51
|
Wedelolactone, a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCε without inhibiting Akt. Int J Oncol 2012; 41:2191-9. [PMID: 23076676 PMCID: PMC3541032 DOI: 10.3892/ijo.2012.1664] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/17/2012] [Indexed: 01/22/2023] Open
Abstract
Emerging studies indicate that metabolism of arachidonic acid through the 5-lipoxygenase (5-Lox) pathway plays a critical role in the survival of prostate cancer cells raising the possibility that 5-Lox can be targeted for an effective therapy of prostate cancer. Wedelolactone (WDL), a medicinal plant-derived natural compound, is known to inhibit 5-Lox activity in neutrophils. However, its effect on apoptosis in prostate cancer cells has not been addressed. Thus, we tested the effects of WDL on human prostate cancer cells in vitro. We observed that WDL kills both androgen-sensitive as well as androgen-independent prostate cancer cells in a dose-dependent manner by dramatically inducing apoptosis. We also found that WDL-induced apoptosis in prostate cancer cells is dependent on c-Jun N-terminal Kinase (c-JNK) and caspase-3. Interestingly, WDL triggers apoptosis in prostate cancer cells via downregulation of protein kinase Cε (PKCε), but without inhibition of Akt. WDL does not affect the viability of normal prostate epithelial cells (PrEC) at doses that kill prostate cancer cells, and WDL-induced apoptosis is effectively prevented by 5-oxoETE, a metabolite of 5-Lox (but not by 15-oxoETE, a metabolite of 15-Lox), suggesting that the apoptosis-inducing effect of WDL in prostate cancer cells is mediated via inhibition of 5-Lox activity. These findings indicate that WDL selectivity induces caspase-dependent apoptosis in prostate cancer cells via a novel mechanism involving inhibition of PKCε without affecting Akt and suggest that WDL may emerge as a novel therapeutic agent against clinical prostate cancer in human.
Collapse
|
52
|
Lee YJ, Lin WL, Chen NF, Chuang SK, Tseng TH. Demethylwedelolactone derivatives inhibit invasive growth in vitro and lung metastasis of MDA-MB-231 breast cancer cells in nude mice. Eur J Med Chem 2012; 56:361-7. [DOI: 10.1016/j.ejmech.2012.07.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/16/2012] [Accepted: 07/24/2012] [Indexed: 01/22/2023]
|
53
|
Lim S, Jang H, Park EH, Kim JK, Kim J, Kim E, Yea K, Kim Y, Lee‐Kwon W, Ryu SH, Suh P. Wedelolactone inhibits adipogenesis through the ERK pathway in human adipose tissue‐derived mesenchymal stem cells. J Cell Biochem 2012; 113:3436-45. [DOI: 10.1002/jcb.24220] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Seyoung Lim
- School of Nano‐Bioscience & Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyun‐Jun Jang
- School of Nano‐Bioscience & Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eun Hee Park
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jung Kuk Kim
- School of Nano‐Bioscience & Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jung‐Min Kim
- School of Nano‐Bioscience & Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eung‐Kyun Kim
- School of Nano‐Bioscience & Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyungmoo Yea
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yun‐Hee Kim
- Molecular Imaging & Therapy Branch, Division of Convergence Technology, National Cancer Center, Goyang, Republic of Korea
| | - Whaseon Lee‐Kwon
- School of Nano‐Bioscience & Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pann‐Ghill Suh
- School of Nano‐Bioscience & Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
54
|
Golub AG, Gurukumar KR, Basu A, Bdzhola VG, Bilokin Y, Yarmoluk SM, Lee JC, Talele TT, Nichols DB, Kaushik-Basu N. Discovery of new scaffolds for rational design of HCV NS5B polymerase inhibitors. Eur J Med Chem 2012; 58:258-64. [PMID: 23127989 DOI: 10.1016/j.ejmech.2012.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 02/02/2023]
Abstract
