51
|
Islas-Robles A, Yedlapudi D, Lau SS, Monks TJ. Toxicoproteomic Analysis of Poly(ADP-ribose)-associated Proteins Induced by Oxidative Stress in Human Proximal Tubule Cells. Toxicol Sci 2019; 171:117-131. [PMID: 31165168 DOI: 10.1093/toxsci/kfz131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/28/2019] [Accepted: 05/26/2019] [Indexed: 11/14/2022] Open
Abstract
2,3,5-Tris-(glutathion-S-yl)hydroquinone (TGHQ) is a nephrotoxic and nephrocarcinogenic metabolite of hydroquinone. TGHQ generates ROS, causing DNA strand breaks, hyperactivation of PARP-1, increases in intracellular calcium ([Ca2+]i), and cell death. PARP-1 catalyzes the attachment of ADP-ribose polymers (PAR) to target proteins. In human kidney proximal tubule cells (HK-2), ROS-mediated PARP-1 hyperactivation and elevations in [Ca2+]i are reciprocally coupled. The molecular mechanism of this interaction is unclear. The aim of the present study was to identify ROS-induced PAR-associated proteins to further understand their potential role in cell death. PAR-associated proteins were enriched by immunoprecipitation, identified by LC-MS/MS, and relative abundance was obtained by spectral counting. 356 proteins were PAR-modified following TGHQ treatment. 13 proteins exhibited gene ontology annotations related to calcium. Among these proteins, the general transcription factor II-I (TFII-I) is directly involved in the modulation of [Ca2+]i. TFII-I binding to phospholipase C (PLC) leads to calcium influx via the TRPC3 channel. However, inhibition of TRPC3 or PLC had no effect on TGHQ-mediated cell death, suggesting that their loss of function may be necessary but insufficient to cause cell death. Nevertheless, TGHQ promoted a time-dependent translocation of TFII-I from the nucleus to the cytosol concomitant with a decrease in tyrosine phosphorylation in α/β-TFII-I. Therefore it is likely that ROS have an important impact on the function of TFII-I, such as regulation of transcription, and DNA translesion synthesis. Our data also sheds light on PAR mediated signaling during oxidative stress, and contributes to the development of strategies to prevent PAR-dependent cell death.
Collapse
Affiliation(s)
- Argel Islas-Robles
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Wayne State University, MI 48201
| | - Deepthi Yedlapudi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Wayne State University, MI 48201
| | - Serrine S Lau
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Wayne State University, MI 48201
| | - Terrence J Monks
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Wayne State University, MI 48201
| |
Collapse
|
52
|
Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation. Biochem Pharmacol 2019; 167:97-106. [PMID: 31075269 DOI: 10.1016/j.bcp.2019.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
Abstract
Poly-ADP-ribose polymerases (PARPs) are a family of enzymes responsible for transferring individual or chains of ADP-ribose subunits to substrate targets as a type of post-translational modification. PARPs regulate a wide variety of important cellular processes, ranging from DNA damage repair to antiviral response. However, most research to date has focused primarily on the polyPARPs, which catalyze the formation of ADP-ribose polymer chains, while the monoPARPs, which transfer individual ADP-ribose monomers, have not been studied as thoroughly. This is partially due to the lack of robust assays to measure mono-ADP-ribosylation in the cell. In this study, the recently developed MAR/PAR antibody has been shown to detect mono-ADP-ribosylation in cells, enabling the field to investigate the function and therapeutic potential of monoPARPs. In this study, the antibody was used in conjunction with engineered cell lines that overexpress various PARPs to establish a panel of assays to evaluate the potencies of literature-reported PARP inhibitors. These assays should be generally applicable to other PARP family members for future compound screening efforts. A convenient and generalizable workflow to identify and validate PARP substrates has been established. As an initial demonstration, aryl hydrocarbon receptor was verified as a direct PARP7 substrate and other novel substrates for this enzyme were also identified and validated. This workflow takes advantage of commercially available detection reagents and conventional mass spectrometry instrumentation and methods. Ultimately, these assays and methods will help drive research in the PARP field and benefit future therapeutics development.
Collapse
|
53
|
Singatulina AS, Hamon L, Sukhanova MV, Desforges B, Joshi V, Bouhss A, Lavrik OI, Pastré D. PARP-1 Activation Directs FUS to DNA Damage Sites to Form PARG-Reversible Compartments Enriched in Damaged DNA. Cell Rep 2019; 27:1809-1821.e5. [DOI: 10.1016/j.celrep.2019.04.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/21/2018] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
|
54
|
Shuhendler AJ, Cui L, Chen Z, Shen B, Chen M, James ML, Witney TH, Bazalova-Carter M, Gambhir SS, Chin FT, Graves EE, Rao J. [ 18F]-SuPAR: A Radiofluorinated Probe for Noninvasive Imaging of DNA Damage-Dependent Poly(ADP-ribose) Polymerase Activity. Bioconjug Chem 2019; 30:1331-1342. [PMID: 30973715 DOI: 10.1021/acs.bioconjchem.9b00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poly(ADP ribose) polymerase (PARP) enzymes generate poly(ADP ribose) post-translational modifications on target proteins for an array of functions centering on DNA and cell stress. PARP isoforms 1 and 2 are critically charged with the surveillance of DNA integrity and are the first line guardians of the genome against DNA breaks. Here we present a novel probe ([18F]-SuPAR) for noninvasive imaging of PARP-1/2 activity using positron emission tomography (PET). [18F]-SuPAR is a radiofluorinated nicotinamide adenine dinucleotide (NAD) analog that can be recognized by PARP-1/2 and incorporated into the long branched polymers of poly(ADP ribose) (PAR). The measurement of PARP-1/2 activity was supported by a reduction of radiotracer uptake in vivo following PARP-1/2 inhibition with talazoparib treatment, a potent PARP inhibitor recently approved by FDA for treatment of breast cancer, as well as ex vivo colocalization of radiotracer analog and poly(ADP ribose). With [18F]-SuPAR, we were able to map the dose- and time-dependent activation of PARP-1/2 following radiation therapy in breast and cervical cancer xenograft mouse models. Tumor response to therapy was determined by [18F]-SuPAR PET within 8 h of administration of a single dose of radiation equivalent to one round of stereotactic ablative radiotherapy.
Collapse
|
55
|
Higashi H, Maejima T, Lee LH, Yamazaki Y, Hottiger MO, Singh SA, Aikawa M. A Study into the ADP-Ribosylome of IFN-γ-Stimulated THP-1 Human Macrophage-like Cells Identifies ARTD8/PARP14 and ARTD9/PARP9 ADP-Ribosylation. J Proteome Res 2019; 18:1607-1622. [PMID: 30848916 PMCID: PMC6456868 DOI: 10.1021/acs.jproteome.8b00895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ADP-ribosylation is a post-translational modification that, until recently, has remained elusive to study at the cellular level. Previously dependent on radioactive tracers to identify ADP-ribosylation targets, several advances in mass spectrometric workflows now permit global identification of ADP-ribosylated substrates. In this study, we capitalized on two ADP-ribosylation enrichment strategies, and multiple activation methods performed on the Orbitrap Fusion Lumos, to identify IFN-γ-induced ADP-ribosylation substrates in macrophages. The ADP-ribosyl binding protein, Af1521, was used to enrich ADP-ribosylated peptides, and the antipoly-ADP-ribosyl antibody, 10H, was used to enrich ADP-ribosylated proteins. ADP-ribosyl-specific mass spectra were further enriched by an ADP-ribose product ion triggered EThcD and HCD activation strategy, in combination with multiple acquisitions that segmented the survey scan into smaller ranges. HCD and EThcD resulted in overlapping and unique ADP-ribosyl peptide identifications, with HCD providing more peptide identifications but EThcD providing more reliable ADP-ribosyl acceptor sites. Our acquisition strategies also resulted in the first ever characterization of ADP-ribosyl on three poly-ADP-ribose polymerases, ARTD9/PARP9, ARTD10/PARP10, and ARTD8/PARP14. IFN-γ increased the ADP-ribosylation status of ARTD9/PARP9, ARTD8/PARP14, and proteins involved in RNA processes. This study therefore summarizes specific molecular pathways at the intersection of IFN-γ and ADP-ribosylation signaling pathways.
