51
|
Andersen N, Wang J, Wang P, Jiang Y, Wang Y. In-vitro replication studies on O(2)-methylthymidine and O(4)-methylthymidine. Chem Res Toxicol 2012; 25:2523-31. [PMID: 23113558 PMCID: PMC3502631 DOI: 10.1021/tx300325q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
O(2)- and O(4)-methylthymidine (O(2)-MdT and O(4)-MdT) can be induced in tissues of laboratory animals exposed with N-methyl-N-nitrosourea, a known carcinogen. These two O-methylated DNA adducts have been shown to be poorly repaired and may contribute to the mutations arising from exposure to DNA methylating agents. Here, in vitro replication studies with duplex DNA substrates containing site-specifically incorporated O(2)-MdT and O(4)-MdT showed that both lesions blocked DNA synthesis mediated by three different DNA polymerases, including the exonuclease-free Klenow fragment of Escherichia coli DNA polymerase I (Kf(-)), human DNA polymerase κ (pol κ), and Saccharomyces cerevisiae DNA polymerase η (pol η). Results from steady-state kinetic measurements and LC-MS/MS analysis of primer extension products revealed that Kf(-) and pol η preferentially incorporated the correct nucleotide (dAMP) opposite O(2)-MdT, while O(4)-MdT primarily directed dGMP misincorporation. While steady-state kinetic experiments showed that pol κ-mediated nucleotide insertion opposite O(2)-MdT and O(4)-MdT is highly promiscuous, LC-MS/MS analysis of primer extension products demonstrated that pol κ favorably incorporated the incorrect dGMP opposite both lesions. Our results underscored the limitation of the steady-state kinetic assay in determining how DNA lesions compromise DNA replication in vitro. In addition, the results from our study revealed that, if left unrepaired, O-methylated thymidine lesions may constitute important sources of nucleobase substitutions emanating from exposure to alkylating agents.
Collapse
Affiliation(s)
- Nisana Andersen
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Jianshuang Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403
| | - Yong Jiang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403
| |
Collapse
|
52
|
Patrzyc HB, Dawidzik JB, Budzinski EE, Freund HG, Wilton JH, Box HC. Covalently linked tandem lesions in DNA. Radiat Res 2012; 178:538-42. [PMID: 23106212 DOI: 10.1667/rr2915.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) generate a type of DNA damage called tandem lesions, two adjacent nucleotides both modified. A subcategory of tandem lesions consists of adjacent nucleotides linked by a covalent bond. Covalently linked tandem lesions generate highly characteristic liquid chromotography-tandem mass spectrometry (LC-MS/MS) elution profiles. We have used this property to comprehensively survey X-irradiated DNA for covalently linked tandem lesions. A total of 15 tandem lesions were detected in DNA irradiated in deoxygenated aqueous solution, five tandem lesions were detected in DNA that was irradiated in oxygenated solution.
Collapse
Affiliation(s)
- Helen B Patrzyc
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Wang J, Cao H, You C, Yuan B, Bahde R, Gupta S, Nishigori C, Niedernhofer LJ, Brooks PJ, Wang Y. Endogenous formation and repair of oxidatively induced G[8-5 m]T intrastrand cross-link lesion. Nucleic Acids Res 2012; 40:7368-74. [PMID: 22581771 PMCID: PMC3424544 DOI: 10.1093/nar/gks357] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/10/2012] [Accepted: 03/29/2012] [Indexed: 12/19/2022] Open
Abstract
Exposure to reactive oxygen species (ROS) can give rise to the formation of various DNA damage products. Among them, d(G[8-5 m]T) can be induced in isolated DNA treated with Fenton reagents and in cultured human cells exposed to γ-rays, d(G[8-5m]T) can be recognized and incised by purified Escherichia coli UvrABC nuclease. However, it remains unexplored whether d(G[8-5 m]T) accumulates in mammalian tissues and whether it is a substrate for nucleotide excision repair (NER) in vivo. Here, we found that d(G[8-5 m]T) could be detected in DNA isolated from tissues of healthy humans and animals, and elevated endogenous ROS generation enhanced the accumulation of this lesion in tissues of a rat model of Wilson's disease. Additionally, XPA-deficient human brain and mouse liver as well as various types of tissues of ERCC1-deficient mice contained higher levels of d(G[8-5 m]T) but not ROS-induced single-nucleobase lesions than the corresponding normal controls. Together, our studies established that d(G[8-5 m]T) can be induced endogenously in mammalian tissues and constitutes a substrate for NER in vivo.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Huachuan Cao
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Changjun You
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Bifeng Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Ralf Bahde
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Sanjeev Gupta
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Chikako Nishigori
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Laura J. Niedernhofer
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Philip J. Brooks
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Division of Dermatology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219 and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| |
Collapse
|
54
|
|
55
|
Abstract
Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | |
Collapse
|
56
|
Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett 2012; 327:5-15. [PMID: 22542631 DOI: 10.1016/j.canlet.2012.04.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/02/2012] [Accepted: 04/15/2012] [Indexed: 11/22/2022]
Abstract
There is an increasing interest for oxidatively generated complex lesions that are potentially more detrimental than single oxidized nucleobases. In this survey, the recently available information on the formation and processing of several classes of complex DNA damage formed upon one radical hit including mostly hydroxyl radical and one-electron oxidants is critically reviewed. The modifications include tandem base lesions, DNA-protein cross-links and intrastrand (purine 5',8-cyclonucleosides, adjacent base cross-links) and interstrand cross-links. Information is also provided on clustered lesions produced essentially by exposure of cells to ionizing radiation and high energetic heavy ions through the involvement of multiple radical events that induce several lesions DNA in a close spatial vicinity. These consist mainly of double strand breaks (DSBs) and non-DSB clustered lesions that are referred as to oxidatively generated clustered DNA lesions (OCDLs).
