51
|
Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J Biosci 2020. [DOI: 10.1007/s12038-020-00099-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
52
|
Voorneveld J, Florea BI, Bakkum T, Mendowicz RJ, van der Veer MS, Gagestein B, van Kasteren SI, van der Stelt M, Overkleeft HS, Filippov DV. Olaparib-Based Photoaffinity Probes for PARP-1 Detection in Living Cells. Chembiochem 2020; 21:2431-2434. [PMID: 32282108 PMCID: PMC7496120 DOI: 10.1002/cbic.202000042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/11/2020] [Indexed: 12/31/2022]
Abstract
The poly-ADP-ribose polymerase (PARP) is a protein from the family of ADP-ribosyltransferases that catalyzes polyadenosine diphosphate ribose (ADPR) formation in order to attract the DNA repair machinery to sites of DNA damage. The inhibition of PARP activity by olaparib can cause cell death, which is of clinical relevance in some tumor types. This demonstrates that quantification of PARP activity in the context of living cells is of great importance. In this work, we present the design, synthesis and biological evaluation of photo-activatable affinity probes inspired by the olaparib molecule that are equipped with a diazirine for covalent attachment upon activation by UV light and a ligation handle for the addition of a reporter group of choice. SDS-PAGE, western blotting and label-free LC-MS/MS quantification analysis show that the probes target the PARP-1 protein and are selectively outcompeted by olaparib; this suggests that they bind in the same enzymatic pocket. Proteomics data are available via ProteomeXchange with identifier PXD018661.
Collapse
Affiliation(s)
- Jim Voorneveld
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Bogdan I. Florea
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Thomas Bakkum
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Rafal J. Mendowicz
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Miriam S. van der Veer
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Berend Gagestein
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Sander I. van Kasteren
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Mario van der Stelt
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Dmitri V. Filippov
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
53
|
Suskiewicz MJ, Palazzo L, Hughes R, Ahel I. Progress and outlook in studying the substrate specificities of PARPs and related enzymes. FEBS J 2020; 288:2131-2142. [PMID: 32785980 DOI: 10.1111/febs.15518] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Despite decades of research on ADP-ribosyltransferases (ARTs) from the poly(ADP-ribose) polymerase (PARP) family, one key aspect of these enzymes - their substrate specificity - has remained unclear. Here, we briefly discuss the history of this area and, more extensively, the recent breakthroughs, including the identification of protein serine residues as a major substrate of PARP1 and PARP2 in human cells and of cysteine and tyrosine as potential targets of specific PARPs. On the molecular level, the modification of serine residues requires a composite active site formed by PARP1 or PARP2 together with a specificity-determining factor, HPF1; this represents a new paradigm not only for PARPs but generally for post-translational modification (PTM) catalysis. Additionally, we discuss the identification of DNA as a substrate of PARP1, PARP2 and PARP3, and some bacterial ARTs and the discovery of noncanonical RNA capping by several PARP family members. Together, these recent findings shed new light on PARP-mediated catalysis and caution to 'expect the unexpected' when it comes to further potential substrates.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
| | - Rebecca Hughes
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
54
|
Aleksandrov R, Hristova R, Stoynov S, Gospodinov A. The Chromatin Response to Double-Strand DNA Breaks and Their Repair. Cells 2020; 9:cells9081853. [PMID: 32784607 PMCID: PMC7464352 DOI: 10.3390/cells9081853] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular DNA is constantly being damaged by numerous internal and external mutagenic factors. Probably the most severe type of insults DNA could suffer are the double-strand DNA breaks (DSBs). They sever both DNA strands and compromise genomic stability, causing deleterious chromosomal aberrations that are implicated in numerous maladies, including cancer. Not surprisingly, cells have evolved several DSB repair pathways encompassing hundreds of different DNA repair proteins to cope with this challenge. In eukaryotic cells, DSB repair is fulfilled in the immensely complex environment of the chromatin. The chromatin is not just a passive background that accommodates the multitude of DNA repair proteins, but it is a highly dynamic and active participant in the repair process. Chromatin alterations, such as changing patterns of histone modifications shaped by numerous histone-modifying enzymes and chromatin remodeling, are pivotal for proficient DSB repair. Dynamic chromatin changes ensure accessibility to the damaged region, recruit DNA repair proteins, and regulate their association and activity, contributing to DSB repair pathway choice and coordination. Given the paramount importance of DSB repair in tumorigenesis and cancer progression, DSB repair has turned into an attractive target for the development of novel anticancer therapies, some of which have already entered the clinic.
Collapse
|
55
|
Lee EK, Matulonis UA. PARP Inhibitor Resistance Mechanisms and Implications for Post-Progression Combination Therapies. Cancers (Basel) 2020; 12:E2054. [PMID: 32722408 PMCID: PMC7465003 DOI: 10.3390/cancers12082054] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The use of PARP inhibitors (PARPi) is growing widely as FDA approvals have shifted its use from the recurrence setting to the frontline setting. In parallel, the population developing PARPi resistance is increasing. Here we review the role of PARP, DNA damage repair, and synthetic lethality. We discuss mechanisms of resistance to PARP inhibition and how this informs on novel combinations to re-sensitize cancer cells to PARPi.
Collapse
Affiliation(s)
- Elizabeth K. Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA;
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA;
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
| |
Collapse
|
56
|
Lee EK, Konstantinopoulos PA. PARP inhibition and immune modulation: scientific rationale and perspectives for the treatment of gynecologic cancers. Ther Adv Med Oncol 2020; 12:1758835920944116. [PMID: 32782491 PMCID: PMC7383615 DOI: 10.1177/1758835920944116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Poly[adenosine diphosphate (ADP) ribose]polymerase (PARP) has multifaceted roles in the maintenance of genomic integrity, deoxyribonucleic acid (DNA) repair and replication, and the maintenance of immune-system homeostasis. PARP inhibitors are an attractive oncologic therapy, causing direct cancer cell cytotoxicity by propagating DNA damage and indirectly, by various mechanisms of immunostimulation, including activation of the cGAS/STING pathway, paracrine stimulation of dendritic cells, increased T-cell infiltration, and upregulation of death-ligand receptors to increase susceptibility to natural-killer-cell killing. However, these immunostimulatory effects are counterbalanced by PARPi-mediated upregulation of programmed cell-death-ligand 1 (PD-L1), which leads to immunosuppression. Combining PARP inhibition with immune-checkpoint blockade seeks to exploit the immune stimulatory effects of PARP inhibition while negating the immunosuppressive effects of PD-L1 upregulation.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115, USA
| | | |
Collapse
|
57
|
Yang G, Chen Y, Wu J, Chen SH, Liu X, Singh AK, Yu X. Poly(ADP-ribosyl)ation mediates early phase histone eviction at DNA lesions. Nucleic Acids Res 2020; 48:3001-3013. [PMID: 31965183 PMCID: PMC7102957 DOI: 10.1093/nar/gkaa022] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 11/14/2022] Open
Abstract
Nucleosomal histones are barriers to the DNA repair process particularly at DNA double-strand breaks (DSBs). However, the molecular mechanism by which these histone barriers are removed from the sites of DNA damage remains elusive. Here, we have generated a single specific inducible DSB in the cells and systematically examined the histone removal process at the DNA lesion. We found that histone removal occurred immediately following DNA damage and could extend up to a range of few kilobases from the lesion. To examine the molecular mechanism underlying DNA damage-induced histone removal, we screened histone modifications and found that histone ADP-ribosylation was associated with histone removal at DNA lesions. PARP inhibitor treatment suppressed the immediate histone eviction at DNA lesions. Moreover, we examined histone chaperones and found that the FACT complex recognized ADP-ribosylated histones and mediated the removal of histones in response to DNA damage. Taken together, our results reveal a pathway that regulates early histone barrier removal at DNA lesions. It may also explain the mechanism by which PARP inhibitor regulates early DNA damage repair.
