, but of the overall functionality (e.g., functional retention or loss) of the aligned sequence segments over lineages. Combining this method with a hidden Markov model that autocorrelates evolutionary rates on successive sites in the genome, CSMET offers a principled way to take into consideration lineage-specific evolution of TFBSs during motif detection, and a readily computable analytical form of the posterior distribution of motifs under TFBS turnover. On both simulated and real Drosophila cis-regulatory modules, CSMET outperforms other state-of-the-art comparative genomic motif finders.
Collapse
Affiliation(s)
- Pradipta Ray
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Suyash Shringarpure
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Mladen Kolar
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Eric P. Xing
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
87
|
Kousaka K, Kiyonari H, Oshima N, Nagafuchi A, Shima Y, Chisaka O, Uemura T. Slingshot-3 dephosphorylates ADF/cofilin but is dispensable for mouse development. Genesis 2008; 46:246-55. [DOI: 10.1002/dvg.20389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
88
|
Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics 2008; 178:215-34. [PMID: 18202369 DOI: 10.1534/genetics.107.081968] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a critical need for genetic methods for the inducible expression of transgenes in specific cells during development. A promising approach for this is the GeneSwitch GAL4 system of Drosophila. With GeneSwitch GAL4 the expression of upstream activating sequence (UAS) effector lines is controlled by a chimeric GAL4 protein that becomes active in the presence of the steroid RU486 (mifepristone). To improve the utility of this expression system, we performed a large-scale enhancer-trap screen for insertions that yielded nervous system expression. A total of 204 GeneSwitch GAL4 lines with various larval expression patterns in neurons, glia, and/or muscle fibers were identified for chromosomes I-III. All of the retained lines show increased activity when induced with RU486. Many of the lines reveal novel patterns of sensory neurons, interneurons, and glia. There were some tissue-specific differences in background expression, with muscles and glia being more likely to show activity in the absence of the inducing agent. However, >90% of the neuron-specific driver lines showed little or no background activity, making them particularly useful for inducible expression studies.
Collapse
|
89
|
Garcia-Lopez A, Monferrer L, Garcia-Alcover I, Vicente-Crespo M, Alvarez-Abril MC, Artero RD. Genetic and chemical modifiers of a CUG toxicity model in Drosophila. PLoS One 2008; 3:e1595. [PMID: 18270582 PMCID: PMC2220037 DOI: 10.1371/journal.pone.0001595] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 01/18/2008] [Indexed: 11/19/2022] Open
Abstract
Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL) proteins contributing to myotonic dystrophy 1 (DM1). To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen), muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine), and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.
Collapse
Affiliation(s)
| | - Lidon Monferrer
- Department of Genetics, University of Valencia, Burjasot, Spain
| | | | | | | | - Ruben D. Artero
- Department of Genetics, University of Valencia, Burjasot, Spain
- *E-mail:
| |
Collapse
|
90
|
Bland ND, Pinney JW, Thomas JE, Turner AJ, Isaac RE. Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evol Biol 2008; 8:16. [PMID: 18215274 PMCID: PMC2259306 DOI: 10.1186/1471-2148-8-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 01/23/2008] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The neprilysin (M13) family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2), which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. RESULTS The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates and thus allows M13 peptidases to fulfil a broad range of physiological roles. CONCLUSION The M13 family of peptidases have diversified extensively in all species examined, indicating wide ranging roles in numerous physiological processes. It is predicted that differences in the S2' subsite are fundamental to determining the substrate specificities that facilitate this functional diversity.
Collapse
Affiliation(s)
- Nicholas D Bland
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- INSERM U609, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Facility, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - John W Pinney
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Josie E Thomas
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Anthony J Turner
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
91
|
Lee HG, Kim YC, Dunning JS, Han KA. Recurring ethanol exposure induces disinhibited courtship in Drosophila. PLoS One 2008; 3:e1391. [PMID: 18167550 PMCID: PMC2148075 DOI: 10.1371/journal.pone.0001391] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/07/2007] [Indexed: 12/02/2022] Open
Abstract
Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity.