Collapse
|
57
|
Cadet J, Douki T, Ravanat JL, Wagner JR. Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12566-012-0029-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
58
|
Cadet J, Loft S, Olinski R, Evans MD, Bialkowski K, Richard Wagner J, Dedon PC, Møller P, Greenberg MM, Cooke MS. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radic Res 2012; 46:367-81. [PMID: 22263561 DOI: 10.3109/10715762.2012.659248] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the oxidized bases including 8-oxo-7,8-dihydroguanine (8-oxoGua), a ubiquitous marker of almost every type of oxidative stress in cells. Efforts to standardize the nomenclature and abbreviations of the main DNA degradation products that arise from oxidative pathways are reported. Information is also provided on the main oxidative radicals, non-radical oxygen species, one-electron agents and enzymes involved in DNA degradation pathways as well in their targets and reactivity. A brief classification of oxidatively generated damage to DNA that may involve single modifications, tandem base modifications, intrastrand and interstrand cross-links together with DNA-protein cross-links and base adducts arising from the addition of lipid peroxides breakdown products is also included.
Collapse
Affiliation(s)
- Jean Cadet
- Direction des Sciences de Matière, Institut Nanosciences et Cryogénie, CEA/Grenoble, Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
|
60
|
Dizdaroglu M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 2012; 327:26-47. [PMID: 22293091 DOI: 10.1016/j.canlet.2012.01.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/23/2011] [Accepted: 01/11/2012] [Indexed: 12/12/2022]
Abstract
Endogenous and exogenous sources cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. The resulting DNA lesions are mutagenic and, unless repaired, lead to a variety of mutations and consequently to genetic instability, which is a hallmark of cancer. Oxidatively induced DNA damage is repaired in living cells by different pathways that involve a large number of proteins. Unrepaired and accumulated DNA lesions may lead to disease processes including carcinogenesis. Mutations also occur in DNA repair genes, destabilizing the DNA repair system. A majority of cancer cell lines have somatic mutations in their DNA repair genes. In addition, polymorphisms in these genes constitute a risk factor for cancer. In general, defects in DNA repair are associated with cancer. Numerous DNA repair enzymes exist that possess different, but sometimes overlapping substrate specificities for removal of oxidatively induced DNA lesions. In addition to the role of DNA repair in carcinogenesis, recent evidence suggests that some types of tumors possess increased DNA repair capacity that may lead to therapy resistance. DNA repair pathways are drug targets to develop DNA repair inhibitors to increase the efficacy of cancer therapy. Oxidatively induced DNA lesions and DNA repair proteins may serve as potential biomarkers for early detection, cancer risk assessment, prognosis and for monitoring therapy. Taken together, a large body of accumulated evidence suggests that oxidatively induced DNA damage and its repair are important factors in the development of human cancers. Thus this field deserves more research to contribute to the development of cancer biomarkers, DNA repair inhibitors and treatment approaches to better understand and fight cancer.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
61
|
Garrec J, Patel C, Rothlisberger U, Dumont E. Insights into Intrastrand Cross-Link Lesions of DNA from QM/MM Molecular Dynamics Simulations. J Am Chem Soc 2012; 134:2111-9. [DOI: 10.1021/ja2084042] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Julian Garrec
- Laboratory of Computational
Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Chandan Patel
- Université de Lyon, Institut de Chimie de Lyon, CNRS, Ecole normale
supérieure de Lyon, 46 allée d’Italie, 69364
Lyon Cedex 07, France
| | - Ursula Rothlisberger
- Laboratory of Computational
Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Elise Dumont
- Université de Lyon, Institut de Chimie de Lyon, CNRS, Ecole normale
supérieure de Lyon, 46 allée d’Italie, 69364
Lyon Cedex 07, France
| |
Collapse
|
62
|
Churchill CDM, Eriksson LA, Wetmore SD. Formation mechanism and structure of a guanine-uracil DNA intrastrand cross-link. Chem Res Toxicol 2011; 24:2189-99. [PMID: 22060045 DOI: 10.1021/tx2003239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The formation and structure of the 5'-G[8-5]U-3' intrastrand cross-link are studied using density functional theory and molecular dynamics simulations due to the potential role of this lesion in the activity of 5-halouracils in antitumor therapies. Upon UV irradiation of 5-halouracil-containing DNA, a guanine radical cation reacts with the uracil radical to form the cross-link, which involves phosphorescence or an intersystem crossing and a rate-determining step of bond formation. Following ionizing radiation, guanine and the uracil radical react, with a rate-limiting step involving hydrogen atom removal. Although cross-link formation from UV radiation is favored, comparison of calculated reaction thermokinetics with that for related experimentally observed purine-pyrimidine cross-links suggests this lesion is also likely to form from ionizing radiation. For the first time, the structure of 5'-G[8-5]U-3' within DNA is identified by molecular dynamics simulations. Furthermore, three conformations of cross-linked DNA are revealed, which differ in the configuration of the complementary bases. Distortions, such as unwinding, are localized to the cross-linked dinucleotide and complementary nucleotides, with minimal changes to the flanking bases. Global changes to the helix, such as bending and groove alterations, parallel cisplatin-induced distortions, which indicate 5'-G[8-5]U-3', may contribute to the cytotoxicity of halouracils in tumor cell DNA using similar mechanisms.
