51
|
Sgro A, Blancafort P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res 2021; 48:12453-12482. [PMID: 33196851 PMCID: PMC7736826 DOI: 10.1093/nar/gkaa1000] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Chromatin adopts different configurations that are regulated by reversible covalent modifications, referred to as epigenetic marks. Epigenetic inhibitors have been approved for clinical use to restore epigenetic aberrations that result in silencing of tumor-suppressor genes, oncogene addictions, and enhancement of immune responses. However, these drugs suffer from major limitations, such as a lack of locus selectivity and potential toxicities. Technological advances have opened a new era of precision molecular medicine to reprogram cellular physiology. The locus-specificity of CRISPR/dCas9/12a to manipulate the epigenome is rapidly becoming a highly promising strategy for personalized medicine. This review focuses on new state-of-the-art epigenome editing approaches to modify the epigenome of neoplasms and other disease models towards a more 'normal-like state', having characteristics of normal tissue counterparts. We highlight biomolecular engineering methodologies to assemble, regulate, and deliver multiple epigenetic effectors that maximize the longevity of the therapeutic effect, and we discuss limitations of the platforms such as targeting efficiency and intracellular delivery for future clinical applications.
Collapse
Affiliation(s)
- Agustin Sgro
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.,The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
52
|
Ballarino R, Bouwman BAM, Crosetto N. Genome-Wide CRISPR Off-Target DNA Break Detection by the BLISS Method. Methods Mol Biol 2021; 2162:261-281. [PMID: 32926388 DOI: 10.1007/978-1-0716-0687-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced palindromic repeat (CRISPR) systems are revolutionizing many areas of biology and medicine, where they are increasingly utilized as therapeutic tools for correcting disease-causing mutations. From a clinical perspective, unintended off-target (OT) DNA double-strand break (DSB) induction by CRISPR nucleases represents a major concern. Therefore, in recent years considerable effort has been dedicated to developing methods for assessing the OT activity of CRISPR nucleases, which in turn can be used to guide engineering of nucleases with minimal OT activity. Here we describe a detailed protocol for quantifying OT DSBs genome-wide in cultured cells transfected with CRISPR enzymes, based on the breaks labeling in situ and sequencing (BLISS) method that we have previously developed. CRISPR-BLISS is versatile and scalable, and allows assessment of multiple guide RNAs in different cell types and time points following cell transfection or transduction.
Collapse
Affiliation(s)
- Roberto Ballarino
- Science for Life Laboratory (SciLifeLab), Research Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Britta A M Bouwman
- Science for Life Laboratory (SciLifeLab), Research Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Crosetto
- Science for Life Laboratory (SciLifeLab), Research Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
53
|
Genome-Wide Analysis of Off-Target CRISPR/Cas9 Activity in Single-Cell-Derived Human Hematopoietic Stem and Progenitor Cell Clones. Genes (Basel) 2020; 11:genes11121501. [PMID: 33322084 PMCID: PMC7762975 DOI: 10.3390/genes11121501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)-mediated genome editing holds remarkable promise for the treatment of human genetic diseases. However, the possibility of off-target Cas9 activity remains a concern. To address this issue using clinically relevant target cells, we electroporated Cas9 ribonucleoprotein (RNP) complexes (independently targeted to two different genomic loci, the CXCR4 locus on chromosome 2 and the AAVS1 locus on chromosome 19) into human mobilized peripheral blood-derived hematopoietic stem and progenitor cells (HSPCs) and assessed the acquisition of somatic mutations in an unbiased, genome-wide manner via whole genome sequencing (WGS) of single-cell-derived HSPC clones. Bioinformatic analysis identified >20,000 total somatic variants (indels, single nucleotide variants, and structural variants) distributed among Cas9-treated and non-Cas9-treated control HSPC clones. Statistical analysis revealed no significant difference in the number of novel non-targeted indels among the samples. Moreover, data analysis showed no evidence of Cas9-mediated indel formation at 623 predicted off-target sites. The median number of novel single nucleotide variants was slightly elevated in Cas9 RNP-recipient sample groups compared to baseline, but did not reach statistical significance. Structural variants were rare and demonstrated no clear causal connection to Cas9-mediated gene editing procedures. We find that the collective somatic mutational burden observed within Cas9 RNP-edited human HSPC clones is indistinguishable from naturally occurring levels of background genetic heterogeneity.
Collapse
|
54
|
Li C, Kasinski AL. InVivo Cancer-Based Functional Genomics. Trends Cancer 2020; 6:1002-1017. [PMID: 32828714 DOI: 10.1016/j.trecan.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Pinpointing the underlying mechanisms that drive tumorigenesis in human patients is a prerequisite for identifying suitable therapeutic targets for precision medicine. In contrast to cell culture systems, mouse models are highly favored for evaluating tumor progression and therapeutic response in a more realistic in vivo context. The past decade has witnessed a dramatic increase in the number of functional genomic studies using diverse mouse models, including in vivo clustered regularly interspaced short palindromic repeats (CRISPR) and RNA interference (RNAi) screens, and these have provided a wealth of knowledge addressing multiple essential questions in translational cancer research. We compare the multiple mouse systems and genomic tools that are commonly used for in vivo screens to illustrate their strengths and limitations. Crucial components of screen design and data analysis are also discussed.
Collapse
Affiliation(s)
- Chennan Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, USA
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
55
|
Neja SA. Site-Specific DNA Demethylation as a Potential Target for Cancer Epigenetic Therapy. Epigenet Insights 2020; 13:2516865720964808. [PMID: 35036833 PMCID: PMC8756105 DOI: 10.1177/2516865720964808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant promoter DNA hypermethylation is a typical characteristic of cancer and it is often seen in malignancies. Recent studies showed that regulatory cis-elements found up-stream of many tumor suppressor gene promoter CpG island (CGI) attract DNA methyltransferases (DNMT) that hypermethylates and silence the genes. As epigenetic alterations are potentially reversible, they make attractive targets for therapeutic intervention. The currently used decitabine (DAC) and azacitidine (AZA) are DNMT inhibitors that follow the passive demethylation pathway. However, they lead to genome-wide demethylation of CpGs in cells, which makes difficult to use it for causal effect analysis and treatment of specific epimutations. Demethylation through specific demethylase enzymes is thus critical for epigenetic resetting of silenced genes and modified chromatins. Yet DNA-binding factors likely play a major role to guide the candidate demethylase enzymes upon its fusion. Before the advent of clustered regulatory interspaced short palindromic repeats (CRISPR), both zinc finger proteins (ZNFs) and transcription activator-like effector protein (TALEs) were used as binding platforms for ten-eleven translocation (TET) enzymes and both systems were able to induce transcription at targeted loci in an in vitro as well as in vivo model. Consequently, the development of site-specific and active demethylation molecular trackers becomes more than hypothetical to makes a big difference in the treatment of cancer in the future. This review is thus to recap the novel albeit distinct studies on the potential use of site-specific demethylation for the development of epigenetic based cancer therapy.
Collapse
|
56
|
Wang M, Zhang R, Li J. CRISPR/cas systems redefine nucleic acid detection: Principles and methods. Biosens Bioelectron 2020; 165:112430. [PMID: 32729545 PMCID: PMC7341063 DOI: 10.1016/j.bios.2020.112430] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Methods that enable rapid, sensitive and specific analyses of nucleic acid sequences have positive effects on precise disease diagnostics and effective clinical treatments by providing direct insight into clinically relevant genetic information. Thus far, many CRISPR/Cas systems have been repurposed for diagnostic functions and are revolutionizing the accessibility of robust diagnostic tools due to their high flexibility, sensitivity and specificity. As RNA-guided targeted recognition effectors, Cas9 variants have been utilized for a variety of diagnostic applications, including biosensing assays, imaging assays and target enrichment for next-generation sequencing (NGS), thereby enabling the development of flexible and cost-effective tests. In addition, the ensuing discovery of Cas proteins (Cas12 and Cas13) with collateral cleavage activities has facilitated the development of numerous diagnostic tools for rapid and portable detection, and these tools have great potential for point-of-care settings. However, representative reviews proposed on this topic are mainly confined to classical biosensing applications; thus, a comprehensive and systematic description of this fast-developing field is required. In this review, based on the detection principle, we provide a detailed classification and comprehensive discussion of recent works that harness these CRISPR-based diagnostic tools from a new perspective. Furthermore, current challenges and future perspectives of CRISPR-based diagnostics are outlined.