Collapse
Affiliation(s)
- Guang Yang
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yibin Chen
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jiaxue Wu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Shih-Hsun Chen
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiuhua Liu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Anup Kumar Singh
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
58
|
Wang C, Xiao J, Nowak K, Gunasekera K, Alippe Y, Speckman S, Yang T, Kress D, Abu-Amer Y, Hottiger MO, Mbalaviele G. PARP1 Hinders Histone H2B Occupancy at the NFATc1 Promoter to Restrain Osteoclast Differentiation. J Bone Miner Res 2020; 35:776-788. [PMID: 31793068 PMCID: PMC7465553 DOI: 10.1002/jbmr.3927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
Abstract
Induction of nuclear factor of activated T cell cytoplasmic 1 (NFATc1) by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) is essential for macrophage differentiation into osteoclasts (OCs), but the underlying mechanisms remain unclear. The ability of poly(ADP-ribose) polymerase 1 (PARP1) to poly-ADP-ribosylate NFATc1 in T cells prompted us to investigate the PARP1 and NFATc1 interaction during osteoclastogenesis. However, extensive studies failed to directly link PARP1 to NFATc1. A combination of transcriptomics and proteomics studies was then used to identify PARP1 targets under these conditions. These unbiased approaches in conjunction with site-directed mutagenesis studies revealed that PARP1 inhibited NFATc1 expression and OC formation by ADP-ribosylating histone H2B at serine 7 and decreasing the occupancy of this histone variant at the NFATc1 promoter. The anti-osteoclastogenic function of PARP1 was confirmed in vivo in several mouse models of PARP1 loss-of-function or gain-of-function, including a novel model in which PARP1 was conditionally ablated in myeloid cells. Thus, PARP1 ADP-ribosylates H2B to negatively regulate NFATc1 expression and OC differentiation. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathrin Nowak
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kapila Gunasekera
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Sheree Speckman
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Tong Yang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA.,Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dustin Kress
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Shriners Hospital for Children, St. Louis, MO, USA
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
59
|
|
60
|
Abstract
Exposure to arsenic in contaminated drinking water is an emerging public health problem that impacts more than 200 million people worldwide. Accumulating lines of evidence from epidemiological studies revealed that chronic exposure to arsenic can result in various human diseases including cancer, type 2 diabetes, and neurodegenerative disorders. Arsenic is also classified as a Group I human carcinogen. In this review, we survey extensively different modes of action for arsenic-induced carcinogenesis, with focus being placed on arsenic-mediated impairment of DNA repair pathways. Inorganic arsenic can be bioactivated by methylation, and the ensuing products are highly genotoxic. Bioactivation of arsenicals also elicits the production of reactive oxygen and nitrogen species (ROS and RNS), which can directly damage DNA and modify cysteine residues in proteins. Results from recent studies suggest zinc finger proteins as crucial molecular targets for direct binding to As3+ or for modifications by arsenic-induced ROS/RNS, which may constitute a common mechanism underlying arsenic-induced perturbations of DNA repair.
Collapse
|
61
|
Mohammed SA, Ambrosini S, Lüscher T, Paneni F, Costantino S. Epigenetic Control of Mitochondrial Function in the Vasculature. Front Cardiovasc Med 2020; 7:28. [PMID: 32195271 PMCID: PMC7064473 DOI: 10.3389/fcvm.2020.00028] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The molecular signatures of epigenetic regulation and chromatin architecture are emerging as pivotal regulators of mitochondrial function. Recent studies unveiled a complex intersection among environmental factors, epigenetic signals, and mitochondrial metabolism, ultimately leading to alterations of vascular phenotype and increased cardiovascular risk. Changing environmental conditions over the lifetime induce covalent and post-translational chemical modification of the chromatin template which sensitize the genome to establish new transcriptional programs and, hence, diverse functional states. On the other hand, metabolic alterations occurring in mitochondria affect the availability of substrates for chromatin-modifying enzymes, thus leading to maladaptive epigenetic signatures altering chromatin accessibility and gene transcription. Indeed, several components of the epigenetic machinery require intermediates of cellular metabolism (ATP, AcCoA, NADH, α-ketoglutarate) for enzymatic function. In the present review, we describe the emerging role of epigenetic modifications as fine tuners of gene transcription in mitochondrial dysfunction and vascular disease. Specifically, the following aspects are described in detail: (i) mitochondria and vascular function, (ii) mitochondrial ROS, (iii) epigenetic regulation of mitochondrial function; (iv) the role of mitochondrial metabolites as key effectors for chromatin-modifying enzymes; (v) epigenetic therapies. Understanding epigenetic routes may pave the way for new approaches to develop personalized therapies to prevent mitochondrial insufficiency and its complications.
Collapse
Affiliation(s)
- Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Thomas Lüscher
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland.,Research, Education and Development, Royal Brompton and Harefield Hospital Trust and Imperial College, London, United Kingdom
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
62
|
Abstract
Poly(ADP-ribosyl)ation (PARylation) mediated by poly ADP-ribose polymerases (PARPs) plays a key role in DNA damage repair. Suppression of PARylation by PARP inhibitors impairs DNA damage repair and induces apoptosis of tumor cells with repair defects. Thus, PARP inhibitors have been approved by the US FDA for various types of cancer treatment. However, recent studies suggest that dePARylation also plays a key role in DNA damage repair. Instead of antagonizing PARylation, dePARylation acts as a downstream step of PARylation in DNA damage repair. Moreover, several types of dePARylation inhibitors have been developed and examined in the preclinical studies for cancer treatment. In this review, we will discuss the recent progress on the role of dePARylation in DNA damage repair and cancer suppression. We expect that targeting dePARylation could be a promising approach for cancer chemotherapy in the future.
Collapse
Affiliation(s)
- Muzaffer Ahmad Kassab
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Lily L. Yu
- Westridge School, 324 Madeline Dr., Pasadena, CA 91105 USA
| | - Xiaochun Yu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| |
Collapse
|
63
|
Páhi ZG, Borsos BN, Pantazi V, Ujfaludi Z, Pankotai T. PARylation During Transcription: Insights into the Fine-Tuning Mechanism and Regulation. Cancers (Basel) 2020; 12:cancers12010183. [PMID: 31940791 PMCID: PMC7017041 DOI: 10.3390/cancers12010183] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 01/09/2020] [Indexed: 01/31/2023] Open
Abstract
Transcription is a multistep, tightly regulated process. During transcription initiation, promoter recognition and pre-initiation complex (PIC) formation take place, in which dynamic recruitment or exchange of transcription activators occur. The precise coordination of the recruitment and removal of transcription factors, as well as chromatin structural changes, are mediated by post-translational modifications (PTMs). Poly(ADP-ribose) polymerases (PARPs) are key players in this process, since they can modulate DNA-binding activities of specific transcription factors through poly-ADP-ribosylation (PARylation). PARylation can regulate the transcription at three different levels: (1) by directly affecting the recruitment of specific transcription factors, (2) by triggering chromatin structural changes during initiation and as a response to cellular stresses, or (3) by post-transcriptionally modulating the stability and degradation of specific mRNAs. In this review, we principally focus on these steps and summarise the recent findings, demonstrating the mechanisms through which PARylation plays a potential regulatory role during transcription and DNA repair.
Collapse
|
64
|
Impact of PARP1, PARP2 & PARP3 on the Base Excision Repair of Nucleosomal DNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:47-57. [PMID: 32383115 DOI: 10.1007/978-3-030-41283-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA is constantly attacked by different damaging agents; therefore, it requires frequent repair. On the one hand, the base excision repair (BER) system is responsible for the repair of the most frequent DNA lesions. On the other hand, the formation of poly(ADP-ribose) is one of the main DNA damage response reactions that is catalysed by members of the PARP family. PARP1, which belongs to the PARP family and performs approximately 90% of PAR synthesis in cells, could be considered a main regulator of the BER process. Most of the experimental data concerning BER investigation have been obtained using naked DNA. However, in the context of the eukaryotic cell, DNA is compacted in the nucleus, and the lowest compaction level is represented by the nucleosome. Thus, the organization of DNA into the nucleosome impacts the DNA-protein interactions that are involved in BER processes. Poly(ADP-ribosyl)ation (PARylation) is thought to regulate the initiation of the BER process at the chromatin level. In this review, we focus on the mechanisms involved in BER in the nucleosomal context and the potential effect of PARylation, which is catalysed by DNA-dependent PARP1, PARP2 and PARP3 proteins, on this process.