Collapse
Affiliation(s)
- Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine , Brigham Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Takashi Maejima
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine , Brigham Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine , Brigham Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Yukiyoshi Yamazaki
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine , Brigham Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease , University of Zurich , 8057 Zurich , Switzerland
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine , Brigham Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine , Brigham Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States.,Center for Excellence in Vascular Biology, Cardiovascular Division , Brigham Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States.,Channing Division of Network Medicine, Department of Medicine , Brigham Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
56
|
Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders. Cardiovasc Toxicol 2019; 18:493-506. [PMID: 29968072 DOI: 10.1007/s12012-018-9462-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Poly(ADP-ribosyl)ation is an immediate cellular repair response to DNA damage and is catalyzed primarily by poly(ADP-ribose)polymerase-1 (PARP1), which is the most abundant of the 18 different PARP isoforms and accounts for more than 90% of the catalytic activity of PARP in the cell nucleus. Upon detection of a DNA strand break, PARP1 binds to the DNA, cleaves nicotinamide adenine dinucleotide between nicotinamide and ribose and then modifies the DNA nuclear acceptor proteins by formation of a bond between the protein and the ADP-ribose residue. This generates ribosyl-ribosyl linkages that act as a signal for other DNA-repairing enzymes and DNA base repair. Extensive DNA breakage in cells results in excessive activation of PARP with resultant depletion of the cellular stores of nicotinamide adenine dinucleotide (NAD+) which slows the rate of glycolysis, mitochondrial electron transport, and ultimately ATP formation in these cells. This paper focuses on PARP in DNA repair in atherosclerosis, acute myocardial infarction/reperfusion injury, and congestive heart failure and the role of PARP inhibitors in combating the effects of excessive PARP activation in these diseases. Free oxygen radicals and nitrogen radicals in arteries contribute to disruption of the vascular endothelial glycocalyx, which increase the permeability of the endothelium to inflammatory cells and also low-density lipoproteins and the accumulation of lipid in the vascular intima. Mild inflammation and DNA damage within vascular cells promote PARP1 activation and DNA repair. Moderate DNA damage induces caspase-dependent PARP cleavage and vascular cell apoptosis. Severe DNA damage due to vascular inflammation causes excessive activation of PARP1. This causes endothelial cell depletion of NAD+ and ATP, downregulation of atheroprotective SIRT1, necrotic cell death, and ultimately atherosclerotic plaque disruption. Inhibition of PARP decreases vascular endothelial cell adhesion P-selectin and ICAM-1 molecules, inflammatory cells, pro-death caspase-3, and c-Jun N-terminal kinase (JNK) activation and upregulates prosurvival extracellular signal-regulated kinases and AKT, which decrease vascular cell apoptosis and necrosis and limit atherosclerosis and plaque disruption. In myocardial infarction with coronary occlusion then reperfusion, which occurs with coronary angioplasty or thrombolytic therapy, reperfusion injury occurs in as many as 31% of patients and is caused by inflammatory cells, free oxygen and nitrogen radicals, the rapid transcriptional activation of inflammatory cytokines, and the activation of PARP1. Inhibition of PARP attenuates neutrophil infiltration and inflammatory cytokine expression in the reperfused myocardium and preserves myocardial NAD+ and ATP. In addition, PARP inhibition increases the activation of myocyte survival enzymes protein kinase B (Akt) and protein kinase C epsilon (PKCε), and decreases the activity of myocardial ventricular remodeling enzymes PKCα/β, PKCζ/λ, and PKCδ. As a consequence, cardiomyocyte and vascular endothelial cell necrosis is decreased and myocardial contractility is preserved. In heart failure and circulatory shock in animal models, PARP inhibition significantly attenuates decreases in left ventricular systolic pressure, ventricular contractility and relaxation, stroke volume, and increases survival by limiting or preventing upregulation of adhesion molecules, proinflammatory cytokines, myocardial mononuclear cell infiltration, and PKCα/β and PKC λ/ζ. In this manner, PARP inhibition partially restores the myocardial concentrations of NAD+, limits ventricular remodeling and fibrosis, and prevents significant decreases in myocardial contractility. Based primarily on investigations in preclinical models of atherosclerosis, myocardial infarction, and heart failure, PARP inhibition appears to be beneficial in limiting or inhibiting cardiovascular dysfunction. These studies indicate that investigations of acute and chronic PARP inhibition are warranted in patients with atherosclerotic coronary artery disease.
Collapse
|
57
|
Abstract
ADP-ribosylation is a post-translational modification of proteins that has required the development of specific technical approaches for the full definition of its physiological roles and regulation. The identification of the enzymes and specific substrates of this reaction is an instrumental step toward these aims. Here we describe a method for the separation of ADP-ribosylated proteins based on the use of the ADP-ribose-binding macro domain of the thermophilic protein Af1521, coupled to mass spectrometry analysis for protein identification. This method foresees the coupling of the macro domain to resin, an affinity-based pull-down assay, coupled to a specificity step resulting from the clearing of cell lysates with a mutated macro domain unable to bind ADP-ribose. By this method both mono- and poly-ADP-ribosylated proteins have been identified.
Collapse
|
58
|
Hombach-Klonisch S, Kalantari F, Medapati MR, Natarajan S, Krishnan SN, Kumar-Kanojia A, Thanasupawat T, Begum F, Xu FY, Hatch GM, Los M, Klonisch T. HMGA2 as a functional antagonist of PARP1 inhibitors in tumor cells. Mol Oncol 2018; 13:153-170. [PMID: 30289618 PMCID: PMC6360374 DOI: 10.1002/1878-0261.12390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023] Open
Abstract
Poly(ADP‐ribose) polymerase 1 inhibitors alone or in combination with DNA damaging agents are promising clinical drugs in the treatment of cancer. However, there is a need to understand the molecular mechanisms of resistance to PARP1 inhibitors. Expression of HMGA2 in cancer is associated with poor prognosis for patients. Here, we investigated the novel relationship between HMGA2 and PARP1 in DNA damage‐induced PARP1 activity. We used human triple‐negative breast cancer and fibrosarcoma cell lines to demonstrate that HMGA2 colocalizes and interacts with PARP1. High cellular HMGA2 levels correlated with increased DNA damage‐induced PARP1 activity, which was dependent on functional DNA‐binding AT‐hook domains of HMGA2. HMGA2 inhibited PARP1 trapping to DNA and counteracted the cytotoxic effect of PARP inhibitors. Consequently, HMGA2 decreased caspase 3/7 induction and increased cell survival upon treatment with the alkylating methyl methanesulfonate alone or in combination with the PARP inhibitor AZD2281 (olaparib). HMGA2 increased mitochondrial oxygen consumption rate and spare respiratory capacity and increased NAMPT levels, suggesting metabolic support for enhanced PARP1 activity upon DNA damage. Our data showed that expression of HMGA2 in cancer cells reduces sensitivity to PARP inhibitors and suggests that targeting HMGA2 in combination with PARP inhibition may be a promising new therapeutic approach.
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Forouh Kalantari
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Manoj Reddy Medapati
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Suchitra Natarajan
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sai Nivedita Krishnan
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Aditya Kumar-Kanojia
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Farhana Begum
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Fred Y Xu
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Biochemistry and Medical Genetics, DREAM, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Marek Los
- Department of Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
59
|
Correani V, Martire S, Mignogna G, Caruso LB, Tempera I, Giorgi A, Grieco M, Mosca L, Schininà ME, Maras B, d'Erme M. Poly(ADP-ribosylated) proteins in β-amyloid peptide-stimulated microglial cells. Biochem Pharmacol 2018; 167:50-57. [PMID: 30414941 DOI: 10.1016/j.bcp.2018.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022]
Abstract
Amyloid-treated microglia prime and sustain neuroinflammatory processes in the central nervous system activating different signalling pathways inside the cells. Since a key role for PARP-1 has been demonstrated in inflammation and in neurodegeneration, we investigated PARylated proteins in resting and in β-amyloid peptide treated BV2 microglial cells. A total of 1158 proteins were identified by mass spectrometry with 117 specifically modified in the amyloid-treated cells. Intervention of PARylation on the proteome of microglia showed to be widespread in different cellular districts and to affect various cellular pathways, highlighting the role of this dynamic post-translational modification in cellular regulation. Ubiquitination is one of the more enriched pathways, encompassing PARylated proteins like NEDD4, an E3 ubiquitine ligase and USP10, a de-ubiquitinase, both associated with intracellular responses induced by β-amyloid peptide challenge. PARylation of NEDD4 may be involved in the recruiting of this protein to the plasma membrane where it regulates the endocytosis of AMPA receptors, whereas USP10 may be responsible for the increase of p53 levels in amyloid stimulated microglia. Unfolded protein response and Endoplasmic Reticulum Stress pathways, strictly correlated with the Ubiquitination process, also showed enrichment in PARylated proteins. PARylation may thus represent one of the molecular switches responsible for the transition of microglia towards the inflammatory microglia phenotype, a pivotal player in brain diseases including neurodegenerative processes. The establishment of trials with PARP inhibitors to test their efficacy in the containment of neurodegenerative diseases may be envisaged.