Collapse
Affiliation(s)
- Meng Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| |
Collapse
|
57
|
Zhang L, Rube HT, Vakulskas CA, Behlke MA, Bussemaker HJ, Pufall MA. Systematic in vitro profiling of off-target affinity, cleavage and efficiency for CRISPR enzymes. Nucleic Acids Res 2020; 48:5037-5053. [PMID: 32315032 PMCID: PMC7229833 DOI: 10.1093/nar/gkaa231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/06/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
CRISPR RNA-guided endonucleases (RGEs) cut or direct activities to specific genomic loci, yet each has off-target activities that are often unpredictable. We developed a pair of simple in vitro assays to systematically measure the DNA-binding specificity (Spec-seq), catalytic activity specificity (SEAM-seq) and cleavage efficiency of RGEs. By separately quantifying binding and cleavage specificity, Spec/SEAM-seq provides detailed mechanistic insight into off-target activity. Feature-based models generated from Spec/SEAM-seq data for SpCas9 were consistent with previous reports of its in vitro and in vivo specificity, validating the approach. Spec/SEAM-seq is also useful for profiling less-well characterized RGEs. Application to an engineered SpCas9, HiFi-SpCas9, indicated that its enhanced target discrimination can be attributed to cleavage rather than binding specificity. The ortholog ScCas9, on the other hand, derives specificity from binding to an extended PAM. The decreased off-target activity of AsCas12a (Cpf1) appears to be primarily driven by DNA-binding specificity. Finally, we performed the first characterization of CasX specificity, revealing an all-or-nothing mechanism where mismatches can be bound, but not cleaved. Together, these applications establish Spec/SEAM-seq as an accessible method to rapidly and reliably evaluate the specificity of RGEs, Cas::gRNA pairs, and gain insight into the mechanism and thermodynamics of target discrimination.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Coralville, IA 52241, USA.,Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA
| | - H Tomas Rube
- Department of Bioengineering, University of California, Merced, New York, NY 10027, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA.,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Mark A Behlke
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Coralville, IA 52241, USA
| |
Collapse
|
58
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020; 11:1689. [PMID: 33013822 PMCID: PMC7494743 DOI: 10.3389/fimmu.2020.01689] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.
Collapse
Affiliation(s)
- Francesco Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano – Bicocca, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
59
|
Newman A, Starrs L, Burgio G. Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On- and Off-Target Damage: Techniques for Detecting, Predicting, and Mitigating the On- and off-target Effects of Cas9 Editing. Bioessays 2020; 42:e2000047. [PMID: 32643177 DOI: 10.1002/bies.202000047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Large deletions and genomic re-arrangements are increasingly recognized as common products of double-strand break repair at Clustered Regularly Interspaced, Short Palindromic Repeats - CRISPR associated protein 9 (CRISPR/Cas9) on-target sites. Together with well-known off-target editing products from Cas9 target misrecognition, these are important limitations, that need to be addressed. Rigorous assessment of Cas9-editing is necessary to ensure validity of observed phenotypes in Cas9-edited cell-lines and model organisms. Here the mechanisms of Cas9 specificity, and strategies to assess and mitigate unwanted effects of Cas9 editing are reviewed; covering guide-RNA design, RNA modifications, Cas9 modifications, control of Cas9 activity; computational prediction for off-targets, and experimental methods for detecting Cas9 cleavage. Although recognition of the prevalence of on- and off-target effects of Cas9 editing has increased in recent years, broader uptake across the gene editing community will be important in determining the specificity of Cas9 across diverse applications and organisms.
Collapse
Affiliation(s)
- Anthony Newman
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Lora Starrs
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| |
Collapse
|
60
|
Waldrip ZJ, Jenjaroenpun P, DeYoung O, Nookaew I, Taverna SD, Raney KD, Tackett AJ. Genome-wide Cas9 binding specificity in Saccharomyces cerevisiae. PeerJ 2020; 8:e9442. [PMID: 32821531 PMCID: PMC7395602 DOI: 10.7717/peerj.9442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
The CRISPR system has become heavily utilized in biomedical research as a tool for genomic editing as well as for site-specific chromosomal localization of specific proteins. For example, we developed a CRISPR-based methodology for enriching a specific genomic locus of interest for proteomic analysis in Saccharomyces cerevisiae, which utilized a guide RNA-targeted, catalytically dead Cas9 (dCas9) as an affinity reagent. To more comprehensively evaluate the genomic specificity of using dCas9 as a site-specific tool for chromosomal studies, we performed dCas9-mediated locus enrichment followed by next-generation sequencing on a genome-wide scale. As a test locus, we used the ARS305 origin of replication on chromosome III in S. cerevisiae. We found that enrichment of this site is highly specific, with virtually no off-target enrichment of unique genomic sequences. The high specificity of genomic localization and enrichment suggests that dCas9-mediated technologies have promising potential for site-specific chromosomal studies in organisms with relatively small genomes such as yeasts.
Collapse
Affiliation(s)
- Zachary J Waldrip
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Oktawia DeYoung
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| |
Collapse
|
61
|
Soubeyrand S, Nikpay M, Lau P, Turner A, Hoang HD, Alain T, McPherson R. CARMAL Is a Long Non-coding RNA Locus That Regulates MFGE8 Expression. Front Genet 2020; 11:631. [PMID: 32625236 PMCID: PMC7311772 DOI: 10.3389/fgene.2020.00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Genome-wide association studies have identified several genetic loci linked to coronary artery disease (CAD) most of them located in non-protein coding regions of the genome. One such locus is the CAD Associated Region between MFGE8 and ABHD2 (CARMA), a ∼18 kb haplotype that was recently shown to regulate vicinal protein coding genes. Here, we further investigate the region by examining a long non-coding RNA gene locus (CARMAL/RP11-326A19.4/AC013565) abutting the CARMA region. Expression-genotype correlation analyses of public databases indicate that CARMAL levels are influenced by CAD associated variants suggesting that it might have cardioprotective functions. We found CARMAL to be stably expressed at relatively low levels and enriched in the cytosol. CARMAL function was investigated by several gene targeting approaches in HEK293T: inactive CRISPR fusion proteins, antisense, overexpression and inactivation by CRISPR-mediated knock-out. Modest increases in CARMAL (3–4×) obtained via CRISPRa using distinct single-guided RNAs did not result in consistent transcriptome effects. By contrast, CARMAL deletion or reduced CARMAL expression via CRISPRi increased MFGE8 levels, suggesting that CARMAL is contributing to reduce MFGE8 expression under basal conditions. While future investigations are required to clarify the mechanism(s) by which CARMAL acts on MFGE8, integrative bioinformatic analyses of the transcriptome of CARMAL deleted cells suggest that this locus may also be involved in leucine metabolism, splicing, transcriptional regulation and Shwachman-Bodian-Diamond syndrome protein function.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Majid Nikpay
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Paulina Lau
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Adam Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Huy-Dung Hoang
- Children Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Children Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
62
|
Hewes AM, Sansbury BM, Barth S, Tarcic G, Kmiec EB. gRNA Sequence Heterology Tolerance Catalyzed by CRISPR/Cas in an In Vitro Homology-Directed Repair Reaction. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:568-579. [PMID: 32330873 PMCID: PMC7177190 DOI: 10.1016/j.omtn.2020.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
CRISPR and associated Cas nucleases are genetic engineering tools revolutionizing innovative approaches to cancer and inherited diseases. CRISPR-directed gene editing relies heavily on proper DNA sequence alignment between the guide RNA (gRNA)/CRISPR complex and its genomic target. Accurate hybridization of complementary DNA initiates gene editing in human cells, but inherent gRNA sequence variation that could influence the gene editing reaction has been clearly established among diverse genetic populations. As this technology advances toward clinical implementation, it will be essential to assess what degree of gRNA variation generates unwanted and erroneous CRISPR activity. With the use of a system in which a cell-free extract catalyzes nonhomologous end joining (NHEJ) and homology-directed repair (HDR), it is possible to observe a more representative population of all forms of gene editing outcomes. In this manuscript, we demonstrate CRISPR/Cas complexation at heterologous binding sites that facilitate precise and error-prone HDR. The tolerance of mispairing between the gRNA and target site of the DNA to enable HDR is surprisingly high and greatly influenced by polarity of the donor DNA strand in the reaction. These results suggest that some collateral genomic activity could occur at unintended sites in CRISPR-directed gene editing in human cells.
