51
|
Tiwari A, Tiwari V. HBNG: Graph theory based visualization of hydrogen bond networks in protein structures. Bioinformation 2007; 2:28-30. [PMID: 18084648 PMCID: PMC2139992 DOI: 10.6026/97320630002028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/28/2007] [Accepted: 06/03/2007] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED HBNG is a graph theory based tool for visualization of hydrogen bond network in 2D. Digraphs generated by HBNG facilitate visualization of cooperativity and anticooperativity chains and rings in protein structures. HBNG takes hydrogen bonds list files (output from HBAT, HBEXPLORE, HBPLUS and STRIDE) as input and generates a DOT language script and constructs digraphs using freeware AT and T Graphviz tool. HBNG is useful in the enumeration of favorable topologies of hydrogen bond networks in protein structures and determining the effect of cooperativity and anticooperativity on protein stability and folding. HBNG can be applied to protein structure comparison and in the identification of secondary structural regions in protein structures. AVAILABILITY Program is available from the authors for non-commercial purposes.
Collapse
Affiliation(s)
- Abhishek Tiwari
- GVK Biosciences, Informatics Division, Hyderabad 500037, India.
| | | |
Collapse
|
52
|
Chiang YS, Gelfand TI, Kister AE, Gelfand IM. New classification of supersecondary structures of sandwich-like proteins uncovers strict patterns of strand assemblage. Proteins 2007; 68:915-21. [PMID: 17557333 DOI: 10.1002/prot.21473] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To describe the supersecondary structure (SSS) of beta sandwich-like proteins (SPs), we introduce a structural unit called the "strandon." A strandon is defined as a set of sequentially consecutive strands connected by hydrogen bonds in 3D structures. Representing beta-proteins as the assembly of strandons exposes the underlying similarities in their SSS and enables us to construct a novel classification scheme of SPs. Classification of all known SPs is based on shared supersecondary structural features and is presented in the SSS database (http://binfs.umdnj.edu/sssdb/). Analysis of the SSS reveals two common specific patterns. The first pattern defines the arrangement of strandons and was found in 95% of all examined SPs. The second pattern establishes the ordering of strands in the protein domain and was observed in 82% of the analyzed SPs. Knowledge of these two patterns that uncover the spatial arrangement of strands will likely prove useful in protein structure prediction.
Collapse
Affiliation(s)
- Yih-Shien Chiang
- Department of Health Informatics, SHRP, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07107, USA
| | | | | | | |
Collapse
|
53
|
Vilhelmsson M, Zargari A, Crameri R, Rasool O, Achour A, Scheynius A, Hallberg BM. Crystal Structure of the Major Malassezia sympodialis Allergen Mala s 1 Reveals a β-Propeller Fold: A Novel Fold Among Allergens. J Mol Biol 2007; 369:1079-86. [PMID: 17481656 DOI: 10.1016/j.jmb.2007.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 04/01/2007] [Accepted: 04/03/2007] [Indexed: 11/23/2022]
Abstract
Atopic eczema (AE) is a chronic inflammatory disease in which genetic predisposition and environmental factors such as microorganisms contribute to the symptoms. The yeast Malassezia Sympodialis, part of the normal human cutaneous flora, can act as an allergen eliciting specific IgE and T-cell reactivity in patients with AE. The major M. sympodialis allergen Mala s 1 is localized mainly in the yeast cell wall and exposed on the cell surface. Interestingly, Mala s 1 does not exhibit any significant sequence homology to known proteins. Here we present the crystal structure of Mala s 1 determined by single-wavelength anomalous dispersion techniques using selenomethionine-substituted Mala s 1. Mala s 1 folds into a 6-fold beta-propeller, a novel fold among allergens. The putative active site of Mala s 1 overlaps structurally to putative active sites in potential homologues, Q4P4P8 and Tri 14, from the plant parasites Ustilago maydis and Gibberella zeae, respectively. This resemblance suggests that Mala s 1 and the parasite proteins may have similar functions. In addition, we show that Mala s 1 binds to the phosphoinositides (PI) PI(3)P, PI(4)P, and PI(5)P, lipids possibly playing a role in the localization of Mala s 1 to the cell surface. The crystal structure of Mala s 1 will provide insights into the role of this major allergen in the host-microbe interactions and induction of an allergic response in AE.
Collapse
Affiliation(s)
- Monica Vilhelmsson
- Department of Medicine, Clinical Allergy Research Unit, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
54
|
Davis ML, Thoden JB, Holden HM. The x-ray structure of dTDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase. J Biol Chem 2007; 282:19227-36. [PMID: 17459872 DOI: 10.1074/jbc.m702529200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The repeating unit of the glycan chain in the S-layer of the bacterium Aneurinibacillus thermoaerophilus L420-91(T) is composed of four alpha-d-rhamnose molecules and two 3-acetamido-3,6-dideoxy-alpha-d-galactose moieties (abbreviated as Fucp3NAc). Formation of the glycan layer requires nucleotide-activated sugars as the donor molecules. Whereas the enzymes involved in the synthesis of GDP-rhamnose have been well characterized, less is known regarding the structures and enzymatic mechanisms of the enzymes required for the production of dTDP-Fucp3NAc. One of the enzymes involved in the biosynthesis of dTDP-Fucp3NAc is a 3,4-ketoisomerase, hereafter referred to as FdtA. Here we describe the first three-dimensional structure of this sugar isomerase complexed with dTDP and solved to 1.5 A resolution. The FdtA dimer assumes an almost jellyfish-like appearance with the sole alpha-helices representing the tentacles. Formation of the FdtA dimer represents a classical example of domain swapping whereby beta-strands 2 and 3 from one subunit form part of a beta-sheet in the second subunit. The active site architecture of FdtA is characterized by a cluster of three histidine residues, two of which, His(49) and His(51), appear to be strictly conserved in the amino acid sequences deposited to date. Site-directed mutagenesis experiments, enzymatic assays, and x-ray crystallographic analyses suggest that His(49) functions as an active site base.