Collapse
Affiliation(s)
| | - Sara Martire
- Department of Biochemical Sciences, Sapienza University Roma, Italy
| | | | - Lisa Beatrice Caruso
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine-Temple University, Philadelphia, USA
| | - Italo Tempera
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine-Temple University, Philadelphia, USA
| | | | - Maddalena Grieco
- Department of Biochemical Sciences, Sapienza University Roma, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University Roma, Italy
| | | | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University Roma, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University Roma, Italy.
| |
Collapse
|
60
|
Maltseva EA, Krasikova YS, Sukhanova MV, Rechkunova NI, Lavrik OI. Replication protein A as a modulator of the poly(ADP-ribose)polymerase 1 activity. DNA Repair (Amst) 2018; 72:28-38. [PMID: 30291044 DOI: 10.1016/j.dnarep.2018.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
Replication protein A contributes to all major pathways of DNA metabolism and is a target for post-translation modifications, including poly(ADP-ribosyl)ation catalyzed by PARP1. Here we demonstrate that the efficiency of RPA poly(ADP-ribosyl)ation strongly depends on the structure of DNA used for PARP1 activation and on the polarity of RPA binding. Moreover, RPA influences PARP1 activity, and this effect also depends on DNA structure: RPA inhibits PAR synthesis catalyzed by PARP1 in the presence of ssDNA and stimulates it in the presence of a DNA duplex, in particular that containing a nick or a gap. Using fluorescently labeled proteins, we showed their direct interaction and characterized it quantitatively. RPA can accelerate the replacement of poly(ADP-ribosyl)ated PARP1 molecules bound to DNA by the unmodified ones. Thus, our data allow us to suggest that the balance between the affinities of PARP1 and RPA for DNA and the interaction of these proteins with each other are the cornerstone of the modulating effect of RPA on PARP1 activity. This effect might contribute to the regulation of PARP1 activity in various DNA processing mechanisms including DNA replication and repair pathways, where both PARP1 and RPA participate.
Collapse
Affiliation(s)
- Ekaterina A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev av. 8, Novosibirsk, 630090, Russia
| | - Yulia S Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev av. 8, Novosibirsk, 630090, Russia
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev av. 8, Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 1 Pirogov Street, Novosibirsk, 630090, Russia
| | - Nadejda I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev av. 8, Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 1 Pirogov Street, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Lavrentiev av. 8, Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 1 Pirogov Street, Novosibirsk, 630090, Russia.
| |
Collapse
|
61
|
McGurk L, Gomes E, Guo L, Mojsilovic-Petrovic J, Tran V, Kalb RG, Shorter J, Bonini NM. Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization. Mol Cell 2018; 71:703-717.e9. [PMID: 30100264 PMCID: PMC6128762 DOI: 10.1016/j.molcel.2018.07.002] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/18/2018] [Accepted: 06/29/2018] [Indexed: 12/27/2022]
Abstract
In amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD), cytoplasmic aggregates of hyperphosphorylated TDP-43 accumulate and colocalize with some stress granule components, but how pathological TDP-43 aggregation is nucleated remains unknown. In Drosophila, we establish that downregulation of tankyrase, a poly(ADP-ribose) (PAR) polymerase, reduces TDP-43 accumulation in the cytoplasm and potently mitigates neurodegeneration. We establish that TDP-43 non-covalently binds to PAR via PAR-binding motifs embedded within its nuclear localization sequence. PAR binding promotes liquid-liquid phase separation of TDP-43 in vitro and is required for TDP-43 accumulation in stress granules in mammalian cells and neurons. Stress granule localization initially protects TDP-43 from disease-associated phosphorylation, but upon long-term stress, stress granules resolve, leaving behind aggregates of phosphorylated TDP-43. Finally, small-molecule inhibition of Tankyrase-1/2 in mammalian cells inhibits formation of cytoplasmic TDP-43 foci without affecting stress granule assembly. Thus, Tankyrase inhibition antagonizes TDP-43-associated pathology and neurodegeneration and could have therapeutic utility for ALS and FTD.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Gomes
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jelena Mojsilovic-Petrovic
- Department of Neurology, Children's Hospital of Philadelphia, Joseph Stokes Jr. Research Institute, Philadelphia, PA 19104, USA
| | - Van Tran
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert G Kalb
- Department of Neurology, Children's Hospital of Philadelphia, Joseph Stokes Jr. Research Institute, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
62
|
Kumbhar R, Vidal-Eychenié S, Kontopoulos DG, Larroque M, Larroque C, Basbous J, Kossida S, Ribeyre C, Constantinou A. Recruitment of ubiquitin-activating enzyme UBA1 to DNA by poly(ADP-ribose) promotes ATR signalling. Life Sci Alliance 2018; 1:e201800096. [PMID: 30456359 PMCID: PMC6238597 DOI: 10.26508/lsa.201800096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 01/23/2023] Open
Abstract
The DNA damage response (DDR) ensures cellular adaptation to genotoxic insults. In the crowded environment of the nucleus, the assembly of productive DDR complexes requires multiple protein modifications. How the apical E1 ubiquitin activation enzyme UBA1 integrates spatially and temporally in the DDR remains elusive. Using a human cell-free system, we show that poly(ADP-ribose) polymerase 1 promotes the recruitment of UBA1 to DNA. We find that the association of UBA1 with poly(ADP-ribosyl)ated protein-DNA complexes is necessary for the phosphorylation replication protein A and checkpoint kinase 1 by the serine/threonine protein kinase ataxia-telangiectasia and RAD3-related, a prototypal response to DNA damage. UBA1 interacts directly with poly(ADP-ribose) via a solvent-accessible and positively charged patch conserved in the Animalia kingdom but not in Fungi. Thus, ubiquitin activation can anchor to poly(ADP-ribose)-seeded protein assemblies, ensuring the formation of functional ataxia-telangiectasia mutated and RAD3-related-signalling complexes.
Collapse
Affiliation(s)
- Ramhari Kumbhar
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Sophie Vidal-Eychenié
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | | | | | - Christian Larroque
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Jihane Basbous
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Sofia Kossida
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France.,IMGT, The International ImMunoGeneTics Information System, Montpellier, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
63
|
Bütepage M, Preisinger C, von Kriegsheim A, Scheufen A, Lausberg E, Li J, Kappes F, Feederle R, Ernst S, Eckei L, Krieg S, Müller-Newen G, Rossetti G, Feijs KLH, Verheugd P, Lüscher B. Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription. Sci Rep 2018; 8:6748. [PMID: 29712969 PMCID: PMC5928194 DOI: 10.1038/s41598-018-25137-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.
Collapse
Affiliation(s)
- Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Alexander von Kriegsheim
- Systems Biology Ireland, Conway Institute, University College Dublin, Dublin 4, Ireland.,Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Eva Lausberg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Institute of Human Genetics, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jinyu Li
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,College of Chemistry, Fuzhou University, 350116, Fuzhou, China
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, No 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, Germany
| | - Sabrina Ernst
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Immunohistochemistry and Confocal Microscopy Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Immunohistochemistry and Confocal Microscopy Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany.,Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
64
|
Michelena J, Altmeyer M. Cell Cycle Resolved Measurements of Poly(ADP-Ribose) Formation and DNA Damage Signaling by Quantitative Image-Based Cytometry. Methods Mol Biol 2018; 1608:57-68. [PMID: 28695503 DOI: 10.1007/978-1-4939-6993-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Formation of poly(ADP-ribose) (PAR) marks intracellular stress signaling and is notably induced upon DNA damage. PAR polymerases (PARPs) catalyze PAR synthesis upon genotoxic stress and thereby recruit multiple proteins to damaged chromatin. PAR induction is transient and antagonized by the action of PAR glycohydrolase (PARG). Given that poly(ADP-ribosyl)ation (PARylation) is involved in genome integrity maintenance and other vital cellular functions, but also in light of the recent approval of PARP inhibitors for cancer treatments, reliable measurements of intracellular PAR formation have gained importance. Here we provide a detailed protocol for PAR measurements by quantitative image-based cytometry. This technique combines the high spatial resolution of single-cell microscopy with the advantages of cell population measurements through automated high-content imaging. Such upscaling of immunofluorescence-based PAR detection not only increases the robustness of the measurements through averaging across large cell populations but also allows for the discrimination of subpopulations and thus enables multivariate measurements of PAR levels and DNA damage signaling. We illustrate how this technique can be used to assess the dynamics of the cellular response to oxidative damage as well as to PARP inhibitor-induced genotoxicity in a cell cycle resolved manner. Due to the possibility to use any automated microscope for quantitative image-based cytometry, the presented method has widespread applicability in the area of PARP biology and beyond.
Collapse
Affiliation(s)
- Jone Michelena
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
65
|
Zhen Y, Yu Y. Proteomic Analysis of the Downstream Signaling Network of PARP1. Biochemistry 2018; 57:429-440. [PMID: 29327913 DOI: 10.1021/acs.biochem.7b01022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Poly-ADP-ribosylation (PARylation) is a protein posttranslational modification (PTM) that is critically involved in many biological processes that are linked to cell stress responses. It is catalyzed by a class of enzymes known as poly-ADP-ribose polymerases (PARPs). In particular, PARP1 is a nuclear protein that is activated upon sensing nicked DNA. Once activated, PARP1 is responsible for the synthesis of a large number of PARylated proteins and initiation of the DNA damage response mechanisms. This observation provided the rationale for developing PARP1 inhibitors for the treatment of human malignancies. Indeed, three PARP1 inhibitors (Olaparib, Rucaparib, and Niraparib) have recently been approved by the Food and Drug Administration for the treatment of ovarian cancer. Moreover, in 2017, both Olaparib and Niraparib have also been approved for the treatment of fallopian tube cancer and primary peritoneal cancer. Despite this very exciting progress in the clinic, the basic signaling mechanism that connects PARP1 to a diverse array of biological processes is still poorly understood. This is, in large part, due to the inherent technical difficulty associated with the analysis of protein PARylation, which is a low-abundance, labile, and heterogeneous PTM. The study of PARylation has been greatly facilitated by the recent advances in mass spectrometry-based proteomic technologies tailored to the analysis of this modification. In this Perspective, we discuss these breakthroughs, including their technical development, and applications that provide a global view of the many biological processes regulated by this important protein modification.