Collapse
Affiliation(s)
- Amanda M Hewes
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Brett M Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Shaul Barth
- Novellus, Jerusalem Bio-Park, 1(st) Kiryat Hadassah, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel, 9112001
| | - Gabi Tarcic
- Novellus, Jerusalem Bio-Park, 1(st) Kiryat Hadassah, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel, 9112001
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
63
|
Palumbo CM, Gutierrez-Bujari JM, O'Geen H, Segal DJ, Beal PA. Versatile 3' Functionalization of CRISPR Single Guide RNA. Chembiochem 2020; 21:1633-1640. [PMID: 31943634 PMCID: PMC7323579 DOI: 10.1002/cbic.201900736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Specific applications of CRISPR/Cas genome editing systems benefit from chemical modifications of the sgRNA. Herein we describe a versatile and efficient strategy for functionalization of the 3'-end of a sgRNA. An exemplary collection of six chemically modified sgRNAs was prepared containing crosslinkers, a fluorophore and biotin. Modification of the sgRNA 3'-end was broadly tolerated by Streptococcus pyogenes Cas9 in an in vitro DNA cleavage assay. The 3'-biotinylated sgRNA was used as an affinity reagent to identify IGF2BP1, YB1 and hnRNP K as sgRNA-binding proteins present in HEK293T cells. Overall, the modification strategy presented here has the potential to expand on current applications of CRISPR/Cas systems.
Collapse
Affiliation(s)
- Cody M Palumbo
- Department of Chemistry, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Jeton M Gutierrez-Bujari
- Department of Chemistry, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Henriette O'Geen
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, 95616, USA
| | - David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| |
Collapse
|
64
|
Specht DA, Xu Y, Lambert G. Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding. Proc Natl Acad Sci U S A 2020; 117:11274-11282. [PMID: 32376630 PMCID: PMC7260945 DOI: 10.1073/pnas.1918685117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The versatility of CRISPR-Cas endonucleases as a tool for biomedical research has led to diverse applications in gene editing, programmable transcriptional control, and nucleic acid detection. Most CRISPR-Cas systems, however, suffer from off-target effects and unpredictable nonspecific binding that negatively impact their reliability and broader applicability. To better evaluate the impact of mismatches on DNA target recognition and binding, we develop a massively parallel CRISPR interference (CRISPRi) assay to measure the binding energy between tens of thousands of CRISPR RNA (crRNA) and target DNA sequences. By developing a general thermodynamic model of CRISPR-Cas binding dynamics, our results unravel a comprehensive map of the energetic landscape of nuclease-dead Cas12a (dCas12a) from Francisella novicida as it inspects and binds to its DNA target. Our results reveal concealed thermodynamic factors affecting dCas12a DNA binding, which should guide the design and optimization of crRNA that limits off-target effects, including the crucial role of an extended protospacer adjacent motif (PAM) sequence and the impact of the specific base composition of crRNA-DNA mismatches. Our generalizable approach should also provide a mechanistic understanding of target recognition and DNA binding when applied to other CRISPR-Cas systems.
Collapse
Affiliation(s)
- David A Specht
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Yasu Xu
- Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Guillaume Lambert
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
65
|
Chechik L, Martin O, Soutoglou E. Genome Editing Fidelity in the Context of DNA Sequence and Chromatin Structure. Front Cell Dev Biol 2020; 8:319. [PMID: 32457906 PMCID: PMC7225291 DOI: 10.3389/fcell.2020.00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Genome editing by Clustered Regularly Inter Spaced Palindromic Repeat (CRISPR) associated (Cas) systems has revolutionized medical research and holds enormous promise for correcting genetic diseases. Understanding how these Cas nucleases work and induce mutations, as well as identifying factors that affect their efficiency and fidelity is key to developing this technology for therapeutic uses. Here, we discuss recent studies that reveal how DNA sequence and chromatin structure influences the different steps of genome editing. These studies also demonstrate that a deep understanding of the balance between error prone and error free DNA repair pathways is crucial for making genome editing a safe clinical tool, which does not induce further mutations to the genome.
Collapse
Affiliation(s)
- Lyuba Chechik
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Ophelie Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
66
|
Ivanov IE, Wright AV, Cofsky JC, Aris KDP, Doudna JA, Bryant Z. Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling. Proc Natl Acad Sci U S A 2020; 117:5853-5860. [PMID: 32123105 PMCID: PMC7084090 DOI: 10.1073/pnas.1913445117] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CRISPR-Cas9 nuclease has been widely repurposed as a molecular and cell biology tool for its ability to programmably target and cleave DNA. Cas9 recognizes its target site by unwinding the DNA double helix and hybridizing a 20-nucleotide section of its associated guide RNA to one DNA strand, forming an R-loop structure. A dynamic and mechanical description of R-loop formation is needed to understand the biophysics of target searching and develop rational approaches for mitigating off-target activity while accounting for the influence of torsional strain in the genome. Here we investigate the dynamics of Cas9 R-loop formation and collapse using rotor bead tracking (RBT), a single-molecule technique that can simultaneously monitor DNA unwinding with base-pair resolution and binding of fluorescently labeled macromolecules in real time. By measuring changes in torque upon unwinding of the double helix, we find that R-loop formation and collapse proceed via a transient discrete intermediate, consistent with DNA:RNA hybridization within an initial seed region. Using systematic measurements of target and off-target sequences under controlled mechanical perturbations, we characterize position-dependent effects of sequence mismatches and show how DNA supercoiling modulates the energy landscape of R-loop formation and dictates access to states competent for stable binding and cleavage. Consistent with this energy landscape model, in bulk experiments we observe promiscuous cleavage under physiological negative supercoiling. The detailed description of DNA interrogation presented here suggests strategies for improving the specificity and kinetics of Cas9 as a genome engineering tool and may inspire expanded applications that exploit sensitivity to DNA supercoiling.
Collapse
Affiliation(s)
- Ivan E Ivanov
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | | | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305;
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
67
|
Jacinto FV, Link W, Ferreira BI. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine. J Cell Mol Med 2020; 24:3766-3778. [PMID: 32096600 PMCID: PMC7171402 DOI: 10.1111/jcmm.14916] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
The recent development of the CRISPR/Cas9 system as an efficient and accessible programmable genome‐editing tool has revolutionized basic science research. CRISPR/Cas9 system‐based technologies have armed researchers with new powerful tools to unveil the impact of genetics on disease development by enabling the creation of precise cellular and animal models of human diseases. The therapeutic potential of these technologies is tremendous, particularly in gene therapy, in which a patient‐specific mutation is genetically corrected in order to treat human diseases that are untreatable with conventional therapies. However, the translation of CRISPR/Cas9 into the clinics will be challenging, since we still need to improve the efficiency, specificity and delivery of this technology. In this review, we focus on several in vitro, in vivo and ex vivo applications of the CRISPR/Cas9 system in human disease‐focused research, explore the potential of this technology in translational medicine and discuss some of the major challenges for its future use in patients.