Hepatitis C virus (HCV) NS5B polymerase is a key target for the development of anti-HCV drugs. Here we report on the identification of novel allosteric inhibitors of HCV NS5B through a combination of structure-based virtual screening and in vitro NS5B inhibition assays. One hundred and sixty thousand compounds from the Otava database were virtually screened against the thiazolone inhibitor binding site on NS5B (thumb pocket-2, TP-2), resulting in a sequential down-sizing of the library by 2.7 orders of magnitude to yield 59 NS5B non-nucleoside inhibitor (NNI) candidates. In vitro evaluation of the NS5B inhibitory activity of the 59 selected compounds resulted in a 14% hit rate, yielding 8 novel structural scaffolds. Of these, compound 1 bearing a 4-hydrazinoquinazoline scaffold was the most active (IC(50) = 16.0 μM). The binding site of all 8 NNIs was mapped to TP-2 of NS5B as inferred by a decrease in their inhibition potency against the M423T NS5B mutant, employed as a screen for TP-2 site binders. At 100 μM concentration, none of the eight compounds exhibited any cytotoxicity, and all except compound 8 exhibited between 40 and 60% inhibition of intracellular NS5B polymerase activity in BHK-NS5B-FRLuc reporter cells. These inhibitor scaffolds will form the basis for future optimization and development of more potent NS5B inhibitors.
Collapse
Affiliation(s)
- Andriy G Golub
- Department of Combinatorial Chemistry, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, 03143 Kyiv, Ukraine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|
56
|
Nichols DB, Fournet G, Gurukumar KR, Basu A, Lee JC, Sakamoto N, Kozielski F, Musmuca I, Joseph B, Ragno R, Kaushik-Basu N. Inhibition of hepatitis C virus NS5B polymerase by S-trityl-L-cysteine derivatives. Eur J Med Chem 2012; 49:191-9. [PMID: 22280819 DOI: 10.1016/j.ejmech.2012.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 01/28/2023]
Abstract
Structure-based studies led to the identification of a constrained derivative of S-trityl-l-cysteine (STLC) scaffold as a candidate inhibitor of hepatitis C virus (HCV) NS5B polymerase. A panel of STLC derivatives were synthesized and investigated for their activity against HCV NS5B. Three STLC derivatives, 9, F-3070, and F-3065, were identified as modest HCV NS5B inhibitors with IC(50) values between 22.3 and 39.7 μM. F-3070 and F-3065 displayed potent inhibition of intracellular NS5B activity in the BHK-NS5B-FRLuc reporter and also inhibited HCV RNA replication in the Huh7/Rep-Feo1b reporter system. Binding mode investigations suggested that the STLC scaffold can be used to develop new NS5B inhibitors by further chemical modification at one of the trityl phenyl group.
Collapse
Affiliation(s)
- Daniel B Nichols
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Tseng CK, Chen KJ, Lin CK, Hsu SH, Lee JC. An in vitro coupled transcription/translation reporter system for hepatitis C virus RNA-dependent RNA polymerase. Anal Biochem 2011; 418:50-7. [PMID: 21782784 DOI: 10.1016/j.ab.2011.06.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/20/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
Abstract
Hepatitis C virus (HCV) NS5B, an RNA-dependent RNA polymerase (RdRp), is an attractive target for antiviral agents. The in vitro RNA synthesis system based on radioisotopic readout is commonly used for polymerase inhibitor screening; however, this system generates large amounts of radioactive waste and is not amenable to high-throughput applications. To overcome this limitation, we generated pFLuc-(-)UTRΔC-RLuc, a bicistronic reporter vector, which allows effective and sensitive distinction of RdRp activity by using a cell-free coupled transcription/translation system. This reporter construct comprises the firefly luciferase (FLuc) and the Renilla luciferase (RLuc) genes in reverse orientation flanked by the two negative strands of the HCV 5'- and 3'-untranslated regions in which FLuc and RLuc reporter proteins are regulated by bacteriophage T7 polymerase and NS5B polymerase, respectively. The increase in RLuc activity was proportional to the amount of active RdRp. This cell-free dual reporter system was further validated using specific RdRp inhibitors. Hence, linear dose-response curves between RLuc activity and specific inhibitors were obtained, as was faster drug screening through real-time measurement of chemiluminescence. Moreover, this reporter system is suitable for robust in vitro screening because of a statistically acceptable Z' factor value of 0.79 under the antiviral screening condition in the 96-well format.