Collapse
Affiliation(s)
- Cassandra D M Churchill
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | | | | |
Collapse
|
63
|
Cadet J, Douki T, Ravanat JL. Measurement of oxidatively generated base damage in cellular DNA. Mutat Res 2011; 711:3-12. [PMID: 21329709 DOI: 10.1016/j.mrfmmm.2011.02.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/26/2011] [Accepted: 02/06/2011] [Indexed: 05/30/2023]
Abstract
This survey focuses on the critical evaluation of the main methods that are currently available for monitoring single and complex oxidatively generated damage to cellular DNA. Among chromatographic methods, HPLC-ESI-MS/MS and to a lesser extent HPLC-ECD which is restricted to a few electroactive nucleobases and nucleosides are appropriate for measuring the formation of single and clustered DNA lesions. Such methods that require optimized protocols for DNA extraction and digestion are sensitive enough for measuring base lesions formed under conditions of severe oxidative stress including exposure to ionizing radiation, UVA light and high intensity UVC laser pulses. In contrast application of GC-MS and HPLC-MS methods that are subject to major drawbacks have been shown to lead to overestimated values of DNA damage. Enzymatic methods that are based on the use of DNA repair glycosylases in order to convert oxidized bases into strand breaks are suitable, even if they are far less specific than HPLC methods, to deal with low levels of single modifications. Several other methods including immunoassays and (32)P-postlabeling methods that are still used suffer from drawbacks and therefore are not recommended. Another difficult topic is the measurement of oxidatively generated clustered DNA lesions that is currently achieved using enzymatic approaches and that would necessitate further investigations.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire "Lésions des Acides Nucléiques", SCIB-UMR-E n°3 (CEA/UJF), FRE CNRS 3200, Département de Recherche Fondamentale sur la Matière Condensée, CEA/Grenoble, F-38054 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
64
|
Yuan B, You C, Andersen N, Jiang Y, Moriya M, O'Connor TR, Wang Y. The roles of DNA polymerases κ and ι in the error-free bypass of N2-carboxyalkyl-2'-deoxyguanosine lesions in mammalian cells. J Biol Chem 2011; 286:17503-11. [PMID: 21454642 DOI: 10.1074/jbc.m111.232835] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To counteract the deleterious effects of DNA damage, cells are equipped with specialized polymerases to bypass DNA lesions. Previous biochemical studies revealed that DinB family DNA polymerases, including Escherichia coli DNA polymerase IV and human DNA polymerase κ, efficiently incorporate the correct nucleotide opposite some N(2)-modified 2'-deoxyguanosine derivatives. Herein, we used shuttle vector technology and demonstrated that deficiency in Polk or Poli in mouse embryonic fibroblast (MEF) cells resulted in elevated frequencies of G→T and G→A mutations at N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) and N(2)-carboxymethyl-2'-deoxyguanosine (N(2)-CMdG) sites. Steady-state kinetic measurements revealed that human DNA polymerase ι preferentially inserts the correct nucleotide, dCMP, opposite N(2)-CEdG lesions. In contrast, no mutation was found after the N(2)-CEdG- and N(2)-CMdG-bearing plasmids were replicated in POLH-deficient human cells or Rev3-deficient MEF cells. Together, our results revealed that, in mammalian cells, both polymerases κ and ι are necessary for the error-free bypass of N(2)-CEdG and N(2)-CMdG. However, in the absence of polymerase κ or ι, other translesion synthesis polymerase(s) could incorporate nucleotide(s) opposite these lesions but would do so inaccurately.
Collapse
Affiliation(s)
- Bifeng Yuan
- From the Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Münzel M, Szeibert C, Glas AF, Globisch D, Carell T. Discovery and synthesis of new UV-induced intrastrand C(4-8)G and G(8-4)C photolesions. J Am Chem Soc 2011; 133:5186-9. [PMID: 21425860 DOI: 10.1021/ja111304f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UV irradiation of cellular DNA leads to the formation of a number of defined mutagenic DNA lesions. Here we report the discovery of new intrastrand C(4-8)G and G(8-4)C cross-link lesions in which the C(4) amino group of the cytosine base is covalently linked to the C(8) position of an adjacent dG base. The structure of the novel lesions was clarified by HPLC-MS/MS data for UV-irradiated DNA in combination with chemical synthesis and direct comparison of the synthetic material with irradiated DNA. We also report the ability to generate the lesions directly in DNA with the help of a photoactive precursor that was site-specifically incorporated into DNA. This should enable detailed chemical and biochemical investigations of these lesions.
Collapse
Affiliation(s)
- Martin Münzel
- Center for Integrated Protein Science (CIPS(M)) at the Department of Chemistry, Ludwig-Maximilians-University Munich , Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
66
|
Raychaudhury P, Basu AK. Genetic requirement for mutagenesis of the G[8,5-Me]T cross-link in Escherichia coli: DNA polymerases IV and V compete for error-prone bypass. Biochemistry 2011; 50:2330-8. [PMID: 21302943 PMCID: PMC3062377 DOI: 10.1021/bi102064z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
γ-Radiation generates a variety of complex lesions in DNA, including the G[8,5-Me]T intrastrand cross-link in which C8 of guanine is covalently linked to the 5-methyl group of the 3'-thymine. We have investigated the toxicity and mutagenesis of this lesion by replicating a G[8,5-Me]T-modified plasmid in Escherichia coli with specific DNA polymerase knockouts. Viability was very low in a strain lacking pol II, pol IV, and pol V, the three SOS-inducible DNA polymerases, indicating that translesion synthesis is conducted primarily by these DNA polymerases. In the single-polymerase knockout strains, viability was the lowest in a pol V-deficient strain, which suggests that pol V is most efficient in bypassing this lesion. Most mutations were single-base substitutions or deletions, though a small population of mutants carrying two point mutations at or near the G[8,5-Me]T cross-link was also detected. Mutations in the progeny occurred at the cross-linked bases as well as at bases near the lesion site, but the mutational spectrum varied on the basis of the identity of the DNA polymerase that was knocked out. Mutation frequency was the lowest in a strain that lacked the three SOS DNA polymerases. We determined that pol V is required for most targeted G → T transversions, whereas pol IV is required for the targeted T deletions. Our results suggest that pol V and pol IV compete to carry out error-prone bypass of the G[8,5-Me]T cross-link.