Collapse
Affiliation(s)
- Hyun-Gwan Lee
- Department of Biology, Huck Institute Genetics Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Young-Cho Kim
- Department of Biology, Huck Institute Neuroscience Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jennifer S. Dunning
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyung-An Han
- Department of Biology, Huck Institute Genetics Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Huck Institute Neuroscience Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
92
|
Poeck B, Triphan T, Neuser K, Strauss R. Locomotor control by the central complex inDrosophila—An analysis of thetay bridge mutant. Dev Neurobiol 2008; 68:1046-58. [DOI: 10.1002/dneu.20643] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
93
|
|
94
|
Feala JD, Coquin L, Paternostro G, McCulloch AD. Integrating metabolomics and phenomics with systems models of cardiac hypoxia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 96:209-25. [PMID: 17870149 DOI: 10.1016/j.pbiomolbio.2007.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hypoxia is the major cause of necrotic cell death in myocardial infarction. Cellular energy supply and demand under hypoxic conditions is regulated by many interacting signaling and transcriptional networks, which complicates studies on individual proteins and pathways. We apply an integrated systems approach to understand the metabolic and functional response to hypoxia in muscle cells of the fruit fly Drosophila melanogaster. In addition to its utility as a hypoxia-tolerant model organism, Drosophila also offers advantages due to its small size, fecundity, and short life cycle. These traits, along with a large library of single-gene mutations, motivated us to develop new, computer-automated technology for gathering in vivo measurements of heart function under hypoxia for a large number of mutant strains. Phenotype data can be integrated with in silico cellular networks, metabolomic data, and microarrays to form qualitative and quantitative network models for prediction and hypothesis generation. Here we present a framework for a systems approach to hypoxia in the cardiac myocyte, starting from nuclear magnetic resonance (NMR) metabolomics, a constraint-based metabolic model, and phenotypic profiles.
Collapse
Affiliation(s)
- Jacob D Feala
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
95
|
Crangle CE, Cherry JM, Hong EL, Zbyslaw A. Mining experimental evidence of molecular function claims from the literature. Bioinformatics 2007; 23:3232-40. [PMID: 17942445 PMCID: PMC3041023 DOI: 10.1093/bioinformatics/btm495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The rate at which gene-related findings appear in the scientific literature makes it difficult if not impossible for biomedical scientists to keep fully informed and up to date. The importance of these findings argues for the development of automated methods that can find, extract and summarize this information. This article reports on methods for determining the molecular function claims that are being made in a scientific article, specifically those that are backed by experimental evidence. RESULTS The most significant result is that for molecular function claims based on direct assays, our methods achieved recall of 70.7% and precision of 65.7%. Furthermore, our methods correctly identified in the text 44.6% of the specific molecular function claims backed up by direct assays, but with a precision of only 0.92%, a disappointing outcome that led to an examination of the different kinds of errors. These results were based on an analysis of 1823 articles from the literature of Saccharomyces cerevisiae (budding yeast). AVAILABILITY The annotation files for S.cerevisiae are available from ftp://genome-ftp.stanford.edu/pub/yeast/data_download/literature_curation/gene_association.sgd.gz. The draft protocol vocabulary is available by request from the first author.
Collapse
|
96
|
Grönke S, Müller G, Hirsch J, Fellert S, Andreou A, Haase T, Jäckle H, Kühnlein RP. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 2007; 5:e137. [PMID: 17488184 PMCID: PMC1865564 DOI: 10.1371/journal.pbio.0050137] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 03/13/2007] [Indexed: 01/07/2023] Open
Abstract
Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms guiding storage-fat mobilization, are conserved between mammals and insects. We generated a Drosophila mutant lacking the receptor (AKHR) of the adipokinetic hormone signaling pathway, an insect lipolytic pathway related to ß-adrenergic signaling in mammals. Combined genetic, physiological, and biochemical analyses provide in vivo evidence that AKHR is as important for chronic accumulation and acute mobilization of storage fat as is the Brummer lipase, the homolog of mammalian adipose triglyceride lipase (ATGL). Simultaneous loss of Brummer and AKHR causes extreme obesity and blocks acute storage-fat mobilization in flies. Our data demonstrate that storage-fat mobilization in the fly is coordinated by two lipocatabolic systems, which are essential to adjust normal body fat content and ensure lifelong fat-storage homeostasis. The amount of body fat that an animal stores is a critical parameter for its survival. Although under-storage of fat creates risk during periods of famine, over-storage also impairs fitness—obesity in humans is associated with severe health threats, such as cardiovascular disease, type II diabetes, and cancer. A delicate balance between two antagonistic processes adjusts body fat storage: lipogenesis produces fat stores, and lipolysis mobilizes fat. It is unclear, however, how many regulatory systems orchestrate lipolysis in animals, whether these systems are evolutionarily conserved, and to what extent impaired lipolytic regulation contributes to excessive body fat accumulation. We show that in the fruit fly Drosophila, lipolysis is under dual control. Inactivation of either of the two control pathways generates flies with excessive fat accumulation and limited fat-mobilization capability. Mutant flies simultaneously lacking key genes of both lipolytic systems, however, are extremely obese and completely blocked in body fat mobilization even when fully food deprived. Interestingly, our study reveals that key components and regulatory mechanisms of lipolysis are evolutionarily conserved between insects and mammals, making the fruit fly a valuable model system for research on lipid metabolism. Simultaneous loss of the receptor for adipokinetic hormone and the Brummer triglyceride lipase causes extreme obesity and blocks acute storage fat mobilization in flies.