Collapse
Affiliation(s)
- Chin-kai Tseng
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, ROC
| | | | | | | | | |
Collapse
|
58
|
Allosteric inhibition of the hepatitis C virus NS5B polymerase: in silico strategies for drug discovery and development. Future Med Chem 2011; 3:1027-55. [DOI: 10.4155/fmc.11.53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic infection by hepatitis C virus (HCV) often leads to severe liver disease including cirrhosis, hepatocellular carcinoma and liver failure. Despite it being more than 20 years since the identification of HCV, the current standard of care for treating the infection is based on aspecific therapy often associated with severe side effects and low-sustained virological response. Research is ongoing to develop new and better medications, including a broad range of allosteric NS5B polymerase inhibitors. This article reviews traditional computational methodologies and more recently developed in silico strategies aimed at identifying and optimizing non-nucleoside inhibitors targeting allosteric sites of HCV NS5B polymerase. The drug-discovery approaches reviewed could provide take-home lessons for general computer-aided research projects.
Collapse
|
59
|
Benes P, Knopfova L, Trcka F, Nemajerova A, Pinheiro D, Soucek K, Fojta M, Smarda J. Inhibition of topoisomerase IIα: Novel function of wedelolactone. Cancer Lett 2011; 303:29-38. [DOI: 10.1016/j.canlet.2011.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/21/2010] [Accepted: 01/03/2011] [Indexed: 11/26/2022]
|
60
|
Hwu JR, Lin SY, Tsay SC, De Clercq E, Leyssen P, Neyts J. Coumarin−Purine Ribofuranoside Conjugates as New Agents against Hepatitis C Virus. J Med Chem 2011; 54:2114-26. [DOI: 10.1021/jm101337v] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jih Ru Hwu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
- Department of Chemistry, National Central University, Jhongli City, Taiwan 32001, R.O.C
| | - Shu-Yu Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
| | - Shwu-Chen Tsay
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
61
|
Musmuca I, Caroli A, Mai A, Kaushik-Basu N, Arora P, Ragno R. Combining 3-D quantitative structure-activity relationship with ligand based and structure based alignment procedures for in silico screening of new hepatitis C virus NS5B polymerase inhibitors. J Chem Inf Model 2010; 50:662-76. [PMID: 20225870 DOI: 10.1021/ci9004749] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The viral NS5B RNA-dependent RNA-polymerase (RdRp) is one of the best-studied and promising targets for the development of novel therapeutics against hepatitis C virus (HCV). Allosteric inhibition of this enzyme has emerged as a viable strategy toward blocking replication of viral RNA in cell based systems. Herein, we describe how the combination of a complete computational procedure together with biological studies led to the identification of novel molecular scaffolds, hitherto untested toward NS5B polymerase. Structure based 3-D quantitative structure-activity relationship (QSAR) models were generated employing NS5B non-nucleoside inhibitors (NNIs), whose bound conformations were readily available from the protein database (PDB). These were grouped into two training sets of structurally diverse NS5B NNIs, based on their binding to the enzyme thumb (15 NNIs) or palm (10 NNIs) domains. Ligand based (LB) and structure based (SB) alignments were rigorously investigated to assess the reliability on the correct molecular alignment for unknown binding mode modeled compounds. Both Surflex and Autodock programs were able to reproduce with minimal errors the experimental binding conformations of 24 experimental NS5B allosteric inhibitors. Eighty-one (thumb) and 223 (palm) modeled compounds taken from literature were LB and SB aligned and used as external validation sets for the development of 3-D QSAR models. Low error of prediction proved the 3-D QSARs to be useful scoring functions for the in silico screening procedure. Finally, the virtual screening of the NCI Diversity Set led to the selection for enzymatic assays of 20 top-scoring molecules for each final model. Among the 40 selected molecules, preliminary data yielded four derivatives exhibiting IC(50) values ranging between 45 and 75 microM. Binding mode analysis of hit compounds within the NS5B polymerase thumb domain showed that one of them, NSC 123526, exhibited a docked conformation which was in good agreement with the thumb training set most active compound (6).
