51
|
Gao RF, Wang JY, Liu KW, Wang ZW, Zhang D, Zhao X, Zhong WY, Tsai WC, Liu ZJ, Zhang GM. Comparative analysis of Phytophthora genomes data. Data Brief 2021; 39:107663. [PMID: 34926741 PMCID: PMC8649214 DOI: 10.1016/j.dib.2021.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/05/2022] Open
Abstract
The data presented here are related to the article entitled “Comparative analysis of Phytophthora genomes reveals oomycete pathogenesis in crops” [1]. These data contain the description of genomic structure of the two plant pathogens, P. fragariae and P. rubi and characterize several gene families associated with pathogenicity of them: P450, ACX gene families, CAZymes and effector. This data presents the relevant results of two newly sequenced P. fragariae and P. rubi, so as to provide data for further studies by researchers.
Collapse
Affiliation(s)
- Rui-Fang Gao
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen 518045, China.,Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China
| | - Jie-Yu Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ke-Wei Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhi-Wen Wang
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Zhao
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | | | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan.,Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.,Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, 250100, Jinan, China.,Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Gui-Ming Zhang
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen 518045, China.,Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China
| |
Collapse
|
52
|
Luan C, Cao W, Luo N, Tu J, Hao J, Bao Y, Hao F, Wang D, Jiang X. Genomic Insights into the Adaptability of the Spoilage Bacterium Lactobacillus acetotolerans CN247 to the Beer Microenvironment. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1997280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chunguang Luan
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Weihua Cao
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
- Department of Food Science, Northeast Forestry University, Harbin, China
| | - Na Luo
- Guangzhou Pearl River Brewery Co., Ltd, Guangzhou, China
| | - Jingxia Tu
- Guangzhou Pearl River Brewery Co., Ltd, Guangzhou, China
| | - Jianqin Hao
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Yihong Bao
- Department of Food Science, Northeast Forestry University, Harbin, China
| | - Feike Hao
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Deliang Wang
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Xin Jiang
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
| |
Collapse
|
53
|
Dumartinet T, Ravel S, Roussel V, Perez-Vicente L, Aguayo J, Abadie C, Carlier J. Complex adaptive architecture underlies adaptation to quantitative host resistance in a fungal plant pathogen. Mol Ecol 2021; 31:1160-1179. [PMID: 34845779 DOI: 10.1111/mec.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Plant pathogens often adapt to plant genetic resistance so characterization of the architecture underlying such an adaptation is required to understand the adaptive potential of pathogen populations. Erosion of banana quantitative resistance to a major leaf disease caused by polygenic adaptation of the causal agent, the fungus Pseudocercospora fijiensis, was recently identified in the northern Caribbean region. Genome scan and quantitative genetics approaches were combined to investigate the adaptive architecture underlying this adaptation. Thirty-two genomic regions showing host selection footprints were identified by pool sequencing of isolates collected from seven plantation pairs of two cultivars with different levels of quantitative resistance. Individual sequencing and phenotyping of isolates from one pair revealed significant and variable levels of correlation between haplotypes in 17 of these regions with a quantitative trait of pathogenicity (the diseased leaf area). The multilocus pattern of haplotypes detected in the 17 regions was found to be highly variable across all the population pairs studied. These results suggest complex adaptive architecture underlying plant pathogen adaptation to quantitative resistance with a polygenic basis, redundancy, and a low level of parallel evolution between pathogen populations. Candidate genes involved in quantitative pathogenicity and host adaptation of P. fijiensis were identified in genomic regions by combining annotation analysis with available biological data.
Collapse
Affiliation(s)
- Thomas Dumartinet
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Sébastien Ravel
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Véronique Roussel
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | | | - Jaime Aguayo
- ANSES, Laboratoire de la Santé des Végétaux (LSV), Unité de Mycologie, Malzéville, France
| | - Catherine Abadie
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Jean Carlier
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
54
|
Urban M, Cuzick A, Seager J, Wood V, Rutherford K, Venkatesh SY, Sahu J, Iyer SV, Khamari L, De Silva N, Martinez MC, Pedro H, Yates AD, Hammond-Kosack KE. PHI-base in 2022: a multi-species phenotype database for Pathogen-Host Interactions. Nucleic Acids Res 2021; 50:D837-D847. [PMID: 34788826 PMCID: PMC8728202 DOI: 10.1093/nar/gkab1037] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Since 2005, the Pathogen–Host Interactions Database (PHI-base) has manually curated experimentally verified pathogenicity, virulence and effector genes from fungal, bacterial and protist pathogens, which infect animal, plant, fish, insect and/or fungal hosts. PHI-base (www.phi-base.org) is devoted to the identification and presentation of phenotype information on pathogenicity and effector genes and their host interactions. Specific gene alterations that did not alter the in host interaction phenotype are also presented. PHI-base is invaluable for comparative analyses and for the discovery of candidate targets in medically and agronomically important species for intervention. Version 4.12 (September 2021) contains 4387 references, and provides information on 8411 genes from 279 pathogens, tested on 228 hosts in 18, 190 interactions. This provides a 24% increase in gene content since Version 4.8 (September 2019). Bacterial and fungal pathogens represent the majority of the interaction data, with a 54:46 split of entries, whilst protists, protozoa, nematodes and insects represent 3.6% of entries. Host species consist of approximately 54% plants and 46% others of medical, veterinary and/or environmental importance. PHI-base data is disseminated to UniProtKB, FungiDB and Ensembl Genomes. PHI-base will migrate to a new gene-centric version (version 5.0) in early 2022. This major development is briefly described.
Collapse
Affiliation(s)
- Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Alayne Cuzick
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - James Seager
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Valerie Wood
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Kim Rutherford
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Jashobanta Sahu
- Molecular Connections, Kandala Mansions, Kariappa Road, Basavanagudi, Bengaluru 560 004, India
| | - S Vijaylakshmi Iyer
- Molecular Connections, Kandala Mansions, Kariappa Road, Basavanagudi, Bengaluru 560 004, India
| | - Lokanath Khamari
- Molecular Connections, Kandala Mansions, Kariappa Road, Basavanagudi, Bengaluru 560 004, India
| | - Nishadi De Silva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Manuel Carbajo Martinez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Helder Pedro
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrew D Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
55
|
Identification of FadT as a Novel Quorum Quenching Enzyme for the Degradation of Diffusible Signal Factor in Cupriavidus pinatubonensis Strain HN-2. Int J Mol Sci 2021; 22:ijms22189862. [PMID: 34576026 PMCID: PMC8467058 DOI: 10.3390/ijms22189862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is a microbial cell–cell communication mechanism and plays an important role in bacterial infections. QS-mediated bacterial infections can be blocked through quorum quenching (QQ), which hampers signal accumulation, recognition, and communication. The pathogenicity of numerous bacteria, including Xanthomonas campestris pv. campestris (Xcc), is regulated by diffusible signal factor (DSF), a well-known fatty acid signaling molecule of QS. Cupriavidus pinatubonensis HN-2 could substantially attenuate the infection of XCC through QQ by degrading DSF. The QQ mechanism in strain HN-2, on the other hand, is yet to be known. To understand the molecular mechanism of QQ in strain HN-2, we used whole-genome sequencing and comparative genomics studies. We discovered that the fadT gene encodes acyl-CoA dehydrogenase as a novel QQ enzyme. The results of site-directed mutagenesis demonstrated the requirement of fadT gene for DSF degradation in strain HN-2. Purified FadT exhibited high enzymatic activity and outstanding stability over a broad pH and temperature range with maximal activity at pH 7.0 and 35 °C. No cofactors were required for FadT enzyme activity. The enzyme showed a strong ability to degrade DSF. Furthermore, the expression of fadT in Xcc results in a significant reduction in the pathogenicity in host plants, such as Chinese cabbage, radish, and pakchoi. Taken together, our results identified a novel DSF-degrading enzyme, FadT, in C. pinatubonensis HN-2, which suggests its potential use in the biological control of DSF-mediated pathogens.
Collapse
|
56
|
Complete Genomic Characterization and Identification of Saccharomycopsisphalluae sp. nov., a Novel Pathogen Causes Yellow Rot Disease on Phallus rubrovolvatus. J Fungi (Basel) 2021; 7:jof7090707. [PMID: 34575745 PMCID: PMC8468998 DOI: 10.3390/jof7090707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
“Hongtuozhusun” (Phallus rubrovolvatus) is an important edible and medicinal mushroom endemic to Southwest China. However, yellow rot disease is a severe disease of P. rubrovolvatus that occurs extensively in Guizhou Province. It has caused major economic losses and hinders the development of the P. rubrovolvatus industry. In this study, 28 microorganism strains were isolated from diseased fruiting bodies of P. rubrovolvatus at various stages, two of which were confirmed to be pathogenic based on Koch’s postulates. These two strains are introduced herein as Saccharomycopsisphalluae sp. nov. based on morphological, physiological, and molecular analysis. We reported a high-quality de novo sequencing and assembly of the S. phalluae genome using single-molecule real-time sequencing technology. The whole genome was approximately 14.148 Mb with a G+C content of 43.55%. Genome assembly generated 8 contigs with an N50 length of 1,822,654 bp. The genome comprised 5966 annotated protein-coding genes. This is the first report of mushroom disease caused by Saccharomycopsis species. We expect that the information on genome properties, particularly in pathogenicity-related genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.
Collapse
|
57
|
Sheoran N, Ganesan P, Mughal NM, Yadav IS, Kumar A. Genome assisted molecular typing and pathotyping of rice blast pathogen, Magnaporthe oryzae, reveals a genetically homogenous population with high virulence diversity. Fungal Biol 2021; 125:733-747. [PMID: 34420700 DOI: 10.1016/j.funbio.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/25/2023]
Abstract
Genome sequence-driven molecular typing tools have the potential to uncover the population biology and genetic diversity of rapidly evolving plant pathogens like Magnaporthe oryzae. Here, we report a new molecular typing technique -a digitally portable tool for population genetic analysis of M. oryzae to decipher the genetic diversity. Our genotyping tool exploiting allelic variations in housekeeping and virulence genes coupled with pathotyping revealed a prevalence of genetically homogenous populations within a single-field and plant niches such as leaf and panicle. The M. oryzae inciting leaf-blast and panicle-blast were confirmed to be genetically identical with no or minor nucleotide polymorphism in 17 genomic loci analyzed. Genetic loci such as Mlc1, Mpg1, Mps1, Slp1, Cal, Ef-Tu, Pfk, and Pgk were highly polymorphic as indicated by the haplotype-diversity, the number of polymorphic sites, and the number of mutations. The genetically homogenous single field population showed high virulence variability or diversity on monogenic rice differentials. The study indicated that the genetic similarity displayed by the isolates collected from a particular geographical location had no consequence on their virulence pattern on rice differentials carrying single/multiple resistance genes. The data on virulence diversity showed by the identical Sequence Types (STs) is indicative of no congruence between polymorphic virulence genes-based pathotyping and conserved housekeeping genes-based genotyping.