Collapse
Affiliation(s)
- Filipe V Jacinto
- Centre for Biomedical Research (CBMR), Faro, Portugal.,Departamento de Medicina e Ciências Biomedicas (DCBM), Universidade do Algarve, Faro, Portugal.,Algarve Biomedical Center (ABC), Faro, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Bibiana I Ferreira
- Centre for Biomedical Research (CBMR), Faro, Portugal.,Departamento de Medicina e Ciências Biomedicas (DCBM), Universidade do Algarve, Faro, Portugal.,Algarve Biomedical Center (ABC), Faro, Portugal
| |
Collapse
|
68
|
Liu Q, Cheng X, Liu G, Li B, Liu X. Deep learning improves the ability of sgRNA off-target propensity prediction. BMC Bioinformatics 2020; 21:51. [PMID: 32041517 PMCID: PMC7011380 DOI: 10.1186/s12859-020-3395-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CRISPR/Cas9 system, as the third-generation genome editing technology, has been widely applied in target gene repair and gene expression regulation. Selection of appropriate sgRNA can improve the on-target knockout efficacy of CRISPR/Cas9 system with high sensitivity and specificity. However, when CRISPR/Cas9 system is operating, unexpected cleavage may occur at some sites, known as off-target. Presently, a number of prediction methods have been developed to predict the off-target propensity of sgRNA at specific DNA fragments. Most of them use artificial feature extraction operations and machine learning techniques to obtain off-target scores. With the rapid expansion of off-target data and the rapid development of deep learning theory, the existing prediction methods can no longer satisfy the prediction accuracy at the clinical level. RESULTS Here, we propose a prediction method named CnnCrispr to predict the off-target propensity of sgRNA at specific DNA fragments. CnnCrispr automatically trains the sequence features of sgRNA-DNA pairs with GloVe model, and embeds the trained word vector matrix into the deep learning model including biLSTM and CNN with five hidden layers. We conducted performance verification on the data set provided by DeepCrispr, and found that the auROC and auPRC in the "leave-one-sgRNA-out" cross validation could reach 0.957 and 0.429 respectively (the Pearson value and spearman value could reach 0.495 and 0.151 respectively under the same settings). CONCLUSION Our results show that CnnCrispr has better classification and regression performance than the existing states-of-art models. The code for CnnCrispr can be freely downloaded from https://github.com/LQYoLH/CnnCrispr.
Collapse
Affiliation(s)
- Qiaoyue Liu
- Department of information and computing science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiang Cheng
- Department of information and computing science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Gan Liu
- Department of information and computing science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bohao Li
- Department of information and computing science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiuqin Liu
- Department of information and computing science, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
69
|
Schoger E, Carroll KJ, Iyer LM, McAnally JR, Tan W, Liu N, Noack C, Shomroni O, Salinas G, Groß J, Herzog N, Doroudgar S, Bassel-Duby R, Zimmermann WH, Zelarayán LC. CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart. Circ Res 2020; 126:6-24. [PMID: 31730408 DOI: 10.1161/circresaha.118.314522] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
Abstract
RATIONALE Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is evolving rapidly. Recently, second-generation CRISPR/Cas9 activation systems based on nuclease inactive dead (d)Cas9 fused to transcriptional transactivation domains were developed for directing specific guide (g)RNAs to regulatory regions of any gene of interest, to enhance transcription. The application of dCas9 to activate cardiomyocyte transcription in targeted genomic loci in vivo has not been demonstrated so far. OBJECTIVE We aimed to develop a mouse model for cardiomyocyte-specific, CRISPR-mediated transcriptional modulation, and to demonstrate its versatility by targeting Mef2d and Klf15 loci (2 well-characterized genes implicated in cardiac hypertrophy and homeostasis) for enhanced transcription. METHODS AND RESULTS A mouse model expressing dCas9 with the VPR transcriptional transactivation domains under the control of the Myh (myosin heavy chain) 6 promoter was generated. These mice innocuously expressed dCas9 exclusively in cardiomyocytes. For initial proof-of-concept, we selected Mef2d, which when overexpressed, led to hypertrophy and heart failure, and Klf15, which is lowly expressed in the neonatal heart. The most effective gRNAs were first identified in fibroblast (C3H/10T1/2) and myoblast (C2C12) cell lines. Using an improved triple gRNA expression system (TRISPR [triple gRNA expression construct]), up to 3 different gRNAs were transduced simultaneously to identify optimal conditions for transcriptional activation. For in vivo delivery of the validated gRNA combinations, we employed systemic administration via adeno-associated virus serotype 9. On gRNA delivery targeting Mef2d expression, we recapitulated the anticipated cardiac hypertrophy phenotype. Using gRNA targeting Klf15, we could enhance its transcription significantly, although Klf15 is physiologically silenced at that time point. We further confirmed specific and robust dCas9VPR on-target effects. CONCLUSIONS The developed mouse model permits enhancement of gene expression by using endogenous regulatory genomic elements. Proof-of-concept in 2 independent genomic loci suggests versatile applications in controlling transcription in cardiomyocytes of the postnatal heart.
Collapse
Affiliation(s)
- Eric Schoger
- From the Institute of Pharmacology and Toxicology (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.), University Medical Center Goettingen, Georg-August University, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Goettingen, Germany (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.)
| | - Kelli J Carroll
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (K.J.C., J.R.M., W.T., N.L., R.B.-D.)
| | - Lavanya M Iyer
- From the Institute of Pharmacology and Toxicology (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.), University Medical Center Goettingen, Georg-August University, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Goettingen, Germany (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.)
| | - John R McAnally
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (K.J.C., J.R.M., W.T., N.L., R.B.-D.)
| | - Wei Tan
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (K.J.C., J.R.M., W.T., N.L., R.B.-D.)
| | - Ning Liu
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (K.J.C., J.R.M., W.T., N.L., R.B.-D.)
| | - Claudia Noack
- From the Institute of Pharmacology and Toxicology (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.), University Medical Center Goettingen, Georg-August University, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Goettingen, Germany (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.)
| | - Orr Shomroni
- NGS-Integrative Genomics (NIG) Institute Human Genetics (O.S., G.S.), University Medical Center Goettingen, Georg-August University, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics (NIG) Institute Human Genetics (O.S., G.S.), University Medical Center Goettingen, Georg-August University, Germany
| | - Julia Groß
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Germany (J.G., N.H., S.D.)
| | - Nicole Herzog
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Germany (J.G., N.H., S.D.)
| | - Shirin Doroudgar
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Germany (J.G., N.H., S.D.)