Collapse
|
65
|
Sutcu HH, Matta E, Ishchenko AA. Role of PARP-catalyzed ADP-ribosylation in the Crosstalk Between DNA Strand Breaks and Epigenetic Regulation. J Mol Biol 2019:S0022-2836(19)30719-3. [PMID: 31866292 DOI: 10.1016/j.jmb.2019.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Covalent linkage of ADP-ribose units to proteins catalyzed by poly(ADP-ribose) polymerases (PARPs) plays important signaling functions in a plethora of cellular processes including DNA damage response, chromatin organization, and gene transcription. Poly- and mono-ADP-ribosylation of target macromolecules are often responsible both for the initiation and for coordination of these processes in mammalian cells. Currently, the number of cellular targets for ADP-ribosylation is rapidly expanding, and the molecular mechanisms underlying the broad substrate specificity of PARPs present enormous interest. In this review, the roles of PARP-mediated modifications of protein and nucleic acids, the readers of ADP-ribosylated structures, and the origin and function of programmed DNA strand breaks in PARP activation, transcription regulation, and DNA demethylation are discussed.
Collapse
Affiliation(s)
- Haser H Sutcu
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Elie Matta
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.
| |
Collapse
|
66
|
Lo Monte M, Manelfi C, Gemei M, Corda D, Beccari AR. ADPredict: ADP-ribosylation site prediction based on physicochemical and structural descriptors. Bioinformatics 2019; 34:2566-2574. [PMID: 29554239 PMCID: PMC6061869 DOI: 10.1093/bioinformatics/bty159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/14/2018] [Indexed: 01/27/2023] Open
Abstract
Motivation ADP-ribosylation is a post-translational modification (PTM) implicated in several crucial cellular processes, ranging from regulation of DNA repair and chromatin structure to cell metabolism and stress responses. To date, a complete understanding of ADP-ribosylation targets and their modification sites in different tissues and disease states is still lacking. Identification of ADP-ribosylation sites is required to discern the molecular mechanisms regulated by this modification. This motivated us to develop a computational tool for the prediction of ADP-ribosylated sites. Results Here, we present ADPredict, the first dedicated computational tool for the prediction of ADP-ribosylated aspartic and glutamic acids. This predictive algorithm is based on (i) physicochemical properties, (ii) in-house designed secondary structure-related descriptors and (iii) three-dimensional features of a set of human ADP-ribosylated proteins that have been reported in the literature. ADPredict was developed using principal component analysis and machine learning techniques; its performance was evaluated both internally via intensive bootstrapping and in predicting two external experimental datasets. It outperformed the only other available ADP-ribosylation prediction tool, ModPred. Moreover, a novel secondary structure descriptor, HM-ratio, was introduced and successfully contributed to the model development, thus representing a promising tool for bioinformatics studies, such as PTM prediction. Availability and implementation ADPredict is freely available at www.ADPredict.net. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matteo Lo Monte
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | - Marica Gemei
- Dompé Farmaceutici SpA, L'Aquila.,Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Andrea Rosario Beccari
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Dompé Farmaceutici SpA, L'Aquila
| |
Collapse
|
67
|
Li P, Zhen Y, Yu Y. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry. Methods Enzymol 2019; 626:301-321. [PMID: 31606080 DOI: 10.1016/bs.mie.2019.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ADP-ribosylation is a protein post-translational modification that is critically involved in a wide array of biological processes connected to cell stress responses. Enzymes known as poly-ADP-ribose polymerases (PARPs) catalyze the addition of the ADP-ribose units to amino acids with various side chain chemistries. In particular, the PARP family member PARP1 is responsible for the modification of a large number of proteins and is involved in initiation of the DNA damage response, although the mechanisms through which PARP1 functions are still incompletely understood. The analysis of protein ADP-ribosylation is challenging because PARylation is a low-abundance, labile and heterogeneous protein modification. Recently, we developed an integrative proteomic platform for the site-specific analysis of protein ADP-ribosylation on Asp and Glu residues. Herein, we describe the method, and demonstrate its utility in quantitative characterization of the human Asp- and Glu-ADP-ribosylated proteome.
Collapse
Affiliation(s)
- Peng Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yuanli Zhen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
68
|
Fischbach A, Krüger A, Hampp S, Assmann G, Rank L, Hufnagel M, Stöckl MT, Fischer JMF, Veith S, Rossatti P, Ganz M, Ferrando-May E, Hartwig A, Hauser K, Wiesmüller L, Bürkle A, Mangerich A. The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Res 2019; 46:804-822. [PMID: 29216372 PMCID: PMC5778597 DOI: 10.1093/nar/gkx1205] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/22/2017] [Indexed: 01/25/2023] Open
Abstract
The post-translational modification poly(ADP-ribosyl)ation (PARylation) plays key roles in genome maintenance and transcription. Both non-covalent poly(ADP-ribose) binding and covalent PARylation control protein functions, however, it is unknown how the two modes of modification crosstalk mechanistically. Employing the tumor suppressor p53 as a model substrate, this study provides detailed insights into the interplay between non-covalent and covalent PARylation and unravels its functional significance in the regulation of p53. We reveal that the multifunctional C-terminal domain (CTD) of p53 acts as the central hub in the PARylation-dependent regulation of p53. Specifically, p53 bound to auto-PARylated PARP1 via highly specific non–covalent PAR-CTD interaction, which conveyed target specificity for its covalent PARylation by PARP1. Strikingly, fusing the p53-CTD to a protein that is normally not PARylated, renders this a target for covalent PARylation as well. Functional studies revealed that the p53–PAR interaction had substantial implications on molecular and cellular levels. Thus, PAR significantly influenced the complex p53–DNA binding properties and controlled p53 functions, with major implications on the p53-dependent interactome, transcription, and replication-associated recombination. Remarkably, this mechanism potentially also applies to other PARylation targets, since a bioinformatics analysis revealed that CTD-like regions are highly enriched in the PARylated proteome.
Collapse
Affiliation(s)
- Arthur Fischbach
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Annika Krüger
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stephanie Hampp
- Department of Obstetrics and Gynaecology, University of Ulm, 89075 Ulm, Germany
| | - Greta Assmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Lisa Rank
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Martin T Stöckl
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jan M F Fischer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sebastian Veith
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Research Training Group 1331, University of Konstanz, 78457 Konstanz, Germany
| | - Pascal Rossatti
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Magdalena Ganz
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, University of Ulm, 89075 Ulm, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
69
|
Abstract
ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules controlling major biological processes as diverse as DNA damage repair, transcriptional regulation, intracellular transport, immune and stress responses, cell survival and proliferation. Furthermore, enzymatic reactions of ADPr are central in the pathogenesis of many human diseases, including infectious conditions. By providing a review of ADPr signalling in bacterial systems, we highlight the relevance of this chemical modification in the pathogenesis of human diseases depending on host-pathogen interactions. The post-antibiotic era has raised the need to find alternative approaches to antibiotic administration, as major pathogens becoming resistant to antibiotics. An in-depth understanding of ADPr reactions provides the rationale for designing novel antimicrobial strategies for treatment of infectious diseases. In addition, the understanding of mechanisms of ADPr by bacterial virulence factors offers important hints to improve our knowledge on cellular processes regulated by eukaryotic homologous enzymes, which are often involved in the pathogenesis of human diseases.
Collapse
|
70
|
Ser Z, Cifani P, Kentsis A. Optimized Cross-Linking Mass Spectrometry for in Situ Interaction Proteomics. J Proteome Res 2019; 18:2545-2558. [PMID: 31083951 DOI: 10.1021/acs.jproteome.9b00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent development of mass spectrometer cleavable protein cross-linkers and algorithms for their spectral identification now permits large-scale cross-linking mass spectrometry (XL-MS). Here, we optimized the use of cleavable disuccinimidyl sulfoxide (DSSO) cross-linker for labeling native protein complexes in live human cells. We applied a generalized linear mixture model to calibrate cross-link peptide-spectra matching (CSM) scores to control the sensitivity and specificity of large-scale XL-MS. Using specific CSM score thresholds to control the false discovery rate, we found that higher-energy collisional dissociation (HCD) and electron transfer dissociation (ETD) can both be effective for large-scale XL-MS protein interaction mapping. We found that the coverage of protein-protein interaction maps is significantly improved through the use of multiple proteases. In addition, the use of focused sample-specific search databases can be used to improve the specificity of cross-linked peptide spectral matching. Application of this approach to human chromatin labeled in live cells recapitulated known and revealed new protein interactions of nucleosomes and other chromatin-associated complexes in situ. This optimized approach for mapping native protein interactions should be useful for a wide range of biological problems.