Collapse
Affiliation(s)
- Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Najeeb M Mughal
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, India.
| | - Inderjit Singh Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
58
|
Zan S, Lv J, Li Z, Cai Y, Wang Z, Wang J. Genomic insights into Pseudoalteromonas sp. JSTW coping with petroleum-heavy metals combined pollution. J Basic Microbiol 2021; 61:947-957. [PMID: 34387369 DOI: 10.1002/jobm.202100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/02/2021] [Accepted: 08/08/2021] [Indexed: 11/05/2022]
Abstract
Worldwide marine compound contamination by petroleum products and heavy metals is a burgeoning environmental concern. Pseudoalteromonas, prevalently distributed in marine environment, has been proven to degrade petroleum and plays an essential role in the fate of oil pollution under the combined pollution. Nevertheless, the research on the reference genes is still incomplete. Therefore, this study aims to thoroughly investigate the reference genes represented by Pseudoalteromonas sp. JSTW via whole-genome sequencing. Next-generation sequencing technology unfolded a genome of 4,026,258 bp, database including Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to annotate the genes and metabolic pathways conferring to petroleum hydrocarbon degradation. The results show that common alkane and aromatic hydrocarbon degradation genes (alkB, ligB, yqhD, and ladA), chemotaxis gene (MCP, cheA, cheB, pcaY, and pcaR), heavy-metal resistance, and biofilm genes (σ54, merC, pcoA, copB, etc.) were observed in whole-genome sequence (WGS) of JSTW, which indicated that strain JSTW could potentially cope with combined pollution. The degradation efficiency of naphthalene in 60 h by JSTW was 99% without Cu2+ and 67% with 400 mg L-1 Cu2+ . Comparative genome analysis revealed that genomes of Pseudoalteromonas lipolytica strain LEMB 39 and Pseudoalteromonas donghaensis strain HJ51 shared similarity with strain JSTW, suggesting they are also the potential degradater of petroleum hydrocarbons under combined pollution. Therefore, this study provides a WGS annotation and reveals the mechanism of response to combined pollution of Pseudoalteromonas sp. JSTW.
Collapse
Affiliation(s)
- Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Jingping Lv
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yingxue Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Zongcheng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
59
|
Salgado-Salazar C, Skaltsas DN, Phipps T, Castlebury LA. Comparative genome analyses suggest a hemibiotrophic lifestyle and virulence differences for the beech bark disease fungal pathogens Neonectria faginata and Neonectria coccinea. G3-GENES GENOMES GENETICS 2021; 11:6163289. [PMID: 33693679 DOI: 10.1093/g3journal/jkab071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/25/2021] [Indexed: 11/14/2022]
Abstract
Neonectria faginata and Neonectria coccinea are the causal agents of the insect-fungus disease complex known as beech bark disease (BBD), known to cause mortality in beech forest stands in North America and Europe. These fungal species have been the focus of extensive ecological and disease management studies, yet less progress has been made toward generating genomic resources for both micro- and macro-evolutionary studies. Here, we report a 42.1 and 42.7 mb highly contiguous genome assemblies of N. faginata and N. coccinea, respectively, obtained using Illumina technology. These species share similar gene number counts (12,941 and 12,991) and percentages of predicted genes with assigned functional categories (64 and 65%). Approximately 32% of the predicted proteomes of both species are homologous to proteins involved in pathogenicity, yet N. coccinea shows a higher number of predicted mitogen-activated protein kinase genes, virulence determinants possibly contributing to differences in disease severity between N. faginata and N. coccinea. A wide range of genes encoding for carbohydrate-active enzymes capable of degradation of complex plant polysaccharides and a small number of predicted secretory effector proteins, secondary metabolite biosynthesis clusters and cytochrome oxidase P450 genes were also found. This arsenal of enzymes and effectors correlates with, and reflects, the hemibiotrophic lifestyle of these two fungal pathogens. Phylogenomic analysis and timetree estimations indicated that the N. faginata and N. coccinea species divergence may have occurred at ∼4.1 million years ago. Differences were also observed in the annotated mitochondrial genomes as they were found to be 81.7 kb (N. faginata) and 43.2 kb (N. coccinea) in size. The mitochondrial DNA expansion observed in N. faginata is attributed to the invasion of introns into diverse intra- and intergenic locations. These first draft genomes of N. faginata and N. coccinea serve as valuable tools to increase our understanding of basic genetics, evolutionary mechanisms and molecular physiology of these two nectriaceous plant pathogenic species.
Collapse
Affiliation(s)
- Catalina Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Demetra N Skaltsas
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA.,Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, TN 37831, USA
| | - Tunesha Phipps
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Lisa A Castlebury
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| |
Collapse
|
60
|
Li B, Yang Y, Cai J, Liu X, Shi T, Li C, Chen Y, Xu P, Huang G. Genomic Characteristics and Comparative Genomics Analysis of Two Chinese Corynespora cassiicola Strains Causing Corynespora Leaf Fall (CLF) Disease. J Fungi (Basel) 2021; 7:485. [PMID: 34208763 PMCID: PMC8235470 DOI: 10.3390/jof7060485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023] Open
Abstract
Rubber tree Corynespora leaf fall (CLF) disease, caused by the fungus Corynespora cassiicola, is one of the most damaging diseases in rubber tree plantations in Asia and Africa, and this disease also threatens rubber nurseries and young rubber plantations in China. C. cassiicola isolates display high genetic diversity, and virulence profiles vary significantly depending on cultivar. Although one phytotoxin (cassicolin) has been identified, it cannot fully explain the diversity in pathogenicity between C. cassiicola species, and some virulent C. cassiicola strains do not contain the cassiicolin gene. In the present study, we report high-quality gapless genome sequences, obtained using short-read sequencing and single-molecule long-read sequencing, of two Chinese C. cassiicola virulent strains. Comparative genomics of gene families in these two stains and a virulent CPP strain from the Philippines showed that all three strains experienced different selective pressures, and metabolism-related gene families vary between the strains. Secreted protein analysis indicated that the quantities of secreted cell wall-degrading enzymes were correlated with pathogenesis, and the most aggressive CCP strain (cassiicolin toxin type 1) encoded 27.34% and 39.74% more secreted carbohydrate-active enzymes (CAZymes) than Chinese strains YN49 and CC01, respectively, both of which can only infect rubber tree saplings. The results of antiSMASH analysis showed that all three strains encode ~60 secondary metabolite biosynthesis gene clusters (SM BGCs). Phylogenomic and domain structure analyses of core synthesis genes, together with synteny analysis of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) gene clusters, revealed diversity in the distribution of SM BGCs between strains, as well as SM polymorphisms, which may play an important role in pathogenic progress. The results expand our understanding of the C. cassiicola genome. Further comparative genomic analysis indicates that secreted CAZymes and SMs may influence pathogenicity in rubber tree plantations. The findings facilitate future exploration of the molecular pathogenic mechanism of C. cassiicola.
Collapse
Affiliation(s)
- Boxun Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jimiao Cai
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xianbao Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tao Shi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chaoping Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yipeng Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Pan Xu
- Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Beijing 100020, China;
| | - Guixiu Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China; (B.L.); (Y.Y.); (J.C.); (X.L.); (T.S.); (C.L.); (Y.C.)
- College of Grassland Agriculture Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| |
Collapse
|
61
|
Li Y, Wang S, Bian D, Sun S, Ma T. Pseudomonas quercus sp. nov, associated with leaf spot disease of Quercus mongolica. Int J Syst Evol Microbiol 2021; 71. [PMID: 33999789 DOI: 10.1099/ijsem.0.004800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-negative, aerobic, motile bacteria strains were isolated from leaf spot disease of Quercus mongolica. Strain hsmgli-8T has 99.86 % 16S rRNA gene sequence similarity to LY10J, and the highest 16S rRNA gene sequence similarity to Pseudomonas cerasi 58T (97.2 %), then Pseudomonas ficuserectae JCM 2400T (97.18 %), Pseudomonas meliae CFBP 3225T, Pseudomonas tremae CFBP 6111T and Pseudomonas congelans DSM 14939T (all 97.12 %), and less than 97.1 % similarity to other recognized species. In phylogenetic trees based on 16S rRNA gene and multilocus sequence data, the two novel strains form a separate branch, indicating that they do not belong to any Pseudomonas group and subgroup, and should belong to a novel species within the genus Pseudomonas. This assertion is also supported by the results of genome average nucleotide identity analysis. The major fatty acids are C16 : 0, C18 : 1 ω7c and/or C18 : 1 ω6c, C16 : 1 ω7c and/or C16 : 1 ω6c. Polar lipids include phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, aminolipid and seven uncharacterized phospholipids. The predominant respiratory quinone is Q-9. The DNA G+C content is 59.45-59.50 mol%. Based on these data, we propose that the two novel strains should be assigned as a novel species within the genus Pseudomonas. We propose that the novel strains be named Pseudomonas quercus sp. nov. The type strain is hsmgli-8T (=CFCC 15739T=LMG 31544T).
Collapse
Affiliation(s)
- Yong Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Shengkun Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, PR China
| | - Danran Bian
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Shang Sun
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Tengfei Ma
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
62
|
Zamora-Ballesteros C, Pinto G, Amaral J, Valledor L, Alves A, Diez JJ, Martín-García J. Dual RNA-Sequencing Analysis of Resistant ( Pinus pinea) and Susceptible ( Pinus radiata) Hosts during Fusarium circinatum Challenge. Int J Mol Sci 2021; 22:5231. [PMID: 34063405 PMCID: PMC8156185 DOI: 10.3390/ijms22105231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Fusarium circinatum causes one of the most important diseases of conifers worldwide, the pine pitch canker (PPC). However, no effective field intervention measures aiming to control or eradicate PPC are available. Due to the variation in host genetic resistance, the development of resistant varieties is postulated as a viable and promising strategy. By using an integrated approach, this study aimed to identify differences in the molecular responses and physiological traits of the highly susceptible Pinus radiata and the highly resistant Pinus pinea to F. circinatum at an early stage of infection. Dual RNA-Seq analysis also allowed to evaluate pathogen behavior when infecting each pine species. No significant changes in the physiological analysis were found upon pathogen infection, although transcriptional reprogramming was observed mainly in the resistant species. The transcriptome profiling of P. pinea revealed an early perception of the pathogen infection together with a strong and coordinated defense activation through the reinforcement and lignification of the cell wall, the antioxidant activity, the induction of PR genes, and the biosynthesis of defense hormones. On the contrary, P. radiata had a weaker response, possibly due to impaired perception of the fungal infection that led to a reduced downstream defense signaling. Fusarium circinatum showed a different transcriptomic profile depending on the pine species being infected. While in P. pinea, the pathogen focused on the degradation of plant cell walls, active uptake of the plant nutrients was showed in P. radiata. These findings present useful knowledge for the development of breeding programs to manage PPC.