Collapse
Affiliation(s)
- Ira Musmuca
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Universita di Roma, P le A Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
62
|
Lee JC, Tseng CK, Chen KJ, Huang KJ, Lin CK, Lin YT. A cell-based reporter assay for inhibitor screening of hepatitis C virus RNA-dependent RNA polymerase. Anal Biochem 2010; 403:52-62. [DOI: 10.1016/j.ab.2010.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/03/2010] [Accepted: 04/05/2010] [Indexed: 12/20/2022]
|
63
|
Talele TT, Arora P, Kulkarni SS, Patel MR, Singh S, Chudayeu M, Kaushik-Basu N. Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem 2010; 18:4630-8. [PMID: 20627595 PMCID: PMC2956004 DOI: 10.1016/j.bmc.2010.05.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/08/2010] [Accepted: 05/11/2010] [Indexed: 11/24/2022]
Abstract
Hepatitis C virus (HCV) NS5B polymerase is a key target for the development of therapeutic agents aimed at the treatment of HCV infections. Here we report on the identification of novel allosteric inhibitors of HCV NS5B through a combination of structure-based virtual screening, synthesis and structure-activity relationship (SAR) optimization approach. Virtual screening of 260,000 compounds from the ChemBridge database against the tetracyclic indole inhibitor binding pocket of NS5B (allosteric pocket-1, AP-1), sequentially down-sized the library by 4 orders of magnitude to yield 23 candidates. In vitro evaluation of the NS5B inhibitory activity of the in-silico selected compounds resulted in 17% hit rate, identifying two novel chemotypes. Of these, compound 3, bearing the rhodanine scaffold, proved amenable for productive SAR exploration and synthetic modification. As a result, 25 derivatives that exhibited IC₅₀ values ranging from 7.7 to 68.0 μM were developed. Docking analysis of lead compound 28 within the tetracyclic indole- and benzylidene-binding allosteric pockets (AP-1 and AP-3, respectively) of NS5B revealed topological similarities between these two pockets. Compound 28, a novel rhodanine analog with NS5B inhibitory potency in the low micromolar level range may be a promising lead for future development of more potent NS5B inhibitors.
Collapse
Affiliation(s)
- Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY 11439
| | - Payal Arora
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103
| | - Shridhar S. Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY 11439
| | - Maulik R. Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY 11439
| | - Satyakam Singh
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY 11439
| | - Maksim Chudayeu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103
| |
Collapse
|
64
|
Roh C, Lee HY, Kim SE, Jo SK. A highly sensitive and selective viral protein detection method based on RNA oligonucleotide nanoparticle. Int J Nanomedicine 2010; 5:323-9. [PMID: 20517476 PMCID: PMC2875725 DOI: 10.2147/ijn.s10134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Globally, approximately 170 million people (representing approximately 3% of the population worldwide), are infected with hepatitis C virus (HCV) and at risk of serious liver disease, including chronic hepatitis. We propose a new quantum dots (QDs)-supported RNA oligonucleotide approach for the specific and sensitive detection of viral protein using a biochip. This method was developed by immobilizing a HCV nonstructural protein 5B (NS5B) on the surface of a glass chip via the formation of a covalent bond between an amine protein group and a ProLinker™ glass chip. The QDs-supported RNA oligonucleotide was conjugated via an amide formation reaction from coupling of a 5′-end-amine-modified RNA oligonucleotide on the surface of QDs displaying carboxyl groups via standard EDC coupling. The QDs-conjugated RNA oligonucleotide was interacted to immobilized viral protein NS5B on the biochip. The detection is based on the variation of signal of QDs-supported RNA oligonucleotide bound on an immobilized biochip. It was demonstrated that the value of the signal has a linear relationship with concentrations of the HCV NS5B viral protein in the 1 μg mL−1 to 1 ng mL−1 range with a detection limit of 1 ng mL−1. The major advantages of this RNA-oligonucleotide nanoparticle assay are its good specificity, ease of performance, and ability to perform one-spot monitoring. The proposed method could be used as a general method of HCV detection and is expected to be applicable to other types of diseases as well.