Collapse
Affiliation(s)
- Yuanli Zhen
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| |
Collapse
|
66
|
Ferrara R, Simionato F, Ciccarese C, Grego E, Cingarlini S, Iacovelli R, Bria E, Tortora G, Melisi D. The development of PARP as a successful target for cancer therapy. Expert Rev Anticancer Ther 2017; 18:161-175. [DOI: 10.1080/14737140.2018.1419870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roberto Ferrara
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | - Francesca Simionato
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Chiara Ciccarese
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Elisabetta Grego
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Sara Cingarlini
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Roberto Iacovelli
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Emilio Bria
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giampaolo Tortora
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Davide Melisi
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
67
|
Kochan JA, Desclos EC, Bosch R, Meister L, Vriend LE, van Attikum H, Krawczyk PM. Meta-analysis of DNA double-strand break response kinetics. Nucleic Acids Res 2017; 45:12625-12637. [PMID: 29182755 PMCID: PMC5728399 DOI: 10.1093/nar/gkx1128] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Most proteins involved in the DNA double-strand break response (DSBR) accumulate at the damage sites, where they perform functions related to damage signaling, chromatin remodeling and repair. Over the last two decades, studying the accumulation of many DSBR proteins provided information about their functionality and underlying mechanisms of action. However, comparison and systemic interpretation of these data is challenging due to their scattered nature and differing experimental approaches. Here, we extracted, analyzed and compared the available results describing accumulation of 79 DSBR proteins at sites of DNA damage, which can be further explored using Cumulus (http://www.dna-repair.live/cumulus/)-the accompanying interactive online application. Despite large inter-study variability, our analysis revealed that the accumulation of most proteins starts immediately after damage induction, occurs in parallel and peaks within 15-20 min. Various DSBR pathways are characterized by distinct accumulation kinetics with major non-homologous end joining proteins being generally faster than those involved in homologous recombination, and signaling and chromatin remodeling factors accumulating with varying speeds. Our meta-analysis provides, for the first time, comprehensive overview of the temporal organization of the DSBR in mammalian cells and could serve as a reference for future mechanistic studies of this complex process.
Collapse
Affiliation(s)
- Jakub A. Kochan
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Emilie C.B. Desclos
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ruben Bosch
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Luna Meister
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Lianne E.M. Vriend
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Przemek M. Krawczyk
- Department of Medical Biology and Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
68
|
Vitelli V, Galbiati A, Iannelli F, Pessina F, Sharma S, d'Adda di Fagagna F. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks. Annu Rev Genomics Hum Genet 2017; 18:87-113. [PMID: 28859573 DOI: 10.1146/annurev-genom-091416-035314] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.
Collapse
Affiliation(s)
- Valerio Vitelli
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | | | - Fabio Iannelli
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Fabio Pessina
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Sheetal Sharma
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Fabrizio d'Adda di Fagagna
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy; .,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Pavia 27100, Italy
| |
Collapse
|
69
|
Long A, Klimova N, Kristian T. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics. Neurochem Int 2017; 109:193-201. [PMID: 28302504 DOI: 10.1016/j.neuint.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 12/19/2022]
Abstract
NAD+ catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD+ catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD+ pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics.
Collapse
Affiliation(s)
- Aaron Long
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States
| | - Nina Klimova
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), United States.
| |
Collapse
|
70
|
Klimova N, Long A, Kristian T. Significance of Mitochondrial Protein Post-translational Modifications in Pathophysiology of Brain Injury. Transl Stroke Res 2017; 9:223-237. [DOI: 10.1007/s12975-017-0569-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
|
71
|
Fliegert R, Bauche A, Wolf Pérez AM, Watt JM, Rozewitz MD, Winzer R, Janus M, Gu F, Rosche A, Harneit A, Flato M, Moreau C, Kirchberger T, Wolters V, Potter BVL, Guse AH. 2'-Deoxyadenosine 5'-diphosphoribose is an endogenous TRPM2 superagonist. Nat Chem Biol 2017; 13:1036-1044. [PMID: 28671679 DOI: 10.1038/nchembio.2415] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a ligand-gated Ca2+-permeable nonselective cation channel. Whereas physiological stimuli, such as chemotactic agents, evoke controlled Ca2+ signals via TRPM2, pathophysiological stimuli such as reactive oxygen species and genotoxic stress result in prolonged TRPM2-mediated Ca2+ entry and, consequently, apoptosis. To date, adenosine 5'-diphosphoribose (ADPR) has been assumed to be the main agonist for TRPM2. Here we show that 2'-deoxy-ADPR was a significantly better TRPM2 agonist, inducing 10.4-fold higher whole-cell currents at saturation. Mechanistically, this increased activity was caused by a decreased rate of inactivation and higher average open probability. Using high-performance liquid chromatography (HPLC) and mass spectrometry, we detected endogenous 2'-deoxy-ADPR in Jurkat T lymphocytes. Consistently, cytosolic nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2) and nicotinamide adenine dinucleotide (NAD)-glycohydrolase CD38 sequentially catalyzed the synthesis of 2'-deoxy-ADPR from nicotinamide mononucleotide (NMN) and 2'-deoxy-ATP in vitro. Thus, 2'-deoxy-ADPR is an endogenous TRPM2 superagonist that may act as a cell signaling molecule.
Collapse
Affiliation(s)
- Ralf Fliegert
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Bauche
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Adriana-Michelle Wolf Pérez
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Joanna M Watt
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.,Medicinal Chemistry &Drug Discovery, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Monika D Rozewitz
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Janus
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Feng Gu
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Rosche
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Angelika Harneit
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Flato
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christelle Moreau
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Tanja Kirchberger
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Valerie Wolters
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Barry V L Potter
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.,Medicinal Chemistry &Drug Discovery, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
72
|
Lafon Hughes LI, Romeo Cardeillac CJ, Cal Castillo KB, Vilchez Larrea SC, Sotelo Sosa JR, Folle Ungo GA, Fernández Villamil SH, Kun González AE. Poly(ADP-ribosylation) is present in murine sciatic nerve fibers and is altered in a Charcot-Marie-Tooth-1E neurodegenerative model. PeerJ 2017; 5:e3318. [PMID: 28503382 PMCID: PMC5428328 DOI: 10.7717/peerj.3318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/15/2017] [Indexed: 12/03/2022] Open
Abstract
Background Poly-ADP-ribose (PAR) is a polymer synthesized by poly-ADP-ribose polymerases (PARPs) as a postranslational protein modification and catabolized mainly by poly-ADP-ribose glycohydrolase (PARG). In spite of the existence of cytoplasmic PARPs and PARG, research has been focused on nuclear PARPs and PAR, demonstrating roles in the maintenance of chromatin architecture and the participation in DNA damage responses and transcriptional regulation. We have recently detected non-nuclear PAR structurally and functionally associated to the E-cadherin rich zonula adherens and the actin cytoskeleton of VERO epithelial cells. Myelinating Schwann cells (SC) are stabilized by E-cadherin rich autotypic adherens junctions (AJ). We wondered whether PAR would map to these regions. Besides, we have demonstrated an altered microfilament pattern in peripheral nerves of Trembler-J (Tr-J) model of CMT1-E. We hypothesized that cytoplasmic PAR would accompany such modified F-actin pattern. Methods Wild-type (WT) and Tr-J mice sciatic nerves cryosections were subjected to immunohistofluorescence with anti-PAR antibodies (including antibody validation), F-actin detection with a phalloidin probe and DAPI/DNA counterstaining. Confocal image stacks were subjected to a colocalization highlighter and to semi-quantitative image analysis. Results We have shown for the first time the presence of PAR in sciatic nerves. Cytoplasmic PAR colocalized with F-actin at non-compact myelin regions in WT nerves. Moreover, in Tr-J, cytoplasmic PAR was augmented in close correlation with actin. In addition, nuclear PAR was detected in WT SC and was moderately increased in Tr-J SC. Discussion The presence of PAR associated to non-compact myelin regions (which constitute E-cadherin rich autotypic AJ/actin anchorage regions) and the co-alterations experienced by PAR and the actin cytoskeleton in epithelium and nerves, suggest that PAR may be a constitutive component of AJ/actin anchorage regions. Is PAR stabilizing the AJ-actin complexes? This question has strong implications in structural cell biology and cell signaling networks. Moreover, if PAR played a stabilizing role, such stabilization could participate in the physiological control of axonal branching. PARP and PAR alterations exist in several neurodegenerative pathologies including Alzheimer’s, Parkinson’s and Hungtington’s diseases. Conversely, PARP inhibition decreases PAR and promotes neurite outgrowth in cortical neurons in vitro. Coherently, the PARP inhibitor XAV939 improves myelination in vitro, ex vivo and in vivo. Until now such results have been interpreted in terms of nuclear PARP activity. Our results indicate for the first time the presence of PARylation in peripheral nerve fibers, in a healthy environment. Besides, we have evidenced a PARylation increase in Tr-J, suggesting that the involvement of cytoplasmic PARPs and PARylation in normal and neurodegenerative conditions should be re-evaluated.