Collapse
Affiliation(s)
- Cristina Zamora-Ballesteros
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| | - Gloria Pinto
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Joana Amaral
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain;
| | - Artur Alves
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Julio J. Diez
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| | - Jorge Martín-García
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| |
Collapse
|
63
|
Wang X, Dong H, Lan J, Liu Y, Liang K, Lu Q, Fang Z, Liu P. High-Quality Genome Resource of the Pathogen of Diaporthe ( Phomopsis) phragmitis Causing Kiwifruit Soft Rot. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:218-221. [PMID: 33090063 DOI: 10.1094/mpmi-08-20-0236-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaporthe spp. are critical plant pathogens that cause wood cankers, wilt, dieback, and fruit rot in a wide variety of economic plant hosts and are regarded as one of the most acute threats faced by the kiwifruit industry worldwide. Diaporthe phragmitis NJD1 is a highly pathogenic isolate of soft rot of kiwifruit. Here, we present a high-quality genome-wide sequence of D. phragmitis NJD1 that was assembled into 28 contigs containing a total size of 58.33 Mb and N50 length of 3.55 Mb. These results lay a solid foundation for understanding host-pathogen interaction and improving disease management strategies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Hongjie Dong
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Jianbin Lan
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuanyuan Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Kuan Liang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Qi Lu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Pu Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| |
Collapse
|
64
|
In-depth secretome analysis of Puccinia striiformis f. sp. tritici in infected wheat uncovers effector functions. Biosci Rep 2020; 40:226968. [PMID: 33275764 PMCID: PMC7724613 DOI: 10.1042/bsr20201188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
The importance of wheat yellow rust disease, caused by Puccinia striiformis f. sp. tritici (Pst), has increased substantially due to the emergence of aggressive new Pst races in the last couple of decades. In an era of escalating human populations and climate change, it is vital to understand the infection mechanism of Pst in order to develop better strategies to combat wheat yellow disease. The present study focuses on the identification of small secreted proteins (SSPs) and candidate-secreted effector proteins (CSEPs) that are used by the pathogen to support infection and control disease development. We generated de novo assembled transcriptomes of Pst collected from wheat fields in central Anatolia. We inoculated both susceptible and resistant seedlings with Pst and analyzed haustoria formation. At 10 days post-inoculation (dpi), we analyzed the transcriptomes and identified 10550 Differentially Expressed Unigenes (DEGs), of which 6072 were Pst-mapped. Among those Pst-related genes, 227 were predicted as PstSSPs. In silico characterization was performed using an approach combining the transcriptomic data and data mining results to provide a reliable list to narrow down the ever-expanding repertoire of predicted effectorome. The comprehensive analysis detected 14 Differentially Expressed Small-Secreted Proteins (DESSPs) that overlapped with the genes in available literature data to serve as the best CSEPs for experimental validation. One of the CSEPs was cloned and studied to test the reliability of the presented data. Biological assays show that the randomly selected CSEP, Unigene17495 (PSTG_10917), localizes in the chloroplast and is able to suppress cell death induced by INF1 in a Nicotiana benthamiana heterologous expression system.
Collapse
|
65
|
Florez LM, Scheper RWA, Fisher BM, Sutherland PW, Templeton MD, Bowen JK. Reference genes for gene expression analysis in the fungal pathogen Neonectria ditissima and their use demonstrating expression up-regulation of candidate virulence genes. PLoS One 2020; 15:e0238157. [PMID: 33186359 PMCID: PMC7665675 DOI: 10.1371/journal.pone.0238157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/01/2020] [Indexed: 11/18/2022] Open
Abstract
European canker, caused by the necrotrophic fungal phytopathogen Neonectria ditissima, is one of the most damaging apple diseases worldwide. An understanding of the molecular basis of N. ditissima virulence is currently lacking. Identification of genes with an up-regulation of expression during infection, which are therefore probably involved in virulence, is a first step towards this understanding. Reverse transcription quantitative real-time PCR (RT-qPCR) can be used to identify these candidate virulence genes, but relies on the use of reference genes for relative gene expression data normalisation. However, no report that addresses selecting appropriate fungal reference genes for use in the N. ditissima-apple pathosystem has been published to date. In this study, eight N. ditissima genes were selected as candidate RT-qPCR reference genes for gene expression analysis. A subset of the primers (six) designed to amplify regions from these genes were specific for N. ditissima, failing to amplify PCR products with template from other fungal pathogens present in the apple orchard. The efficiency of amplification of these six primer sets was satisfactory, ranging from 81.8 to 107.53%. Analysis of expression stability when a highly pathogenic N. ditissima isolate was cultured under 10 regimes, using the statistical algorithms geNorm, NormFinder and BestKeeper, indicated that actin and myo-inositol-1-phosphate synthase (mips), or their combination, could be utilised as the most suitable reference genes for normalisation of N. ditissima gene expression. As a test case, these reference genes were used to study expression of three candidate virulence genes during a time course of infection. All three, which shared traits with fungal effector genes, had up-regulated expression in planta compared to in vitro with expression peaking between five and six weeks post inoculation (wpi). Thus, these three genes may well be involved in N. ditissima pathogenicity and are priority candidates for further functional characterization.
Collapse
Affiliation(s)
- Liz M. Florez
- Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Reiny W. A. Scheper
- Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North, New Zealand
| | - Brent M. Fisher
- Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North, New Zealand
| | - Paul W. Sutherland
- Food Innovation, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Matthew D. Templeton
- Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K. Bowen
- Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
66
|
Prakash H, Karuppiah P, A Al-Dhabi N, Prasad GS, Badapanda C, Chakrabarti A, Rudramurthy SM. Comparative genomics of Sporothrix species and identification of putative pathogenic-gene determinants. Future Microbiol 2020; 15:1465-1481. [PMID: 33179528 DOI: 10.2217/fmb-2019-0302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To understand the phylogenomics, pathogenic/virulence-associated genes and genomic evolution of pathogenic Sporothrix species. Materials & methods: We performed in silico comparative genome analysis of Sporothrix species using ab initio tools and in-house scripts. We predicted genes and repeats, compared genomes based on synteny, identified orthologous clusters, assessed genes family expansion/contraction, predicted secretory proteins and finally searched for similar sequences from various databases. Results: The phylogenomics revealed that Sporothrix species are closely related to Ophiostoma species. The gene family evolutionary analysis revealed the expansion of genes related to virulence (CFEM domain, iron acquisition genes, lysin motif domain), stress response (Su[var]3-9, Enhancer-of-zeste and Trithorax domain and Domain of unknown function 1996), proteases (aspartic protease, x-pro dipeptidyl-peptidase), cell wall composition associated genes (chitin deacetylase, chitinase) and transporters (major facilitator superfamily transporter, oligo-peptide transporter family) in Sporothrix species. Conclusion: The present study documents the putative pathogenic/virulence-associated genes in the Sporothrix species.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Ponmurugan Karuppiah
- Department of Botany & Microbiology, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif A Al-Dhabi
- Department of Botany & Microbiology, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gandham S Prasad
- Technology, Industrial Liaison & Entrepreneurship Unit, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Chandan Badapanda
- Bioinformatics Division, Xcelris Labs Limited, Ahmedabad 380015, Gujarat, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
67
|
Zong G, Zhong C, Fu J, Zhang Y, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. The carbapenem resistance gene bla OXA-23 is disseminated by a conjugative plasmid containing the novel transposon Tn6681 in Acinetobacter johnsonii M19. Antimicrob Resist Infect Control 2020; 9:182. [PMID: 33168102 PMCID: PMC7653874 DOI: 10.1186/s13756-020-00832-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background Carbapenem resistant Acinetobacter species have caused great difficulties in clinical therapy in the worldwide. Here we describe an Acinetobacter johnsonii M19 with a novel blaOXA-23 containing transposon Tn6681 on the conjugative plasmid pFM-M19 and the ability to transferand carbapenem resistance.
Methods A. johnsonii M19 was isolated under selection with 8 mg/L meropenem from hospital sewage, and the minimum inhibitory concentrations (MICs) for the representative carbapenems imipenem, meropenem and ertapenem were determined. The genome of A. johnsonii M19 was sequenced by PacBio RS II and Illumina HiSeq 4000 platforms. A homologous model of OXA-23 was generated, and molecular docking models with imipenem, meropenem and ertapenem were constructed by Discovery Studio 2.0. Type IV secretion system and conjugation elements were identified by the Pathosystems Resource Integration Center (PATRIC) server and the oriTfinder. Mating experiments were performed to evaluate transfer of OXA-23 to Escherichia coli 25DN. Results MICs of A. johnsonii M19 for imipenem, meropenem and ertapenem were 128 mg/L, 48 mg/L and 24 mg/L, respectively. Genome sequencing identified plasmid pFM-M19, which harbours the carbapenem resistance gene blaOXA-23 within the novel transposon Tn6681. Molecular docking analysis indicated that the elongated hydrophobic tunnel of OXA-23 provides a hydrophobic environment and that Lys-216, Thr-217, Met-221 and Arg-259 were the conserved amino acids bound to imipenem, meropenem and ertapenem. Furthermore, pFM-M19 could transfer blaOXA-23 to E. coli 25DN by conjugation, resulting in carbapenem-resistant transconjugants.
Conclusions Our investigation showed that A. johnsonii M19 is a source and disseminator of blaOXA-23 and carbapenem resistance. The ability to transfer blaOXA-23 to other species by the conjugative plasmid pFM-M19 raises the risk of spread of carbapenem resistance. Graphic abstract The carbapenem resistance gene blaOXA-23 is disseminated by a conjugative plasmid containing the novel transposon Tn6681 in Acinetobacter johnsonii M19.![]()
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, China.,Shandong Medicinal Biotechnology Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jiafang Fu
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, China.,Shandong Medicinal Biotechnology Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China.,Key Lab for Biotech-Drugs of National Health Commission, Jinan, 250062, China
| | - Yu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Peipei Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, China.,Shandong Medicinal Biotechnology Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China.,Key Lab for Biotech-Drugs of National Health Commission, Jinan, 250062, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guangxiang Cao
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, China. .,Shandong Medicinal Biotechnology Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China.