Collapse
Affiliation(s)
- Paromita Raychaudhury
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | | |
Collapse
|
67
|
Wang J, Yuan B, Guerrero C, Bahde R, Gupta S, Wang Y. Quantification of oxidative DNA lesions in tissues of Long-Evans Cinnamon rats by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope-dilution method. Anal Chem 2011; 83:2201-9. [PMID: 21323344 DOI: 10.1021/ac103099s] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of our study was to develop suitable methods to quantify oxidative DNA lesions in the setting of transition metal-related diseases. Transition metal-driven Fenton reactions constitute an important endogenous source of reactive oxygen species (ROS). In genetic diseases with accumulation of transition metal ions, excessive ROS production causes pathophysiological changes, including DNA damage. Wilson's disease is an autosomal recessive disorder with copper toxicosis due to deficiency of ATP7B protein needed for excreting copper into bile. The Long-Evans Cinnamon (LEC) rat bears a deletion in Atp7b gene and serves as an excellent model for hepatic Wilson's disease. We used a sensitive capillary liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS/MS) method in conjunction with the stable isotope-dilution technique to quantify several types of oxidative DNA lesions in the liver and brain of LEC rats. These lesions included 5-formyl-2'-deoxyuridine, 5-hydroxymethyl-2'-deoxyuridine, and the 5'R and 5'S diastereomers of 8,5'-cyclo-2'-deoxyguanosine and 8,5'-cyclo-2'-deoxyadenosine. Moreover, the levels of these DNA lesions in the liver and brain increased with age and correlated with age-dependent regulation of the expression of DNA repair genes in LEC rats. These results provide significant new knowledge for better understanding the implications of oxidative DNA lesions in transition metal-induced diseases, such as Wilson's disease, as well as in aging and aging-related pathological conditions.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | | | | | | | | | | |
Collapse
|
68
|
Jiang Y, Wang Y, Wang Y. In vitro replication and repair studies of tandem lesions containing neighboring thymidine glycol and 8-oxo-7,8-dihydro-2'-deoxyguanosine. Chem Res Toxicol 2010; 22:574-83. [PMID: 19193190 DOI: 10.1021/tx8003449] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species can induce the formation of tandem DNA lesions. We recently showed that the treatment of calf thymus DNA with Cu2+/H2O2/ascorbate could result in the efficient formation of a tandem lesion where a 5,6-dihydroxy-5,6-dihydrothymidine (or thymidine glycol) is situated on the 5' side of an 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). In the present study, we assessed how the 5'-Tg-(8-oxodG)-3' and 5'-(8-oxodG)-Tg-3' tandem lesions are replicated by purified DNA polymerases and how they are recognized by base excision repair enzymes. Our results revealed that the tandem lesions blocked primer extension mediated by the Klenow fragment and yeast polymerase eta more readily than when the Tg or 8-oxodG was present alone. The mutagenic properties of Tg or 8-oxodG differed while they were present alone or in tandem. Moreover, the human 8-oxoguanine-DNA glycosylase (hOGG1)-mediated cleavage of 8-oxodG was compromised considerably by the presence of a neighboring 5' Tg, whereas the presence of Tg as the adjacent 3' nucleoside enhanced 8-oxodG cleavage by hOGG1. The efficiency for the cleavage of Tg by endonuclease III was not affected by the presence of an adjoining 8-oxodG. These results supported the notion that the replication and repair of tandem single-nucleobase lesions depend on the types of lesions involved and their spatial arrangement.