Collapse
Affiliation(s)
- Changhyun Roh
- Radiation Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeong-dong, Jeongeup, Jeonbuk, South Korea.
| | | | | | | |
Collapse
|
65
|
Chen Y, Bopda-Waffo A, Basu A, Krishnan R, Silberstein E, Taylor DR, Talele TT, Arora P, Kaushik-Basu N. Characterization of aurintricarboxylic acid as a potent hepatitis C virus replicase inhibitor. Antivir Chem Chemother 2009; 20:19-36. [PMID: 19794229 DOI: 10.3851/imp1286] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) NS5B is an essential component of the viral replication machinery and an important target for antiviral intervention. Aurintricarboxylic acid (ATA), a broad-spectrum antiviral agent, was evaluated and characterized for its anti-NS5B activity in vitro and in HCV replicon cells. METHODS Recombinant NS5B, HCV replicase and Huh-7 cells harbouring the subgenomic HCV replicon of genotype 1b were employed for biochemical and mechanistic investigations. RESULTS Analysis of ATA activity in vitro yielded equipotent inhibition of recombinant NS5B and HCV replicase in the submicromolar range (50% inhibition concentration [IC(50)] approximately 150 nM). Biochemical and mechanistic studies revealed a bimodal mechanism of ATA inhibition with characteristics of pyrophosphate mimics and non-nucleoside inhibitors. Molecular modelling and competition displacement studies were consistent with these parameters, suggesting that ATA might bind to the benzothiadiazine allosteric pocket 3 of NS5B or at its catalytic centre. Kinetic studies revealed a mixed mode of ATA inhibition with respect to both RNA and UTP substrates. Under single-cycle assay conditions, ATA inhibited HCV NS5B initiation and elongation from pre-bound RNA, but with > or =fivefold decreased potency compared with continuous polymerization conditions. The IC(50) value of ATA for the native replicase complex was 145 nM. In HCV replicon cells, ATA treatment ablated HCV RNA replication (50% effective concentration =75 nM) with concomitant decrease in NS5B expression and no apparent cytotoxic effects. CONCLUSIONS This study identified ATA as a potent anti-NS5B inhibitor and suggests that its unique mode of action might be exploited for structural refinement and development of novel anti-NS5B agents.
Collapse
Affiliation(s)
- Ye Chen
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
James CA, Coelho AL, Gevaert M, Forgione P, Snieckus V. Combined directed ortho and remote metalation-Suzuki cross-coupling strategies. Efficient synthesis of heteroaryl-fused benzopyranones from biaryl O-carbamates. J Org Chem 2009; 74:4094-103. [PMID: 19441801 DOI: 10.1021/jo900146d] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A concise synthesis of heteroaryl dibenzopyranones 9a,b, 10a,b, 11a-c, and 12a-c has been achieved by the LDA-induced migration of heterobiaryl O-carbamates 18, 21, 25, and 30 which, in turn, were prepared in good yield using a combined directed ortho lithiation (DoM)-transition-metal-catalyzed Suzuki cross-coupling strategy. An efficient and general route to a wide variety of heterocycles including coumestans 19a,c and the previously unknown isothiocoumestan ring system 22b has been thereby achieved.