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (K.J.C., J.R.M., W.T., N.L., R.B.-D.)
| | - Wolfram-H Zimmermann
- From the Institute of Pharmacology and Toxicology (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.), University Medical Center Goettingen, Georg-August University, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Goettingen, Germany (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.)
| | - Laura C Zelarayán
- From the Institute of Pharmacology and Toxicology (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.), University Medical Center Goettingen, Georg-August University, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Goettingen, Germany (E.S., L.M.I., C.N., W.-H.Z., L.C.Z.)
| |
Collapse
|
70
|
Muhammad II, Kong SL, Akmar Abdullah SN, Munusamy U. RNA-seq and ChIP-seq as Complementary Approaches for Comprehension of Plant Transcriptional Regulatory Mechanism. Int J Mol Sci 2019; 21:E167. [PMID: 31881735 PMCID: PMC6981605 DOI: 10.3390/ijms21010167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The availability of data produced from various sequencing platforms offer the possibility to answer complex questions in plant research. However, drawbacks can arise when there are gaps in the information generated, and complementary platforms are essential to obtain more comprehensive data sets relating to specific biological process, such as responses to environmental perturbations in plant systems. The investigation of transcriptional regulation raises different challenges, particularly in associating differentially expressed transcription factors with their downstream responsive genes. In this paper, we discuss the integration of transcriptional factor studies through RNA sequencing (RNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). We show how the data from ChIP-seq can strengthen information generated from RNA-seq in elucidating gene regulatory mechanisms. In particular, we discuss how integration of ChIP-seq and RNA-seq data can help to unravel transcriptional regulatory networks. This review discusses recent advances in methods for studying transcriptional regulation using these two methods. It also provides guidelines for making choices in selecting specific protocols in RNA-seq pipelines for genome-wide analysis to achieve more detailed characterization of specific transcription regulatory pathways via ChIP-seq.
Collapse
Affiliation(s)
- Isiaka Ibrahim Muhammad
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| | - Sze Ling Kong
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| | - Siti Nor Akmar Abdullah
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Umaiyal Munusamy
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| |
Collapse
|
71
|
Marzec M, Hensel G. More precise, more universal and more specific - the next generation of RNA-guided endonucleases for genome editing. FEBS J 2019; 286:4657-4660. [PMID: 31612609 DOI: 10.1111/febs.15079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
Abstract
CRISPR is a prokaryotic defence system that was adapted as a tool for genome editing and has become one of the most important discoveries of this century. CRISPR-associated endonucleases cleave DNA at precise sites, which are marked by complementary short-guided RNA. The recently developed versions of endonucleases are compatible with a broad range of PAM motifs, have a higher specificity and enable a specific nucleotide to be replaced.
Collapse
Affiliation(s)
- Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
72
|
Arndell T, Sharma N, Langridge P, Baumann U, Watson-Haigh NS, Whitford R. gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnol 2019; 19:71. [PMID: 31684940 PMCID: PMC6829922 DOI: 10.1186/s12896-019-0565-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The CRISPR-Cas9 system is a powerful and versatile tool for crop genome editing. However, achieving highly efficient and specific editing in polyploid species can be a challenge. The efficiency and specificity of the CRISPR-Cas9 system depends critically on the gRNA used. Here, we assessed the activities and specificities of seven gRNAs targeting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in hexaploid wheat protoplasts. EPSPS is the biological target of the widely used herbicide glyphosate. RESULTS The seven gRNAs differed substantially in their on-target activities, with mean indel frequencies ranging from 0% to approximately 20%. There was no obvious correlation between experimentally determined and in silico predicted on-target gRNA activity. The presence of a single mismatch within the seed region of the guide sequence greatly reduced but did not abolish gRNA activity, whereas the presence of an additional mismatch, or the absence of a PAM, all but abolished gRNA activity. Large insertions (≥20 bp) of DNA vector-derived sequence were detected at frequencies up to 8.5% of total indels. One of the gRNAs exhibited several properties that make it potentially suitable for the development of non-transgenic glyphosate resistant wheat. CONCLUSIONS We have established a rapid and reliable method for gRNA validation in hexaploid wheat protoplasts. The method can be used to identify gRNAs that have favourable properties. Our approach is particularly suited to polyploid species, but should be applicable to any plant species amenable to protoplast transformation.
Collapse
Affiliation(s)
- Taj Arndell
- Present address: CSIRO, Agriculture and Food, Canberra, ACT Australia
| | - Niharika Sharma
- Present address: New South Wales Department of Primary Industries, Research Excellence, Orange, NSW Australia
| | - Peter Langridge
- School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Ute Baumann
- School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Nathan S. Watson-Haigh
- Present address: Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Ryan Whitford
- School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| |
Collapse
|
73
|
Soubeyrand S, Lau P, Peters V, McPherson R. Off-target effects of CRISPRa on interleukin-6 expression. PLoS One 2019; 14:e0224113. [PMID: 31658298 PMCID: PMC6816553 DOI: 10.1371/journal.pone.0224113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022] Open
Abstract
Inactive fusion variants of the CRISPR-Cas9 system are increasingly being used as standard methodology to study transcription regulation. Their ability to readily manipulate the native genomic loci is particularly advantageous. In this work, we serendipitously uncover the key cytokine IL6 as an off-target of the activating derivative of CRISPR (CRISPRa) while studying RP11-326A19.4, a novel long-non coding RNA (lncRNA). Increasing RP11-326A19.4 expression in HEK293T cells via CRISPRa-mediated activation of its promoter region induced genome-wide transcriptional changes, including upregulation of IL6, an important cytokine. IL6 was increased in response to distinct sgRNA targeting the RP11-326A19.4 promoter region, suggesting specificity. Loss of the cognate sgRNA recognition sites failed to abolish CRISPRa mediated activation of IL6 however, pointing to off-target effects. Bioinformatic approaches did not reveal predicted off-target binding sites. Off-target activation of IL6 was sustained and involved low level activation of known IL6 regulators. Increased IL6 remained sensitive to further activation by TNFα, consistent with the existence of independent mechanisms. This study provides experimental evidence that CRISPRa has discrete, unpredictable off-targeting limitations that must be considered when using this emerging technology.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Paulina Lau
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Victoria Peters
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
74
|
Jiang W, Singh J, Allen A, Li Y, Kathiresan V, Qureshi O, Tangprasertchai N, Zhang X, Parameshwaran HP, Rajan R, Qin PZ. CRISPR-Cas12a Nucleases Bind Flexible DNA Duplexes without RNA/DNA Complementarity. ACS OMEGA 2019; 4:17140-17147. [PMID: 31656887 PMCID: PMC6811856 DOI: 10.1021/acsomega.9b01469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/25/2019] [Indexed: 05/03/2023]
Abstract
Cas12a (also known as "Cpf1") is a class 2 type V-A CRISPR-associated nuclease that can cleave double-stranded DNA at specific sites. The Cas12a effector enzyme comprises a single protein and a CRISPR-encoded small RNA (crRNA) and has been used for genome editing and manipulation. Work reported here examined in vitro interactions between the Cas12a effector enzyme and DNA duplexes with varying states of base-pairing between the two strands. The data revealed that in the absence of complementarity between the crRNA guide and the DNA target-strand, Cas12a binds duplexes with unpaired segments. These off-target duplexes were bound at the Cas12a site responsible for RNA-guided double-stranded DNA binding but were not cleaved due to the lack of RNA/DNA hybrid formation. Such promiscuous binding was attributed to increased DNA flexibility induced by the unpaired segment present next to the protospacer-adjacent-motif. The results suggest that target discrimination of Cas12a can be influenced by flexibility of the DNA. As such, in addition to the linear sequence, flexibility and other physical properties of the DNA should be considered in Cas12a-based genome engineering applications.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Jaideep Singh
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Aleique Allen
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Yue Li
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Venkatesan Kathiresan
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Omair Qureshi
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Narin Tangprasertchai
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Xiaojun Zhang
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Hari Priya Parameshwaran
- Department
of Chemistry and Biochemistry, Price Family Foundation Institute of
Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Rakhi Rajan
- Department
of Chemistry and Biochemistry, Price Family Foundation Institute of
Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Peter Z. Qin
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
- E-mail: . Phone: (213) 821-2461. Fax: (213) 740-2701
| |
Collapse
|
75
|
Abstract
Owing to their high similarity to humans, non-human primates (NHPs) provide an exceedingly suitable model for the study of human disease. In this Review, we summarize the history of transgenic NHP models and the progress of CRISPR/Cas9-mediated genome editing in NHPs, from the first proof-of-principle green fluorescent protein-expressing monkeys to sophisticated NHP models of human neurodegenerative disease that accurately phenocopy several complex disease features. We discuss not only the breakthroughs and advantages, but also the potential shortcomings of the application of the CRISPR/Cas9 system to NHPs that have emerged from the expanded understanding of this technology in recent years. Although off-target and mosaic mutations are the main concerns in CRISPR/Cas9-mediated NHP modeling, recent progress in genome editing techniques make it likely that these technical limitations will be overcome soon, bringing excellent prospects to human disease studies.