Collapse
Affiliation(s)
- Yong Jiang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | |
Collapse
|
69
|
Yuan B, O’Connor TR, Wang Y. 6-Thioguanine and S⁶-methylthioguanine are mutagenic in human cells. ACS Chem Biol 2010; 5:1021-7. [PMID: 20806951 DOI: 10.1021/cb100214b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiopurines are effective immunosuppressants and anticancer agents. However, the long-term use of thiopurines was found to be associated with a significantly increased risk of various types of cancer. To date, the specific mechanism(s) underlying the carcinogenicity associated with thiopurine treatment remain(s) unclear. Herein, we constructed duplex pTGFP-Hha10 shuttle vectors carrying a 6-thioguanine ((S)G) or S⁶-methylthioguanine (S⁶mG) at a unique site and allowed the vectors to propagate in three different human cell lines. Analysis of the replication products revealed that although neither thionucleoside blocked considerably DNA replication in any of the human cell lines, both (S)G and S⁶mG were mutagenic, resulting in G→A mutation at frequencies of ~8% and ~39%, respectively. Consistent with what was found from our previous study in E. coli cells, our data demonstrated that the mutagenic properties of (S)G and S⁶mG provided significant evidence for mutation induction as a potential carcinogenic mechanism associated with chronic thiopurine intervention.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry, University of California, Riverside, California 92521
| | - Timothy R. O’Connor
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
70
|
Raychaudhury P, Basu AK. Replication Past the γ-Radiation-Induced Guanine-Thymine Cross-Link G[8,5-Me]T by Human and Yeast DNA Polymerase η. J Nucleic Acids 2010; 2010. [PMID: 20936176 PMCID: PMC2946590 DOI: 10.4061/2010/101495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/02/2010] [Indexed: 12/15/2022] Open
Abstract
γ-Radiation-induced intrastrand guanine-thymine cross-link, G[8,5-Me]T, hinders replication in vitro and is mutagenic in mammalian cells. Herein we report in vitro translesion synthesis of G[8,5-Me]T by human and yeast DNA polymerase η (hPol η and yPol η). dAMP misincorporation opposite the cross-linked G by yPol η was preferred over correct incorporation of dCMP, but further extension was 100-fold less efficient for G∗:A compared to G∗:C. For hPol η, both incorporation and extension were more efficient with the correct nucleotides. To evaluate translesion synthesis in the presence of all four dNTPs, we have developed a plasmid-based DNA sequencing assay, which showed that yPol η was more error-prone. Mutational frequencies of yPol η and hPol η were 36% and 14%, respectively. Targeted G → T was the dominant mutation by both DNA polymerases. But yPol η induced targeted G → T in 23% frequency relative to 4% by hPol η. For yPol η, targeted G → T and G → C constituted 83% of the mutations. By contrast, with hPol η, semi-targeted mutations (7.2%), that is, mutations at bases near the lesion, occurred at equal frequency as the targeted mutations (6.9%). The kind of mutations detected with hPol η showed significant similarities with the mutational spectrum of G[8,5-Me]T in human embryonic kidney cells.
Collapse
|
71
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 2010; 49:9-21. [PMID: 20363317 DOI: 10.1016/j.freeradbiomed.2010.03.025] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/16/2010] [Accepted: 03/26/2010] [Indexed: 12/17/2022]
Abstract
Search for the formation of oxidatively base damage in cellular DNA has been a matter of debate for more than 40 years due to the lack of accurate methods for the measurement of the lesions. HPLC associated with either tandem mass spectrometry (MS/MS) or electrochemical detector (ECD) together with optimized DNA extraction conditions constitutes a relevant analytical approach. This has allowed the accurate measurement of oxidatively generated single and clustered base damage in cellular DNA following exposure to acute oxidative stress conditions mediated by ionizing radiation, UVA light and one-electron oxidants. In this review the formation of 11 single base lesions that is accounted for by reactions of singlet oxygen, hydroxyl radical or high intensity UVC laser pulses with nucleobases is discussed on the basis of the mechanisms available from model studies. In addition several clustered lesions were found to be generated in cellular DNA as the result of one initial radical hit on either a vicinal base or the 2-deoxyribose. Information on nucleobase modifications that are formed upon addition of reactive aldehydes arising from the breakdown of lipid hydroperoxides is also provided.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR-E (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
72
|
Cadet J, Poulsen H. Measurement of oxidatively generated base damage in cellular DNA and urine. Free Radic Biol Med 2010; 48:1457-9. [PMID: 20227488 DOI: 10.1016/j.freeradbiomed.2010.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Jean Cadet
- Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France.
| | | |
Collapse
|
73
|
Lin G, Zhang J, Zeng Y, Luo H, Wang Y. Conformation-dependent formation of the G[8-5]U intrastrand cross-link in 5-bromouracil-containing G-quadruplex DNA induced by UVA irradiation. Biochemistry 2010; 49:2346-50. [PMID: 20166754 DOI: 10.1021/bi901861w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-quadruplex motifs are known to be present in telomeres of human and other organisms. Recent bioinformatic studies also revealed the widespread existence of these motifs in promoter regions of human genes. Treatment of cultured cells with 5-bromo-2'-deoxyuridine ((Br)dU) is known to result in the substitution of DNA thymidine with (Br)dU; such replacement has been shown to sensitize cells to killing induced by UV light. Our previous studies revealed that the exposure of (Br)dU-carrying duplex DNA or (Br)dU-treated MCF-7 cells to UVB light could lead to the facile formation of intrastrand cross-link products initiated from (Br)dU. Here we found that the exposure of (Br)dU-bearing G-quadruplex DNA to UVA light could also give rise to the efficient formation of the G[8-5]U intrastrand cross-link, where the C8 of guanine in the external G-tetrad is covalently linked with the C5 of its adjacent 3' uracil in the loop region. In addition, the yield for the cross-link product is dependent on the conformation of the G-quadruplex. Together, the formation of intrastrand cross-link in G-quadruplex motifs may account for the photocytotoxic effect induced by (Br)dU incorporation, and the (Br)dU-mediated photo-cross-linking may constitute a useful method for monitoring the different conformations of G-quadruplex folding.