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
68
|
Ye T, Zhou T, Xu X, Zhang W, Fan X, Mishra S, Zhang L, Zhou X, Chen S. Whole-Genome Sequencing Analysis of Quorum Quenching Bacterial Strain Acinetobacter lactucae QL-1 Identifies the FadY Enzyme for Degradation of the Diffusible Signal Factor. Int J Mol Sci 2020; 21:E6729. [PMID: 32937869 PMCID: PMC7554724 DOI: 10.3390/ijms21186729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
The diffusible signal factor (DSF) is a fatty acid signal molecule and is widely conserved in various Gram-negative bacteria. DSF is involved in the regulation of pathogenic virulence in many bacterial pathogens, including Xanthomonas campestris pv. campestris (Xcc). Quorum quenching (QQ) is a potential approach for preventing and controlling DSF-mediated bacterial infections by the degradation of the DSF signal. Acinetobacter lactucae strain QL-1 possesses a superb DSF degradation ability and effectively attenuates Xcc virulence through QQ. However, the QQ mechanisms in strain QL-1 are still unknown. In the present study, whole-genome sequencing and comparative genomics analysis were conducted to identify the molecular mechanisms of QQ in strain QL-1. We found that the fadY gene of QL-1 is an ortholog of XccrpfB, a known DSF degradation gene, suggesting that strain QL-1 is capable of inactivating DSF by QQ enzymes. The results of site-directed mutagenesis indicated that fadY is required for strain QL-1 to degrade DSF. The determination of FadY activity in vitro revealed that the fatty acyl-CoA synthetase FadY had remarkable catalytic activity. Furthermore, the expression of fadY in transformed Xcc strain XC1 was investigated and shown to significantly attenuate bacterial pathogenicity on host plants, such as Chinese cabbage and radish. This is the first report demonstrating a DSF degradation enzyme from A. lactucae. Taken together, these findings shed light on the QQ mechanisms of A. lactucae strain QL-1, and provide useful enzymes and related genes for the biocontrol of infectious diseases caused by DSF-dependent bacterial pathogens.
Collapse
Affiliation(s)
- Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tian Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xudan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (T.Y.); (T.Z.); (X.X.); (W.Z.); (X.F.); (S.M.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
69
|
Sun J, Xia Y, Ming D. Whole-Genome Sequencing and Bioinformatics Analysis of Apiotrichum mycotoxinivorans: Predicting Putative Zearalenone-Degradation Enzymes. Front Microbiol 2020; 11:1866. [PMID: 32849454 PMCID: PMC7416605 DOI: 10.3389/fmicb.2020.01866] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Biological detoxification techniques have been developed by using microorganisms such as bacteria, yeast, and fungi to eliminate mycotoxin contamination. However, due to the lack of molecular details of related enzymes, the underlying mechanism of detoxification of many mycotoxins remain unclear. On the other hand, the next generation sequencing technology provides a large number of genomic data of microorganisms that can degrade mycotoxins, which makes it possible to use bioinformatics technology to study the molecular details of relevant enzymes. In this paper, we report the whole-genome sequencing of Apiotrichum mycotoxinivorans (Trichosporon mycotoxinivorans in old taxonomy) and the putative Baeyer-Villiger monooxygenases (BVMOs) and carboxylester hydrolases for zearalenone (ZEA) degradation through bioinformatic analysis. In particular, we developed a working pipeline for genome-scaled prediction of substrate-specific enzyme (GPSE, available at https://github.com/JinyuanSun/GPSE), which ultimately builds homologous structural and molecular docking models to demonstrate how the relevant degrading enzymes work. We expect that the enzyme-prediction woroflow process GPSE developed in this study might help accelerate the discovery of new detoxification enzymes.
Collapse
Affiliation(s)
- Jinyuan Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yan Xia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
70
|
Urban M, Cuzick A, Seager J, Wood V, Rutherford K, Venkatesh SY, De Silva N, Martinez MC, Pedro H, Yates AD, Hassani-Pak K, Hammond-Kosack KE. PHI-base: the pathogen-host interactions database. Nucleic Acids Res 2020; 48:D613-D620. [PMID: 31733065 PMCID: PMC7145647 DOI: 10.1093/nar/gkz904] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 11/21/2022] Open
Abstract
The pathogen–host interactions database (PHI-base) is available at www.phi-base.org. PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen–host interactions reported in peer reviewed research articles. PHI-base also curates literature describing specific gene alterations that did not affect the disease interaction phenotype, in order to provide complete datasets for comparative purposes. Viruses are not included, due to their extensive coverage in other databases. In this article, we describe the increased data content of PHI-base, plus new database features and further integration with complementary databases. The release of PHI-base version 4.8 (September 2019) contains 3454 manually curated references, and provides information on 6780 genes from 268 pathogens, tested on 210 hosts in 13,801 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species consist of approximately 60% plants (split 50:50 between cereal and non-cereal plants), and 40% other species of medical and/or environmental importance. The information available on pathogen effectors has risen by more than a third, and the entries for pathogens that infect crop species of global importance has dramatically increased in this release. We also briefly describe the future direction of the PHI-base project, and some existing problems with the PHI-base curation process.
Collapse
Affiliation(s)
- Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Alayne Cuzick
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - James Seager
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Valerie Wood
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Kim Rutherford
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Nishadi De Silva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Manuel Carbajo Martinez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Helder Pedro
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andy D Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Keywan Hassani-Pak
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
71
|
Verheggen K, Raeder H, Berven FS, Martens L, Barsnes H, Vaudel M. Anatomy and evolution of database search engines-a central component of mass spectrometry based proteomic workflows. MASS SPECTROMETRY REVIEWS 2020; 39:292-306. [PMID: 28902424 DOI: 10.1002/mas.21543] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Sequence database search engines are bioinformatics algorithms that identify peptides from tandem mass spectra using a reference protein sequence database. Two decades of development, notably driven by advances in mass spectrometry, have provided scientists with more than 30 published search engines, each with its own properties. In this review, we present the common paradigm behind the different implementations, and its limitations for modern mass spectrometry datasets. We also detail how the search engines attempt to alleviate these limitations, and provide an overview of the different software frameworks available to the researcher. Finally, we highlight alternative approaches for the identification of proteomic mass spectrometry datasets, either as a replacement for, or as a complement to, sequence database search engines.
Collapse
Affiliation(s)
- Kenneth Verheggen
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Helge Raeder
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Frode S Berven
- Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Harald Barsnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
- Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Marc Vaudel
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
- Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
72
|
Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens 2020; 9:pathogens9050340. [PMID: 32369942 PMCID: PMC7281180 DOI: 10.3390/pathogens9050340] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
There is an urgency to supplant the heavy reliance on chemical control of Fusarium diseases in different economically important, staple food crops due to development of resistance in the pathogen population, the high cost of production to the risk-averse grower, and the concomitant environmental impacts. Pathogenomics has enabled (i) the creation of genetic inventories which identify those putative genes, regulators, and effectors that are associated with virulence, pathogenicity, and primary and secondary metabolism; (ii) comparison of such genes among related pathogens; (iii) identification of potential genetic targets for chemical control; and (iv) better characterization of the complex dynamics of host–microbe interactions that lead to disease. This type of genomic data serves to inform host-induced gene silencing (HIGS) technology for targeted disruption of transcription of select genes for the control of Fusarium diseases. This review discusses the various repositories and browser access points for comparison of genomic data, the strategies for identification and selection of pathogenicity- and virulence-associated genes and effectors in different Fusarium species, HIGS and successful Fusarium disease control trials with a consideration of loss of RNAi, off-target effects, and future challenges in applying HIGS for management of Fusarium diseases.
Collapse
|
73
|
Gao Z, Wu J, Jiang D, Xie J, Cheng J, Lin Y. ORF Ι of Mycovirus SsNSRV-1 is Associated with Debilitating Symptoms of Sclerotinia sclerotiorum. Viruses 2020; 12:E456. [PMID: 32316519 PMCID: PMC7232168 DOI: 10.3390/v12040456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
We previously identified Sclerotinia sclerotiorum negative-stranded virus 1 (SsNSRV-1), the first (-) ssRNA mycovirus, associated with hypovirulence of its fungal host Sclerotinia sclerotiorum. In this study, functional analysis of Open Reading Frame Ι (ORF Ι) of SsNSRV-1 was performed. The integration and expression of ORF Ι led to defects in hyphal tips, vegetative growth, and virulence of the mutant strains of S. sclerotiorum. Further, differentially expressed genes (DEGs) responding to the expression of ORF Ι were identified by transcriptome analysis. In all, 686 DEGs consisted of 267 up-regulated genes and 419 down-regulated genes. DEGs reprogramed by ORF Ι were relevant to secretory proteins, pathogenicity, transcription, transmembrane transport, protein biosynthesis, modification, and metabolism. Alternative splicing was also detected in all mutant strains, but not in hypovirulent strain AH98, which was co-infected by SsNSRV-1 and Sclerotinia sclerotiorum hypovirus 1 (SsHV-1). Thus, the integrity of SsNSRV-1 genome may be necessary to protect viral mRNA from splicing and inactivation by the host. Taken together, the results suggested that protein ORF Ι could regulate the transcription, translation, and modification of host genes in order to facilitate viral proliferation and reduce the virulence of the host. Therefore, ORF Ι may be a potential gene used for the prevention of S. sclerotiorum.
Collapse
Affiliation(s)
- Zhixiao Gao
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
| | - Junyan Wu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
| | - Daohong Jiang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
| |
Collapse
|
74
|
Bai L, Zhang S, Deng Y, Song C, Kang G, Dong Y, Wang Y, Gao F, Huang H. Comparative genomics analysis of Acinetobacter haemolyticus isolates from sputum samples of respiratory patients. Genomics 2020; 112:2784-2793. [PMID: 32209379 DOI: 10.1016/j.ygeno.2020.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/27/2020] [Accepted: 03/20/2020] [Indexed: 12/25/2022]
Abstract
Acinetobacter haemolyticus (A. haemolyticus) is a significant Acinetobacter pathogen, and the resistance of A. haemolyticus continues to rise due to abuse of antibiotics and the frequent gene exchange between bacteria in hospital. In this study, we performed complete genome sequencing of two A. haemolyticus strains TJR01 and TJS01 to improve our understanding of pathogenic and resistance of A. haemolyticus. Both TJR01 and TJS01 contain one chromosome and two plasmids. Compared to TJS01, more virulence factors (VFs) associated pathogenicity and resistant genes were predicted in TJR01 due to T4SS and integron associated with combination and transport. Antimicrobial susceptibility results were consistent with sequencing. We suppose TJS01 was a susceptive strain and TJR01 was an acquired multidrug resistance strain due to plasmid-mediated horizontal gene transfer. We hope these findings may be helpful for clinical treatment of A. haemolyticus infection and reduce the risk of potential outbreak infection.