Collapse
Affiliation(s)
- Yu Kang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chu Chu
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedicine Research, Kunming, Yunnan 650223, China
| | - Fang Wang
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedicine Research, Kunming, Yunnan 650223, China
| | - Yuyu Niu
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedicine Research, Kunming, Yunnan 650223, China
| |
Collapse
|
76
|
Urbano A, Smith J, Weeks RJ, Chatterjee A. Gene-Specific Targeting of DNA Methylation in the Mammalian Genome. Cancers (Basel) 2019; 11:cancers11101515. [PMID: 31600992 PMCID: PMC6827012 DOI: 10.3390/cancers11101515] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is the most widely-studied epigenetic modification, playing a critical role in the regulation of gene expression. Dysregulation of DNA methylation is implicated in the pathogenesis of numerous diseases. For example, aberrant DNA methylation in promoter regions of tumor-suppressor genes has been strongly associated with the development and progression of many different tumors. Accordingly, technologies designed to manipulate DNA methylation at specific genomic loci are very important, especially in the context of cancer therapy. Traditionally, epigenomic editing technologies have centered around zinc finger proteins (ZFP)- and transcription activator-like effector protein (TALE)-based targeting. More recently, however, the emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-deactivated Cas9 (dCas9)-based editing systems have shown to be a more specific and efficient method for the targeted manipulation of DNA methylation. Here, we describe the regulation of the DNA methylome, its significance in cancer and the current state of locus-specific editing technologies for altering DNA methylation.
Collapse
Affiliation(s)
- Arthur Urbano
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, 3A Symonds Street, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
77
|
Okada A, Arndell T, Borisjuk N, Sharma N, Watson‐Haigh NS, Tucker EJ, Baumann U, Langridge P, Whitford R. CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1905-1913. [PMID: 30839150 PMCID: PMC6737020 DOI: 10.1111/pbi.13106] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/05/2019] [Accepted: 02/27/2019] [Indexed: 05/18/2023]
Abstract
The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity. However, it has been a challenge to develop a commercially viable platform for the production of hybrid wheat (Triticum aestivum) seed due to wheat's strong inbreeding habit. Recently, a novel platform for commercial hybrid seed production was described. This hybridization platform utilizes nuclear male sterility to force outcrossing and has been applied to maize and rice. With the recent molecular identification of the wheat male fertility gene Ms1, it is now possible to extend the use of this novel hybridization platform to wheat. In this report, we used the CRISPR/Cas9 system to generate heritable, targeted mutations in Ms1. The introduction of biallelic frameshift mutations into Ms1 resulted in complete male sterility in wheat cultivars Fielder and Gladius, and several of the selected male-sterile lines were potentially non-transgenic. Our study demonstrates the utility of the CRISPR/Cas9 system for the rapid generation of male sterility in commercial wheat cultivars. This represents an important step towards capturing heterosis to improve wheat yields, through the production and use of hybrid seed on an industrial scale.
Collapse
Affiliation(s)
- Anzu Okada
- School of Agriculture, Food & WineThe University of AdelaideUrrbraeSouth AustraliaAustralia
| | - Taj Arndell
- School of Agriculture, Food & WineThe University of AdelaideUrrbraeSouth AustraliaAustralia
| | - Nikolai Borisjuk
- School of Agriculture, Food & WineThe University of AdelaideUrrbraeSouth AustraliaAustralia
- Present address:
School of Life ScienceHuaiyin Normal UniversityHuai'anChina
| | - Niharika Sharma
- School of Agriculture, Food & WineThe University of AdelaideUrrbraeSouth AustraliaAustralia
- Present address:
New South Wales Department of Primary IndustriesResearch ExcellenceOrangeNew South WalesAustralia
| | - Nathan S. Watson‐Haigh
- School of Agriculture, Food & WineThe University of AdelaideUrrbraeSouth AustraliaAustralia
| | - Elise J. Tucker
- School of Agriculture, Food & WineThe University of AdelaideUrrbraeSouth AustraliaAustralia
- Present address:
Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodUrrbraeSouth AustraliaAustralia
| | - Ute Baumann
- School of Agriculture, Food & WineThe University of AdelaideUrrbraeSouth AustraliaAustralia
| | - Peter Langridge
- School of Agriculture, Food & WineThe University of AdelaideUrrbraeSouth AustraliaAustralia
| | - Ryan Whitford
- School of Agriculture, Food & WineThe University of AdelaideUrrbraeSouth AustraliaAustralia
| |
Collapse
|
78
|
Soler-Bistué A, Zorreguieta A, Tolmasky ME. Bridged Nucleic Acids Reloaded. Molecules 2019; 24:E2297. [PMID: 31234313 PMCID: PMC6630285 DOI: 10.3390/molecules24122297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Oligonucleotides are key compounds widely used for research, diagnostics, and therapeutics. The rapid increase in oligonucleotide-based applications, together with the progress in nucleic acids research, has led to the design of nucleotide analogs that, when part of these oligomers, enhance their efficiency, bioavailability, or stability. One of the most useful nucleotide analogs is the first-generation bridged nucleic acids (BNA), also known as locked nucleic acids (LNA), which were used in combination with ribonucleotides, deoxyribonucleotides, or other analogs to construct oligomers with diverse applications. However, there is still room to improve their efficiency, bioavailability, stability, and, importantly, toxicity. A second-generation BNA, BNANC (2'-O,4'-aminoethylene bridged nucleic acid), has been recently made available. Oligomers containing these analogs not only showed less toxicity when compared to LNA-containing compounds but, in some cases, also exhibited higher specificity. Although there are still few applications where BNANC-containing compounds have been researched, the promising results warrant more effort in incorporating these analogs for other applications. Furthermore, newer BNA compounds will be introduced in the near future, offering great hope to oligonucleotide-based fields of research and applications.
Collapse
Affiliation(s)
- Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús, CONICET, Universidad Nacional de San Martín, San Martín 1650, Argentina.
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires C1405BWE, Argentina.
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| |
Collapse
|
79
|
Barkau CL, O'Reilly D, Rohilla KJ, Damha MJ, Gagnon KT. Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9. Nucleic Acid Ther 2019; 29:136-147. [PMID: 30990769 PMCID: PMC6555185 DOI: 10.1089/nat.2018.0758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/15/2019] [Indexed: 12/22/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) RNAs and their associated effector (Cas) enzymes are being developed into promising therapeutics to treat disease. However, CRISPR-Cas enzymes might produce unwanted gene editing or dangerous side effects. Drug-like molecules that can inactivate CRISPR-Cas enzymes could help facilitate safer therapeutic development. Based on the requirement of guide RNA and target DNA interaction by Cas enzymes, we rationally designed small nucleic acid-based inhibitors (SNuBs) of Streptococcus pyogenes (Sp) Cas9. Inhibitors were initially designed as 2'-O-methyl-modified oligonucleotides that bound the CRISPR RNA guide sequence (anti-guide) or repeat sequence (anti-tracr), or DNA oligonucleotides that bound the protospacer adjacent motif (PAM)-interaction domain (anti-PAM) of SpCas9. Coupling anti-PAM and anti-tracr modules together was synergistic and resulted in high binding affinity and efficient inhibition of Cas9 DNA cleavage activity. Incorporating 2'F-RNA and locked nucleic acid nucleotides into the anti-tracr module resulted in greater inhibition as well as dose-dependent suppression of gene editing in human cells. CRISPR SNuBs provide a platform for rational design of CRISPR-Cas enzyme inhibitors that should translate to other CRISPR effector enzymes and enable better control over CRISPR-based applications.