Collapse
Affiliation(s)
- Melissa L Davis
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA
| | | | | |
Collapse
|
55
|
Shi S, Zhong Y, Majumdar I, Sri Krishna S, Grishin NV. Searching for three-dimensional secondary structural patterns in proteins with ProSMoS. Bioinformatics 2007; 23:1331-8. [PMID: 17384423 DOI: 10.1093/bioinformatics/btm121] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Many evolutionarily distant, but functionally meaningful links between proteins come to light through comparison of spatial structures. Most programs that assess structural similarity compare two proteins to each other and find regions in common between them. Structural classification experts look for a particular structural motif instead. Programs base similarity scores on superposition or closeness of either Cartesian coordinates or inter-residue contacts. Experts pay more attention to the general orientation of the main chain and mutual spatial arrangement of secondary structural elements. There is a need for a computational tool to find proteins with the same secondary structures, topological connections and spatial architecture, regardless of subtle differences in 3D coordinates. RESULTS We developed ProSMoS--a Protein Structure Motif Search program that emulates an expert. Starting from a spatial structure, the program uses previously delineated secondary structural elements. A meta-matrix of interactions between the elements (parallel or antiparallel) minding handedness of connections (left or right) and other features (e.g. element lengths and hydrogen bonds) is constructed prior to or during the searches. All structures are reduced to such meta-matrices that contain just enough information to define a protein fold, but this definition remains very general and deviations in 3D coordinates are tolerated. User supplies a meta-matrix for a structural motif of interest, and ProSMoS finds all proteins in the protein data bank (PDB) that match the meta-matrix. ProSMoS performance is compared to other programs and is illustrated on a beta-Grasp motif. A brief analysis of all beta-Grasp-containing proteins is presented. Program availability: ProSMoS is freely available for non-commercial use from ftp://iole.swmed.edu/pub/ProSMoS.
Collapse
Affiliation(s)
- Shuoyong Shi
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | | | | | | | | |
Collapse
|
56
|
Viksna J, Gilbert D. Assessment of the probabilities for evolutionary structural changes in protein folds. Bioinformatics 2007; 23:832-41. [PMID: 17282999 DOI: 10.1093/bioinformatics/btm022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION The evolution of protein sequences can be described by a stepwise process, where each step involves changes of a few amino acids. In a similar manner, the evolution of protein folds can be at least partially described by an analogous process, where each step involves comparatively simple changes affecting few secondary structure elements. A number of such evolution steps, justified by biologically confirmed examples, have previously been proposed by other researchers. However, unlike the situation with sequences, as far as we know there have been no attempts to estimate the comparative probabilities for different kinds of such structural changes. RESULTS We have tried to assess the comparative probabilities for a number of known structural changes, and to relate the probabilities of such changes with the distance between protein sequences. We have formalized these structural changes using a topological representation of structures (TOPS), and have developed an algorithm for measuring structural distances that involve few evolutionary steps. The probabilities of structural changes then were estimated on the basis of all-against-all comparisons of the sequence and structure of protein domains from the CATH-95 representative set. The results obtained are reasonably consistent for a number of different data subsets and permit the identification of several 'most popular' types of evolutionary changes in protein structure. The results also suggest that alterations in protein structure are more likely to occur when the sequence similarity is >10% (the average similarity being approximately 6% for the data sets employed in this study), and that the distribution of probabilities of structural changes is fairly uniform within the interval of 15-50% sequence similarity. AVAILABILITY The algorithms have been implemented on the Windows operating system in C++ and using the Borland Visual Component Library. The source code is available on request from the first author. The data sets used for this study (representative sets of protein domains, matrices of sequence similarities and structural distances) are available on http://bioinf.mii.lu.lv/epsrc_project/struct_ev.html.
Collapse
Affiliation(s)
- Juris Viksna
- Institute of Mathematics and Computer Science, University of Latvia, Rainis boulevard 29, Riga LV-1459, Latvia.
| | | |
Collapse
|
57
|
Wada K, Harada J, Yaeda Y, Tamiaki H, Oh-Oka H, Fukuyama K. Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B12 biosynthesis, and CbiL in complex with S-adenosylhomocysteine − implications for the reaction mechanism. FEBS J 2006; 274:563-73. [PMID: 17229157 DOI: 10.1111/j.1742-4658.2006.05611.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During anaerobic cobalamin (vitamin B12) biosynthesis, CbiL catalyzes methylation at the C-20 position of a cyclic tetrapyrrole ring using S-adenosylmethionine as a methyl group source. This methylation is a key modification for the ring contraction process, by which a porphyrin-type tetrapyrrole ring is converted to a corrin ring through elimination of the modified C-20 and direct bonding of C-1 to C-19. We have determined the crystal structures of Chlorobium tepidum CbiL and CbiL in complex with S-adenosylhomocysteine (the S-demethyl form of S-adenosylmethionine). CbiL forms a dimer in the crystal, and each subunit consists of N-terminal and C-terminal domains. S-Adenosylhomocysteine binds to a cleft between the two domains, where it is specifically recognized by extensive hydrogen bonding and van der Waals interactions. The orientation of the cobalt-factor II substrate was modeled by simulation, and the predicted model suggests that the hydroxy group of Tyr226 is located in close proximity to the C-20 atom as well as the C-1 and C-19 atoms of the tetrapyrrole ring. These configurations allow us to propose a catalytic mechanism: the conserved Tyr226 residue in CbiL catalyzes the direct transfer of a methyl group from S-adenosylmethionine to the substrate through an S(N)2-like mechanism. Furthermore, the structural model of CbiL binding to its substrate suggests the axial residue coordinated to the central cobalt of cobalt-factor II.