Collapse
Affiliation(s)
| | | | - Alex Kentsis
- Department of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Cornell Medical College , Cornell University , New York , New York 10065 , United States
| |
Collapse
|
71
|
Grimaldi G, Catara G, Palazzo L, Corteggio A, Valente C, Corda D. PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochem Pharmacol 2019; 167:64-75. [PMID: 31102582 DOI: 10.1016/j.bcp.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Among the post-translational modifications, ADP-ribosylation has been for long time the least integrated in the scheme of the structural protein modifications affecting physiological functions. In spite of the original findings on bacterial-dependent ADP-ribosylation catalysed by toxins such as cholera and pertussis toxin, only with the discovery of the poly-ADP-ribosyl polymerase (PARP) family the field has finally expanded and the role of ADP-ribosylation has been recognised in both physiological and pathological processes, including cancer, infectious and neurodegenerative diseases. This is now a rapidly expanding field of investigation, centred on the role of the different PARPs and their substrates in various diseases, and on the potential of PARP inhibitors as novel pharmacological tools to be employed in relevant pathological context. In this review we analyse the role that members of the PARP family and poly-ADP-ribose (PAR; the product of PARP1 and PARP5a activity) play in the processes following the exposure of cells to different stresses. The cell response that arises following conditions such as heat, osmotic, oxidative stresses or viral infection relies on the formation of stress granules, which are transient cytoplasmic membrane-less structures, that include untranslated mRNA, specific proteins and PAR, this last one serving as the "collector" of all components (that bind to it in a non-covalent manner). The resulting phenotypes are cells in which translation, intracellular transport or pro-apoptotic pathways are reversibly inhibited, for the time the given stress holds. Interestingly, the formation of defective stress granules has been detected in diverse pathological conditions including neurological disorders and cancer. Analysing the molecular details of stress granule formation under these conditions offers a novel view on the pathogenesis of these diseases and, as a consequence, the possibility of identifying novel drug targets for their treatment.
Collapse
Affiliation(s)
- Giovanna Grimaldi
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| | - Giuliana Catara
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Luca Palazzo
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Annunziata Corteggio
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
72
|
Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes. Proc Natl Acad Sci U S A 2019; 116:9941-9946. [PMID: 31028139 PMCID: PMC6525528 DOI: 10.1073/pnas.1901183116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Little is known about how multiple functions of a single protein are coordinated in a living cell. PARP-1 is a multidomain nuclear protein that plays a critical role in regulating developmental processes including apoptosis, DNA repair, epigenetic marking of chromatin, assembly of higher-order chromatin structures, and transcriptional activation. Using deletional isoforms of PARP-1 in in vivo and in vitro experiments, we have demonstrated that the multiple domains of PARP-1 cooperate in response to interactions with different PARP-1 targets, leading either to short-term activation of the enzyme or to prolonged and sustained activity. This sustained activity produces accumulation of pADPr in the surrounding chromatin, leading to prolonged chromatin loosening. Poly(ADP-ribose) polymerase 1 (PARP-1) is a multidomain multifunctional nuclear enzyme involved in the regulation of the chromatin structure and transcription. PARP-1 consists of three functional domains: the N-terminal DNA-binding domain (DBD) containing three zinc fingers, the automodification domain (A), and the C-terminal domain, which includes the protein interacting WGR domain (W) and the catalytic (Cat) subdomain responsible for the poly(ADP ribosyl)ating reaction. The mechanisms coordinating the functions of these domains and determining the positioning of PARP-1 in chromatin remain unknown. Using multiple deletional isoforms of PARP-1, lacking one or another of its three domains, as well as consisting of only one of those domains, we demonstrate that different functions of PARP-1 are coordinated by interactions among these domains and their targets. Interaction between the DBD and damaged DNA leads to a short-term binding and activation of PARP-1. This “hit and run” activation of PARP-1 initiates the DNA repair pathway at a specific point. The long-term chromatin loosening required to sustain transcription takes place when the C-terminal domain of PARP-1 binds to chromatin by interacting with histone H4 in the nucleosome. This long-term activation of PARP-1 results in a continuous accumulation of pADPr, which maintains chromatin in the loosened state around a certain locus so that the transcription machinery has continuous access to DNA. Cooperation between the DBD and C-terminal domain occurs in response to heat shock (HS), allowing PARP-1 to scan chromatin for specific binding sites.
Collapse
|
73
|
Lodovichi S, Mercatanti A, Cervelli T, Galli A. Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets. Oncotarget 2019; 10:2722-2737. [PMID: 31105872 PMCID: PMC6505629 DOI: 10.18632/oncotarget.26812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge of interaction network between different proteins can be a useful tool in cancer therapy. To develop new therapeutic treatments, understanding how these proteins contribute to dysregulated cellular pathways is an important task. PARP1 inhibitors are drugs used in cancer therapy, in particular where DNA repair is defective. It is crucial to find new candidate interactors of PARP1 as new therapeutic targets in order to increase efficacy of PARP1 inhibitors and expand their clinical utility. By a yeast-based genome wide screening, we previously discovered 90 candidate deletion genes that suppress growth-inhibition phenotype conferred by PARP1 in yeast. Here, we performed an integrated and computational analysis to deeply study these genes. First, we identified which pathways these genes are involved in and putative relations with PARP1 through g:Profiler. Then, we studied mutation pattern and their relation to cancer by interrogating COSMIC and DisGeNET database; finally, we evaluated expression and alteration in several cancers with cBioPortal, and the interaction network with GeneMANIA. We identified 12 genes belonging to PARP1-related pathways. We decided to further validate RIT1, INCENP and PSTA1 in MCF7 breast cancer cells. We found that RIT1 and INCENP affected PARylation and PARP1 protein level more significantly in PARP1 inhibited cells. Furthermore, downregulation of RIT1, INCENP and PSAT1 affected olaparib sensitivity of MCF7 cells. Our study identified candidate genes that could have an effect on PARP inhibition therapy. Moreover, we also confirm that yeast-based screenings could be very helpful to identify novel potential therapy factors.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy.,PhD Student in Clinical and Translational Science Program, University of Pisa, Pisa, Italy
| | - Alberto Mercatanti
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Pisa, Italy
| |
Collapse
|
74
|
Hu K, Wu W, Li Y, Lin L, Chen D, Yan H, Xiao X, Chen H, Chen Z, Zhang Y, Xu S, Guo Y, Koeffler HP, Song E, Yin D. Poly(ADP-ribosyl)ation of BRD7 by PARP1 confers resistance to DNA-damaging chemotherapeutic agents. EMBO Rep 2019; 20:embr.201846166. [PMID: 30940648 DOI: 10.15252/embr.201846166] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 01/25/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023] Open
Abstract
The bromodomain-containing protein 7 (BRD7) is a tumour suppressor protein with critical roles in cell cycle transition and transcriptional regulation. Whether BRD7 is regulated by post-translational modifications remains poorly understood. Here, we find that chemotherapy-induced DNA damage leads to the rapid degradation of BRD7 in various cancer cell lines. PARP-1 binds and poly(ADP)ribosylates BRD7, which enhances its ubiquitination and degradation through the PAR-binding E3 ubiquitin ligase RNF146. Moreover, the PARP1 inhibitor Olaparib significantly enhances the sensitivity of BRD7-positive cancer cells to chemotherapeutic drugs, while it has little effect on cells with low BRD7 expression. Taken together, our findings show that PARP1 induces the degradation of BRD7 resulting in cancer cell resistance to DNA-damaging agents. BRD7 might thus serve as potential biomarker in clinical trial for the prediction of synergistic effects between chemotherapeutic drugs and PARP inhibitors.