Collapse
Affiliation(s)
- Guangxin Lin
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | | | | | |
Collapse
|
74
|
Yuan B, Jiang Y, Wang Y, Wang Y. Efficient formation of the tandem thymine glycol/8-oxo-7,8-dihydroguanine lesion in isolated DNA and the mutagenic and cytotoxic properties of the tandem lesions in Escherichia coli cells. Chem Res Toxicol 2010; 23:11-9. [PMID: 20014805 DOI: 10.1021/tx9004264] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species can induce the formation of not only single-nucleobase lesions, which have been extensively studied, but also tandem lesions. Herein, we report a high frequency of formation of a type of tandem lesion, where two commonly observed oxidatively induced single-nucleobase lesions, that is, thymidine glycol (Tg) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), are vicinal to each other in calf thymus DNA upon exposure to Cu(II)/ascorbate along with H(2)O(2) or gamma-rays. We further explored how the tandem lesions perturb the efficiency and fidelity of DNA replication by assessing the replication products formed from the propagation, in Escherichia coli cells, of the single-stranded pYMV1 shuttle vectors containing two tandem lesions [5'-(8-oxodG)-Tg-3' and 5'-Tg-(8-oxodG)-3'] or an isolated Tg or 8-oxodG. The bypass efficiencies for the two tandem lesions were approximately one-half of those for the two isolated single-nucleobase lesions. The presence of an adjacent Tg could lead to significant increases in G-->T transversion at the 8-oxodG site as compared to that of a single 8-oxodG lesion; the frequencies of G-->T mutation were approximately 18, 32, and 28% for 8-oxodG that is isolated, in 5'-(8-oxodG)-Tg-3' and in 5'-Tg-(8-oxodG)-3', respectively. Moreover, both pol IV and pol V are involved, in part, in bypassing the Tg, either present alone or as part of the tandem lesions, in E. coli cells. Together, our results support that complex lesions could exert greater cytotoxic and mutagenic effects than when the composing individual lesions are present alone.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry and, Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, USA
| | | | | | | |
Collapse
|
75
|
Belmadoui N, Boussicault F, Guerra M, Ravanat JL, Chatgilialoglu C, Cadet J. Radiation-induced formation of purine 5′,8-cyclonucleosides in isolated and cellular DNA: high stereospecificity and modulating effect of oxygen. Org Biomol Chem 2010; 8:3211-9. [DOI: 10.1039/c004531d] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
76
|
Huang H, Imoto S, Greenberg MM. The mutagenicity of thymidine glycol in Escherichia coli is increased when it is part of a tandem lesion. Biochemistry 2009; 48:7833-41. [PMID: 19618962 DOI: 10.1021/bi900927d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tandem lesions are comprised of two contiguously damaged nucleotides. Tandem lesions make up the major family of reaction products generated from a pyrimidine nucleobase radical, which are formed in large amounts by ionizing radiation. One of these tandem lesions contains a thymidine glycol lesion flanked on its 5'-side by 2-deoxyribonolactone (LTg). The replication of this tandem lesion was investigated in Escherichia coli using single-stranded genomes. LTg is a much more potent replication block than thymidine glycol and is bypassed only under SOS-induced conditions. The adjacent thymidine glycol does not significantly affect nucleotide incorporation opposite 2-deoxyribonolactone in wild-type cells. In contrast, the misinsertion frequency opposite thymidine glycol, which is negligible in the absence of 2-deoxyribonolactone, increases to 10% in wild-type cells when LTg is flanked by a 3'-dG. Experiments in which the flanking nucleotides are varied and in cells lacking one of the SOS-induced bypass polymerases indicate that the mutations are due to a mechanism in which the primer misaligns prior to bypassing the lesion, which allows for an additional nucleotide to be incorporated across from the 3'-flanking nucleotide. Subsequent realignment and extension results in the observed mutations. DNA polymerases II and IV are responsible for misalignment induced mutations and compete with DNA polymerase V which reads through the tandem lesion. These experiments reveal that incorporation of the thymidine glycol into a tandem lesion indirectly induces increases in mutations by blocking replication, which enables the misalignment-realignment mechanism to compete with direct bypass by DNA polymerase V.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
77
|
Dextraze ME, Cecchini S, Bergeron F, Girouard S, Turcotte K, Wagner JR, Hunting DJ. Reaching for the other side: generating sequence-dependent interstrand cross-links with 5-bromodeoxyuridine and gamma-rays. Biochemistry 2009; 48:2005-11. [PMID: 19216505 DOI: 10.1021/bi801684t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interstrand cross-links impede critical cellular processes such as transcription and replication and are thus considered to be one of the most toxic types of DNA damage. Although several studies now point to the existence of gamma-radiation-induced cross-links in cellular DNA, little is known about the characteristics required for their creation. Recently, we reported the formation of interstrand cross-links that were specific for mismatched nucleotides within 5-bromo-2'-deoxyuridine-substituted DNA. Given the structural specificity for interstrand cross-link formation, it is likely that open or mismatched regions of DNA in cells may be particularly favorable for cross-link production. Herein, we investigated the effect of the local DNA sequence on the formation of interstrand cross-links, using 5-bromo-2'-deoxyuridine to generate radicals in a mismatched region of DNA. We investigated a total of 12 variations of bases in the mismatched region. The oligonucleotides were irradiated with gamma-rays, and interstrand cross-link formation was analyzed by denaturing gel electrophoresis. We found that the efficiency of cross-link formation was highly dependent on the nature of mismatched bases and, on the basis of electrophoretic mobility, observed several distinctive cross-link structures with specific DNA sequences. This study provides new insights into the reactivity of mismatched DNA and the mechanisms leading to interstrand cross-link formation. The potential application of 5-bromo-2'-deoxyuridine-induced interstrand cross-links to the field of DNA repair is discussed.