Collapse
Affiliation(s)
- Liang Bai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - ShaoCun Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yong Deng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | | | - GuangBo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | | | - Yue Wang
- Institute of Infectious Diseases, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Feng Gao
- Department of Physics, School of Science, Frontier Science Center of Synthetic Biology (MOE), Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
75
|
Gu X, Ding J, Liu W, Yang X, Yao L, Gao X, Zhang M, Yang S, Wen J. Comparative genomics and association analysis identifies virulence genes of Cercospora sojina in soybean. BMC Genomics 2020; 21:172. [PMID: 32075575 PMCID: PMC7032006 DOI: 10.1186/s12864-020-6581-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/13/2020] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Recently, a new strain of Cercospora sojina (Race15) has been identified, which has caused the breakdown of resistance in most soybean cultivars in China. Despite this serious yield reduction, little is known about why this strain is more virulent than others. Therefore, we sequenced the Race15 genome and compared it to the Race1 genome sequence, as its virulence is significantly lower. We then re-sequenced 30 isolates of C. sojina from different regions to identifying differential virulence genes using genome-wide association analysis (GWAS). RESULTS The 40.12-Mb Race15 genome encodes 12,607 predicated genes and contains large numbers of gene clusters that have annotations in 11 different common databases. Comparative genomics revealed that although these two genomes had a large number of homologous genes, their genome structures have evolved to introduce 245 specific genes. The most important 5 candidate virulence genes were located on Contig 3 and Contig 1 and were mainly related to the regulation of metabolic mechanisms and the biosynthesis of bioactive metabolites, thereby putatively affecting fungi self-toxicity and reducing host resistance. Our study provides insight into the genomic basis of C. sojina pathogenicity and its infection mechanism, enabling future studies of this disease. CONCLUSIONS Via GWAS, we identified five candidate genes using three different methods, and these candidate genes are speculated to be related to metabolic mechanisms and the biosynthesis of bioactive metabolites. Meanwhile, Race15 specific genes may be linked with high virulence. The genes highly prevalent in virulent isolates should also be proposed as candidates, even though they were not found in our SNP analysis. Future work should focus on using a larger sample size to confirm and refine candidate gene identifications and should study the functional roles of these candidates, in order to investigate their potential roles in C. sojina pathogenicity.
Collapse
Affiliation(s)
- Xin Gu
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin, China
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Wei Liu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Xiaohe Yang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Xuedong Gao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Maoming Zhang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Shuai Yang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jingzhi Wen
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
76
|
Pan H, Li W, Sun E, Zhang Y. Characterization and whole genome sequencing of a novel strain of Bergeyella cardium related to infective endocarditis. BMC Microbiol 2020; 20:32. [PMID: 32050896 PMCID: PMC7017618 DOI: 10.1186/s12866-020-1715-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/29/2020] [Indexed: 01/19/2023] Open
Abstract
Background Bergeyella cardium infection is becoming increasingly prevalent in patients with infective endocarditis, suggesting its significance in disease pathogenesis. However, few studies have fully characterized this species. Results Herein, we report the morphological and physiological characteristics, as well as whole genome sequencing of a newly identified B. cardium HPQL strain isolated from a patient with infective endocarditis. Results from the cellular morphology and biochemical analysis provide basic knowledge on the new pathogen. The whole genome sequencing of B. cardium HPQL consists of a circular chromosome with a total length of 2,036,890 bp. No plasmid was detected. Comparative genomics were carried out then. Antibiotics resistance related genes, pathogenesis related genes, predicted insertion sequences, genome islands and predicted CRISPRs sequences were demonstrated. To our knowledge, this is the first study to provide a complete genome sequence for Bergeyella spp. Conclusions This study provides fundamental phenotypic and genomic information for the newly identified fastidious infective endocarditis causative bacteria, B. cardium. Our results provide insights into effective clinical diagnosis and treatment of this pathogen.
Collapse
Affiliation(s)
- Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Wei Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Enhua Sun
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
77
|
Complete Genome Sequence Reveals Evolutionary and Comparative Genomic Features of Xanthomonas albilineans Causing Sugarcane Leaf Scald. Microorganisms 2020; 8:microorganisms8020182. [PMID: 32012870 PMCID: PMC7074728 DOI: 10.3390/microorganisms8020182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/02/2022] Open
Abstract
Leaf scald (caused by Xanthomonas albilineans) is an important bacterial disease affecting sugarcane in most sugarcane growing countries, including China. High genetic diversity exists among strains of X. albilineans from diverse geographic regions. To highlight the genomic features associated with X. albilineans from China, we sequenced the complete genome of a representative strain (Xa-FJ1) of this pathogen using the PacBio and Illumina platforms. The complete genome of strain Xa-FJ1 consists of a circular chromosome of 3,724,581 bp and a plasmid of 31,536 bp. Average nucleotide identity analysis revealed that Xa-FJ1 was closest to five strains from the French West Indies and the USA, particularly to the strain GPE PC73 from Guadeloupe. Comparative genomic analysis between Xa-FJ1 and GPE PC73 revealed prophage integration, homologous recombination, transposable elements, and a clustered regulatory interspaced short palindromic repeats (CRISPR) system that were linked with 16 insertions/deletions (InDels). Ten and 82 specific genes were found in Xa-FJ1 and GPE PC73, respectively, and some of these genes were subjected to phage-related proteins, zona occludens toxin, and DNA methyltransferases. Our findings highlight intra-species genetic variability of the leaf scald pathogen and provide additional genomic resources to investigate its fitness and virulence.
Collapse
|
78
|
Singh N, Rai S, Bhatnagar R, Bhatnagar S. Network analysis of host-pathogen protein interactions in microbe induced cardiovascular diseases. In Silico Biol 2020; 14:115-133. [PMID: 35001887 PMCID: PMC8842779 DOI: 10.3233/isb-210238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Large-scale visualization and analysis of HPIs involved in microbial CVDs can provide crucial insights into the mechanisms of pathogenicity. The comparison of CVD associated HPIs with the entire set of HPIs can identify the pathways specific to CVDs. Therefore, topological properties of HPI networks in CVDs and all pathogens was studied using Cytoscape3.5.1. Ontology and pathway analysis were done using KOBAS 3.0. HPIs of Papilloma, Herpes, Influenza A virus as well as Yersinia pestis and Bacillus anthracis among bacteria were predominant in the whole (wHPI) and the CVD specific (cHPI) network. The central viral and secretory bacterial proteins were predicted virulent. The central viral proteins had higher number of interactions with host proteins in comparison with bacteria. Major fraction of central and essential host proteins interacts with central viral proteins. Alpha-synuclein, Ubiquitin ribosomal proteins, TATA-box-binding protein, and Polyubiquitin-C &B proteins were the top interacting proteins specific to CVDs. Signaling by NGF, Fc epsilon receptor, EGFR and ubiquitin mediated proteolysis were among the top enriched CVD specific pathways. DEXDc and HELICc were enriched host mimicry domains that may help in hijacking of cellular machinery by pathogens. This study provides a system level understanding of cardiac damage in microbe induced CVDs.
Collapse
Affiliation(s)
- Nirupma Singh
- Computational and Structural Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | - Sneha Rai
- Computational and Structural Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | | | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India.,Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|
79
|
Janowska-Sejda EI, Lysenko A, Urban M, Rawlings C, Tsoka S, Hammond-Kosack KE. PHI-Nets: A Network Resource for Ascomycete Fungal Pathogens to Annotate and Identify Putative Virulence Interacting Proteins and siRNA Targets. Front Microbiol 2019; 10:2721. [PMID: 31866958 PMCID: PMC6908471 DOI: 10.3389/fmicb.2019.02721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/08/2019] [Indexed: 12/28/2022] Open
Abstract
Interactions between proteins underlie all aspects of complex biological mechanisms. Therefore, methodologies based on complex network analyses can facilitate identification of promising candidate genes involved in phenotypes of interest and put this information into appropriate contexts. To facilitate discovery and gain additional insights into globally important pathogenic fungi, we have reconstructed computationally inferred interactomes using an interolog and domain-based approach for 15 diverse Ascomycete fungal species, across nine orders, specifically Aspergillus fumigatus, Bipolaris sorokiniana, Blumeria graminis f. sp. hordei, Botrytis cinerea, Colletotrichum gloeosporioides, Colletotrichum graminicola, Fusarium graminearum, Fusarium oxysporum f. sp. lycopersici, Fusarium verticillioides, Leptosphaeria maculans, Magnaporthe oryzae, Saccharomyces cerevisiae, Sclerotinia sclerotiorum, Verticillium dahliae, and Zymoseptoria tritici. Network cartography analysis was associated with functional patterns of annotated genes linked to the disease-causing ability of each pathogen. In addition, for the best annotated organism, namely F. graminearum, the distribution of annotated genes with respect to network structure was profiled using a random walk with restart algorithm, which suggested possible co-location of virulence-related genes in the protein–protein interaction network. In a second ‘use case’ study involving two networks, namely B. cinerea and F. graminearum, previously identified small silencing plant RNAs were mapped to their targets. The F. graminearum phenotypic network analysis implicates eight B. cinerea targets and 35 F. graminearum predicted interacting proteins as prime candidate virulence genes for further testing. All 15 networks have been made accessible for download at www.phi-base.org providing a rich resource for major crop plant pathogens.
Collapse
Affiliation(s)
- Elzbieta I Janowska-Sejda
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.,Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom.,Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Artem Lysenko
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Chris Rawlings
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
80
|
Yang Y, Fang A, Yu Y, Bi C, Zhou C. Integrated transcriptomic and secretomic approaches reveal critical pathogenicity factors in Pseudofabraea citricarpa inciting citrus target spot. Microb Biotechnol 2019; 12:1260-1273. [PMID: 31162831 PMCID: PMC6801157 DOI: 10.1111/1751-7915.13440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Target spot is a newly emerging citrus disease caused by Pseudofabraea citricarpa. Outbreaks of this disease result in massive economic losses to citrus production. Here, an integrated study involving comparative transcriptomic and secretomic analyses was conducted to determine the critical pathogenicity factors of P. citricarpa involved in the induction of citrus target spot. A total of 701 transcripts and their cognate proteins were quantified and integrated. Among these transcripts and proteins, 99 exhibited the same expression patterns. Our quantitative integrated multi-omic data highlight several potentially pivotal pathogenicity factors, including 16 unigenes that were annotated as plant cell-wall-degrading enzymes, 13 unigenes homologous to virulence factors from various fungi, and one unigene described as a small cysteine-rich secreted protein, were screened and analysed. The screening of differentially expressed genes that encode secondary metabolism core enzymes implicated terpene metabolism in the pathogenicity of P. citricarpa. Overall, results indicated that plant cell wall degradation, plant-pathogen protein/polyribonucleotide interaction, and terpene biosynthesis have critical roles in the pathogenicity of P. citricarpa. This work demonstrated that integrated omic approaches enable the identification of pathogenicity/virulence factors and provide insights into the mechanisms underlying the pathogenicity of fungi. These insights would aid the development of effective disease management strategies.