Collapse
Affiliation(s)
- Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haiyan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing Xiao
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore.,Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, Los Angeles, CA, USA
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China .,Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
75
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|
76
|
γH2AX prefers late replicating metaphase chromosome regions. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:114-121. [PMID: 30442336 DOI: 10.1016/j.mrgentox.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 04/20/2018] [Accepted: 06/01/2018] [Indexed: 11/23/2022]
Abstract
DNA damage response (DDR) constitutes a protein pathway to handle eukaryotic DNA lesions in the context of chromatin. DDR engages the recruitment of signaling, transducer, effector, chromatin modifiers and remodeling proteins, allowing cell cycle delay, DNA repair or induction of senescence or apoptosis. An early DDR-event includes the epigenetic phosphorylation of the histone variant H2AX on serine 139 of the C-termini, so-called gammaH2AX. GammaH2AX foci detected by immunolabeling on interphase nuclei have been largely studied; nonetheless gammaH2AX signals on mitotic chromosomes are less understood. The CHO9 cell line is a subclone of CHO (Chinese hamster ovary) cells with original and rearranged Z chromosomes originated during cell line transformation. As a result, homologous chromosome regions have been relocated in different Z-chromosomes. In a first quantitative analysis of gammaH2AX signals on immunolabeled mitotic chromosomes of cytocentrifuged metaphase spreads, we reported that gammaH2AX139 signals of both control and bleomycin-exposed cultures showed statistically equal distribution between CHO9 homologous chromosome regions, suggesting a possible dependence on the structure/function of chromatin. We have also demonstrated that bleomycin-induced gammaH2AX foci map preferentially to DNA replicating domains in CHO9 interphase nuclei. With the aim of understanding the role of gammaH2AX signals on metaphase chromosomes, the relation between 5-ethynyl-2'-deoxyuridine (EdU) labeled replicating chromosome regions and gammaH2AX signals in immunolabeled cytocentrifuged metaphase spreads from control and bleomycin-treated CHO9 cultures was analyzed in the present work. A quantitative analysis of colocalization between EdU and gammaH2AX signals based on the calculation of the Replication Related Damage Distribution Index (RDDI) on confocal metaphase images was performed. RDDI revealed a colocalization between EdU and gammaH2AX signals both in control and bleomycin-treated CHO9 metaphases, suggesting that replication may be involved in H2AX phosphorylation. The possible mechanisms implicated are discussed.
Collapse
|
77
|
Kulikova VA, Gromyko DV, Nikiforov AA. The Regulatory Role of NAD in Human and Animal Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:800-812. [PMID: 30200865 DOI: 10.1134/s0006297918070040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form NADP are the major coenzymes in the redox reactions of various essential metabolic pathways. NAD+ also serves as a substrate for several families of regulatory proteins, such as protein deacetylases (sirtuins), ADP-ribosyltransferases, and poly(ADP-ribose) polymerases, that control vital cell processes including gene expression, DNA repair, apoptosis, mitochondrial biogenesis, unfolded protein response, and many others. NAD+ is also a precursor for calcium-mobilizing secondary messengers. Proper regulation of these NAD-dependent metabolic and signaling pathways depends on how efficiently cells can maintain their NAD levels. Generally, mammalian cells regulate their NAD supply through biosynthesis from the precursors delivered with the diet: nicotinamide and nicotinic acid (vitamin B3), as well as nicotinamide riboside and nicotinic acid riboside. Administration of NAD precursors has been demonstrated to restore NAD levels in tissues (i.e., to produce beneficial therapeutic effects) in preclinical models of various diseases, such as neurodegenerative disorders, obesity, diabetes, and metabolic syndrome.
Collapse
Affiliation(s)
- V A Kulikova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - D V Gromyko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A A Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| |
Collapse
|
78
|
Identifying Genomic Sites of ADP-Ribosylation Mediated by Specific Nuclear PARP Enzymes Using Click-ChIP. Methods Mol Biol 2018; 1813:371-387. [PMID: 30097881 DOI: 10.1007/978-1-4939-8588-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nuclear poly(ADP-ribose) polymerases (PARPs), including PARPs 1, 2, and 3 and the Tankyrases, belong to a family of enzymes that can bind to chromatin and covalently modify histone- and chromatin-associated proteins with ADP-ribose derived from nuclear NAD+. The genomic loci where the nuclear PARPs bind and covalently modify chromatin are a fundamental question in PARP biology. Chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) has become an essential tool for determining specific sites of binding and modification genome-wide. Few methods are available, however, for localizing PARP-specific ADP-ribosylation events across the genome. Here we describe a variation of ChIP-seq, called Click-ChIP-seq, for identifying sites of ADP-ribosylation mediated by specific PARP family members. This method uses analog-sensitive PARP (asPARP) technology, including asPARP mutants and the alkyne-containing "clickable" NAD+ analog 8-Bu(3-yne)T-NAD+. In this assay, nuclei from cells expressing an asPARP protein of interest are incubated with 8-Bu(3-yne)T-NAD+, which is incorporated into ADP-ribose modifications mediated only by that specific asPARP protein. The nuclei are then subjected to cross-linking with formaldehyde, and the protein-linked analog ADP-ribose is clicked to biotin using copper-catalyzed alkyne-azide "click" chemistry. The chromatin is fragmented, and the fragments containing analog ADP-ribose are enriched using streptavidin-mediated precipitation. Finally, the enriched DNA is analyzed by qPCR or deep-sequencing experiments to determine which genomic loci contain ADP-ribose modifications mediated by the specific PARP protein of interest. Click-ChIP-seq has proven to be a robust and reproducible method for identifying chromatin-associated, PARP-specific ADP-ribosylation events genome-wide.
Collapse
|
79
|
Karch KR, Langelier MF, Pascal JM, Garcia BA. The nucleosomal surface is the main target of histone ADP-ribosylation in response to DNA damage. MOLECULAR BIOSYSTEMS 2018; 13:2660-2671. [PMID: 29058739 DOI: 10.1039/c7mb00498b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ADP-ribosylation is a protein post-translational modification catalyzed by ADP-ribose transferases (ARTs). ART activity is critical in mediating many cellular processes, and is required for DNA damage repair. All five histone proteins are extensively ADP-ribosylated by ARTs upon induction of DNA damage. However, how these modifications aid in repair processes is largely unknown, primarily due to lack of knowledge about where they site-specifically occur on histones. Here, we conduct a comprehensive analysis of histone Asp/Glu ADP-ribosylation sites upon DNA damage induced by dimethyl sulfate (DMS). We also demonstrate that incubation of cell nuclei with NAD+, as has been done previously in the literature, leads to spurious ADP-ribosylation levels of histone proteins. Altogether, we were able to identify 30 modification sites, 20 of which are novel. We also quantify the abundance of these modification sites during the course of DNA damage insult to identify which sites are critical for mediating repair. We found that every quantifiable site increases in abundance over time and that each identified ADP-ribosylation site is located on the surface of the nucleosome. Together, the data suggest specific Asp/Glu residues are unlikely to be critical for DNA damage repair and rather that this process is likely dependent on ADP-ribosylation of the nucleosomal surface in general.
Collapse
Affiliation(s)
- Kelly R Karch
- Department of Biochemistry and Molecular Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
80
|
Identification of Protein Substrates of Specific PARP Enzymes Using Analog-Sensitive PARP Mutants and a "Clickable" NAD + Analog. Methods Mol Biol 2018; 1608:111-135. [PMID: 28695507 DOI: 10.1007/978-1-4939-6993-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The PARP family of ADP-ribosyl transferases contains 17 members in human cells, most of which catalyze the transfer of the ADP-ribose moiety of NAD+ onto their target proteins. This posttranslational modification plays important roles in cellular signaling, especially during cellular stresses, such as heat shock, inflammation, unfolded protein responses, and DNA damage. Knowing the specific proteins that are substrates for individual PARPs, as well as the specific amino acid residues in a given target protein that are ADP-ribosylated, is a key step in understanding the biology of individual PARPs. Recently, we developed a robust NAD+ analog-sensitive approach for PARPs, which allows PARP-specific ADP-ribosylation of substrates that is suitable for subsequent copper-catalyzed azide-alkyne cycloaddition ("click chemistry") reactions. When coupled with proteomics and mass spectrometry, the analog-sensitive PARP approach can be used to identify the specific amino acids that are ADP-ribosylated by individual PARP proteins. In this chapter, we describe the key facets of the experimental design and application of the analog-sensitive PARP methodology to identify site-specific modification of PARP target proteins.
