51
|
Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Borde I, Reboud-Ravaux M, Restle T, Gorelick RJ, Le Cam E. HIV-1 protease and reverse transcriptase control the architecture of their nucleocapsid partner. PLoS One 2007; 2:e669. [PMID: 17712401 PMCID: PMC1940317 DOI: 10.1371/journal.pone.0000669] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/18/2007] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 nucleocapsid is formed during protease (PR)-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT) on nucleocapsid plasticity, using in vitro reconstitutions. After binding to nucleic acids, NCp15, a proteolytic intermediate of nucleocapsid protein (NC), was processed at its C-terminus by PR, yielding premature NC (NCp9) followed by mature NC (NCp7), through the consecutive removal of p6 and p1. This allowed NC co-aggregation with its single-stranded nucleic-acid substrate. Examination of these co-aggregates for the ability of RT to catalyse reverse transcription showed an effective synthesis of double-stranded DNA that, remarkably, escaped from the aggregates more efficiently with NCp7 than with NCp9. These data offer a compelling explanation for results from previous virological studies that focused on i) Gag processing leading to nucleocapsid condensation, and ii) the disappearance of NCp7 from the HIV-1 pre-integration complexes. We propose that HIV-1 PR and RT, by controlling the nucleocapsid architecture during the steps of condensation and dismantling, engage in a successive nucleoprotein-remodelling process that spatiotemporally coordinates the pre-integration steps of HIV-1. Finally we suggest that nucleoprotein remodelling mechanisms are common features developed by mobile genetic elements to ensure successful replication.
Collapse
Affiliation(s)
- Gilles Mirambeau
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
- Division de Biochimie, UFR des Sciences de la Vie, Université Pierre et Marie Curie-Paris, Paris, France
- * To whom correspondence should be addressed. E-mail: (GM); (ELC)
| | - Sébastien Lyonnais
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Dominique Coulaud
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Laurence Hameau
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Sophie Lafosse
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Josette Jeusset
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Isabelle Borde
- Laboratoire Biologie et Multimedia, Université Pierre et Marie Curie-Paris, Paris, France
| | - Michèle Reboud-Ravaux
- Laboratoire d'Enzymologie Moléculaire et Fonctionnelle, CNRS FRE 2852, Institut Jacques Monod, CNRS-Université Pierre et Marie Curie-Paris, Paris, France
| | - Tobias Restle
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Lübeck, Germany
| | - Robert J. Gorelick
- AIDS Vaccine Program, Basic Research Program, Science Applications International Corporation at Frederick, The National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eric Le Cam
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
- * To whom correspondence should be addressed. E-mail: (GM); (ELC)
| |
Collapse
|
52
|
Xu C, Losytskyy MY, Kovalska VB, Kryvorotenko DV, Yarmoluk SM, McClelland S, Bianco PR. Novel, Monomeric Cyanine Dyes as Reporters for DNA Helicase Activity. J Fluoresc 2007; 17:671-85. [PMID: 17674164 DOI: 10.1007/s10895-007-0215-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
The dimeric cyanine dyes, YOYO-1 and TOTO-1, are widely used as DNA probes because of their excellent fluorescent properties. They have a higher fluorescence quantum yield than ethidium homodimer, DAPI and Hoechst dyes and bind to double-stranded DNA with high affinity. However, these dyes are limited by heterogeneous staining at high dye loading, photocleavage of DNA under extended illumination, nicking of DNA, and inhibition of the activity of DNA binding enzymes. To overcome these limitations, seven novel cyanine dyes (Cyan-2, DC-21, DM, DM-1, DMB-2OH, SH-0367, SH1015-OH) were synthesized and tested for fluorescence emission, resistance to displacement by Mg(2+), and the ability to function as reporters for DNA unwinding. Results show that Cyan-2, DM-1, SH-0367 and SH1015-OH formed highly fluorescent complexes with dsDNA. Of these, only Cyan-2 and DM-1 exhibited a large fluorescence enhancement in buffers, and were resistant to displacement by Mg(2+). The potential of these two dyes to function as reporter molecules was evaluated using continuous fluorescence, DNA helicase assays. The rate of DNA unwinding was not significantly affected by either of these two dyes. Therefore, Cyan-2 and DM-1 form the basis for the synthesis of novel cyanine dyes with the potential to overcome the limitations of YOYO-1 and TOTO-1.