Collapse
Affiliation(s)
- Laura I Lafon Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Carlos J Romeo Cardeillac
- Departamento de Proteínas y Acidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Karina B Cal Castillo
- Departamento de Proteínas y Acidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Salomé C Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - José R Sotelo Sosa
- Departamento de Proteínas y Acidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gustavo A Folle Ungo
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Silvia H Fernández Villamil
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra E Kun González
- Departamento de Proteínas y Acidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Departamento de Biología Celular y Molecular, Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
73
|
Knezevic CE, Wright G, Rix LLR, Kim W, Kuenzi BM, Luo Y, Watters JM, Koomen JM, Haura EB, Monteiro AN, Radu C, Lawrence HR, Rix U. Proteome-wide Profiling of Clinical PARP Inhibitors Reveals Compound-Specific Secondary Targets. Cell Chem Biol 2016; 23:1490-1503. [PMID: 27866910 PMCID: PMC5182133 DOI: 10.1016/j.chembiol.2016.10.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/11/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a promising class of targeted cancer drugs, but their individual target profiles beyond the PARP family, which could result in differential clinical use or toxicity, are unknown. Using an unbiased, mass spectrometry-based chemical proteomics approach, we generated a comparative proteome-wide target map of the four clinical PARPi, olaparib, veliparib, niraparib, and rucaparib. PARPi as a class displayed high target selectivity. However, in addition to the canonical targets PARP1, PARP2, and several of their binding partners, we also identified hexose-6-phosphate dehydrogenase (H6PD) and deoxycytidine kinase (DCK) as previously unrecognized targets of rucaparib and niraparib, respectively. Subsequent functional validation suggested that inhibition of DCK by niraparib could have detrimental effects when combined with nucleoside analog pro-drugs. H6PD silencing can cause apoptosis and further sensitize cells to PARPi, suggesting that H6PD may be, in addition to its established role in metabolic disorders, a new anticancer target.
Collapse
Affiliation(s)
- Claire E Knezevic
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Gabriela Wright
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Woosuk Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brent M Kuenzi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Yunting Luo
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - January M Watters
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Caius Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harshani R Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
74
|
Brunyanszki A, Szczesny B, Virág L, Szabo C. Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work. Free Radic Biol Med 2016; 100:257-270. [PMID: 26964508 PMCID: PMC5016203 DOI: 10.1016/j.freeradbiomed.2016.02.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Among multiple members of the poly(ADP-ribose) polymerase (PARP) family, PARP1 accounts for the majority of PARP activity in mammalian cells. Although PARP1 is predominantly localized to the nucleus, and its nuclear regulatory roles are most commonly studied and are the best characterized, several lines of data demonstrate that PARP1 is also present in the mitochondria, and suggest that mitochondrial PARP (mtPARP) plays an important role in the regulation of various cellular functions in health and disease. The goal of the current article is to review the experimental evidence for the mitochondrial localization of PARP1 and its intra-mitochondrial functions, with focus on cellular bioenergetics, mitochondrial DNA repair and mitochondrial dysfunction. In addition, we also propose a working model for the interaction of mitochondrial and nuclear PARP during oxidant-induced cell death. MtPARP is similar to the Wizard of Oz in the sense that it is enigmatic, it has been elusive for a long time and it remains difficult to be interrogated. mtPARP - at least in some cell types - works incessantly "behind the curtains" as an orchestrator of many important cellular functions.
Collapse
Affiliation(s)
- Attila Brunyanszki
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospital for Children, Galveston, TX, USA
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospital for Children, Galveston, TX, USA.
| |
Collapse
|
75
|
Vivelo CA, Wat R, Agrawal C, Tee HY, Leung AKL. ADPriboDB: The database of ADP-ribosylated proteins. Nucleic Acids Res 2016; 45:D204-D209. [PMID: 27507885 PMCID: PMC5210603 DOI: 10.1093/nar/gkw706] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
ADP-ribosylation refers to the addition of one or more ADP-ribose units onto proteins post-translationally. This protein modification is often added by ADP-ribosyltransferases, commonly known as PARPs, but it can also be added by other enzymes, including sirtuins or bacterial toxins. While past literature has utilized a variety of methods to identify ADP-ribosylated proteins, recent proteomics studies bring the power of mass spectrometry to determine sites of the modification. To appreciate the diverse roles of ADP-ribosylation across the proteome, we have created ADPriboDB – a database of ADP-ribosylated proteins (http://ADPriboDB.leunglab.org). Each entry of ADPriboDB is annotated manually by at least two independent curators from the literature between January 1975 and July 2015. The current database includes over 12 400 protein entries from 459 publications, identifying 2389 unique proteins. Here, we describe the structure and the current state of ADPriboDB as well as the criteria for entry inclusion. Using this aggregate data, we identified a statistically significant enrichment of ADP-ribosylated proteins in non-membranous RNA granules. To our knowledge, ADPriboDB is the first publicly available database encapsulating ADP-ribosylated proteins identified from the past 40 years, with a hope to facilitate the research of both basic scientists and clinicians to better understand ADP-ribosylation at the molecular level.
Collapse
Affiliation(s)
- Christina A Vivelo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ricky Wat
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Charul Agrawal
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hui Yi Tee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA .,Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
76
|
Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun 2015; 5:3361. [PMID: 24553445 PMCID: PMC4017859 DOI: 10.1038/ncomms4361] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 01/31/2014] [Indexed: 12/30/2022] Open
Abstract
Homologous recombination (HR) repair deficiency predisposes to cancer development, but also sensitizes cancer cells to DNA damage-inducing therapeutics. Here we identify an HR defect (HRD) gene signature that can be used to functionally assess HR repair status without interrogating individual genetic alterations in cells. By using this HRD gene signature as a functional network analysis tool, we discover that simultaneous loss of two major tumour suppressors BRCA1 and PTEN extensively rewire the HR repair-deficient phenotype, which is found in cells with defects in either BRCA1 or PTEN alone. Moreover, the HRD gene signature serves as an effective drug discovery platform to identify agents targeting HR repair as potential chemo/radio sensitizers. More importantly, this HRD gene signature is able to predict clinical outcomes across multiple cancer lineages. Our findings, therefore, provide a molecular profile of HR repair to assess its status at a functional network level, which can provide both biological insights and have clinical implications in cancer.
Collapse
|
77
|
Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D'Andrea AD. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov 2015. [PMID: 26463832 DOI: 10.1158/2159-8290.cd-15-0714] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Approximately 50% of epithelial ovarian cancers (EOC) exhibit defective DNA repair via homologous recombination (HR) due to genetic and epigenetic alterations of HR pathway genes. Defective HR is an important therapeutic target in EOC as exemplified by the efficacy of platinum analogues in this disease, as well as the advent of PARP inhibitors, which exhibit synthetic lethality when applied to HR-deficient cells. Here, we describe the genotypic and phenotypic characteristics of HR-deficient EOCs, discuss current and emerging approaches for targeting these tumors, and present challenges associated with these approaches, focusing on development and overcoming resistance. SIGNIFICANCE Defective DNA repair via HR is a pivotal vulnerability of EOC, particularly of the high-grade serous histologic subtype. Targeting defective HR offers the unique opportunity of exploiting molecular differences between tumor and normal cells, thereby inducing cancer-specific synthetic lethality; the promise and challenges of these approaches in ovarian cancer are discussed in this review.
Collapse
Affiliation(s)
- Panagiotis A Konstantinopoulos
- Department of Medical Oncology, Medical Gynecologic Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Raphael Ceccaldi
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Early Drug Development Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan D D'Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
78
|
Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D'Andrea AD. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov 2015; 5:1137-54. [PMID: 26463832 DOI: 10.1158/2159-8290.cd-15-0714] [Citation(s) in RCA: 613] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED Approximately 50% of epithelial ovarian cancers (EOC) exhibit defective DNA repair via homologous recombination (HR) due to genetic and epigenetic alterations of HR pathway genes. Defective HR is an important therapeutic target in EOC as exemplified by the efficacy of platinum analogues in this disease, as well as the advent of PARP inhibitors, which exhibit synthetic lethality when applied to HR-deficient cells. Here, we describe the genotypic and phenotypic characteristics of HR-deficient EOCs, discuss current and emerging approaches for targeting these tumors, and present challenges associated with these approaches, focusing on development and overcoming resistance. SIGNIFICANCE Defective DNA repair via HR is a pivotal vulnerability of EOC, particularly of the high-grade serous histologic subtype. Targeting defective HR offers the unique opportunity of exploiting molecular differences between tumor and normal cells, thereby inducing cancer-specific synthetic lethality; the promise and challenges of these approaches in ovarian cancer are discussed in this review.