Collapse
|
81
|
Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crit Rev Biochem Mol Biol 2018; 53:64-82. [PMID: 29098880 DOI: 10.1080/10409238.2017.1394265] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023]
Abstract
Proper and timely regulation of cellular processes is fundamental to the overall health and viability of organisms across all kingdoms of life. Thus, organisms have evolved multiple highly dynamic and complex biochemical signaling cascades in order to adapt and survive diverse challenges. One such method of conferring rapid adaptation is the addition or removal of reversible modifications of different chemical groups onto macromolecules which in turn induce the appropriate downstream outcome. ADP-ribosylation, the addition of ADP-ribose (ADPr) groups, represents one of these highly conserved signaling chemicals. Herein we outline the writers, erasers and readers of ADP-ribosylation and dip into the multitude of cellular processes they have been implicated in. We also review what we currently know on how specificity of activity is ensured for this important modification.
Collapse
Affiliation(s)
- Kerryanne Crawford
- a Sir William Dunn School of Pathology , University of Oxford , Oxford , UK
| | | | - Andreja Mikoč
- c Division of Molecular Biology , Ruđer Bošković Institute , Zagreb , Croatia
| | - Ivan Matic
- b Max Planck Institute for Biology of Ageing , Cologne , Germany
| | - Ivan Ahel
- a Sir William Dunn School of Pathology , University of Oxford , Oxford , UK
| |
Collapse
|
82
|
Zhen Y, Yu Y. Proteomic Analysis of the Downstream Signaling Network of PARP1. Biochemistry 2018; 57:429-440. [PMID: 29327913 DOI: 10.1021/acs.biochem.7b01022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Poly-ADP-ribosylation (PARylation) is a protein posttranslational modification (PTM) that is critically involved in many biological processes that are linked to cell stress responses. It is catalyzed by a class of enzymes known as poly-ADP-ribose polymerases (PARPs). In particular, PARP1 is a nuclear protein that is activated upon sensing nicked DNA. Once activated, PARP1 is responsible for the synthesis of a large number of PARylated proteins and initiation of the DNA damage response mechanisms. This observation provided the rationale for developing PARP1 inhibitors for the treatment of human malignancies. Indeed, three PARP1 inhibitors (Olaparib, Rucaparib, and Niraparib) have recently been approved by the Food and Drug Administration for the treatment of ovarian cancer. Moreover, in 2017, both Olaparib and Niraparib have also been approved for the treatment of fallopian tube cancer and primary peritoneal cancer. Despite this very exciting progress in the clinic, the basic signaling mechanism that connects PARP1 to a diverse array of biological processes is still poorly understood. This is, in large part, due to the inherent technical difficulty associated with the analysis of protein PARylation, which is a low-abundance, labile, and heterogeneous PTM. The study of PARylation has been greatly facilitated by the recent advances in mass spectrometry-based proteomic technologies tailored to the analysis of this modification. In this Perspective, we discuss these breakthroughs, including their technical development, and applications that provide a global view of the many biological processes regulated by this important protein modification.
Collapse
Affiliation(s)
- Yuanli Zhen
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| |
Collapse
|
83
|
Abplanalp J, Leutert M, Frugier E, Nowak K, Feurer R, Kato J, Kistemaker HVA, Filippov DV, Moss J, Caflisch A, Hottiger MO. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat Commun 2017; 8:2055. [PMID: 29234005 PMCID: PMC5727137 DOI: 10.1038/s41467-017-02253-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
ADP-ribosylation is a posttranslational modification that exists in monomeric and polymeric forms. Whereas the writers (e.g. ARTD1/PARP1) and erasers (e.g. PARG, ARH3) of poly-ADP-ribosylation (PARylation) are relatively well described, the enzymes involved in mono-ADP-ribosylation (MARylation) have been less well investigated. While erasers for the MARylation of glutamate/aspartate and arginine have been identified, the respective enzymes with specificity for serine were missing. Here we report that, in vitro, ARH3 specifically binds and demodifies proteins and peptides that are MARylated. Molecular modeling and site-directed mutagenesis of ARH3 revealed that numerous residues are critical for both the mono- and the poly-ADP-ribosylhydrolase activity of ARH3. Notably, a mass spectrometric approach showed that ARH3-deficient mouse embryonic fibroblasts are characterized by a specific increase in serine-ADP-ribosylation in vivo under untreated conditions as well as following hydrogen peroxide stress. Together, our results establish ARH3 as a serine mono-ADP-ribosylhydrolase and as an important regulator of the basal and stress-induced ADP-ribosylome.
Collapse
Affiliation(s)
- Jeannette Abplanalp
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mario Leutert
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Emilie Frugier
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Kathrin Nowak
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Roxane Feurer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jiro Kato
- Laboratory of Translational Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20892-1590, USA
| | - Hans V A Kistemaker
- Leiden Institute of Chemistry, Department of Bio-organic Synthesis, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Department of Bio-organic Synthesis, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Joel Moss
- Laboratory of Translational Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20892-1590, USA
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
84
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
85
|
Meyer RG, Ketchum CC, Meyer-Ficca ML. Heritable sperm chromatin epigenetics: a break to remember†. Biol Reprod 2017; 97:784-797. [DOI: 10.1093/biolre/iox137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
|
86
|
Bonfiglio JJ, Colby T, Matic I. Mass spectrometry for serine ADP-ribosylation? Think o-glycosylation! Nucleic Acids Res 2017; 45:6259-6264. [PMID: 28520971 PMCID: PMC5499872 DOI: 10.1093/nar/gkx446] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/05/2017] [Indexed: 12/29/2022] Open
Abstract
Protein ADP-ribosylation (ADPr), a biologically and clinically important post-translational modification, exerts its functions by targeting a variety of different amino acids. Its repertoire recently expanded to include serine ADPr, which is emerging as an important and widespread signal in the DNA damage response. Chemically, serine ADPr (and more generally o-glycosidic ADPr) is a form of o-glycosylation, and its extreme lability renders it practically invisible to standard mass spectrometry approaches, often leading to erroneous localizations. The knowledge from the mature field of o-glycosation and our own initial difficulties with mass spectrometric analyzes of serine ADPr suggest how to avoid these misidentifications and fully explore the scope of o-glycosidic ADPr in DNA damage response and beyond.
Collapse
Affiliation(s)
- Juan J Bonfiglio
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Thomas Colby
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| |
Collapse
|
87
|
Hou WH, Chen SH, Yu X. Poly-ADP ribosylation in DNA damage response and cancer therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:82-91. [PMID: 31395352 DOI: 10.1016/j.mrrev.2017.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Poly(ADP-ribosyl)ation (aka PARylation) is a unique protein post-translational modification (PTM) first described over 50 years ago. PARylation regulates a number of biological processes including chromatin remodeling, the DNA damage response (DDR), transcription, apoptosis, and mitosis. The subsequent discovery of poly(ADP-ribose) polymerase-1 (PARP-1) catalyzing DNA-dependent PARylation spearheaded the field of DDR. The expanding knowledge about the poly ADP-ribose (PAR) recognition domains prompted the discovery of novel DDR factors and revealed crosstalk with other protein PTMs including phosphorylation, ubiquitination, methylation and acetylation. In this review, we highlight the current knowledge on PAR-regulated DDR, PAR recognition domain, and PARP inhibition in cancer therapy.