Collapse
Affiliation(s)
- Sebastian Grönke
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Günter Müller
- Therapeutic Department Metabolic Diseases, Sanofi-Aventis Pharma Deutschland GmbH, Frankfurt, Germany
| | - Jochen Hirsch
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Sonja Fellert
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Alexandra Andreou
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Tobias Haase
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Herbert Jäckle
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Ronald P Kühnlein
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
97
|
Rubin DL, Lewis SE, Mungall CJ, Misra S, Westerfield M, Ashburner M, Sim I, Chute CG, Solbrig H, Storey MA, Smith B, Day-Richter J, Noy NF, Musen MA. National Center for Biomedical Ontology: advancing biomedicine through structured organization of scientific knowledge. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2007; 10:185-98. [PMID: 16901225 DOI: 10.1089/omi.2006.10.185] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.
Collapse
Affiliation(s)
- Daniel L Rubin
- Stanford Medical Informatics, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Chor B, Tuller T. Biological networks: comparison, conservation, and evolution via relative description length. J Comput Biol 2007; 14:817-38. [PMID: 17691896 DOI: 10.1089/cmb.2007.r018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe a new approach for comparing cellular-biological networks and finding conserved regions in two or more such networks. Our distance measure is based on the description length of one network, given the description of the other one, and it is efficiently computable. We employ these distances as inputs for generating phylogenetic trees. Using KEGG's metabolic networks as our starting point, we obtained trees that are not perfect, but are very good (considering the characteristics of the inputs). Our approach enables us to identify conserved regions among more than a dozen metabolic networks, and among two protein interaction networks. These conserved regions appear to be biologically relevant, proving the viability of our approach.
Collapse
Affiliation(s)
- Benny Chor
- School of Computer Science, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
99
|
Abstract
Proteomics is a relatively new scientific discipline that merges protein biochemistry, genome biology and bioinformatics to determine the spatial and temporal expression of proteins in cells, tissues and whole organisms. There has been very little application of proteomics to the fields of behavioral genetics, evolution, ecology and population dynamics, and has only recently been effectively applied to the closely allied fields of molecular evolution and genetics. However, there exists considerable potential for proteomics to impact in areas related to functional ecology; this review will introduce the general concepts and methodologies that define the field of proteomics and compare and contrast the advantages and disadvantages with other methods. Examples of how proteomics can aid, complement and indeed extend the study of functional ecology will be discussed including the main tool of ecological studies, population genetics with an emphasis on metapopulation structure analysis. Because proteomic analyses provide a direct measure of gene expression, it obviates some of the limitations associated with other genomic approaches, such as microarray and EST analyses. Likewise, in conjunction with associated bioinformatics and molecular evolutionary tools, proteomics can provide the foundation of a systems-level integration approach that can enhance ecological studies. It can be envisioned that proteomics will provide important new information on issues specific to metapopulation biology and adaptive processes in nature. A specific example of the application of proteomics to sperm ageing is provided to illustrate the potential utility of the approach.
Collapse
Affiliation(s)
- T L Karr
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
100
|
Ricci F, Lai RY, Heeger AJ, Plaxco KW, Sumner JJ. Effect of molecular crowding on the response of an electrochemical DNA sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:6827-34. [PMID: 17488132 PMCID: PMC2728052 DOI: 10.1021/la700328r] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
E-DNA sensors, the electrochemical equivalent of molecular beacons, appear to be a promising means of detecting oligonucleotides. E-DNA sensors are comprised of a redox-modified (here, methylene blue or ferrocene) DNA stem-loop covalently attached to an interrogating electrode. Because E-DNA signaling arises due to binding-induced changes in the conformation of the stem-loop probe, it is likely sensitive to the nature of the molecular packing on the electrode surface. Here we detail the effects of probe density, target length, and other aspects of molecular crowding on the signaling properties, specificity, and response time of a model E-DNA sensor. We find that the highest signal suppression is obtained at the highest probe densities investigated, and that greater suppression is observed with longer and bulkier targets. In contrast, sensor equilibration time slows monotonically with increasing probe density, and the specificity of hybridization is not significantly affected. In addition to providing insight into the optimization of electrochemical DNA sensors, these results suggest that E-DNA signaling arises due to hybridization-linked changes in the rate, and thus efficiency, with which the redox moiety collides with the electrode and transfers electrons.
Collapse
Affiliation(s)
- Francesco Ricci
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - Rebecca Y. Lai
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
- Department of Physics and Institute for Polymers and Organic Solids, University of California, Santa Barbara, California 93106
| | - Alan J. Heeger
- Department of Physics and Institute for Polymers and Organic Solids, University of California, Santa Barbara, California 93106
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - James J. Sumner
- U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, 2800 Powder Mill Road, Adelphi, Maryland 20783
| |
Collapse
|