Collapse
Affiliation(s)
- Panagiotis A Konstantinopoulos
- Department of Medical Oncology, Medical Gynecologic Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Raphael Ceccaldi
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Early Drug Development Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan D D'Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
79
|
Abstract
ADP-ribosylation is a post-translational modification where single units (mono-ADP-ribosylation) or polymeric chains (poly-ADP-ribosylation) of ADP-ribose are conjugated to proteins by ADP-ribosyltransferases. This post-translational modification and the ADP-ribosyltransferases (also known as PARPs) responsible for its synthesis have been found to play a role in nearly all major cellular processes, including DNA repair, transcription, translation, cell signaling, and cell death. Furthermore, dysregulation of ADP-ribosylation has been linked to diseases including cancers, diabetes, neurodegenerative disorders, and heart failure, leading to the development of therapeutic PARP inhibitors, many of which are currently in clinical trials. The study of this therapeutically important modification has recently been bolstered by the application of mass spectrometry-based proteomics, arguably the most powerful tool for the unbiased analysis of protein modifications. Unfortunately, progress has been hampered by the inherent challenges that stem from the physicochemical properties of ADP-ribose, which as a post-translational modification is highly charged, heterogeneous (linear or branched polymers, as well as monomers), labile, and found on a wide range of amino acid acceptors. In this Perspective, we discuss the progress that has been made in addressing these challenges, including the recent breakthroughs in proteomics techniques to identify ADP-ribosylation sites, and future developments to provide a proteome-wide view of the many cellular processes regulated by ADP-ribosylation.
Collapse
Affiliation(s)
- Casey M Daniels
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
80
|
Abstract
Over 50 years ago, the discovery of poly(ADP-ribose) (PAR) set a new field of science in motion-the field of poly(ADP-ribosyl) transferases (PARPs) and ADP-ribosylation. The field is still flourishing today. The diversity of biological processes now known to require PARPs and ADP-ribosylation was practically unimaginable even two decades ago. From an initial focus on DNA damage detection and repair in response to genotoxic stresses, the field has expanded to include the regulation of chromatin structure, gene expression, and RNA processing in a wide range of biological systems, including reproduction, development, aging, stem cells, inflammation, metabolism, and cancer. This special focus issue of Molecular Cell includes a collection of three Reviews, three Perspectives, and a SnapShot, which together summarize the current state of the field and suggest where it may be headed.
Collapse
Affiliation(s)
- W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
81
|
RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev 2015; 23:12-28. [PMID: 25555679 DOI: 10.1016/j.arr.2014.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/04/2023]
Abstract
Genome instability represents a primary hallmark of aging and cancer. RecQL helicases (i.e., RECQL1, WRN, BLM, RECQL4, RECQL5) as well as poly(ADP-ribose) polymerases (PARPs, in particular PARP1) represent two central quality control systems to preserve genome integrity in mammalian cells. Consistently, both enzymatic families have been linked to mechanisms of aging and carcinogenesis in mice and humans. This is in accordance with clinical and epidemiological findings demonstrating that defects in three RecQL helicases, i.e., WRN, BLM, RECQL4, are related to human progeroid and cancer predisposition syndromes, i.e., Werner, Bloom, and Rothmund Thomson syndrome, respectively. Moreover, PARP1 hypomorphy is associated with a higher risk for certain types of cancer. On a molecular level, RecQL helicases and PARP1 are involved in the control of DNA repair, telomere maintenance, and replicative stress. Notably, over the last decade, it became apparent that all five RecQL helicases physically or functionally interact with PARP1 and/or its enzymatic product poly(ADP-ribose) (PAR). Furthermore, a profound body of evidence revealed that the cooperative function of RECQLs and PARP1 represents an important factor for maintaining genome integrity. In this review, we summarize the status quo of this molecular cooperation and discuss open questions that provide a basis for future studies to dissect the cooperative functions of RecQL helicases and PARP1 in aging and carcinogenesis.
Collapse
|
82
|
Abstract
Scaffold proteins play a central role in DNA repair by recruiting and organizing sets of enzymes required to perform multi-step repair processes. X-ray cross complementing group 1 protein (XRCC1) forms enzyme complexes optimized for single-strand break repair, but participates in other repair pathways as well. Available structural data for XRCC1 interactions is summarized and evaluated in terms of its proposed roles in DNA repair. Mutational approaches related to the abrogation of specific XRCC1 interactions are also discussed. Although substantial progress has been made in elucidating the structural basis for XRCC1 function, the molecular mechanisms of XRCC1 recruitment related to several proposed roles of the XRCC1 DNA repair complex remain undetermined.
Collapse
Affiliation(s)
- Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
83
|
Carter-O'Connell I, Cohen MS. Identifying Direct Protein Targets of Poly-ADP-Ribose Polymerases (PARPs) Using Engineered PARP Variants-Orthogonal Nicotinamide Adenine Dinucleotide (NAD+) Analog Pairs. ACTA ACUST UNITED AC 2015; 7:121-39. [PMID: 26344237 DOI: 10.1002/9780470559277.ch140259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poly-ADP-ribose polymerases (PARPs) comprise a family of 17 distinct enzymes that catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to acceptor sites on protein targets. PARPs have been implicated in a number of essential signaling pathways regulating both normal cell function and pathophysiology. To understand the physiological role of each PARP family member in the cell we need to identify the direct targets for each unique PARP in a cellular context. PARP-family member-specific target identification is challenging because of their shared catalytic mechanism and functional redundancy. To address this challenge, we have engineered a PARP variant that efficiently uses an orthogonal NAD+ analog, an analog that endogenous PARPs cannot use, as a substrate for ADP-ribosylation. The protocols in this unit describe a general procedure for using engineered PARP variants-orthogonal NAD+ analog pairs for labeling and identifying the direct targets of the poly-subfamily of PARPs (PARPs 1-3, 5, and 6).
Collapse
Affiliation(s)
- Ian Carter-O'Connell
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Michael S Cohen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
84
|
Lee Y, Kang HC, Lee BD, Lee YI, Kim YP, Shin JH. Poly (ADP-ribose) in the pathogenesis of Parkinson's disease. BMB Rep 2015; 47:424-32. [PMID: 24874851 PMCID: PMC4206713 DOI: 10.5483/bmbrep.2014.47.8.119] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 11/20/2022] Open
Abstract
The defining feature of Parkinson's disease is a progressive and selective demise of dopaminergic neurons. A recent report on Parkinson's disease animal model demonstrates that poly (ADP-ribose) (PAR) dependent cell death, also named parthanatos, is accountable for selective dopaminergic neuronal loss. Parthanatos is a programmed necrotic cell death, characterized by PARP1 activation, apoptosis inducing factor (AIF) nuclear translocation, and large scale DNA fragmentation. Besides cell death regulation via interaction with AIF, PAR molecule mediates diverse cellular processes including genomic stability, cell division, transcription, epigenetic regulation, and stress granule formation. In this review, we will discuss the roles of PARP1 activation and PAR molecules in the pathological processes of Parkinson's disease. Potential interaction between PAR molecule and Parkinson's disease protein interactome are briefly introduced. Finally, we suggest promising points of therapeutic intervention in the pathological PAR signaling cascade to halt progression in Parkinson's disease.
Collapse
Affiliation(s)
- Yunjong Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering; Departments of Physiology, and Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ho Chul Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering; Departments of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Ajou University School of Medicine, Suwon 443-721, Korea
| | - Byoung Dae Lee
- Neurodegeneration Control Research Center, Department of Neuroscience, Kyung Hee University, Seoul 130-701, Korea
| | - Yun-Il Lee
- Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT), Suwon 443-803, Korea
| | - Young Pil Kim
- Department of Bio-Engineering, Life Science RD Center, Sinil Pharmaceutical Co., Seoul 462-807, Korea
| | - Joo-Ho Shin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering; Departments of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, Korea
| |
Collapse
|
85
|
Abstract
Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.
Collapse
|
86
|
Scott CL, Swisher EM, Kaufmann SH. Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol 2015; 33:1397-406. [PMID: 25779564 PMCID: PMC4517072 DOI: 10.1200/jco.2014.58.8848] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising activity in epithelial ovarian cancers, especially relapsed platinum-sensitive high-grade serous disease. Consistent with preclinical studies, ovarian cancers and a number of other solid tumor types occurring in patients with deleterious germline mutations in BRCA1 or BRCA2 seem to be particularly sensitive. However, it is also becoming clear that germline BRCA1/2 mutations are neither necessary nor sufficient for patients to derive benefit from PARP inhibitors. We provide an update on PARP inhibitor clinical development, describe recent advances in our understanding of PARP inhibitor mechanism of action, and discuss current issues in the development of these agents.