Collapse
Affiliation(s)
- Wei-Hsien Hou
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Shih-Hsun Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
88
|
Rodriguez Y, Howard MJ, Cuneo MJ, Prasad R, Wilson SH. Unencumbered Pol β lyase activity in nucleosome core particles. Nucleic Acids Res 2017; 45:8901-8915. [PMID: 28911106 PMCID: PMC5587807 DOI: 10.1093/nar/gkx593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/23/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Packaging of DNA into the nucleosome core particle (NCP) is considered to exert constraints to all DNA-templated processes, including base excision repair where Pol β catalyzes two key enzymatic steps: 5'-dRP lyase gap trimming and template-directed DNA synthesis. Despite its biological significance, knowledge of Pol β activities on NCPs is still limited. Here, we show that removal of the 5'-dRP block by Pol β is unaffected by NCP constraints at all sites tested and is even enhanced near the DNA ends. In contrast, strong inhibition of DNA synthesis is observed. These results indicate 5'-dRP gap trimming proceeds unperturbed within the NCP; whereas, gap filling is strongly limited. In the absence of additional factors, base excision repair in NCPs will stall at the gap-filling step.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | - Michael J. Howard
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | | | - Rajendra Prasad
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | - Samuel H. Wilson
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
89
|
Liu C, Vyas A, Kassab MA, Singh AK, Yu X. The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res 2017; 45:8129-8141. [PMID: 28854736 PMCID: PMC5737498 DOI: 10.1093/nar/gkx565] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 01/11/2023] Open
Abstract
Poly ADP-ribose polymerases (PARPs) catalyze massive protein poly ADP-ribosylation (PARylation) within seconds after the induction of DNA single- or double-strand breaks. PARylation occurs at or near the sites of DNA damage and promotes the recruitment of DNA repair factors via their poly ADP-ribose (PAR) binding domains. Several novel PAR-binding domains have been recently identified. Here, we summarize these and other recent findings suggesting that PARylation may be the critical event that mediates the first wave of the DNA damage response. We also discuss the potential for functional crosstalk with other DNA damage-induced post-translational modifications.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Aditi Vyas
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Muzaffer A. Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Anup K. Singh
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
90
|
Gupte R, Liu Z, Kraus WL. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 2017; 31:101-126. [PMID: 28202539 PMCID: PMC5322727 DOI: 10.1101/gad.291518.116] [Citation(s) in RCA: 490] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, Gupte et al. discuss new findings on the diverse roles of PARPs in chromatin regulation, transcription, RNA biology, and DNA repair as well as recent advances that link ADP-ribosylation to stress responses, metabolism, viral infections, and cancer. The discovery of poly(ADP-ribose) >50 years ago opened a new field, leading the way for the discovery of the poly(ADP-ribose) polymerase (PARP) family of enzymes and the ADP-ribosylation reactions that they catalyze. Although the field was initially focused primarily on the biochemistry and molecular biology of PARP-1 in DNA damage detection and repair, the mechanistic and functional understanding of the role of PARPs in different biological processes has grown considerably of late. This has been accompanied by a shift of focus from enzymology to a search for substrates as well as the first attempts to determine the functional consequences of site-specific ADP-ribosylation on those substrates. Supporting these advances is a host of methodological approaches from chemical biology, proteomics, genomics, cell biology, and genetics that have propelled new discoveries in the field. New findings on the diverse roles of PARPs in chromatin regulation, transcription, RNA biology, and DNA repair have been complemented by recent advances that link ADP-ribosylation to stress responses, metabolism, viral infections, and cancer. These studies have begun to reveal the promising ways in which PARPs may be targeted therapeutically for the treatment of disease. In this review, we discuss these topics and relate them to the future directions of the field.
Collapse
Affiliation(s)
- Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ziying Liu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
91
|
Abstract
Cells are exposed to various endogenous and exogenous insults that induce DNA damage, which, if unrepaired, impairs genome integrity and leads to the development of various diseases, including cancer. Recent evidence has implicated poly(ADP-ribose) polymerase 1 (PARP1) in various DNA repair pathways and in the maintenance of genomic stability. The inhibition of PARP1 is therefore being exploited clinically for the treatment of various cancers, which include DNA repair-deficient ovarian, breast and prostate cancers. Understanding the role of PARP1 in maintaining genome integrity is not only important for the design of novel chemotherapeutic agents, but is also crucial for gaining insights into the mechanisms of chemoresistance in cancer cells. In this Review, we discuss the roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-strand break repair and the stabilization of replication forks, and in modulating chromatin structure.
Collapse
|
92
|
Mitochondrial health, the epigenome and healthspan. Clin Sci (Lond) 2017; 130:1285-305. [PMID: 27358026 DOI: 10.1042/cs20160002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Food nutrients and metabolic supply-demand dynamics constitute environmental factors that interact with our genome influencing health and disease states. These gene-environment interactions converge at the metabolic-epigenome-genome axis to regulate gene expression and phenotypic outcomes. Mounting evidence indicates that nutrients and lifestyle strongly influence genome-metabolic functional interactions determining disease via altered epigenetic regulation. The mitochondrial network is a central player of the metabolic-epigenome-genome axis, regulating the level of key metabolites [NAD(+), AcCoA (acetyl CoA), ATP] acting as substrates/cofactors for acetyl transferases, kinases (e.g. protein kinase A) and deacetylases (e.g. sirtuins, SIRTs). The chromatin, an assembly of DNA and nucleoproteins, regulates the transcriptional process, acting at the epigenomic interface between metabolism and the genome. Within this framework, we review existing evidence showing that preservation of mitochondrial network function is directly involved in decreasing the rate of damage accumulation thus slowing aging and improving healthspan.
Collapse
|
93
|
Dutta P, Li WX. The SERTAD protein Taranis plays a role in Polycomb-mediated gene repression. PLoS One 2017; 12:e0180026. [PMID: 28665982 PMCID: PMC5493352 DOI: 10.1371/journal.pone.0180026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 06/08/2017] [Indexed: 11/19/2022] Open
Abstract
The Polycomb group (PcG) proteins have been implicated in epigenetic transcriptional repression in development, stem cell maintenance and in cancer. The chromodomain protein Polycomb (Pc) is a key member of the PcG. Pc binds to the histone mark, trimethylated histone 3 lysine 27 (H3K27me3), to initiate transcriptional repression. How PcG proteins are recruited to target loci is not fully understood. Here we show that the Drosophila SERTA domain protein Taranis (Tara) is involved in transcriptional regulation of Pc target genes. Embryos lacking Tara exhibit a partial homeotic transformation of cuticular the segments, a phenotype associated with the loss of Pc function. Moreover, Drosophila embryos homozygous for a tara hypomorphic allele also misexpress engrailed, a Pc-regulated gene, and this phenotype is associated with the loss of Pc binding to the cis response element in the engrailed enhancer. In relation to that, Pc recruitment is reduced on the salivary gland polytene chromosomes and specifically at the engrailed locus. These results suggest that Tara might be required for positioning Pc to a subset of its target genes.
Collapse
Affiliation(s)
- Pranabananda Dutta
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| | - Willis X. Li
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
94
|
Littler DR, Ang SY, Moriel DG, Kocan M, Kleifeld O, Johnson MD, Tran MT, Paton AW, Paton JC, Summers RJ, Schembri MA, Rossjohn J, Beddoe T. Structure-function analyses of a pertussis-like toxin from pathogenic Escherichia coli reveal a distinct mechanism of inhibition of trimeric G-proteins. J Biol Chem 2017; 292:15143-15158. [PMID: 28663369 DOI: 10.1074/jbc.m117.796094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/14/2017] [Indexed: 11/06/2022] Open
Abstract
Pertussis-like toxins are secreted by several bacterial pathogens during infection. They belong to the AB5 virulence factors, which bind to glycans on host cell membranes for internalization. Host cell recognition and internalization are mediated by toxin B subunits sharing a unique pentameric ring-like assembly. Although the role of pertussis toxin in whooping cough is well-established, pertussis-like toxins produced by other bacteria are less studied, and their mechanisms of action are unclear. Here, we report that some extra-intestinal Escherichia coli pathogens (i.e. those that reside in the gut but can spread to other bodily locations) encode a pertussis-like toxin that inhibits mammalian cell growth in vitro We found that this protein, EcPlt, is related to toxins produced by both nontyphoidal and typhoidal Salmonella serovars. Pertussis-like toxins are secreted as disulfide-bonded heterohexamers in which the catalytic ADP-ribosyltransferase subunit is activated when exposed to the reducing environment in mammalian cells. We found here that the reduced EcPlt exhibits large structural rearrangements associated with its activation. We noted that inhibitory residues tethered within the NAD+-binding site by an intramolecular disulfide in the oxidized state dissociate upon the reduction and enable loop restructuring to form the nucleotide-binding site. Surprisingly, although pertussis toxin targets a cysteine residue within the α subunit of inhibitory trimeric G-proteins, we observed that activated EcPlt toxin modifies a proximal lysine/asparagine residue instead. In conclusion, our results reveal the molecular mechanism underpinning activation of pertussis-like toxins, and we also identified differences in host target specificity.