Collapse
Affiliation(s)
- Cuiling Xu
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Wu T, Heilman-Miller SL, Levin JG. Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res 2007; 35:3974-87. [PMID: 17553835 PMCID: PMC1919501 DOI: 10.1093/nar/gkm375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (−) strong-stop DNA followed by reverse transcriptase (RT)-catalyzed DNA extension). In our system, destabilization of a stem-loop structure at the 5′ end of the transactivation response element (TAR) in a 70-nt RNA acceptor (RNA 70) appears to be the major nucleation pathway. Using a mutational approach, we show that when the acceptor has a weak local structure, NC has little or no effect. In this case, the efficiencies of both annealing and strand transfer reactions are similar. However, when NC is required to destabilize local structure in acceptor RNA, the efficiency of annealing is significantly higher than that of strand transfer. Consistent with this result, we find that Mg2+ (required for RT activity) inhibits NC-catalyzed annealing. This suggests that Mg2+ competes with NC for binding to the nucleic acid substrates. Collectively, our findings provide new insights into the mechanism of NC-dependent and -independent minus-strand transfer.
Collapse
Affiliation(s)
| | | | - Judith G. Levin
- *To whom correspondence should be addressed. +1 301 496 1970+1 301 496 0243
| |
Collapse
|
54
|
Onn I, Kapeller I, Abu-Elneel K, Shlomai J. Binding of the universal minicircle sequence binding protein at the kinetoplast DNA replication origin. J Biol Chem 2006; 281:37468-76. [PMID: 17046830 DOI: 10.1074/jbc.m606374200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetoplast DNA, the mitochondrial DNA of trypanosomatids, is a remarkable DNA structure that contains, in the species Crithidia fasciculata, 5000 topologically linked duplex DNA minicircles. Their replication initiates at two conserved sequences, a dodecamer, known as the universal minicircle sequence (UMS), and a hexamer, which are located at the replication origins of the minicircle L and H strands, respectively. A UMS-binding protein (UMSBP) binds specifically the 12-mer UMS sequence and a 14-mer sequence that contains the conserved hexamer in their single-stranded DNA conformation. In vivo cross-linking analyses reveal the binding of UMSBP to kinetoplast DNA networks in the cell. Furthermore, UMSBP binds in vitro to native minicircle origin fragments, carrying the UMSBP recognition sequences. UMSBP binding at the replication origin induces conformational changes in the bound DNA through its folding, aggregation and condensation.
Collapse
Affiliation(s)
- Itay Onn
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases
| | | | | | | |
Collapse
|
55
|
Cruceanu M, Gorelick RJ, Musier-Forsyth K, Rouzina I, Williams MC. Rapid kinetics of protein-nucleic acid interaction is a major component of HIV-1 nucleocapsid protein's nucleic acid chaperone function. J Mol Biol 2006; 363:867-77. [PMID: 16997322 DOI: 10.1016/j.jmb.2006.08.070] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/08/2006] [Accepted: 08/15/2006] [Indexed: 11/26/2022]
Abstract
The nucleic acid chaperone activity of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid protein (NC) plays an important role in the retroviral life cycle, in part, by facilitating numerous nucleic acid rearrangements throughout the reverse transcription process. Recent studies have identified duplex destabilization and nucleic acid aggregation as the two major components of NC's chaperone activity. In order to better understand the contribution of the functional domains of NC to these two activities, we used optical tweezers to stretch single lambda DNA molecules through the helix-coil transition in the presence of wild-type or mutant HIV-1 NC. Protein-induced duplex destabilization was measured directly as an average decrease of the force-induced melting free energy, while NC's ability to facilitate strand annealing was determined by the amount of hysteresis in the DNA stretch-relax cycle. By studying zinc-free variants of full-length and truncated NC, the relative contributions of NC's zinc fingers and N-terminal basic domain to the two major components of chaperone activity were elucidated. In addition, examination of NC variants containing mutations affecting one or both zinc finger motifs showed that effective strand annealing activity is correlated with NC's ability to rapidly bind and dissociate from nucleic acids. NC variants with slow on/off rates are inefficient in strand annealing, even though they may still be capable of high affinity nucleic acid binding, duplex destabilization, and/or nucleic acid aggregation. Taken together, these observations establish the rapid kinetics of protein-nucleic acid interaction as another major component of NC's chaperone function.