Collapse
Affiliation(s)
- Clare L Scott
- Clare L. Scott, Walter and Eliza Hall Institute of Medical Research and Royal Melbourne Hospital, Parkville, Victoria, Australia; Elizabeth M. Swisher, University of Washington, Seattle, WA; and Scott H. Kaufmann, Mayo Clinic, Rochester, MN
| | - Elizabeth M Swisher
- Clare L. Scott, Walter and Eliza Hall Institute of Medical Research and Royal Melbourne Hospital, Parkville, Victoria, Australia; Elizabeth M. Swisher, University of Washington, Seattle, WA; and Scott H. Kaufmann, Mayo Clinic, Rochester, MN
| | - Scott H Kaufmann
- Clare L. Scott, Walter and Eliza Hall Institute of Medical Research and Royal Melbourne Hospital, Parkville, Victoria, Australia; Elizabeth M. Swisher, University of Washington, Seattle, WA; and Scott H. Kaufmann, Mayo Clinic, Rochester, MN.
| |
Collapse
|
87
|
Naro C, Bielli P, Pagliarini V, Sette C. The interplay between DNA damage response and RNA processing: the unexpected role of splicing factors as gatekeepers of genome stability. Front Genet 2015; 6:142. [PMID: 25926848 PMCID: PMC4397863 DOI: 10.3389/fgene.2015.00142] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 12/22/2022] Open
Abstract
Genome integrity is constantly threatened by endogenous and exogenous factors. However, its preservation is ensured by a network of pathways that prevent and/or repair the lesion, which constitute the DNA damage response (DDR). Expression of the key proteins involved in the DDR is controlled by numerous post-transcriptional mechanisms, among which pre-mRNA splicing stands out. Intriguingly, several splicing factors (SFs) have been recently shown to play direct functions in DNA damage prevention and repair, which go beyond their expected splicing activity. At the same time, evidence is emerging that DNA repair proteins (DRPs) can actively sustain the DDR by acting as post-transcriptional regulator of gene expression, in addition to their well-known role in the mechanisms of signaling and repair of the lesion. Herein, we will review these non-canonical functions of both SFs and DRPs, which suggest the existence of a tight interplay between splicing regulation and canonical DNA safeguard mechanisms ensuring genome stability.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| |
Collapse
|
88
|
Duer MJ. The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:98-110. [PMID: 25797009 DOI: 10.1016/j.jmr.2014.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/15/2014] [Accepted: 12/23/2014] [Indexed: 05/06/2023]
Abstract
Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.
Collapse
Affiliation(s)
- Melinda J Duer
- Dept. of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
89
|
Ryu KW, Kim DS, Kraus WL. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev 2015; 115:2453-81. [PMID: 25575290 PMCID: PMC4378458 DOI: 10.1021/cr5004248] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Keun Woo Ryu
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dae-Seok Kim
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - W. Lee Kraus
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
90
|
Gagné JP, Ethier C, Defoy D, Bourassa S, Langelier MF, Riccio AA, Pascal JM, Moon KM, Foster LJ, Ning Z, Figeys D, Droit A, Poirier GG. Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs. DNA Repair (Amst) 2015; 30:68-79. [PMID: 25800440 DOI: 10.1016/j.dnarep.2015.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 12/13/2022]
Abstract
An important feature of poly(ADP-ribose) polymerases (PARPs) is their ability to readily undergo automodification upon activation. Although a growing number of substrates were found to be poly(ADP-ribosyl)ated, including histones and several DNA damage response factors, PARPs themselves are still considered as the main acceptors of poly(ADP-ribose). By monitoring spectral counts of specific hydroxamic acid signatures generated after the conversion of the ADP-ribose modification onto peptides by hydroxylamine hydrolysis, we undertook a thorough mass spectrometry mapping of the glutamate and aspartate ADP-ribosylation sites onto automodified PARP-1, PARP-2 and PARP-3. Thousands of hydroxamic acid-conjugated peptides were identified with high confidence and ranked based on their spectral count. This semi-quantitative approach allowed us to locate the preferentially targeted residues in DNA-dependent PARPs. In contrast to what has been reported in the literature, automodification of PARP-1 is not predominantly targeted towards its BRCT domain. Our results show that interdomain linker regions that connect the BRCT to the WGR module and the WGR to the PRD domain undergo prominent ADP-ribosylation during PARP-1 automodification. We also found that PARP-1 efficiently automodifies the D-loop structure within its own catalytic fold. Interestingly, additional major ADP-ribosylation sites were identified in functional domains of PARP-1, including all three zinc fingers. Similar to PARP-1, specific residues located within the catalytic sites of PARP-2 and PARP-3 are major targets of automodification following their DNA-dependent activation. Together our results suggest that poly(ADP-ribosyl)ation hot spots make a dominant contribution to the overall automodification process.
Collapse
Affiliation(s)
- Jean-Philippe Gagné
- Centre de recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Chantal Ethier
- Centre de recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Daniel Defoy
- Plateforme Protéomique du Centre de Recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Sylvie Bourassa
- Plateforme Protéomique du Centre de Recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Marie-France Langelier
- Department of Biochemistry & Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Amanda A Riccio
- Department of Biochemistry & Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - John M Pascal
- Department of Biochemistry & Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Centre for High-Throughput Biology, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Centre for High-Throughput Biology, Vancouver, British Columbia, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Arnaud Droit
- Plateforme Protéomique du Centre de Recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Guy G Poirier
- Centre de recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada.
| |
Collapse
|
91
|
Rodríguez MI, Majuelos-Melguizo J, Martí Martín-Consuegra JM, Ruiz de Almodóvar M, López-Rivas A, Javier Oliver F. Deciphering the insights of poly(ADP-ribosylation) in tumor progression. Med Res Rev 2015; 35:678-97. [PMID: 25604534 DOI: 10.1002/med.21339] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are particularly efficient against tumors with defects in the homologous recombination repair pathway. Nonetheless poly(ADP-ribosylation) (PARylation) modulates prometastasic activities and adaptation of tumor to a hostile microenvironment. Modulation of metastasis-promoting traits is possible through the alteration of key transcription factors involved in the regulation of the hypoxic response, the recruitment of new vessels (or angiogenesis), and the stimulation of epithelial to mesenchymal transition (EMT). In this review, we summarized some of the findings that focalize on PARP-1's action on tumor aggressiveness, suggesting new therapeutic opportunities against an assembly of tumors not necessarily bearing DNA repair defects. Metastasis accounts for the vast majority of mortality derived from solid cancer. PARP-1 is an active player in tumor adaptation to metastasis and PARP inhibitors, recognized as promising therapeutic agents against homologous recombination deficient tumors, has novel properties responsible for the antimetastatic actions in different tumor settings.
Collapse
Affiliation(s)
- María Isabel Rodríguez
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | - Jara Majuelos-Melguizo
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | | | | | - Abelardo López-Rivas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Sevilla, Spain, 41092
| | | |
Collapse
|
92
|
Vivelo CA, Leung AKL. Proteomics approaches to identify mono-(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins. Proteomics 2014; 15:203-17. [PMID: 25263235 DOI: 10.1002/pmic.201400217] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/17/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022]
Abstract
ADP-ribosylation refers to the addition of one or more ADP-ribose units onto protein substrates and this protein modification has been implicated in various cellular processes including DNA damage repair, RNA metabolism, transcription, and cell cycle regulation. This review focuses on a compilation of large-scale proteomics studies that identify ADP-ribosylated proteins and their associated proteins by MS using a variety of enrichment strategies. Some methods, such as the use of a poly(ADP-ribose)-specific antibody and boronate affinity chromatography and NAD(+) analogues, have been employed for decades while others, such as the use of protein microarrays and recombinant proteins that bind ADP-ribose moieties (such as macrodomains), have only recently been developed. The advantages and disadvantages of each method and whether these methods are specific for identifying mono(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins will be discussed. Lastly, since poly(ADP-ribose) is heterogeneous in length, it has been difficult to attain a mass signature associated with the modification sites. Several strategies on how to reduce polymer chain length heterogeneity for site identification will be reviewed.
Collapse
Affiliation(s)
- Christina A Vivelo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
93
|
Kim IK, Stegeman RA, Brosey CA, Ellenberger T. A quantitative assay reveals ligand specificity of the DNA scaffold repair protein XRCC1 and efficient disassembly of complexes of XRCC1 and the poly(ADP-ribose) polymerase 1 by poly(ADP-ribose) glycohydrolase. J Biol Chem 2014; 290:3775-83. [PMID: 25477519 DOI: 10.1074/jbc.m114.624718] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The posttranslational modification of proteins with poly(ADP-ribose) (PAR) regulates protein-protein interactions in DNA repair, gene expression, chromatin structure, and cell fate determination. The PAR polymerase PARP1 binds to damaged chromatin and synthesizes PAR chains to signal DNA damage and recruit the DNA repair scaffold, XRCC1. Pharmacological blockade of PARP1 enzymatic activity impairs XRCC1-dependent repair of DNA damage and selectively kills cancer cells lacking other DNA repair functions. As such, PARP inhibitors are promising new therapies for repair-deficient tumors such as BRCA mutated breast cancers. Although the XRCC1-PARP1 complex is relevant to the proposed therapeutic mechanism of PARP inhibitors, the physical makeup and dynamics of this complex are not well characterized at the molecular level. Here we describe a fluorescence-based, real-time assay that quantitatively monitors interactions between PARylated PARP1 and XRCC1. Using this assay, we show that the PAR posttranslational modification by itself is a high affinity ligand for XRCC1, requiring a minimum chain length of 7 ADP-ribose units in the oligo(ADP-ribose) ligand for a stable interaction with XRCC1. This discrete binding interface enables the PAR glycohydrolase (PARG) to completely disassemble the PARP1-XRCC1 complex without assistance from a mono(ADP-ribose) glycohydrolase. Our quantitative, real-time assay of PAR-dependent protein-protein interactions and PAR turnover by PARG is an excellent tool for high-throughput screening to identify pharmacological modulators of PAR metabolism that may be useful therapeutic alternatives to PARP inhibitors.