Collapse
Affiliation(s)
- Marie-Eve Dextraze
- Center for Research in Radiotherapy (CR2), Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
78
|
Cao H, Wang Y. Fragmentation of isomeric intrastrand crosslink lesions of DNA in an ion-trap mass spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:611-617. [PMID: 19103496 PMCID: PMC2691995 DOI: 10.1016/j.jasms.2008.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 05/27/2023]
Abstract
The collision-induced dissociation pathways of isomeric cytosine-guanine and cytosine-adenine intrastrand crosslink-containing dinucleoside monophosphates were investigated with the stable isotope-labeled compounds to gain insights into the effects of chemical structure on the fragmentation pathways of these DNA modifications. A Dimroth-like rearrangement, which was reported for protonated 2'-deoxycytidine and involved the switching of the exocyclic N4 with the ring N3 nitrogen atom, was also observed for the cytosine component in the protonated ions of C[5-8]G, C[5-2]A, and C[5-8]A, but not C[5-N(2)]G or C[5-N(6)]A. In these two sets of crosslinks, the C5 of cytosine is covalently bonded with its neighboring purine base via a carbon atom on the aromatic ring and an exocyclic nitrogen atom, respectively. On the contrary, the rearrangement could occur for the deprotonated ions of C[5-N(2)]G, C[5-N(6)]A, and unmodified cytosine, but not C[5-8]G, C[5-2]A, or C[5-8]A. In addition, ammonia could be lost more readily from C[5-N(2)]G and C[5-N(6)]A than from C[5-8]G, C[5-2]A, and C[5-8]A. The results from the present study afforded important guidance for the application of mass spectrometry for the structure elucidation of other intrastrand/interstrand crosslink lesions.
Collapse
Affiliation(s)
| | - Yinsheng Wang
- To whom correspondence should be addressed: Telephone: (951) 827-2700. Fax: (951) 827-4713. E-mail:
| |
Collapse
|
79
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res 2008; 41:1075-83. [PMID: 18666785 DOI: 10.1021/ar700245e] [Citation(s) in RCA: 414] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear DNA and other molecules in living systems are continuously exposed to endogenously generated oxygen species. Such species range from the unreactive superoxide radical (O2*-)the precursor of hydrogen peroxide (H2O2)to the highly reactive hydroxyl radical (*OH). Exogenous chemical and physical agents, such as ionizing radiation and the UVA component of solar light, can also oxidatively damage both the bases and the 2-deoxyribose moieties of cellular DNA. Over the last two decades, researchers have made major progress in understanding the oxidation degradation pathways of DNA that are most likely to occur from either oxidative metabolism or exposure to various exogenous agents. In the first part of this Account, we describe the mechanistic features of one-electron oxidation reactions of the guanine base in isolated DNA and related model compounds. These reactions illustrate the complexity of the various degradation pathways involved. Then, we briefly survey the analytical methods that can detect low amounts of oxidized bases and nucleosides in cells as they are formed. Recent data on the formation of oxidized guanine residues in cellular DNA following exposure to UVA light, ionizing radiation, and high-intensity UV pulses are also provided. We discuss these chemical reactions in the context of *OH radical, singlet oxygen, and two-quantum photoionization processes.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
- Department of Nuclear Medicine and Health Science, University of Sherbrooke, Quebec J1H 5N4, Canada
| | - Thierry Douki
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| | - Jean-Luc Ravanat
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| |
Collapse
|
80
|
Colis LC, Raychaudhury P, Basu AK. Mutational specificity of gamma-radiation-induced guanine-thymine and thymine-guanine intrastrand cross-links in mammalian cells and translesion synthesis past the guanine-thymine lesion by human DNA polymerase eta. Biochemistry 2008; 47:8070-9. [PMID: 18616294 PMCID: PMC2646719 DOI: 10.1021/bi800529f] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Comparative mutagenesis of γ- or X-ray-induced tandem DNA lesions G[8,5-Me]T and T[5-Me,8]G intrastrand cross-links was investigated in simian (COS-7) and human embryonic (293T) kidney cells. For G[8,5-Me]T in 293T cells, 5.8% of progeny contained targeted base substitutions, whereas 10.0% showed semitargeted single-base substitutions. Of the targeted mutations, the G → T mutation occurred with the highest frequency. The semitargeted mutations were detected up to two bases 5′ and three bases 3′ to the cross-link. The most prevalent semitargeted mutation was a C → T transition immediately 5′ to the G[8,5-Me]T cross-link. Frameshifts (4.6%) (mostly small deletions) and multiple-base substitutions (2.7%) also were detected. For the T[5-Me,8]G cross-link, a similar pattern of mutations was noted, but the mutational frequency was significantly higher than that of G[8,5-Me]T. Both targeted and semitargeted mutations occurred with a frequency of ∼16%, and both included a dominant G → T transversion. As in 293T cells, more than twice as many targeted mutations in COS cells occurred in T[5-Me,8]G (11.4%) as in G[8,5-Me]T (4.7%). Also, the level of semitargeted single-base substitutions 5′ to the lesion was increased and 3′ to the lesion decreased in T[5-Me,8]G relative to G[8,5-Me]T in COS cells. It appeared that the majority of the base substitutions at or near the cross-links resulted from incorporation of dAMP opposite the template base, in agreement with the so-called “A-rule”. To determine if human polymerase η (hpol η) might be involved in the mutagenic bypass, an in vitro bypass study of G[8,5-Me]T in the same sequence was carried out, which showed that hpol η can bypass the cross-link incorporating the correct dNMP opposite each cross-linked base. For G[8,5-Me]T, nucleotide incorporation by hpol η was significantly different from that by yeast pol η in that the latter was more error-prone opposite the cross-linked Gua. The incorporation of the correct nucleotide, dAMP, by hpol η opposite cross-linked T was 3−5-fold more efficient than that of a wrong nucleotide, whereas incorporation of dCMP opposite the cross-linked G was 10-fold more efficient than that with dTMP. Therefore, the nucleotide incorporation pattern by hpol η was not consistent with the observed cellular mutations. Nevertheless, at and near the lesion, hpol η was more error-prone compared to a control template. The in vitro data suggest that translesion synthesis by another Y-family DNA polymerase and/or flawed participation of an accessory protein is a more likely scenario in the mutagenesis of these lesions in mammalian cells. However, hpol η may play a role in correct bypass of the cross-links.