Collapse
Affiliation(s)
- Yuheng Yang
- College of Plant ProtectionSouthwest UniversityChongqing400715China
| | - Anfei Fang
- College of Plant ProtectionSouthwest UniversityChongqing400715China
| | - Yang Yu
- College of Plant ProtectionSouthwest UniversityChongqing400715China
| | - Chaowei Bi
- College of Plant ProtectionSouthwest UniversityChongqing400715China
| | - Changyong Zhou
- Citrus Research InstituteSouthwest UniversityChongqing400712China
| |
Collapse
|
81
|
Yang Y, Liu X, Cai J, Chen Y, Li B, Guo Z, Huang G. Genomic characteristics and comparative genomics analysis of the endophytic fungus Sarocladium brachiariae. BMC Genomics 2019; 20:782. [PMID: 31660859 PMCID: PMC6819638 DOI: 10.1186/s12864-019-6095-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 09/10/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Sarocladium brachiariae is a newly identified endophytic fungus isolated from Brachiaria brizantha. A previous study indicated that S. brachiariae had antifungal activity; however, limited genomic information restrains further study. Therefore, we sequenced the genome of S. brachiariae and compared it with the genome of S. oryzae to identify differences between a Sarocladium plant pathogen and an endophyte. RESULTS In this study, we reported a gapless genome sequence of a newly identified endophytic fungus Sarocladium brachiariae isolated from Brachiaria brizantha. The genome of S. brachiariae is 31.86 Mb, with a contig N50 of 3.27 Mb and 9903 protein coding genes. Phylogenomic analysis based on single copy orthologous genes provided insights into the evolutionary relationships of S. brachiariae and its closest species was identified as S. oryzae. Comparative genomics analysis revealed that S. brachiaria has 14.9% more plant cell wall degradation related CAZymes to S. oryzae, and 33.3% more fungal cell wall degradation related CAZymes, which could explain the antifungal activity of S. brachiaria. Based on Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) analysis, we identified a contact helvolic acid biosynthetic gene cluster (BGC) for the first time in S. oryzae. However, S. brachiaria had seven fewer terpene gene clusters, including helvolic acid BGC, compared with S. oryzae and this may be associated with adaptation to an endophytic lifestyle. Synteny analysis of polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and hybrid (PKS-NRPS) gene clusters between S. brachiariae and S. oryzae revealed that just 37.5% of tested clusters have good synteny, while 63.5% have no or poor synteny. This indicated that the S. brachiariae could potentially synthesize a variety of unknown-function secondary metabolites, which may play an important role in adaptation to its endophytic lifestyle and antifungal activity. CONCLUSIONS The data provided a better understanding of the Sarocladium brachiariae genome. Further comparative genomic analysis provided insight into the genomic basis of its endophytic lifestyle and antifungal activity.
Collapse
Affiliation(s)
- Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Xiaobao Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Jimiao Cai
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Yipeng Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Boxun Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Zhikai Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Guixiu Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| |
Collapse
|
82
|
First Draft Genome Sequence of Wheat Spot Blotch Pathogen Bipolaris sorokiniana BS_112 from India, Obtained Using Hybrid Assembly. Microbiol Resour Announc 2019; 8:8/38/e00308-19. [PMID: 31537657 PMCID: PMC6753261 DOI: 10.1128/mra.00308-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bipolaris sorokiniana is a devastating fungal pathogen causing spot blotch of wheat. We report here the first draft genome of Bipolaris sorokiniana strain BS_112 from India using sequence reads from the Ion Torrent, Illumina HiSeq, and Nanopore platforms. The genome size was estimated at 35.64 Mb with an average G+C content of 50.20%.
Collapse
|
83
|
Visser EA, Wegrzyn JL, Steenkamp ET, Myburg AA, Naidoo S. Dual RNA-Seq Analysis of the Pine- Fusarium circinatum Interaction in Resistant ( Pinus tecunumanii) and Susceptible ( Pinus patula) Hosts. Microorganisms 2019; 7:E315. [PMID: 31487786 PMCID: PMC6780516 DOI: 10.3390/microorganisms7090315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
Fusarium circinatum poses a serious threat to many pine species in both commercial and natural pine forests. Knowledge regarding the molecular basis of pine-F. circinatum host-pathogen interactions could assist efforts to produce more resistant planting stock. This study aimed to identify molecular responses underlying resistance against F. circinatum. A dual RNA-seq approach was used to investigate host and pathogen expression in F. circinatum challenged Pinus tecunumanii (resistant) and Pinus patula (susceptible), at three- and seven-days post inoculation. RNA-seq reads were mapped to combined host-pathogen references for both pine species to identify differentially expressed genes (DEGs). F. circinatum genes expressed during infection showed decreased ergosterol biosynthesis in P. tecunumanii relative to P. patula. For P. tecunumanii, enriched gene ontologies and DEGs indicated roles for auxin-, ethylene-, jasmonate- and salicylate-mediated phytohormone signalling. Correspondingly, key phytohormone signaling components were down-regulated in P. patula. Key F. circinatum ergosterol biosynthesis genes were expressed at lower levels during infection of the resistant relative to the susceptible host. This study further suggests that coordination of phytohormone signaling is required for F. circinatum resistance in P. tecunumanii, while a comparatively delayed response and impaired phytohormone signaling contributes to susceptibility in P. patula.
Collapse
Affiliation(s)
- Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| |
Collapse
|
84
|
Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190369. [PMID: 31598288 PMCID: PMC6774946 DOI: 10.1098/rsos.190369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 05/15/2023]
Abstract
Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria which causes bacterial leaf streak (BLS) or bacterial chaff disease in wheat and barley. The constant competition for zinc (Zn) metal nutrients contributes significantly in plant-pathogen interactions. In this study, we have employed a systematic in silico approach to study the Zn-binding proteins of Xtu. From the whole proteome of Xtu, we have identified approximately 7.9% of proteins having Zn-binding sequence and structural motifs. Further, 115 proteins were found homologous to plant-pathogen interaction database. Among these 115 proteins, 11 were predicted as putative secretory proteins. The functional diversity in Zn-binding proteins was revealed by functional domain, gene ontology and subcellular localization analysis. The roles of Zn-binding proteins were found to be varied in the range from metabolism, proteolysis, protein biosynthesis, transport, cell signalling, protein folding, transcription regulation, DNA repair, response to oxidative stress, RNA processing, antimicrobial resistance, DNA replication and DNA integration. This study provides preliminary information on putative Zn-binding proteins of Xtu which may further help in designing new metal-based antimicrobial agents for controlling BLS and bacterial chaff infections on staple crops.
Collapse
|
85
|
Guo Y, Zhu Z, Gao J, Zhang C, Zhang X, Dang E, Li W, Qiao H, Liao W, Wang G, Ma C, Fu M. The Phytopathogenic Fungus Pallidocercospora crystallina-Caused Localized Subcutaneous Phaeohyphomycosis in a Patient with a Homozygous Missense CARD9 Mutation. J Clin Immunol 2019; 39:713-725. [PMID: 31414217 DOI: 10.1007/s10875-019-00679-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE In the past decade, an increasing number of otherwise healthy individuals suffered from invasive fungal infections due to inherited CARD9 mutations. Herein, we present a patient with a homozygous CARD9 mutation who was suffering from localized subcutaneous phaeohyphomycosis caused by the phytopathogenic fungus Pallidocercospora crystallina which has not been reported to cause infections in humans. METHODS The medical history of our patient was collected. P. crystallina was isolated from the biopsied tissue. To characterize this novel pathogen, the morphology was analyzed, whole-genome sequencing was performed, and the in vivo immune response was explored in mice. Whole-exome sequencing was carried out with samples from the patient's family. Finally, the expression and function of mutated CARD9 were investigated. RESULTS A dark red plaque was on the patient's left cheek for 16 years and was diagnosed as phaeohyphomycosis due to a P. crystallina infection. Whole-genome sequencing suggested that that this strain had a lower pathogenicity. The in vivo immune response in immunocompetent or immunocompromised mice indicated that P. crystallina could be eradicated within a few weeks. Whole-exome sequencing revealed ahomozygous missense mutation in CARD9 (c.1118G>C p.R373P). The mRNA and protein expression levels were similar among cells carrying homozygous (C/C), heterozygous (G/C), and wild-type (G/G) CARD9 alleles. Compared to PBMCs or neutrophils with heterozygous or wild-type CARD9 alleles, however, PBMCs or neutrophils with homozygous CARD9 alleles showed impaired anti-P. crystallina effects. CONCLUSION Localized subcutaneous phaeohyphomycosis caused by P. crystallina was reported in a patient with a homozygous CARD9 mutation. Physicians should be aware of the possibility of a CARD9 mutation in seemingly healthy patients with unexplainable phaeohyphomycosis.
Collapse
Affiliation(s)
- Yanyang Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xiujun Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Wenjun Liao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Cuiling Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
86
|
Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation. Sci Rep 2019; 9:9860. [PMID: 31285484 PMCID: PMC6614480 DOI: 10.1038/s41598-019-46270-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation and membrane proteins play an important role in the infection of plants by phytopathogenic fungi, given their involvement in signal transduction cascades. Botrytis cinerea is a well-studied necrotrophic fungus taken as a model organism in fungal plant pathology, given its broad host range and adverse economic impact. To elucidate relevant events during infection, several proteomics analyses have been performed in B. cinerea, but they cover only 10% of the total proteins predicted in the genome database of this fungus. To increase coverage, we analysed by LC-MS/MS the first-reported overlapped proteome in phytopathogenic fungi, the "phosphomembranome" of B. cinerea, combining the two most important signal transduction subproteomes. Of the 1112 membrane-associated phosphoproteins identified, 64 and 243 were classified as exclusively identified or overexpressed under glucose and deproteinized tomato cell wall conditions, respectively. Seven proteins were found under both conditions, but these presented a specific phosphorylation pattern, so they were considered as exclusively identified or overexpressed proteins. From bioinformatics analysis, those differences in the membrane-associated phosphoproteins composition were associated with various processes, including pyruvate metabolism, unfolded protein response, oxidative stress response, autophagy and cell death. Our results suggest these proteins play a significant role in the B. cinerea pathogenic cycle.
Collapse
|
87
|
Genome sequence of Isaria javanica and comparative genome analysis insights into family S53 peptidase evolution in fungal entomopathogens. Appl Microbiol Biotechnol 2019; 103:7111-7128. [PMID: 31273397 DOI: 10.1007/s00253-019-09997-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 12/17/2022]
Abstract
The fungus Isaria javanica is an important entomopathogen that parasitizes various insects and is effective for pest control. In this study, we sequenced and assembled the genomes (IJ1G and IJ2G) of two I. javanica strains isolated from different insects. The genomes were approximately 35 Mb in size with 11,441 and 11,143 protein-coding genes, respectively. Using a phylogenomic approach, we evaluated genome evolution across five entomopathogenic fungi in Cordycipitaceae. By comparative genome analysis, it was found that family S53 serine peptidases were expanded in Cordycipitaceae entomopathogens, particularly in I. javanica. Gene duplication events were identified based on phylogenetic relationships inferred from 82 S53 peptidases within six entomopathogenic fungal genomes. Moreover, we found that carbohydrate-active enzymes and proteinases were the largest secretory protein groups encoded in the I. javanica genome, especially chitinases (GH18), serine and aspartic peptidases (S53, S08, S10, A01). Pathogenesis-related genes and genes for bacterial-like toxins and secondary metabolites were also identified. By comparative transcriptome analysis, differentially expressed genes in response to insect nutrients (in vitro) were identified. Moreover, most S53 peptidases were detected to be significantly upregulated during the initial fungal infection process in insects (in vivo) by RT-qPCR. Our results provide new clues about understanding evolution of pathogenic proteases and may suggest that abundant S53 peptidases in the I. javanica genome may contribute to its effective parasitism on various insects.