Collapse
Affiliation(s)
- In-Kwon Kim
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Roderick A Stegeman
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Chris A Brosey
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tom Ellenberger
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
94
|
Lafon-Hughes L, Vilchez Larrea SC, Kun A, Fernández Villamil SH. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt. PeerJ 2014; 2:e617. [PMID: 25332845 PMCID: PMC4201144 DOI: 10.7717/peerj.617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/22/2014] [Indexed: 12/18/2022] Open
Abstract
Poly-ADP-ribose (PAR) is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs) and degraded by poly-ADP-ribose-glycohydrolase (PARG). Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair). Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt). In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO). PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE) , Montevideo , Uruguay
| | - Salomé C Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires , Argentina
| | - Alejandra Kun
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE) , Montevideo , Uruguay ; Departamento de Biología Celular y Molecular, Sección Bioquímica, Facultad de Ciencias, Universidad de la República , Montevideo , Uruguay
| | - Silvia H Fernández Villamil
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires , Argentina ; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires , Argentina
| |
Collapse
|
95
|
ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep 2014; 8:1819-1831. [PMID: 25220464 DOI: 10.1016/j.celrep.2014.08.036] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 12/31/2022] Open
Abstract
ARTD1 (PARP1) is a key enzyme involved in DNA repair through the synthesis of poly(ADP-ribose) (PAR) in response to strand breaks, and it plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD(+) depletion and ATP loss; however, the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we compared the effects of ARTD1 activation and direct NAD(+) depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD(+) depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics-based PAR interactome after DNA damage and identified hexokinase 1 (HK1) as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing insight into the importance of nucleus-to-mitochondria communication via ARTD1 activation.
Collapse
|
96
|
|
97
|
Meng XW, Koh BD, Zhang JS, Flatten KS, Schneider PA, Billadeau DD, Hess AD, Smith BD, Karp JE, Kaufmann SH. Poly(ADP-ribose) polymerase inhibitors sensitize cancer cells to death receptor-mediated apoptosis by enhancing death receptor expression. J Biol Chem 2014; 289:20543-58. [PMID: 24895135 PMCID: PMC4110268 DOI: 10.1074/jbc.m114.549220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/30/2014] [Indexed: 12/21/2022] Open
Abstract
Recombinant human tumor necrosis factor-α-related apoptosis inducing ligand (TRAIL), agonistic monoclonal antibodies to TRAIL receptors, and small molecule TRAIL receptor agonists are in various stages of preclinical and early phase clinical testing as potential anticancer drugs. Accordingly, there is substantial interest in understanding factors that affect sensitivity to these agents. In the present study we observed that the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and veliparib sensitize the myeloid leukemia cell lines ML-1 and K562, the ovarian cancer line PEO1, non-small cell lung cancer line A549, and a majority of clinical AML isolates, but not normal marrow, to TRAIL. Further analysis demonstrated that PARP inhibitor treatment results in activation of the FAS and TNFRSF10B (death receptor 5 (DR5)) promoters, increased Fas and DR5 mRNA, and elevated cell surface expression of these receptors in sensitized cells. Chromatin immunoprecipitation demonstrated enhanced binding of the transcription factor Sp1 to the TNFRSF10B promoter in the presence of PARP inhibitor. Knockdown of PARP1 or PARP2 (but not PARP3 and PARP4) not only increased expression of Fas and DR5 at the mRNA and protein level, but also recapitulated the sensitizing effects of the PARP inhibition. Conversely, Sp1 knockdown diminished the PARP inhibitor effects. In view of the fact that TRAIL is part of the armamentarium of natural killer cells, these observations identify a new facet of PARP inhibitor action while simultaneously providing the mechanistic underpinnings of a novel therapeutic combination that warrants further investigation.
Collapse
Affiliation(s)
- X. Wei Meng
- From the Division of Oncology Research and
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905 and
| | | | | | | | | | | | - Allan D. Hess
- the Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland 21205
| | - B. Douglas Smith
- the Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland 21205
| | - Judith E. Karp
- the Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland 21205
| | - Scott H. Kaufmann
- From the Division of Oncology Research and
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905 and
| |
Collapse
|
98
|
Fischer JMF, Popp O, Gebhard D, Veith S, Fischbach A, Beneke S, Leitenstorfer A, Bergemann J, Scheffner M, Ferrando-May E, Mangerich A, Bürkle A. Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function. FEBS J 2014; 281:3625-41. [PMID: 24953096 PMCID: PMC4160017 DOI: 10.1111/febs.12885] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 01/02/2023]
Abstract
Poly(ADP‐ribose) (PAR) is a complex and reversible post‐translational modification that controls protein function and localization through covalent modification of, or noncovalent binding to target proteins. Previously, we and others characterized the noncovalent, high‐affinity binding of the key nucleotide excision repair (NER) protein XPA to PAR. In the present study, we address the functional relevance of this interaction. First, we confirm that pharmacological inhibition of cellular poly(ADP‐ribosyl)ation (PARylation) impairs NER efficacy. Second, we demonstrate that the XPA–PAR interaction is mediated by specific basic amino acids within a highly conserved PAR‐binding motif, which overlaps the DNA damage‐binding protein 2 (DDB2) and transcription factor II H (TFIIH) interaction domains of XPA. Third, biochemical studies reveal a mutual regulation of PARP1 and XPA functions showing that, on the one hand, the XPA–PAR interaction lowers the DNA binding affinity of XPA, whereas, on the other hand, XPA itself strongly stimulates PARP1 enzymatic activity. Fourth, microirradiation experiments in U2OS cells demonstrate that PARP inhibition alters the recruitment properties of XPA‐green fluorescent protein to sites of laser‐induced DNA damage. In conclusion, our results reveal that XPA and PARP1 regulate each other in a reciprocal and PAR‐dependent manner, potentially acting as a fine‐tuning mechanism for the spatio‐temporal regulation of the two factors during NER.
Collapse
Affiliation(s)
- Jan M F Fischer
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Britton S, Dernoncourt E, Delteil C, Froment C, Schiltz O, Salles B, Frit P, Calsou P. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 2014; 42:9047-62. [PMID: 25030905 PMCID: PMC4132723 DOI: 10.1093/nar/gku601] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We previously identified the heterogeneous ribonucleoprotein SAF-A/hnRNP U as a substrate for DNA-PK, a protein kinase involved in DNA damage response (DDR). Using laser micro-irradiation in human cells, we report here that SAF-A exhibits a two-phase dynamics at sites of DNA damage, with a rapid and transient recruitment followed by a prolonged exclusion. SAF-A recruitment corresponds to its binding to Poly(ADP-ribose) while its exclusion is dependent on the activity of ATM, ATR and DNA-PK and reflects the dissociation from chromatin of SAF-A associated with ongoing transcription. Having established that SAF-A RNA-binding domain recapitulates SAF-A dynamics, we show that this domain is part of a complex comprising several mRNA biogenesis proteins of which at least two, FUS/TLS and TAFII68/TAF15, exhibit similar biphasic dynamics at sites of damage. Using an original reporter for live imaging of DNA:RNA hybrids (R-loops), we show a transient transcription-dependent accumulation of R-loops at sites of DNA damage that is prolonged upon inhibition of RNA biogenesis factors exclusion. We propose that a new component of the DDR is an active anti-R-loop mechanism operating at damaged transcribed sites which includes the exclusion of mRNA biogenesis factors such as SAF-A, FUS and TAF15.
Collapse
Affiliation(s)
- Sébastien Britton
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Emma Dernoncourt
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Christine Delteil
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Carine Froment
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Odile Schiltz
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Bernard Salles
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Philippe Frit
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Patrick Calsou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe Labellisée Ligue Nationale Contre le Cancer
| |
Collapse
|
100
|
Sriram CS, Jangra A, Kasala ER, Bodduluru LN, Bezbaruah BK. Targeting poly(ADP-ribose)polymerase1 in neurological diseases: A promising trove for new pharmacological interventions to enter clinical translation. Neurochem Int 2014; 76:70-81. [PMID: 25049175 DOI: 10.1016/j.neuint.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022]
Abstract
The highly conserved abundant nuclear protein poly(ADP-ribose)polymerase1 (PARP1) functions at the center of cellular stress response and is mainly implied in DNA damage repair mechanism. Apart from its involvement in DNA damage repair, it does sway multiple vital cellular processes such as cell death pathways, cell aging, insulator function, chromatin modification, transcription and mitotic apparatus function. Since brain is the principal organ vulnerable to oxidative stress and inflammatory responses, upon stress encounters robust DNA damage can occur and intense PARP1 activation may result that will lead to various CNS diseases. In the context of soaring interest towards PARP1 as a therapeutic target for newer pharmacological interventions, here in the present review, we are attempting to give a silhouette of the role of PARP1 in the neurological diseases and the potential of its inhibitors to enter clinical translation, along with its structural and functional aspects.
Collapse
Affiliation(s)
- Chandra Shekhar Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India.
| | - Ashok Jangra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| | - Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| | - Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| | - Babul Kumar Bezbaruah
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India; Department of Pharmacology, III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| |
Collapse
|