Collapse
|
56
|
Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Justome A, Delain E, Gorelick RJ, Le Cam E. Transmission electron microscopy reveals an optimal HIV-1 nucleocapsid aggregation with single-stranded nucleic acids and the mature HIV-1 nucleocapsid protein. J Mol Biol 2006; 364:496-511. [PMID: 17020765 DOI: 10.1016/j.jmb.2006.08.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 08/14/2006] [Indexed: 11/19/2022]
Abstract
HIV-1 nucleocapsid protein (NCp7) condenses the viral RNA within the mature capsid. In a capsid-free system, NCp7 promotes an efficient mechanism of aggregation with both RNA and DNA. Here, we show an analysis of these macromolecular complexes by dark-field imaging using transmission electron microscopy. Thousands of mature NCp7 proteins co-aggregate with hundreds of single-stranded circular DNA molecules (ssDNA) within minutes, as observed with poly(rA). These co-aggregates are highly stable but dynamic structures, as they dissociate under harsh conditions, and after addition of potent ssDNA or NCp7 competitive ligands. The N-terminal domain and zinc fingers of NCp7 are both required for efficient association. Addition of magnesium slightly increases the avidity of NCp7 for ssDNA, while it strongly inhibits co-aggregation with relaxed circular double-stranded DNA (dsDNA). This DNA selectivity is restricted to mature NCp7, compared to its precursors NCp15 and NCp9. Moreover, for NCp15, the linkage of NCp7 with the Gag C-terminal p6-peptide provokes a deficiency in ssDNA aggregation, but results in DNA spreading similar to prototypical SSB proteins. Finally, this co-aggregation is discussed in a dynamic architectural context with regard to the mature HIV-1 nucleocapsid. On the basis of the present data, we propose that condensation of encapsidated RNA requires the C-terminal processing of NCp. Subsequently, disassembly of the nucleocapsid should be favoured once dsDNA is produced by HIV-1 reverse transcriptase.
Collapse
Affiliation(s)
- Gilles Mirambeau
- Laboratoire de Microscopie Moléculaire et Cellulaire, CNRS UMR 8126, Institut Gustave Roussy, 94805 Villejuif, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Vo MN, Barany G, Rouzina I, Musier-Forsyth K. Mechanistic studies of mini-TAR RNA/DNA annealing in the absence and presence of HIV-1 nucleocapsid protein. J Mol Biol 2006; 363:244-61. [PMID: 16962137 DOI: 10.1016/j.jmb.2006.08.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/12/2006] [Accepted: 08/16/2006] [Indexed: 11/24/2022]
Abstract
HIV-1 reverse transcription involves several nucleic acid rearrangements, which are catalyzed by the nucleocapsid protein (NC). Annealing of the trans-activation response element (TAR) DNA hairpin to a complementary TAR RNA hairpin, resulting in the formation of an extended 98-base-pair duplex, is an essential step in the minus-strand transfer step of reverse transcription. To elucidate the TAR RNA/DNA annealing reaction pathway, annealing kinetics were studied systematically by gel-shift assays performed in the presence or absence of HIV-1 NC. Truncated 27 nucleotide mini-TAR RNA and DNA constructs were used in this work. In the absence of NC, the annealing is slow, and involves the fast formation of an unstable extended "kissing" loop intermediate, followed by a slower strand exchange between the terminal stems. This annealing is very sensitive to loop-loop complementarity, as well as to nucleic acid concentration, ionic strength and temperature. NC stimulates the annealing approximately 5000-fold by stabilizing the bimolecular intermediate approximately 100 to 200-fold, and promoting the subsequent strand exchange reaction approximately 10 to 20-fold. NC concentration dependence studies suggest that there is a direct correlation between the amount of NC required to stabilize the intermediate and the amount needed to induce mini-TAR aggregation. Whereas saturating levels of NC are required to efficiently aggregate nucleic acids, sub-saturating NC is sufficient to significantly enhance duplex destabilization. Equilibrium levels of mini-TAR RNA/DNA annealing were also measured under a variety of conditions. Taken together, the results presented here provide a quantitative accounting of HIV-1 NC's aggregation and duplex destabilizing activity, and provide insights into the universal nucleic acid chaperone activity of this essential viral protein.
Collapse
Affiliation(s)
- My-Nuong Vo
- University of Minnesota, Department of Chemistry and Institute for Molecular Virology, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
58
|
Kombrabail MH, Krishnamoorthy G. Fluorescence dynamics of DNA condensed by the molecular crowding agent poly(ethylene glycol). J Fluoresc 2006; 15:741-7. [PMID: 16341792 DOI: 10.1007/s10895-005-2982-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 07/26/2005] [Indexed: 10/25/2022]
Abstract
Condensation of extended DNA into compact structures is encountered in a variety of situations, both natural and artificial. While condensation of DNA has been routinely carried out by the use of multivalent cations, cationic lipids, detergents, and polyvalent cationic polymers, the use of molecular crowding agents in condensing DNA is rather striking. In this work, we have studied the dynamics of plasmid DNA condensed in the presence of a molecular crowding agent, polyethylene glycol (PEG). Steady-state and time-resolved fluorescence of the recently established condensation-indicating DNA binder, YOYO-1 [G. Krishnamoorthy, G. Duportail, and Y. Mely (2002), Biochemistry 41, 15277-15287] was used in inferring the dynamic aspects of DNA condensates. It is shown that DNA condensed by PEG is more flexible and less compact when compared to DNA condensed by binding agents such as polyethyleneimine. The relevance of such differences in dynamics toward functional aspects of condensed DNA is discussed.