Collapse
Affiliation(s)
- Christopher L. Barkau
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois
| | - Daniel O'Reilly
- Department of Chemistry, McGill University, Montreal, Canada
| | - Kushal J. Rohilla
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois
| | - Masad J. Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | - Keith T. Gagnon
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois
| |
Collapse
|
80
|
Huston NC, Tycko J, Tillotson EL, Wilson CJ, Myer VE, Jayaram H, Steinberg BE. Identification of Guide-Intrinsic Determinants of Cas9 Specificity. CRISPR J 2019; 2:172-185. [PMID: 31225747 PMCID: PMC6694761 DOI: 10.1089/crispr.2019.0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Considerable effort has been devoted to developing a comprehensive understanding of CRISPR nuclease specificity. In silico predictions and multiple genome-wide cellular and biochemical approaches have revealed a basic understanding of the Cas9 specificity profile. However, none of these approaches has delivered a model that allows accurate prediction of a CRISPR nuclease's ability to cleave a site based entirely on the sequence of the guide RNA (gRNA) and the target. We describe a library-based biochemical assay that directly reports the cleavage efficiency of a particular Cas9-guide complex by measuring both uncleaved and cleaved target molecules over a wide range of mismatched library members. We applied our assay using libraries of targets to evaluate the specificity of Staphylococcus aureus Cas9 under a variety of experimental conditions. Surprisingly, our data show an unexpectedly high variation in the random gRNA:target DNA mismatch tolerance when cleaving with different gRNAs, indicating guide-intrinsic mismatch permissiveness and challenging the assumption of universal specificity models. We use data generated by our assay to create the first off-target, guide-specific cleavage models. The barcoded libraries of targets approach is rapid, highly modular, and capable of generating protein- and guide-specific models, as well as illuminating the biophysics of Cas9 binding versus cutting. These models may be useful in identifying potential off-targets, and the gRNA-intrinsic nature of mismatch tolerance argues for coupling these specificity models with orthogonal methods for a more complete assessment of gRNA specificity.
Collapse
Affiliation(s)
| | - Josh Tycko
- Editas Medicine, Cambridge, Massaschusetts
| | | | | | | | | | | |
Collapse
|
81
|
Klein M, Eslami-Mossallam B, Arroyo DG, Depken M. Hybridization Kinetics Explains CRISPR-Cas Off-Targeting Rules. Cell Rep 2019; 22:1413-1423. [PMID: 29425498 DOI: 10.1016/j.celrep.2018.01.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/07/2017] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
Abstract
Due to their specificity, efficiency, and ease of programming, CRISPR-associated nucleases are popular tools for genome editing. On the genomic scale, these nucleases still show considerable off-target activity though, posing a serious obstacle to the development of therapies. Off targeting is often minimized by choosing especially high-specificity guide sequences, based on algorithms that codify empirically determined off-targeting rules. A lack of mechanistic understanding of these rules has so far necessitated their ad hoc implementation, likely contributing to the limited precision of present algorithms. To understand the targeting rules, we kinetically model the physics of guide-target hybrid formation. Using only four parameters, our model elucidates the kinetic origin of the experimentally observed off-targeting rules, thereby rationalizing the results from both binding and cleavage assays. We favorably compare our model to published data from CRISPR-Cas9, CRISPR-Cpf1, CRISPR-Cascade, as well as the human Argonaute 2 system.
Collapse
Affiliation(s)
- Misha Klein
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Behrouz Eslami-Mossallam
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Dylan Gonzalez Arroyo
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Martin Depken
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands.
| |
Collapse
|
82
|
O’Geen H, Bates SL, Carter SS, Nisson KA, Halmai J, Fink KD, Rhie SK, Farnham PJ, Segal DJ. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin 2019; 12:26. [PMID: 31053162 PMCID: PMC6498470 DOI: 10.1186/s13072-019-0275-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Rewriting of the epigenome has risen as a promising alternative to gene editing for precision medicine. In nature, epigenetic silencing can result in complete attenuation of target gene expression over multiple mitotic divisions. However, persistent repression has been difficult to achieve in a predictable manner using targeted systems. RESULTS Here, we report that persistent epigenetic memory required both a DNA methyltransferase (DNMT3A-dCas9) and a histone methyltransferase (Ezh2-dCas9 or KRAB-dCas9). We demonstrate that the histone methyltransferase requirement can be locus specific. Co-targeting Ezh2-dCas9, but not KRAB-dCas9, with DNMT3A-dCas9 and DNMT3L induced long-term HER2 repression over at least 50 days (approximately 57 cell divisions) and triggered an epigenetic switch to a heterochromatic environment. An increase in H3K27 trimethylation and DNA methylation was stably maintained and accompanied by a sustained loss of H3K27 acetylation. Interestingly, substitution of Ezh2-dCas9 with KRAB-dCas9 enabled long-term repression at some target genes (e.g., SNURF) but not at HER2, at which H3K9me3 and DNA methylation were transiently acquired and subsequently lost. Off-target DNA hypermethylation occurred at many individual CpG sites but rarely at multiple CpGs in a single promoter, consistent with no detectable effect on transcription at the off-target loci tested. Conversely, robust hypermethylation was observed at HER2. We further demonstrated that Ezh2-dCas9 required full-length DNMT3L for maximal activity and that co-targeting DNMT3L was sufficient for persistent repression by Ezh2-dCas9 or KRAB-dCas9. CONCLUSIONS These data demonstrate that targeting different combinations of histone and DNA methyltransferases is required to achieve maximal repression at different loci. Fine-tuning of targeting tools is a necessity to engineer epigenetic memory at any given locus in any given cell type.
Collapse
Affiliation(s)
- Henriette O’Geen
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 USA
| | - Sofie L. Bates
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 USA
| | - Sakereh S. Carter
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 USA
| | - Karly A. Nisson
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 USA
| | - Julian Halmai
- Department of Neurology and Stem Cell Program, University of California, Sacramento, CA 95817 USA
| | - Kyle D. Fink
- Department of Neurology and Stem Cell Program, University of California, Sacramento, CA 95817 USA
| | - Suhn K. Rhie
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 USA
| | - Peggy J. Farnham
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 USA
| | - David J. Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 USA
| |
Collapse
|
83
|
Shariati SA, Dominguez A, Xie S, Wernig M, Qi LS, Skotheim JM. Reversible Disruption of Specific Transcription Factor-DNA Interactions Using CRISPR/Cas9. Mol Cell 2019; 74:622-633.e4. [PMID: 31051141 PMCID: PMC6599634 DOI: 10.1016/j.molcel.2019.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
Abstract
The control of gene expression by transcription factor binding sites frequently determines phenotype. However, it is difficult to determine the function of single transcription factor binding sites within larger transcription networks. Here, we use deactivated Cas9 (dCas9) to disrupt binding to specific sites, a method we term CRISPRd. Since CRISPR guide RNAs are longer than transcription factor binding sites, flanking sequence can be used to target specific sites. Targeting dCas9 to an Oct4 site in the Nanog promoter displaced Oct4 from this site, reduced Nanog expression, and slowed division. In contrast, disrupting the Oct4 binding site adjacent to Pax6 upregulated Pax6 transcription and disrupting Nanog binding its own promoter upregulated its transcription. Thus, we can easily distinguish between activating and repressing binding sites and examine autoregulation. Finally, multiple guide RNA expression allows simultaneous inhibition of multiple binding sites, and conditionally destabilized dCas9 allows rapid reversibility.