Collapse
Affiliation(s)
- Laureen C Colis
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
81
|
Yuan B, Wang Y. Mutagenic and cytotoxic properties of 6-thioguanine, S6-methylthioguanine, and guanine-S6-sulfonic acid. J Biol Chem 2008; 283:23665-70. [PMID: 18591241 DOI: 10.1074/jbc.m804047200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thiopurine drugs, including 6-thioguanine ((S)G), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of (S)G nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. (S)G in DNA can be methylated by S-adenosyl-l-methionine to give S(6)-methylthioguanine (S(6)mG) and oxidized by UVA light to render guanine-S(6)-sulfonic acid ((SO3H)G). Here, we constructed single-stranded M13 shuttle vectors carrying a (S)G, S(6)mG, or (SO3H)G at a unique site and allowed the vectors to propagate in wild-type and bypass polymerase-deficient Escherichia coli cells. Analysis of the replication products by using the competitive replication and adduct bypass and a slightly modified restriction enzyme digestion and post-labeling assays revealed that, although none of the three thionucleosides considerably blocked DNA replication in all transfected E. coli cells, both S(6)mG and (SO3H)G were highly mutagenic, which resulted in G-->A mutation at frequencies of 94 and 77%, respectively, in wild-type E. coli cells. Deficiency in bypass polymerases does not result in alteration of mutation frequencies of these two lesions. In contrast to what was found from previous steady-state kinetic analysis, our data demonstrated that 6-thioguanine is mutagenic, with G-->A transition occurring at a frequency of approximately 10%. The mutagenic properties of 6-thioguanine and its derivatives revealed in the present study offered important knowledge about the biological implications of these thionucleosides.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | |
Collapse
|
82
|
Efficient and accurate bypass of N2-(1-carboxyethyl)-2'-deoxyguanosine by DinB DNA polymerase in vitro and in vivo. Proc Natl Acad Sci U S A 2008; 105:8679-84. [PMID: 18562283 DOI: 10.1073/pnas.0711546105] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DinB, a Y-family DNA polymerase, is conserved among all domains of life; however, its endogenous substrates have not been identified. DinB is known to synthesize accurately across a number of N(2)-dG lesions. Methylglyoxal (MG) is a common byproduct of the ubiquitous glycolysis pathway and induces the formation of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) as the major stable DNA adduct. Here, we found that N(2)-CEdG could be detected at a frequency of one lesion per 10(7) nucleosides in WM-266-4 human melanoma cells, and treatment of these cells with MG or glucose led to a dose-responsive increase in N(2)-CEdG formation. We further constructed single-stranded M13 shuttle vectors harboring individual diastereomers of N(2)-CEdG at a specific site and assessed the cytotoxic and mutagenic properties of the lesion in wild-type and bypass polymerase-deficient Escherichia coli cells. Our results revealed that N(2)-CEdG is weakly mutagenic, and DinB (i.e., polymerase IV) is the major DNA polymerase responsible for bypassing the lesion in vivo. Moreover, steady-state kinetic measurements showed that nucleotide insertion, catalyzed by E. coli pol IV or its human counterpart (i.e., polymerase kappa), opposite the N(2)-CEdG is both accurate and efficient. Taken together, our data support that N(2)-CEdG, a minor-groove DNA adduct arising from MG, is an important endogenous substrate for DinB DNA polymerase.
Collapse
|
83
|
Cao H, Hearst JE, Corash L, Wang Y. LC-MS/MS for the detection of DNA interstrand cross-links formed by 8-methoxypsoralen and UVA irradiation in human cells. Anal Chem 2008; 80:2932-8. [PMID: 18324836 DOI: 10.1021/ac7023969] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA interstrand cross-links (ICLs) are induced by many carcinogens and anitcancer drugs. ICL is a covalent linkage of both strands of DNA, preventing DNA strand separation during transcription and replication; thus, it is extremely cytotoxic in vivo. Psoralen and its derivatives are widely applied for the clinical treatment of several skin diseases and cutaneous T cell lymphoma, and they are also commonly used as model compounds for the study of ICL. Upon UVA photoactivation, 8-methoxypsoralen alkylates both strands of DNA at the 5,6-double bond of thymidines at the 5'-TpA-3' site, generating monoadducts and ICLs. Here we developed a method utilizing HPLC-tandem mass spectrometry, combined with nuclease P1 digestion, to assess the formation of ICL in DNA of human skin melanoma cells exposed to 500 ng/mL 8-methoxypsoralen and UVA irradiation. We were able to quantify ICL, in the form of tetranucleotide, at the level of 1 lesion/10(6) unmodified nucleobases using a low-microgram quantity of DNA. In addition, our results revealed that the formation of ICL increased linearly with the UVA dose. The yield of ICL increased by 15-fold from 4.5 to 76 lesions/10(6) nucleotides when the UV dose was increased from 0.5 to 5 J/cm2. This is the first report of an LC-MS assay for the quantification of DNA interstrand cross-links. The specificity and accuracy of this high-throughput approach are advantageous over other methods for the detection of ICLs formed in vitro and in vivo.
Collapse
Affiliation(s)
- Huachuan Cao
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | | | |
Collapse
|
84
|
Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008; 21:232-52. [PMID: 18072751 PMCID: PMC2821157 DOI: 10.1021/tx700292a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions.
Collapse
Affiliation(s)
- James C. Delaney
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - John M. Essigmann
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|