Collapse
Affiliation(s)
- Kei Wada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| | | | | | | | | | | |
Collapse
|
58
|
Stenmark P, Moche M, Gurmu D, Nordlund P. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism. J Mol Biol 2006; 373:48-64. [PMID: 17765262 DOI: 10.1016/j.jmb.2006.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 11/25/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.
Collapse
Affiliation(s)
- Pål Stenmark
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
59
|
Kawazoe T, Tsuge H, Pilone MS, Fukui K. Crystal structure of human D-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring. Protein Sci 2006; 15:2708-17. [PMID: 17088322 PMCID: PMC2242440 DOI: 10.1110/ps.062421606] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the brain, the extensively studied FAD-dependent enzyme D-amino acid oxidase (DAO) degrades the gliotransmitter D-serine, a potent activator of N-methyl-D-aspartate type glutamate receptors, and evidence suggests that DAO, together with its activator G72 protein, may play a key role in the pathophysiology of schizophrenia. Indeed, its potential clinical importance highlights the need for structural and functional analyses of human DAO. We recently succeeded in purifying human DAO, and found that it weakly binds FAD and shows a significant slower rate of flavin reduction compared with porcine DAO. However, the molecular basis for the different kinetic features remains unclear because the active site of human DAO was considered to be virtually identical to that of porcine DAO, as would be expected from the 85% sequence identity. To address this issue, we determined the crystal structure of human DAO in complex with a competitive inhibitor benzoate, at a resolution of 2.5 Angstrom. The overall dimeric structure of human DAO is similar to porcine DAO, and the catalytic residues are fully conserved at the re-face of the flavin ring. However, at the si-face of the flavin ring, despite the strict sequence identity, a hydrophobic stretch (residues 47-51, VAAGL) exists in a significantly different conformation compared with both of the independently determined porcine DAO-benzoate structures. This suggests that a context-dependent conformational variability of the hydrophobic stretch accounts for the low affinity for FAD as well as the slower rate of flavin reduction, thus highlighting the unique features of the human enzyme.
Collapse
Affiliation(s)
- Tomoya Kawazoe
- The Institute for Enzyme Research, The University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|
60
|
Bradford JR, Needham CJ, Bulpitt AJ, Westhead DR. Insights into protein-protein interfaces using a Bayesian network prediction method. J Mol Biol 2006; 362:365-86. [PMID: 16919296 DOI: 10.1016/j.jmb.2006.07.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/15/2006] [Accepted: 07/13/2006] [Indexed: 11/26/2022]
Abstract
Identifying the interface between two interacting proteins provides important clues to the function of a protein, and is becoming increasing relevant to drug discovery. Here, surface patch analysis was combined with a Bayesian network to predict protein-protein binding sites with a success rate of 82% on a benchmark dataset of 180 proteins, improving by 6% on previous work and well above the 36% that would be achieved by a random method. A comparable success rate was achieved even when evolutionary information was missing, a further improvement on our previous method which was unable to handle incomplete data automatically. In a case study of the Mog1p family, we showed that our Bayesian network method can aid the prediction of previously uncharacterised binding sites and provide important clues to protein function. On Mog1p itself a putative binding site involved in the SLN1-SKN7 signal transduction pathway was detected, as was a Ran binding site, previously characterized solely by conservation studies, even though our automated method operated without using homologous proteins. On the remaining members of the family (two structural genomics targets, and a protein involved in the photosystem II complex in higher plants) we identified novel binding sites with little correspondence to those on Mog1p. These results suggest that members of the Mog1p family bind to different proteins and probably have different functions despite sharing the same overall fold. We also demonstrated the applicability of our method to drug discovery efforts by successfully locating a number of binding sites involved in the protein-protein interaction network of papilloma virus infection. In a separate study, we attempted to distinguish between the two types of binding site, obligate and non-obligate, within our dataset using a second Bayesian network. This proved difficult although some separation was achieved on the basis of patch size, electrostatic potential and conservation. Such was the similarity between the two interacting patch types, we were able to use obligate binding site properties to predict the location of non-obligate binding sites and vice versa.
Collapse
Affiliation(s)
- James R Bradford
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
61
|
Ebihara A, Yao M, Masui R, Tanaka I, Yokoyama S, Kuramitsu S. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Sci 2006; 15:1494-9. [PMID: 16672237 PMCID: PMC2242536 DOI: 10.1110/ps.062131106] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We have determined the crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 at 1.9 A resolution. This protein is a member of the Escherichia coli ygcH sequence family, which contains approximately 15 sequence homologs of bacterial origin. These homologs have a high isoelectric point. The crystal structure reveals that TTHB192 consists of two independently folded domains, and that each domain exhibits a ferredoxin-like fold with a four-stranded antiparallel beta-sheet packed on one side by alpha-helices. These two tandem domains face each other to generate a beta-sheet platform. TTHB192 displays overall structural similarity to Sex-lethal protein and poly(A)-binding protein fragments. These proteins have RNA binding activity which is supported by a beta-sheet platform formed by two tandem repeats of an RNA recognition motif domain with signature sequence motifs on the beta-sheet surface. Although TTHB192 does not have the same signature sequence motif as the RNA recognition motif domain, the presence of an evolutionarily conserved basic patch on the beta-sheet platform could be functionally relevant for nucleic acid-binding. This report shows that TTHB192 and its sequence homologs adopt an RNA recognition motif-like domain and provides the first testable functional hypothesis for this protein family.