Collapse
Affiliation(s)
- Mamata H Kombrabail
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | |
Collapse
|
59
|
Wellensiek BP, Sundaravaradan V, Ramakrishnan R, Ahmad N. Molecular characterization of the HIV-1 gag nucleocapsid gene associated with vertical transmission. Retrovirology 2006; 3:21. [PMID: 16600029 PMCID: PMC1459197 DOI: 10.1186/1742-4690-3-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 04/06/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) plays a pivotal role in the viral lifecycle: including encapsulating the viral genome, aiding in strand transfer during reverse transcription, and packaging two copies of the viral genome into progeny virions. Another gag gene product, p6, plays an integral role in successful viral budding from the plasma membrane and inclusion of the accessory protein Vpr within newly budding virions. In this study, we have characterized the gag NC and p6 genes from six mother-infant pairs following vertical transmission by performing phylogenetic analysis and by analyzing the degree of genetic diversity, evolutionary dynamics, and conservation of functional domains. RESULTS Phylogenetic analysis of 168 gag NC and p6 genes sequences revealed six separate subtrees that corresponded to each mother-infant pair, suggesting that epidemiologically linked individuals were closer to each other than epidemiologically unlinked individuals. A high frequency (92.8%) of intact open reading frames of NC and p6 with patient and pair specific sequence motifs were conserved in mother-infant pairs' sequences. Nucleotide and amino acid distances showed a lower degree of viral heterogeneity, and a low degree of estimates of genetic diversity was also found in NC and p6 sequences. The NC and p6 sequences from both mothers and infants were found to be under positive selection pressure. The two important functional motifs within NC, the zinc-finger motifs, were highly conserved in most of the sequences, as were the gag p6 Vpr binding, AIP1 and late binding domains. Several CTL recognition epitopes identified within the NC and p6 genes were found to be mostly conserved in 6 mother-infant pairs' sequences. CONCLUSION These data suggest that the gag NC and p6 open reading frames and functional domains were conserved in mother-infant pairs' sequences following vertical transmission, which confirms the critical role of these gene products in the viral lifecycle.
Collapse
Affiliation(s)
- Brian P Wellensiek
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Vasudha Sundaravaradan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Rajesh Ramakrishnan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| |
Collapse
|
60
|
Cruceanu M, Urbaneja MA, Hixson CV, Johnson DG, Datta SA, Fivash MJ, Stephen AG, Fisher RJ, Gorelick RJ, Casas-Finet JR, Rein A, Rouzina I, Williams MC. Nucleic acid binding and chaperone properties of HIV-1 Gag and nucleocapsid proteins. Nucleic Acids Res 2006; 34:593-605. [PMID: 16449201 PMCID: PMC1356529 DOI: 10.1093/nar/gkj458] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Gag polyprotein of HIV-1 is essential for retroviral replication and packaging. The nucleocapsid (NC) protein is the primary region for the interaction of Gag with nucleic acids. In this study, we examine the interactions of Gag and its NC cleavage products (NCp15, NCp9 and NCp7) with nucleic acids using solution and single molecule experiments. The NC cleavage products bound DNA with comparable affinity and strongly destabilized the DNA duplex. In contrast, the binding constant of Gag to DNA was found to be approximately 10-fold higher than that of the NC proteins, and its destabilizing effect on dsDNA was negligible. These findings are consistent with the primary function of Gag as a nucleic acid binding and packaging protein and the primary function of the NC proteins as nucleic acid chaperones. Also, our results suggest that NCp7's capability for fast sequence-nonspecific nucleic acid duplex destabilization, as well as its ability to facilitate nucleic acid strand annealing by inducing electrostatic attraction between strands, likely optimize the fully processed NC protein to facilitate complex nucleic acid secondary structure rearrangements. In contrast, Gag's stronger DNA binding and aggregation capabilities likely make it an effective chaperone for processes that do not require significant duplex destabilization.