Collapse
|
88
|
Li T, Wu Y, Wang Y, Gao H, Gupta VK, Duan X, Qu H, Jiang Y. Secretome Profiling Reveals Virulence-Associated Proteins of Fusarium proliferatum during Interaction with Banana Fruit. Biomolecules 2019; 9:biom9060246. [PMID: 31234604 PMCID: PMC6628180 DOI: 10.3390/biom9060246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
Secreted proteins are vital for the pathogenicity of many fungi through manipulating their hosts for efficient colonization. Fusarium proliferatum is a phytopathogenic fungus infecting many crops, vegetables, and fruit, including banana fruit. To access the proteins involved in pathogen–host interaction, we used label-free quantitative proteomics technology to comparatively analyze the secretomes of F. proliferatum cultured with and without banana peel in Czapek’s broth medium. By analyzing the secretomes of F. proliferatum, we have identified 105 proteins with 40 exclusively secreted and 65 increased in abundance in response to a banana peel. These proteins were involved in the promotion of invasion of banana fruit, and they were mainly categorized into virulence factors, cell wall degradation, metabolic process, response to stress, regulation, and another unknown biological process. The expressions of corresponding genes confirmed the existence of these secreted proteins in the banana peel. Furthermore, expression pattern suggested variable roles for these genes at different infection stages. This study expanded the current database of F. proliferatum secreted proteins which might be involved in the infection strategy of this fungus. Additionally, this study warranted the further attention of some secreted proteins that might initiate infection of F. proliferatum on banana fruit.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yu Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yong Wang
- Zhongshan Entry-Exit Inspection and Quarantine Bureau, Zhongshan 528403, China.
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
89
|
Comparative genomic analysis of monosporidial and monoteliosporic cultures for unraveling the complexity of molecular pathogenesis of Tilletia indica pathogen of wheat. Sci Rep 2019; 9:8185. [PMID: 31160715 PMCID: PMC6547692 DOI: 10.1038/s41598-019-44464-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 04/01/2019] [Indexed: 11/09/2022] Open
Abstract
Tilletia indica (Ti) - a quarantined fungal pathogen of wheat and its pathogenesis is chiefly governed by pathogen effectors secreted inside the host plant. The de novo genome sequencing of several field isolates and stages available could be used for understanding the molecular pathogenesis. The presence of gaps and low coverage of assembled genomes poses a problem in accurate functional annotation of such functions. In the present study attempts were made to improve the Ti draft genome through reconciliation of globally available datasets of three highly virulent monoteliospore cultures of Ti field isolates. It has sequence depth of 107x and N50 scaffold size of 80,772 (more than 26 times as large as achieved in the draft assembly) with highest sequence contiguity, more accurate and nearly complete. Functional annotation revealed that Ti genome contains 9209 genes evolved with many expanded gene families and arranged mostly in a cluster. About 79% of Ti genes were orthologous to other basidiomycetes fungi, Around 7.93% proteins were having secretary signals and 6.66% were identified as highly virulent pathogenicity genes. Using improved Ti genome as a reference, the genomic variation was assessed with respect to repeats, SNPs/InDel, gene families and correct set of virulence associated genes during its life cycle. The comparative intra-species, inter-stage and inter-species genomic variation will have broader implications to understand the gene regulatory networks involved in growth, mating and virulence behaviour of Tilletia f. spp. and also for better appreciation of fungal biology and disease management.
Collapse
|
90
|
First Draft Genome Sequence of a Pearl Millet Blast Pathogen, Magnaporthe grisea Strain PMg_Dl, Obtained Using PacBio Single-Molecule Real-Time and Illumina NextSeq 500 Sequencing. Microbiol Resour Announc 2019; 8:8/20/e01499-18. [PMID: 31097510 PMCID: PMC6522795 DOI: 10.1128/mra.01499-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first draft genome sequence of the pearl millet blast pathogen Magnaporthe grisea PMg_Dl from India is presented. The genome information of M. grisea will be useful to understand the Magnaporthe speciation, genetic diversity, environmental adaptation, and pathogenic and host range determinants.
Collapse
|
91
|
Titcomb GC, Jerde CL, Young HS. High-Throughput Sequencing for Understanding the Ecology of Emerging Infectious Diseases at the Wildlife-Human Interface. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
92
|
MorCVD: A Unified Database for Host-Pathogen Protein-Protein Interactions of Cardiovascular Diseases Related to Microbes. Sci Rep 2019; 9:4039. [PMID: 30858555 PMCID: PMC6411875 DOI: 10.1038/s41598-019-40704-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/20/2019] [Indexed: 01/07/2023] Open
Abstract
Microbe induced cardiovascular diseases (CVDs) are less studied at present. Host-pathogen interactions (HPIs) between human proteins and microbial proteins associated with CVD can be found dispersed in existing molecular interaction databases. MorCVD database is a curated resource that combines 23,377 protein interactions between human host and 432 unique pathogens involved in CVDs in a single intuitive web application. It covers endocarditis, myocarditis, pericarditis and 16 other microbe induced CVDs. The HPI information has been compiled, curated, and presented in a freely accessible web interface (http://morcvd.sblab-nsit.net/About). Apart from organization, enrichment of the HPI data was done by adding hyperlinked protein ID, PubMed, gene ontology records. For each protein in the database, drug target and interactors (same as well as different species) information has been provided. The database can be searched by disease, protein ID, pathogen name or interaction detection method. Interactions detected by more than one method can also be listed. The information can be presented in tabular form or downloaded. A comprehensive help file has been developed to explain the various options available. Hence, MorCVD acts as a unified resource for retrieval of HPI data for researchers in CVD and microbiology.
Collapse
|
93
|
Zeng X, Kudinha T, Kong F, Zhang QQ. Comparative Genome and Transcriptome Study of the Gene Expression Difference Between Pathogenic and Environmental Strains of Prototheca zopfii. Front Microbiol 2019; 10:443. [PMID: 30899253 PMCID: PMC6416184 DOI: 10.3389/fmicb.2019.00443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/20/2019] [Indexed: 01/20/2023] Open
Abstract
Prototheca zopfii commonly exists in the environment, and causes invasive infections (protothecosis) in humans. The morbidity of protothecosis has increased rapidly in recent years, especially in systemic infections of patients with an impaired immune system. The infection in immunocompromised patients has a poor prognosis due to limited understanding of the pathogenesis of the disease, as most previous studies mainly focused on classification and recognition of pathogenic strains. In this study, we constructed the genome and transcriptome of two pathogenic strains and one environmental strain, by next generation sequencing methods. Based on our preliminary gene expression findings, genes in P. zopfii pathogenic strains are significantly up-regulated in metabolism in peroxisome, such as glyoxylate cycle, which may improve the organism's resistance to the harsh environment in phagolysosome of macrophage and its ability to survive in an anaerobic environment. We also found some significant up-regulated genes, which are related to adherence and penetration in dermatophytes, and we speculate that this may enhance the virulence capacity of pathogenic strains. Finally, the genomes and transcriptomes of P. zopfii described here provide some base for further studies on the pathogenesis of this organism.
Collapse
Affiliation(s)
- Xuanhao Zeng
- Division of Mycology, Huashan Hospital, Fudan University, Shanghai, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, NSW, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Qiang-Qiang Zhang
- Division of Mycology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
94
|
A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nat Commun 2019; 10:922. [PMID: 30804501 PMCID: PMC6389888 DOI: 10.1038/s41467-019-08726-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/17/2019] [Indexed: 01/07/2023] Open
Abstract
Fusarium graminearum is a destructive wheat pathogen. No fully resistant cultivars are available. Knowledge concerning the molecular weapons of F. graminearum to achieve infection remains limited. Here, we report that deletion of the putative secondary metabolite biosynthesis gene cluster fg3_54 compromises the pathogen’s ability to infect wheat through cell-to-cell penetration. Ectopic expression of fgm4, a pathway-specific bANK-like regulatory gene, activates the transcription of the fg3_54 cluster in vitro. We identify a linear, C- terminally reduced and d-amino acid residue-rich octapeptide, fusaoctaxin A, as the product of the two nonribosomal peptide synthetases encoded by fg3_54. Chemically-synthesized fusaoctaxin A restores cell-to-cell invasiveness in fg3_54-deleted F. graminearum, and enables colonization of wheat coleoptiles by two Fusarium strains that lack the fg3_54 homolog and are nonpathogenic to wheat. In conclusion, our results identify fusaoctaxin A as a virulence factor required for cell-to-cell invasion of wheat by F. graminearum. Fusarium graminearum is a fungal pathogen of wheat and other cereals. Here the authors identify a gene cluster in F. graminearum encoding the production of a non-ribosomal peptide that is required for infection of wheat through cell-to-cell penetration.
Collapse
|
95
|
Chen D, Hu X, Chen F, Li H, Wang D, Li X, Wu C, Li N, Wu S, Li Z, Chen L, Chen Y. Co-outbreak of multidrug resistance and a novel ST3006 Klebsiella pneumoniae in a neonatal intensive care unit: A retrospective study. Medicine (Baltimore) 2019; 98:e14285. [PMID: 30681632 PMCID: PMC6358387 DOI: 10.1097/md.0000000000014285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The outbreak of carbapenem-resistant Klebsiella pneumoniae is a serious public health problem, especially in the neonatal intensive care unit (NICU).Fifteen K. pneumoniae strains were isolated from 7 neonates during June 3 to 28, 2017 in an NICU. Antimicrobial susceptibility was determined by the Vitek 2 system and microbroth dilution method. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were used to analyze the genetic relatedness of the isolates. Whole-genome sequencing and gene function analysis were performed to investigate pathogenicity and drug resistance and screen genomic islands.Three clones of K. pneumoniae were identified from 7 neonates: 7 strains of ST37, 7 of novel ST3006, and 1 of ST1224. Gene sequencing showed that the kpn1343 (ST37) strain harbored 12 resistance genes (OXA-33, TEM-1, SHV-11, AAC (6')-IId, AAC (3)-IIa, AAC (6')-Ib-cr, catB3, arr-3, sul1, oqxB, oqxA, CRP, and catB3) and included 15 genomic islands and 205 reduced virulence genes. The kpn1344 (ST3006) strain harbored 4 antibiotic-resistant genes (TEM-1, CTX-M-3, vgaC, and CRP) and included 19 genomic islands and 209 reduced virulence genes. MLST and PFGE showed that 15 strains of K. pneumoniae were divided into 3 groups with a high level of homology. ST1224 (kpn1362) was isolated on June 28, 2017, which was 10 days after the last isolate (kpn1359, June 18, 2017); thus, we speculated that ST1224 was not the clone that caused the outbreak.This co-outbreak of K. pneumoniae involved 2 clones: ST37 and ST3006. ST37 carried the multidrug-resistant genes, such as OXA-33, TEM-1, and SHV-11, and ST3006 was a novel K. pneumoniae ST typing. Whole-genome sequencing may be an effective method for screening bacterial-resistant genes and their functions.