Collapse
Affiliation(s)
- Akio Ebihara
- RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | | | | | | | | | | |
Collapse
|
62
|
Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K. Crystal structures of gamma-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc Natl Acad Sci U S A 2006; 103:6471-6. [PMID: 16618936 PMCID: PMC1458908 DOI: 10.1073/pnas.0511020103] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gamma-glutamyltranspeptidase (GGT) is a heterodimic enzyme that is generated from the precursor protein through posttranslational processing and catalyzes the hydrolysis of gamma-glutamyl bonds in gamma-glutamyl compounds such as glutathione and/or the transfer of the gamma-glutamyl group to other amino acids and peptides. We have determined the crystal structure of GGT from Escherichia coli K-12 at 1.95 A resolution. GGT has a stacked alphabetabetaalpha fold comprising the large and small subunits, similar to the folds seen in members of the N-terminal nucleophile hydrolase superfamily. The active site Thr-391, the N-terminal residue of the small subunit, is located in the groove, from which the pocket for gamma-glutamyl moiety binding follows. We have further determined the structure of the gamma-glutamyl-enzyme intermediate trapped by flash cooling the GGT crystal soaked in glutathione solution and the structure of GGT in complex with l-glutamate. These structures revealed how the gamma-glutamyl moiety and l-glutamate are recognized by the enzyme. A water molecule was seen on the carbonyl carbon of the gamma-glutamyl-Thr-391 Ogamma bond in the intermediate that is to be hydrolyzed. Notably the residues essential for GGT activity (Arg-114, Asp-433, Ser-462, and Ser-463 in E. coli GGT) shown by site-directed mutagenesis of human GGT are all involved in the binding of the gamma-glutamyl moiety. The structure of E. coli GGT presented here, together with sequence alignment of GGTs, may be applicable to interpret the biochemical and genetic data of other GGTs.
Collapse
Affiliation(s)
- Toshihiro Okada
- *Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hideyuki Suzuki
- Division of Integrated Life Science, Graduate School of Biosciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; and
| | - Kei Wada
- *Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hidehiko Kumagai
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-cho, Ishikawa 921-8836, Japan
| | - Keiichi Fukuyama
- *Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
63
|
Ernst HA, Lo Leggio L, Willemoës M, Leonard G, Blum P, Larsen S. Structure of the Sulfolobus solfataricus alpha-glucosidase: implications for domain conservation and substrate recognition in GH31. J Mol Biol 2006; 358:1106-24. [PMID: 16580018 DOI: 10.1016/j.jmb.2006.02.056] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/26/2022]
Abstract
The crystal structure of alpha-glucosidase MalA from Sulfolobus solfataricus has been determined at 2.5Angstrom resolution. It provides a structural model for enzymes representing the major specificity in glycoside hydrolase family 31 (GH31), including alpha-glucosidases from higher organisms, involved in glycogen degradation and glycoprotein processing. The structure of MalA shows clear differences from the only other structure known from GH31, alpha-xylosidase YicI. MalA and YicI share only 23% sequence identity. Although the two enzymes display a similar domain structure and both form hexamers, their structures differ significantly in quaternary organization: MalA is a dimer of trimers, YicI a trimer of dimers. MalA and YicI also differ in their substrate specificities, as shown by kinetic measurements on model chromogenic substrates. In addition, MalA has a clear preference for maltose (Glc-alpha1,4-Glc), whereas YicI prefers isoprimeverose (Xyl-alpha1,6-Glc). The structural origin of this difference occurs in the -1 subsite where MalA residues Asp251 and Trp284 could interact with OH6 of the substrate. The structure of MalA in complex with beta-octyl-glucopyranoside has been determined. It reveals Arg400, Asp87, Trp284, Met321 and Phe327 as invariant residues forming the +1 subsite in the GH31 alpha-glucosidases. Structural comparisons with other GH families suggest that the GH31 enzymes belong to clan GH-D.
Collapse
Affiliation(s)
- Heidi A Ernst
- Biophysical Chemistry Group, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
64
|
Kister AE, Fokas AS, Papatheodorou TS, Gelfand IM. Strict rules determine arrangements of strands in sandwich proteins. Proc Natl Acad Sci U S A 2006; 103:4107-10. [PMID: 16537492 PMCID: PMC1449654 DOI: 10.1073/pnas.0510747103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
From a computer analysis of the spatial organization of the secondary structures of beta-sandwich proteins, we find certain sets of consecutive strands that are connected by hydrogen bonds, which we call "strandons." The analysis of the arrangements of strandons in 491 protein structures that come from 69 different superfamilies reveals strict regularities in the arrangements of strandons and the formation of what we call "canonical supermotifs." Six such supermotifs account for approximately 90% of all observed structures. Simple geometric rules are described that dictate the formation of these supermotifs.