Collapse
Affiliation(s)
- Clint A James
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
67
|
Nchancho K, Kouam J, Tane P, Kuete V, Watchueng J, Fomum ZT. Coumestan Glycosides from the Stem Bark of Cylicodiscus Gabunensis. Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two new coumestan glycosides, coumestoside C (1) and coumestoside D (2), were isolated from the stem bark of Cylicodiscus gabunensis Harms. Their structures were established by spectroscopic means and chemical transformations as 9- O-α-L-rhamnopyranosyl-3-hydroxy-4-(5′-hydroxy-3′-methylbut-2′ E-enyl) coumestan (1) and 9- O-β-D-galactopyranosyl-3- O- prenyl-4-hydroxycoumestan. Coumestoside C exhibited antimicrobial activity against Proteus vulgaris.
Collapse
Affiliation(s)
- Kazie Nchancho
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, PO Box 812, Cameroon
| | - Jacques Kouam
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, PO Box 812, Cameroon
| | - Pierre Tane
- Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Cameroon
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Cameroon
| | - Jean Watchueng
- Institut de recherche en Biotechnologie de Montréal, 6100 Avenue Royalmount, H4P 2R2, Canada
| | - Zacharias T. Fomum
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, PO Box 812, Cameroon
| |
Collapse
|
68
|
Sant’Ana DP, Pinho VD, Maior MC, Costa PR. Synthesis of 5-deoxypterocarpens, pterocarpens, and coumestans by intramolecular Heck reaction. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
69
|
Rawal RK, Katti SB, Kaushik-Basu N, Arora P, Pan Z. Non-nucleoside inhibitors of the hepatitis C virus NS5B RNA-dependant RNA polymerase: 2-aryl-3-heteroaryl-1,3-thiazolidin-4-one derivatives. Bioorg Med Chem Lett 2008; 18:6110-4. [PMID: 18947995 DOI: 10.1016/j.bmcl.2008.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/19/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Hepatitis C virus (HCV) NS5B RNA polymerase is crucial for replicating the HCV RNA genome and is an attractive target for developing anti-HCV drugs. A novel series of 2,3-diaryl-1,3-thiazolidin-4-one derivatives were evaluated for their ability to inhibit HCV NS5B. Of this series, compounds 4c, 5b, 5c and 6 emerged as more potent, displaying over 95% inhibition of NS5B RNA polymerase activity in vitro. The two most active compounds 4c and 5c exhibited an IC(50) of 31.9 microM and 32.2 microM, respectively, against HCV NS5B.
Collapse
Affiliation(s)
- Ravindra K Rawal
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Chattar Manzil, PO Box No. 173, Lucknow, UP 226 001, India
| | | | | | | | | |
Collapse
|
70
|
Chinnaswamy S, Yarbrough I, Palaninathan S, Kumar CTR, Vijayaraghavan V, Demeler B, Lemon SM, Sacchettini JC, Kao CC. A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase. J Biol Chem 2008; 283:20535-46. [PMID: 18442978 DOI: 10.1074/jbc.m801490200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutational analysis of the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) template channel identified two residues, Trp(397) and His(428), which are required for de novo initiation but not for extension from a primer. These two residues interact with the Delta1 loop on the surface of the RdRp. A deletion within the Delta1 loop also resulted in comparable activities. The mutant proteins exhibit increased double-stranded RNA binding compared with the wild type, suggesting that the Delta1 loop serves as a flexible locking mechanism to regulate the conformations needed for de novo initiation and for elongative RNA synthesis. A similar locking motif can be found in other viral RdRps. Products associated with the open conformation of the HCV RdRp were inhibited by interaction with the retinoblastoma protein but not cyclophilin A. Different conformations of the HCV RdRp can thus affect RNA synthesis and interaction with cellular proteins.
Collapse
Affiliation(s)
- Sreedhar Chinnaswamy
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | | | | | | | | | | | |
Collapse
|