Collapse
Affiliation(s)
- Dongjie Chen
- Shengli Clinical Medical College of Fujian Medical University
| | - Xinlan Hu
- Clinical Microbiology Laboratory, Fujian Provincial Hospital
| | - Falin Chen
- Clinical Microbiology Laboratory, Fujian Provincial Hospital
| | - Hongru Li
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Daxuan Wang
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaoqin Li
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Changsheng Wu
- Clinical Microbiology Laboratory, Fujian Provincial Hospital
| | - Ning Li
- Clinical Microbiology Laboratory, Fujian Provincial Hospital
| | - Shaolian Wu
- Clinical Microbiology Laboratory, Fujian Provincial Hospital
| | - Zhen Li
- Clinical Microbiology Laboratory, Fujian Provincial Hospital
| | - Liqing Chen
- Clinical Microbiology Laboratory, Fujian Provincial Hospital
| | - Yusheng Chen
- Shengli Clinical Medical College of Fujian Medical University
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
96
|
Guven-Maiorov E, Tsai CJ, Ma B, Nussinov R. Interface-Based Structural Prediction of Novel Host-Pathogen Interactions. Methods Mol Biol 2019; 1851:317-335. [PMID: 30298406 PMCID: PMC8192064 DOI: 10.1007/978-1-4939-8736-8_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
About 20% of the cancer incidences worldwide have been estimated to be associated with infections. However, the molecular mechanisms of exactly how they contribute to host tumorigenesis are still unknown. To evade host defense, pathogens hijack host proteins at different levels: sequence, structure, motif, and binding surface, i.e., interface. Interface similarity allows pathogen proteins to compete with host counterparts to bind to a target protein, rewire physiological signaling, and result in persistent infections, as well as cancer. Identification of host-pathogen interactions (HPIs)-along with their structural details at atomic resolution-may provide mechanistic insight into pathogen-driven cancers and innovate therapeutic intervention. HPI data including structural details is scarce and large-scale experimental detection is challenging. Therefore, there is an urgent and mounting need for efficient and robust computational approaches to predict HPIs and their complex (bound) structures. In this chapter, we review the first and currently only interface-based computational approach to identify novel HPIs. The concept of interface mimicry promises to identify more HPIs than complete sequence or structural similarity. We illustrate this concept with a case study on Kaposi's sarcoma herpesvirus (KSHV) to elucidate how it subverts host immunity and helps contribute to malignant transformation of the host cells.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Buyong Ma
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA.
- Department of Human Genetics and Molecular Medicine, Sackler Inst. of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
97
|
Liang P, Liu S, Xu F, Jiang S, Yan J, He Q, Liu W, Lin C, Zheng F, Wang X, Miao W. Powdery Mildews Are Characterized by Contracted Carbohydrate Metabolism and Diverse Effectors to Adapt to Obligate Biotrophic Lifestyle. Front Microbiol 2018; 9:3160. [PMID: 30619222 PMCID: PMC6305591 DOI: 10.3389/fmicb.2018.03160] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023] Open
Abstract
Powdery mildew is a widespread plant disease caused by obligate biotrophic fungal pathogens involving species-specific interactions between host and parasite. To gain genomic insights into the underlying obligate biotrophic mechanisms, we analyzed 15 microbial genomes covering powdery and downy mildews and rusts. We observed a genome-wide, massive contraction of multiple gene families in powdery mildews, such as enzymes in the carbohydrate metabolism pathway, when compared with ascomycete phytopathogens, while the fatty acid metabolism pathway maintained its integrity. We also observed significant differences in candidate secreted effector protein (CSEP) families between monocot and dicot powdery mildews, perhaps due to different selection forces. While CSEPs in monocot mildews are likely subject to positive selection causing rapid expansion, CSEP families in dicot mildews are shrinking under strong purifying selection. Our results not only illustrate obligate biotrophic mechanisms of powdery mildews driven by gene family evolution in nutrient metabolism, but also demonstrate how the divergence of CSEPs between monocot and dicot lineages might contribute to species-specific adaption.
Collapse
Affiliation(s)
- Peng Liang
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China.,Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Songyu Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng Xu
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Shuqin Jiang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Jun Yan
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Qiguang He
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Wenbo Liu
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Chunhua Lin
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Fucong Zheng
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Weiguo Miao
- College of Plant Protection, Hainan University, Haikou, China.,Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| |
Collapse
|
98
|
Vita R, Overton JA, Mungall CJ, Sette A, Peters B. FAIR principles and the IEDB: short-term improvements and a long-term vision of OBO-foundry mediated machine-actionable interoperability. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4877121. [PMID: 29688354 PMCID: PMC5819722 DOI: 10.1093/database/bax105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
The Immune Epitope Database (IEDB), at www.iedb.org, has the mission to make published experimental data relating to the recognition of immune epitopes easily available to the scientific public. By presenting curated data in a searchable database, we have liberated it from the tables and figures of journal articles, making it more accessible and usable by immunologists. Recently, the principles of Findability, Accessibility, Interoperability and Reusability have been formulated as goals that data repositories should meet to enhance the usefulness of their data holdings. We here examine how the IEDB complies with these principles and identify broad areas of success, but also areas for improvement. We describe short-term improvements to the IEDB that are being implemented now, as well as a long-term vision of true 'machine-actionable interoperability', which we believe will require community agreement on standardization of knowledge representation that can be built on top of the shared use of ontologies.
Collapse
Affiliation(s)
- Randi Vita
- La Jolla Institute for Allergy and Immunology, Division of Vaccine Discovery and Center for Emerging Diseases and Biodefense, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - James A Overton
- La Jolla Institute for Allergy and Immunology, Division of Vaccine Discovery and Center for Emerging Diseases and Biodefense, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Christopher J Mungall
- Lawrence Berkeley National Laboratory, Division of Environmental Genomics and Systems Biology, 1 Cyclotron Rd Berkeley, CA 94720, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, Division of Vaccine Discovery and Center for Emerging Diseases and Biodefense, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, Division of Vaccine Discovery and Center for Emerging Diseases and Biodefense, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
99
|
Sánchez-Rangel D, Hernández-Domínguez EE, Pérez-Torres CA, Ortiz-Castro R, Villafán E, Rodríguez-Haas B, Alonso-Sánchez A, López-Buenfil A, Carrillo-Ortiz N, Hernández-Ramos L, Ibarra-Laclette E. Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus. BMC Genomics 2018; 19:721. [PMID: 30285612 PMCID: PMC6167834 DOI: 10.1186/s12864-018-5083-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are recognized as the causal agents of Fusarium dieback, a disease that causes mortality of many plant species. Despite the importance of this fungi, no transcriptomic resources have been generated. The datasets described here represent the first ever transcripts available for these species. We focused our study on the isolated species of Fusarium that is associated with one of the cryptic species referred to as Kuroshio Shot Hole Borer (KSHB) Euwallacea sp. near fornicatus. RESULTS Hydrogen concentration is a critical signal in fungi for growth and host colonization, the aim of this study was to evaluate the effect of different pH conditions on growth and gene expression of the fungus Fusarium sp. associated with KSHB. An RNA-seq approach was used to compare the gene expression of the fungus grown for 2 weeks in liquid medium at three different pH levels (5.0, 6.0, and 7.0). An unbuffered treatment was included to evaluate the capability of the fungus to change the pH of its environment and the impact in gene expression. The results showed that the fungus can grow and modulate its genetic expression at different pH conditions; however, growth was stunted in acidic pH in comparison with neutral pH. The results showed a differential expression pattern in each pH condition even when acidic conditions prevailed at the end of the experiment. After comparing transcriptomics data from the three treatments, we found a total of 4,943 unique transcripts that were differentially expressed. CONCLUSIONS We identified transcripts related to pH signaling such as the conserved PAL/RIM pathway, some transcripts related to secondary metabolism and other transcripts that were differentially expressed. Our analysis suggests possible mechanisms involved in pathogenicity in this novel Fusarium species. This is the first report that shows transcriptomic data of this pathogen as well as the first report of genes and proteins involved in their metabolism identifying potential virulence factors.
Collapse
Affiliation(s)
- Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Eric-Edmundo Hernández-Domínguez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
| | - Benjamín Rodríguez-Haas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
| | | | - Abel López-Buenfil
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, 55740 Tecámac, Estado de México Mexico
| | - Nayeli Carrillo-Ortiz
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, 55740 Tecámac, Estado de México Mexico
| | - Lervin Hernández-Ramos
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, 55740 Tecámac, Estado de México Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
| |
Collapse
|
100
|
Vetukuri RR, Tripathy S, Malar C M, Panda A, Kushwaha SK, Chawade A, Andreasson E, Grenville-Briggs LJ, Whisson SC. Draft Genome Sequence for the Tree Pathogen Phytophthora plurivora. Genome Biol Evol 2018; 10:2432-2442. [PMID: 30060094 PMCID: PMC6152947 DOI: 10.1093/gbe/evy162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/19/2022] Open
Abstract
Species from the genus Phytophthora are well represented among organisms causing serious diseases on trees. Phytophthora plurivora has been implicated in long-term decline of woodland trees across Europe. Here we present a draft genome sequence of P. plurivora, originally isolated from diseased European beech (Fagus sylvatica) in Malmö, Sweden. When compared with other sequenced Phytophthora species, the P. plurivora genome assembly is relatively compact, spanning 41 Mb. This is organized in 1,919 contigs and 1,898 scaffolds, encompassing 11,741 predicted genes, and has a repeat content of approximately 15%. Comparison of allele frequencies revealed evidence for tetraploidy in the sequenced isolate. As in other sequenced Phytophthora species, P. plurivora possesses genes for pathogenicity-associated RXLR and Crinkle and Necrosis effectors, predominantly located in gene-sparse genomic regions. Comparison of the P. plurivora RXLR effectors with orthologs in other sequenced species in the same clade (Phytophthora multivora and Phytophthora capsici) revealed that the orthologs were likely to be under neutral or purifying selection.
Collapse
Affiliation(s)
- Ramesh R Vetukuri
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sucheta Tripathy
- Computational Genomics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Mathu Malar C
- Computational Genomics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Arijit Panda
- Computational Genomics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Sandeep K Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Department of Biology, Lund University, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|