Collapse
Affiliation(s)
- A. E. Kister
- *Department of Health Informatics, School of Health Related Professions, University of Medicine and Dentistry of New Jersey, Newark, NJ 07107
- To whom correspondence may be addressed. E-mail:
or
| | - A. S. Fokas
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - T. S. Papatheodorou
- High Performance Computing Laboratory, Department of Computer Engineering and Informatics, University of Patras, Patras 26500, Greece; and
| | - I. M. Gelfand
- Department of Mathematics, Rutgers, The State University of New Jersey, Piscataway, NJ 08855
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
65
|
Holmes MA, Buckner FS, Van Voorhis WC, Mehlin C, Boni E, Earnest TN, DeTitta G, Luft J, Lauricella A, Anderson L, Kalyuzhniy O, Zucker F, Schoenfeld LW, Hol WGJ, Merritt EA. Structure of the conserved hypothetical protein MAL13P1.257 from Plasmodium falciparum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:180-5. [PMID: 16511296 PMCID: PMC2197184 DOI: 10.1107/s1744309106005847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 02/16/2006] [Indexed: 05/06/2023]
Abstract
The structure of a conserved hypothetical protein, PlasmoDB sequence MAL13P1.257 from Plasmodium falciparum, Pfam sequence family PF05907, has been determined as part of the structural genomics effort of the Structural Genomics of Pathogenic Protozoa consortium. The structure was determined by multiple-wavelength anomalous dispersion at 2.17 A resolution. The structure is almost entirely beta-sheet; it consists of 15 beta-strands and one short 3(10)-helix and represents a new protein fold. The packing of the two monomers in the asymmetric unit indicates that the biological unit may be a dimer.
Collapse
Affiliation(s)
- Margaret A. Holmes
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Frederick S. Buckner
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wesley C. Van Voorhis
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Christopher Mehlin
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Erica Boni
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Thomas N. Earnest
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - George DeTitta
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Hauptman–Woodward Institute, Buffalo, NY 14203, USA
| | - Joseph Luft
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Hauptman–Woodward Institute, Buffalo, NY 14203, USA
| | - Angela Lauricella
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Hauptman–Woodward Institute, Buffalo, NY 14203, USA
| | - Lori Anderson
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Oleksandr Kalyuzhniy
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Frank Zucker
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Lori W. Schoenfeld
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Wim G. J. Hol
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ethan A. Merritt
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| |
Collapse
|
66
|
Receveur-Bréchot V, Czjzek M, Barre A, Roussel A, Peumans WJ, Van Damme EJM, Rougé P. Crystal structure at 1.45-Å resolution of the major allergen endo-β-1,3-glucanase of banana as a molecular basis for the latex-fruit syndrome. Proteins 2006; 63:235-42. [PMID: 16421930 DOI: 10.1002/prot.20876] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Resolution of the crystal structure of the banana fruit endo-beta-1,3-glucanase by synchrotron X-ray diffraction at 1.45-A resolution revealed that the enzyme possesses the eightfold beta/alpha architecture typical for family 17 glycoside hydrolases. The electronegatively charged catalytic central cleft harbors the two glutamate residues (Glu94 and Glu236) acting as hydrogen donor and nucleophile residue, respectively. Modeling using a beta-1,3 linked glucan trisaccharide as a substrate confirmed that the enzyme readily accommodates a beta-1,3-glycosidic linkage in the slightly curved catalytic groove between the glucose units in positions -2 and -1 because of the particular orientation of residue Tyr33 delimiting subsite -2. The location of Phe177 in the proximity of subsite +1 suggested that the banana glucanase might also cleave beta-1,6-branched glucans. Enzymatic assays using pustulan as a substrate demonstrated that the banana glucanase can also cleave beta-1,6-glucans as was predicted from docking experiments. Similar to many other plant endo-beta-1,3-glucanases, the banana glucanase exhibits allergenic properties because of the occurrence of well-conserved IgE-binding epitopes on the surface of the enzyme. These epitopes might trigger some cross-reactions toward IgE antibodies and thus account for the IgE-binding cross-reactivity frequently reported in patients with the latex-fruit syndrome.
Collapse
|
67
|
Abstract
This article describes the development of a new method for multiple sequence alignment based on fold-level protein structure alignments, which provides an improvement in accuracy compared with the most commonly used sequence-only-based techniques. This method integrates the widely used, progressive multiple sequence alignment approach ClustalW with the Topology of Protein Structure (TOPS) topology-based alignment algorithm. The TOPS approach produces a structural alignment for the input protein set by using a topology-based pattern discovery program, providing a set of matched sequence regions that can be used to guide a sequence alignment using ClustalW. The resulting alignments are more reliable than a sequence-only alignment, as determined by 20-fold cross-validation with a set of 106 protein examples from the CATH database, distributed in seven superfold families. The method is particularly effective for sets of proteins that have similar structures at the fold level but low sequence identity. The aim of this research is to contribute towards bridging the gap between protein sequence and structure analysis, in the hope that this can be used to assist the understanding of the relationship between sequence, structure and function. The tool is available at http://balabio.dcs.gla.ac.uk/msat/.
Collapse
Affiliation(s)
- Te Ren
- Department of Computer Science, Bioinformatics Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | |
Collapse
|
68
|
Gelly JC, de Brevern AG, Hazout S. 'Protein Peeling': an approach for splitting a 3D protein structure into compact fragments. ACTA ACUST UNITED AC 2005; 22:129-33. [PMID: 16301202 DOI: 10.1093/bioinformatics/bti773] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION The object of this study is to propose a new method to identify small compact units that compose protein three-dimensional structures. These fragments, called 'protein units (PU)', are a new level of description to well understand and analyze the organization of protein structures. The method only works from the contact probability matrix, i.e. the inter Calpha-distances translated into probabilities. It uses the principle of conventional hierarchical clustering, leading to a series of nested partitions of the 3D structure. Every step aims at dividing optimally a unit into 2 or 3 subunits according to a criterion called 'partition index' assessing the structural independence of the subunits newly defined. Moreover, an entropy-derived squared correlation R is used for assessing globally the protein structure dissection. The method is compared to other splitting algorithms and shows relevant performance. AVAILABILITY An Internet server with dedicated tools is available at http://www.ebgm.jussieu.fr/~gelly/
Collapse
Affiliation(s)
- Jean-Christophe Gelly
- INSERM U726, Equipe de Bioinformatique Génomique and Moléculaire (EBGM), Université Denis Diderot-Paris 7, case 7113, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
69
|
Kozbial PZ, Mushegian AR. Natural history of S-adenosylmethionine-binding proteins. BMC STRUCTURAL BIOLOGY 2005; 5:19. [PMID: 16225687 PMCID: PMC1282579 DOI: 10.1186/1472-6807-5-19] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 10/14/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins. RESULTS Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins. Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor. CONCLUSION We have observed several novel relationships between families that were not known to be related before, and defined 15 large superfamilies of SAM-binding proteins, at least 5 of which may have been represented in the last common ancestor.