Collapse
Affiliation(s)
- Margareta Cruceanu
- Department of Physics, Northeastern University111 Dana Research Center, 110 Forsyth Street, Boston, MA 02115, USA
| | - Maria A. Urbaneja
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | - Catherine V. Hixson
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | - Donald G. Johnson
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | | | - Matthew J. Fivash
- Data Management Services, Inc.NCI-Frederick, Frederick, MD 2170, USA
| | - Andrew G. Stephen
- Protein Chemistry Laboratory, SAIC Frederick, Inc.NCI at Frederick, Frederick, MD 2170, USA
| | - Robert J. Fisher
- Protein Chemistry Laboratory, SAIC Frederick, Inc.NCI at Frederick, Frederick, MD 2170, USA
| | - Robert J. Gorelick
- AIDS Vaccine Program, SAIC-Frederick, Inc.NCI at Frederick, Frederick, MD 21702, USA
| | | | - Alan Rein
- HIV Drug Resistance Program, NCI-FrederickFrederick, MD 21702-1201, USA
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota6-155 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University111 Dana Research Center, 110 Forsyth Street, Boston, MA 02115, USA
- Center for Interdisciplinary Research on Complex Systems, Northeastern University111 Dana Research Center, 110 Forsyth Street, Boston, MA 02115, USA
- To whom correspondence should be addressed. Tel: 1 617 373 7323; Fax: 1 617 373 2943;
| |
Collapse
|
61
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
62
|
Godet J, de Rocquigny H, Raja C, Glasser N, Ficheux D, Darlix JL, Mély Y. During the early phase of HIV-1 DNA synthesis, nucleocapsid protein directs hybridization of the TAR complementary sequences via the ends of their double-stranded stem. J Mol Biol 2005; 356:1180-92. [PMID: 16406407 DOI: 10.1016/j.jmb.2005.12.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/07/2005] [Accepted: 12/12/2005] [Indexed: 11/22/2022]
Abstract
Reverse transcription of HIV-1 genomic RNA requires two obligatory strand transfers. During the first strand transfer reaction, the minus strand strong-stop DNA (ss-cDNA) is transferred by hybridization of complementary sequences located at the 3' ends of the ss-cDNA and genomic template, respectively. In HIV-1, the major components of ss-cDNA transfer are the terminally redundant structured TAR elements and the nucleocapsid protein NCp7, which actively chaperones the hybridization of cTAR DNA to TAR. In the present study, we investigated the annealing kinetics of TAR with fluorescently labelled cTAR derivatives both in the absence and in the presence of NC(12-55), a peptide that contains the finger and C-terminal domains of NCp7. The annealing of TAR with cTAR involves two second-order kinetic components that are activated by at least two orders of magnitude by NC(12-55). The NC-promoted activation of cTAR-TAR annealing was correlated with its ability to destabilize the lower half of TAR stem, in order to generate the single-stranded complementary regions for nucleating the duplex structures. The two kinetics components have been assigned to two different pathways. The rapid one does not lead to extended duplex formation but is associated with a limited annealing of the terminal bases of cTAR to TAR. On the other hand, extended duplex formation follows a slower pathway that is limited kinetically by the nucleation of residues located mainly within the central double-stranded segment of both cTAR and TAR stems. An alternative mechanism involving an interaction through TAR and cTAR loops has been observed but is a minor pathway in the present conditions.
Collapse
Affiliation(s)
- Julien Godet
- Photophysique des interactions moléculaires, UMR 7175 CNRS, Institut Gilbert Laustriat, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
63
|
Kim MY, Jeong S. Inhibition of the functions of the nucleocapsid protein of human immunodeficiency virus-1 by an RNA aptamer. Biochem Biophys Res Commun 2004; 320:1181-6. [PMID: 15249214 DOI: 10.1016/j.bbrc.2004.06.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Indexed: 10/26/2022]
Abstract
The nucleocapsid (NC) protein plays many roles in the life cycle of human immunodeficiency virus type-1 (HIV-1). Previously we selected the NC binding RNA aptamers from diverse forms of RNA libraries. Here we used one of the RNA aptamers to the NC protein, N70-13, and tested its effect on NC protein in vitro and in cells. The high affinity RNA aptamer completely abolished NC binding to the stable transactivation response hairpin and psi RNA stem-loops of HIV-1 RNA. When it was expressed in cells as an intramer it inhibited the packaging of viral genomic RNA and therefore promises to be an effective anti-HIV therapeutic tool.
Collapse
Affiliation(s)
- Mee Young Kim
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Seoul 140-714, Republic of Korea
| | | |
Collapse
|