Collapse
Affiliation(s)
- Dene R Littler
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Sheng Y Ang
- the Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Danilo G Moriel
- the School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martina Kocan
- the Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Oded Kleifeld
- the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Matthew D Johnson
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mai T Tran
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Adrienne W Paton
- the Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - James C Paton
- the Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Roger J Summers
- the Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Mark A Schembri
- the School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jamie Rossjohn
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, .,the Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom.,the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, and
| | - Travis Beddoe
- the Department of Animal, Plant and Soil Science and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
95
|
Metabolism and chromatin dynamics in health and disease. Mol Aspects Med 2017; 54:1-15. [DOI: 10.1016/j.mam.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
|
96
|
Bonfiglio JJ, Fontana P, Zhang Q, Colby T, Gibbs-Seymour I, Atanassov I, Bartlett E, Zaja R, Ahel I, Matic I. Serine ADP-Ribosylation Depends on HPF1. Mol Cell 2017; 65:932-940.e6. [PMID: 28190768 PMCID: PMC5344681 DOI: 10.1016/j.molcel.2017.01.003] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 12/28/2022]
Abstract
ADP-ribosylation (ADPr) regulates important patho-physiological processes through its attachment to different amino acids in proteins. Recently, by precision mapping on all possible amino acid residues, we identified histone serine ADPr marks in the DNA damage response. However, the biochemical basis underlying this serine modification remained unknown. Here we report that serine ADPr is strictly dependent on histone PARylation factor 1 (HPF1), a recently identified regulator of PARP-1. Quantitative proteomics revealed that serine ADPr does not occur in cells lacking HPF1. Moreover, adding HPF1 to in vitro PARP-1/PARP-2 reactions is necessary and sufficient for serine-specific ADPr of histones and PARP-1 itself. Three endogenous serine ADPr sites are located on the PARP-1 automodification domain. Further identification of serine ADPr on HMG proteins and hundreds of other targets indicates that serine ADPr is a widespread modification. We propose that O-linked protein ADPr is the key signal in PARP-1/PARP-2-dependent processes that govern genome stability.
Collapse
Affiliation(s)
- Juan José Bonfiglio
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Pietro Fontana
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Qi Zhang
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Thomas Colby
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Ian Gibbs-Seymour
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ilian Atanassov
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Edward Bartlett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Roko Zaja
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany.
| |
Collapse
|
97
|
Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks. Sci Rep 2017; 7:43750. [PMID: 28252050 PMCID: PMC5333086 DOI: 10.1038/srep43750] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
ADP-ribosyltransferases (ARTs) modify proteins with single units or polymers of ADP-ribose to regulate DNA repair. However, the substrates for these enzymes are ill-defined. For example, although histones are modified by ARTs, the sites on these proteins ADP-ribosylated following DNA damage and the ARTs that catalyse these events are unknown. This, in part, is due to the lack of a eukaryotic model that contains ARTs, in addition to histone genes that can be manipulated to assess ADP-ribosylation events in vivo. Here we exploit the model Dictyostelium to identify site-specific histone ADP-ribosylation events in vivo and define the ARTs that mediate these modifications. Dictyostelium histones are modified in response to DNA double strand breaks (DSBs) in vivo by the ARTs Adprt1a and Adprt2. Adprt1a is a mono-ART that modifies H2BE18 in vitro, although disruption of this site allows ADP-ribosylation at H2BE19. Although redundancy between H2BE18 and H2BE19 ADP-ribosylation is also apparent following DSBs in vivo, by generating a strain with mutations at E18/E19 in the h2b locus we demonstrate these are the principal sites modified by Adprt1a/Adprt2. This identifies DNA damage induced histone mono-ADP-ribosylation sites by specific ARTs in vivo, providing a unique platform to assess how histone ADP-ribosylation regulates DNA repair.
Collapse
|
98
|
Samanta S, Rajasingh S, Cao T, Dawn B, Rajasingh J. Epigenetic dysfunctional diseases and therapy for infection and inflammation. Biochim Biophys Acta Mol Basis Dis 2016; 1863:518-528. [PMID: 27919711 DOI: 10.1016/j.bbadis.2016.11.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
Even though the discovery of the term 'epigenetics' was in the 1940s, it has recently become one of the most promising and expanding fields to unravel the gene expression pattern in several diseases. The most well studied example is cancer, but other diseases like metabolic disorders, autism, or inflammation-associated diseases such as lung injury, autoimmune disease, asthma, and type-2 diabetes display aberrant gene expression and epigenetic regulation during their occurrence. The change in the epigenetic pattern of a gene may also alter gene function because of a change in the DNA status. Constant environmental pressure, lifestyle, as well as food habits are the other important parameters responsible for transgenerational inheritance of epigenetic traits. Discovery of epigenetic modifiers targeting DNA methylation and histone deacetylation enzymes could be an alternative source to treat or manipulate the pathogenesis of diseases. Particularly, the combination of epigenetic drugs such as 5-aza-2-deoxycytidine (Aza) and trichostatin A (TSA) are well studied to reduce inflammation in an acute lung injury model. It is important to understand the epigenetic machinery and the function of its components in specific diseases to develop targeted epigenetic therapy. Moreover, it is equally critical to know the specific inhibitors other than the widely used pan inhibitors in clinical trials and explore their roles in regulating specific genes in a more defined way during infection.
Collapse
Affiliation(s)
- Saheli Samanta
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sheeja Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Thuy Cao
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Johnson Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
99
|
Leidecker O, Bonfiglio JJ, Colby T, Zhang Q, Atanassov I, Zaja R, Palazzo L, Stockum A, Ahel I, Matic I. Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat Chem Biol 2016; 12:998-1000. [PMID: 27723750 PMCID: PMC5113755 DOI: 10.1038/nchembio.2180] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/21/2016] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation (ADPr) is a biologically and clinically important post-translational modification, but little is known about the amino acids it targets on cellular proteins. Here we present a proteomic approach for direct in vivo identification and quantification of ADPr sites on histones. We have identified 12 unique ADPr sites in human osteosarcoma cells and report serine ADPr as a new type of histone mark that responds to DNA damage.
Collapse
Affiliation(s)
- Orsolya Leidecker
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Juan José Bonfiglio
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Thomas Colby
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Qi Zhang
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Ilian Atanassov
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Roko Zaja
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Luca Palazzo
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Anna Stockum
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| |
Collapse
|
100
|
Ciccarone F, Zampieri M, Caiafa P. PARP1 orchestrates epigenetic events setting up chromatin domains. Semin Cell Dev Biol 2016; 63:123-134. [PMID: 27908606 DOI: 10.1016/j.semcdb.2016.11.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/05/2016] [Accepted: 11/24/2016] [Indexed: 01/18/2023]
Abstract
Epigenetic events include reversible modifications of DNA and histone tails driving chromatin organization and thus transcription. The epigenetic regulation is a highly integrated process underlying the plasticity of the genomic information both in the context of complex physiological and pathological processes. The global regulatory aspects of epigenetic events are largely unknown. PARylation and PARP1 are recently emerging as multi-level regulatory effectors that modulate the topology of chromatin by orchestrating very different processes. This review focuses in particular on the role of PARP1 in epigenetics, trying to build a comprehensive perspective of its involvement in the regulation of epigenetic modifications of histones and DNA, contextualizing it in the global organization of chromatin domains in the nucleus.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, Faculty of Mathematics, Physics and Natural Sciences, University of Rome 'Tor Vergata', Rome, Italy
| | - Michele Zampieri
- Department of Cellular Biotechnologies and Haematology, Faculty of Pharmacy and Medicine, 'Sapienza' University of Rome, Rome, Italy; Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Haematology, Faculty of Pharmacy and Medicine, 'Sapienza' University of Rome, Rome, Italy; Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy.
| |
Collapse
|