Collapse
Affiliation(s)
- Piotr Z Kozbial
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Arcady R Mushegian
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
70
|
Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Gulati S, Luthra PM. Three-Dimensional Structure Prediction of the Interaction of CD34 with the SH3 Domain of Crk-L. Stem Cells Dev 2005; 14:470-7. [PMID: 16305332 DOI: 10.1089/scd.2005.14.470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The monomeric 115-kDa surface protein CD34, which is present on many stem cell populations, has been useful to enumerate the quality and viability of cell suspensions for engraftment. Although these studies assure the validity of CD34 as a stem cell marker, the functional role of this molecule has not been defined. CD34 has been demonstrated to regulate adhesion, differentiation, and proliferation of hematopoietic stem cells and other progenitors. The cytoplasmic domain of CD34 is known to be essential for its function. However, it is not clear how this domain's interactions with other molecules support the functional activity of CD34. Here we show that the cytoplasmic tail of CD34 is structurally similar to the carboxyl terminus of the gap junction protein Connexin 43 (Cx43). Because the activity of CD34 is mediated through its interaction with an SH3 domain of an intracellular protein, we attempted to define the SH3 binding region and amino acids involved in this interaction. We identified Glu325 to Ser334 as potential SH3 binding sites. Our results suggest that the interaction of the cytoplasmic tail of CD34 with the shallow proline-rich motif-binding groove of Crk-L is essential for the function of CD34 in stem cell development.
Collapse
Affiliation(s)
- Gurudutta U Gangenahalli
- Stem-Cell Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Delhi-110054, India.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Fallahi A, Kroll B, Warner LR, Oxford RJ, Irwin KM, Mercer LM, Shadle SE, Oxford JT. Structural model of the amino propeptide of collagen XI alpha1 chain with similarity to the LNS domains. Protein Sci 2005; 14:1526-37. [PMID: 15930001 PMCID: PMC2253380 DOI: 10.1110/ps.051363105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Fibrillar collagens are the principal structural molecules of connective tissues. The assembly of collagen fibrils is regulated by quantitatively minor fibrillar collagens, types V and XI. A unique amino-terminal propeptide domain of these collagens has been attributed this regulatory role. The structure of the amino terminal propeptide has yet to be determined. Low sequence similarity necessitated a secondary structure-based method to carry out homology modeling based upon the determined structure of LNS family members, named for a common structure in the laminin LG5 domain, the neurexin 1B domain and the sex hormone binding globulin. Distribution of amino acids within the model suggested glycosaminoglycan interaction and calcium binding. These activities were tested experimentally. Sequence analyses of existing genes for collagens indicate that 16 known collagen alpha chains may contain an LNS domain. A similar approach may prove useful for structure/function studies of similar domains in other collagens with similar domains. This will provide mechanistic details of the organization and assembly of the extracellular matrix and the underlying basis of structural integrity in connective tissues. The absolute requirement for collagen XI in skeletal growth is indicated by collagen XI deficiencies such as chondrodystrophies found in the cho/cho mouse and in humans with Stickler syndrome.
Collapse
Affiliation(s)
- Arzhang Fallahi
- Department of Biology, Biomolecular Research Center, Boise State University, Boise, Idaho 83725, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Möller HM, Martinez-Yamout MA, Dyson HJ, Wright PE. Solution Structure of the N-terminal Zinc Fingers of the Xenopus laevis double-stranded RNA-binding Protein ZFa. J Mol Biol 2005; 351:718-30. [PMID: 16051273 DOI: 10.1016/j.jmb.2005.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/03/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Several zinc finger proteins have been discovered recently that bind specifically to double-stranded RNA. These include the mammalian JAZ and wig proteins, and the seven-zinc finger protein ZFa from Xenopus laevis. We have determined the solution structure of a 127 residue fragment of ZFa, which consists of two zinc finger domains connected by a linker that remains unstructured in the free protein in solution. The first zinc finger consists of a three-stranded beta-sheet and three helices, while the second finger contains only a two-stranded sheet and two helices. The common structures of the core regions of the two fingers are superimposable. Each finger has a highly electropositive surface that maps to a helix-kink-helix motif. There is no evidence for interactions between the two fingers, consistent with the length (24 residues) and unstructured nature of the intervening linker. Comparison with a number of other proteins shows similarities in the topology and arrangement of secondary structure elements with canonical DNA-binding zinc fingers, with protein interaction motifs such as FOG zinc fingers, and with other DNA-binding and RNA-binding proteins that do not contain zinc. However, in none of these cases does the alignment of these structures with the ZFa zinc fingers produce a consistent picture of a plausible RNA-binding interface. We conclude that the ZFa zinc fingers represent a new motif for the binding of double-stranded RNA.
Collapse
Affiliation(s)
- Heiko M Möller
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
73
|
Jeyakanthan J, Inagaki E, Kuroishi C, Tahirov TH. Structure of PIN-domain protein PH0500 from Pyrococcus horikoshii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:463-8. [PMID: 16511069 PMCID: PMC1952296 DOI: 10.1107/s1744309105012406] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 04/20/2005] [Indexed: 05/06/2023]
Abstract
The Pyrococcus horikoshii OT3 protein PH0500 is highly conserved within the Pyrococcus genus of hyperthermophilic archaea and shows low amino-acid sequence similarity with a family of PIN-domain proteins. The protein has been expressed, purified and crystallized in two crystal forms: PH0500-I and PH0500-II. The structure was determined at 2.0 A by the multiple anomalous dispersion method using a selenomethionyl derivative of crystal form PH0500-I (PH0500-I-Se). The structure of PH0500-I has been refined at 1.75 A resolution to an R factor of 20.9% and the structure of PH0500-II has been refined at 2.0 A resolution to an R factor of 23.4%. In both crystal forms as well as in solution the molecule appears to be a dimer. Searches of the databases for protein-fold similarities confirmed that the PH0500 protein is a PIN-domain protein with possible exonuclease activity and involvement in DNA or RNA editing.
Collapse
Affiliation(s)
- Jeyaraman Jeyakanthan
- Advanced Protein Crystallography Research Group, RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Eiji Inagaki
- Advanced Protein Crystallography Research Group, RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Chizu Kuroishi
- Advanced Protein Crystallography Research Group, RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tahir H. Tahirov
- Advanced Protein Crystallography Research Group, RIKEN Harima Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
- Correspondence e-mail:
| |
Collapse
|
74
|
Torrance GM, Gilbert DR, Michalopoulos I, Westhead DW. Protein structure topological comparison, discovery and matching service. Bioinformatics 2005; 21:2537-8. [PMID: 15741246 DOI: 10.1093/bioinformatics/bti331] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED We describe a fold level fast protein comparison and motif matching facility based on the TOPS representation of structure. This provides an update to a previous service at the EBI, with a better graph matching with faster results and visualization of both the structures being compared against and the common pattern of each with the target domain. AVAILABILITY Web service at http://balabio.dcs.gla.ac.uk/tops or via the main TOPS site at http://www.tops.leeds.ac.uk. Software is also available for download from these sites.
Collapse
Affiliation(s)
- G M Torrance
- Bioinformatics Research Centre, Department of Computer Science, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
75
|
Pas J, von Grotthuss M, Wyrwicz LS, Rychlewski L, Barciszewski J. Structure prediction, evolution and ligand interaction of CHASE domain. FEBS Lett 2004; 576:287-90. [PMID: 15498549 DOI: 10.1016/j.febslet.2004.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/07/2004] [Accepted: 09/07/2004] [Indexed: 11/22/2022]
Abstract
Cytokinins are plant hormones involved in the essential processes of plant growth and development. They bind with receptors known as CRE1/WOL/AHK4, AHK2, and AHK3, which possess histidine kinase activity. Recently, the sensor domain cyclases/histidine kinases associated sensory extracellular (CHASE) was identified in those proteins but little is known about its structure and interaction with ligands. Distant homology detection methods developed in our laboratory and molecular phylogeny enabled the prediction of the structure of the CHASE domain as similar to the photoactive yellow protein-like sensor domain. We have identified the active site pocket and amino acids that are involved in receptor-ligand interactions. We also show that fold evolution of cytokinin receptors is very important for a full understanding of the signal transduction mechanism in plants.
Collapse
Affiliation(s)
- Jakub Pas
- BioInfoBank Institute, ul. Limanowskiego 24A, 60-744 Poznan, Poland.
| | | | | | | | | |
Collapse
|
76
|
Zambelli B, Stola M, Musiani F, De Vriendt K, Samyn B, Devreese B, Van Beeumen J, Turano P, Dikiy A, Bryant DA, Ciurli S. UreG, a chaperone in the urease assembly process, is an intrinsically unstructured GTPase that specifically binds Zn2+. J Biol Chem 2004; 280:4684-95. [PMID: 15542602 DOI: 10.1074/jbc.m408483200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus pasteurii UreG, a chaperone involved in the urease active site assembly, was overexpressed in Escherichia coli BL21(DE3) and purified to homogeneity. The identity of the recombinant protein was confirmed by SDS-PAGE, protein sequencing, and mass spectrometry. A combination of size exclusion chromatography and multiangle and dynamic laser light scattering established that BpUreG is present in solution as a dimer. Analysis of circular dichroism spectra indicated that the protein contains large portions of helices (15%) and strands (29%), whereas NMR spectroscopy indicated the presence of conformational fluxionality of the protein backbone in solution. BpUreG catalyzes the hydrolysis of GTP with a kcat=0.04 min(-1), confirming a role for this class of proteins in coupling energy requirements and nickel incorporation into the urease active site. BpUreG binds two Zn2+ ions per dimer, with a KD=42 +/- 3 microm, and has a 10-fold lower affinity for Ni2+. A structural model for BpUreG was calculated by using threading algorithms. The protein, in the fully folded state, features the typical structural architecture of GTPases, with an open beta-barrel surrounded by alpha-helices and a P-loop at the N terminus. The protein dynamic behavior observed in solution is critically discussed relative to the structural model, using algorithms for disorder predictions. The results suggest that UreG proteins belong to the class of intrinsically unstructured proteins that need the interaction with cofactors or other protein partners to perform their function. It is also proposed that metal ions such as Zn2+ could have important structural roles in the urease activation process.
Collapse
Affiliation(s)
- Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Agro-Environmental Science and Technology, University of Bologna, I-40127 Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Fritz TA, Hurley JH, Trinh LB, Shiloach J, Tabak LA. The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-T1. Proc Natl Acad Sci U S A 2004; 101:15307-12. [PMID: 15486088 PMCID: PMC524453 DOI: 10.1073/pnas.0405657101] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 09/10/2004] [Indexed: 11/18/2022] Open
Abstract
UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (ppGaNTases) initiate the formation of mucin-type, O-linked glycans by catalyzing the transfer of alpha-N-acetylgalactosamine from UDP-GalNAc to Ser or Thr residues of core proteins to form the Tn antigen (GalNAc-alpha-1-O-Ser/Thr). ppGaNTases are unique among glycosyltransferases in containing a C-terminal lectin domain. We present the x-ray crystal structure of a ppGaNTase, murine ppGaNTase-T1, and show that it folds to form distinct catalytic and lectin domains. The association of the two domains forms a large cleft in the surface of the enzyme that contains a Mn2+ ion complexed by invariant D209 and H211 of the "DXH" motif and by invariant H344. Each of the three potential lectin domain carbohydrate-binding sites (alpha, beta, and gamma) is located on the active-site face of the enzyme, suggesting a mechanism by which the transferase may accommodate multiple conformations of glycosylated acceptor substrates. A model of a mucin 1 glycopeptide substrate bound to the enzyme shows that the spatial separation between the lectin alpha site and a modeled active site UDP-GalNAc is consistent with the in vitro pattern of glycosylation observed for this peptide catalyzed by ppGaNTase-T1. The structure also provides a template for the larger ppGaNTase family, and homology models of several ppGaNTase isoforms predict dramatically different surface chemistries consistent with isoform-selective acceptor substrate recognition.
Collapse
Affiliation(s)
- Timothy A Fritz
- Section on Biological Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
78
|
Hanoulle X, Rollet E, Clantin B, Landrieu I, Odberg-Ferragut C, Lippens G, Bohin JP, Villeret V. Structural analysis of Escherichia coli OpgG, a protein required for the biosynthesis of osmoregulated periplasmic glucans. J Mol Biol 2004; 342:195-205. [PMID: 15313617 DOI: 10.1016/j.jmb.2004.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/06/2004] [Accepted: 07/06/2004] [Indexed: 11/17/2022]
Abstract
Osmoregulated periplasmic glucans (OPGs) G protein (OpgG) is required for OPGs biosynthesis. OPGs from Escherichia coli are branched glucans, with a backbone of beta-1,2 glucose units and with branches attached by beta-1,6 linkages. In Proteobacteria, OPGs are involved in osmoprotection, biofilm formation, virulence and resistance to antibiotics. Despite their important biological implications, enzymes synthesizing OPGs are poorly characterized. Here, we report the 2.5 A crystal structure of OpgG from E.coli. The structure was solved using a selenemethionine derivative of OpgG and the multiple anomalous diffraction method (MAD). The protein is composed of two beta-sandwich domains connected by one turn of 3(10) helix. The N-terminal domain (residues 22-388) displays a 25-stranded beta-sandwich fold found in several carbohydrate-related proteins. It exhibits a large cleft comprising many aromatic and acidic residues. This putative binding site shares some similarities with enzymes such as galactose mutarotase and glucodextranase, suggesting a potential catalytic role for this domain in OPG synthesis. On the other hand, the C-terminal domain (residues 401-512) has a seven-stranded immunoglobulin-like beta-sandwich fold, found in many proteins where it is mainly implicated in interactions with other molecules. The structural data suggest that OpgG is an OPG branching enzyme in which the catalytic activity is located in the large N-terminal domain and controlled via the smaller C-terminal domain.
Collapse
Affiliation(s)
- Xavier Hanoulle
- UMR 8525 CNRS, Institut de Biologie de Lille, Université de Lille II, 1 rue du Professeur Calmette, BP447, 59021, France.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Alonso A, Burkhalter S, Sasin J, Tautz L, Bogetz J, Huynh H, Bremer MCD, Holsinger LJ, Godzik A, Mustelin T. The minimal essential core of a cysteine-based protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ. J Biol Chem 2004; 279:35768-74. [PMID: 15201283 DOI: 10.1074/jbc.m403412200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The smallest active protein-tyrosine phosphatase yet (only 16 kDa) is described here and given the name VHZ for VH1-like member Z because it belongs to the group of small Vaccinia virus VH1-related dual specific phosphatases exemplified by VHR, VHX, and VHY. Human VHZ is remarkably well conserved through evolution as it has species orthologs in frogs, fish, fly, and Archaea. The gene for VHZ, which we designate as DUSP25, is located on human chromosome 1q23.1 and consists of only two coding exons. VHZ is broadly expressed in tissues and cells, including resting blood lymphocytes, Jurkat T cells, HL-60, and RAMOS. In transfected cells, VHZ was located in the cytosol and in other cells also in the nucleoli. Endogenous VHZ showed a similar but more granular distribution. We show that VHZ is an active phosphatase and analyze its structure by computer modeling, which shows that in comparison with the 185-amino acid residue VHR, the 150-residue VHZ is a shortened version of VHR and contains the minimal set of secondary structure elements conserved in all known phosphatases from this class. The surface charge distribution of VHZ differs from that of VHR and is therefore unlikely to dephosphorylate mitogen-activated protein kinases. The remarkably high degree of conservation of VHZ through evolution may indicate a role in some ancient and fundamental physiological process.
Collapse
Affiliation(s)
- Andres Alonso
- Program of Signal Transduction, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|