Collapse
Affiliation(s)
- S Ali Shariati
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Antonia Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Shicong Xie
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stem Cell Institute, Stanford, CA 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
84
|
Wang D, Niu C, Han J, Ma D, Xi Z. Target DNA mutagenesis-based fluorescence assessment of off-target activity of the CRISPR-Cas9 system. RSC Adv 2019; 9:9067-9074. [PMID: 35517679 PMCID: PMC9062094 DOI: 10.1039/c8ra10017a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/12/2019] [Indexed: 11/21/2022] Open
Abstract
The RNA-guided CRISPR/Cas9 system could cleave double-stranded DNA at the on-target sites but also induce off-target mutations in unexpected genomic regions. The base-pairing interaction of sgRNA with off-target DNA was still not well understood and also lacked a direct cell-based assay. Herein we developed a fast target DNA mutagenesis-based fluorescence assay to directly detect the Cas9 activity at different off-target sites in living cells. The results showed that Cas9 nuclease had low tolerance to the nucleotide mismatches in the binding region adjacent to PAM sites, and a tradeoff between Cas9 activity and specificity was also observed compared with the high-fidelity Cas9 variant. The combination of computer-based predictions and this target DNA mutagenesis-based fluorescence assay could further provide accurate off-target prediction guidance to minimize off-target effects to enable safer genome engineering.
Collapse
Affiliation(s)
- Dan Wang
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai UniversityTianjin 300071China
| | - Cuili Niu
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai UniversityTianjin 300071China
| | - Jingxin Han
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai UniversityTianjin 300071China
| | - Dejun Ma
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai UniversityTianjin 300071China
| | - Zhen Xi
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai UniversityTianjin 300071China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin 300071China
| |
Collapse
|
85
|
Newton MD, Taylor BJ, Driessen RPC, Roos L, Cvetesic N, Allyjaun S, Lenhard B, Cuomo ME, Rueda DS. DNA stretching induces Cas9 off-target activity. Nat Struct Mol Biol 2019; 26:185-192. [PMID: 30804513 PMCID: PMC7613072 DOI: 10.1038/s41594-019-0188-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/18/2019] [Indexed: 12/24/2022]
Abstract
CRISPR/Cas9 is a powerful genome-editing tool, but spurious off-target edits present a barrier to therapeutic applications. To understand how CRISPR/Cas9 discriminates between on-targets and off-targets, we have developed a single-molecule assay combining optical tweezers with fluorescence to monitor binding to λ-DNA. At low forces, the Streptococcus pyogenes Cas9 complex binds and cleaves DNA specifically. At higher forces, numerous off-target binding events appear repeatedly at the same off-target sites in a guide-RNA-sequence-dependent manner, driven by the mechanical distortion of the DNA. Using single-molecule Förster resonance energy transfer (smFRET) and cleavage assays, we show that DNA bubbles induce off-target binding and cleavage at these sites, even with ten mismatches, as well as at previously identified in vivo off-targets. We propose that duplex DNA destabilization during cellular processes (for example, transcription, replication, etc.) can expose these cryptic off-target sites to Cas9 activity, highlighting the need for improved off-target prediction algorithms.
Collapse
Affiliation(s)
- Matthew D Newton
- Molecular Virology, Department of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | | | | | - Leonie Roos
- Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Nevena Cvetesic
- Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Shenaz Allyjaun
- Molecular Virology, Department of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - David S Rueda
- Molecular Virology, Department of Medicine, Imperial College London, London, UK.
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK.
| |
Collapse
|
86
|
Janssen JM, Chen X, Liu J, Gonçalves MAFV. The Chromatin Structure of CRISPR-Cas9 Target DNA Controls the Balance between Mutagenic and Homology-Directed Gene-Editing Events. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:141-154. [PMID: 30884291 PMCID: PMC6424062 DOI: 10.1016/j.omtn.2019.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
Gene editing based on homology-directed repair (HDR) depends on donor DNA templates and programmable nucleases, e.g., RNA-guided CRISPR-Cas9 nucleases. However, next to inducing HDR involving the mending of chromosomal double-stranded breaks (DSBs) with donor DNA substrates, programmable nucleases also yield gene disruptions, triggered by competing non-homologous end joining (NHEJ) pathways. It is, therefore, imperative to identify parameters underlying the relationship between these two outcomes in the context of HDR-based gene editing. Here we implemented quantitative cellular systems, based on epigenetically regulated isogenic target sequences and donor DNA of viral, non-viral, and synthetic origins, to investigate gene-editing outcomes resulting from the interaction between different chromatin conformations and donor DNA structures. We report that, despite a significantly higher prevalence of NHEJ-derived events at euchromatin over Krüppel-associated box (KRAB)-impinged heterochromatin, HDR frequencies are instead generally less impacted by these alternative chromatin conformations. Hence, HDR increases in relation to NHEJ when open euchromatic target sequences acquire a closed heterochromatic state, with donor DNA structures determining, to some extent, the degree of this relative increase in HDR events at heterochromatin. Finally, restricting nuclease activity to HDR-permissive G2 and S phases of the cell cycle through a Cas9-Geminin construct yields lower, hence more favorable, NHEJ to HDR ratios, independently of the chromatin structure.
Collapse
Affiliation(s)
- Josephine M Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Xiaoyu Chen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
87
|
Abstract
The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus specificity by considering concentration, affinity, avidity, and sequestration effects.
Collapse
|
88
|
Verkuijl SAN, Rots MG. The influence of eukaryotic chromatin state on CRISPR–Cas9 editing efficiencies. Curr Opin Biotechnol 2019; 55:68-73. [DOI: 10.1016/j.copbio.2018.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 12/14/2022]
|
89
|
Fortin JP, Tan J, Gascoigne KE, Haverty PM, Forrest WF, Costa MR, Martin SE. Multiple-gene targeting and mismatch tolerance can confound analysis of genome-wide pooled CRISPR screens. Genome Biol 2019; 20:21. [PMID: 30683138 PMCID: PMC6346559 DOI: 10.1186/s13059-019-1621-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genome-wide loss-of-function screens using the CRISPR/Cas9 system allow the efficient discovery of cancer cell vulnerabilities. While several studies have focused on correcting for DNA cleavage toxicity biases associated with copy number alterations, the effects of sgRNAs co-targeting multiple genomic loci in CRISPR screens have not been discussed. RESULTS In this work, we analyze CRISPR essentiality screen data from 391 cancer cell lines to characterize biases induced by multi-target sgRNAs. We investigate two types of multi-targets: on-targets predicted through perfect sequence complementarity and off-targets predicted through sequence complementarity with up to two nucleotide mismatches. We find that the number of on-targets and off-targets both increase sgRNA activity in a cell line-specific manner and that existing additive models of gene knockout effects fail at capturing genetic interactions that may occur between co-targeted genes. We use synthetic lethality between paralog genes to show that genetic interactions can introduce biases in essentiality scores estimated from multi-target sgRNAs. We further show that single-mismatch tolerant sgRNAs can confound the analysis of gene essentiality and lead to incorrect co-essentiality functional networks. Lastly, we also find that single nucleotide polymorphisms located in protospacer regions can impair on-target activity as a result of mismatch tolerance. CONCLUSION We show the impact of multi-target effects on estimating cancer cell dependencies and the impact of off-target effects caused by mismatch tolerance in sgRNA-DNA binding.
Collapse
Affiliation(s)
- Jean-Philippe Fortin
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, 94080, CA, USA.
| | - Jenille Tan
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, 94080, CA, USA
| | - Karen E Gascoigne
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, 94080, CA, USA
| | - Peter M Haverty
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, 94080, CA, USA
| | - William F Forrest
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, 94080, CA, USA
| | - Michael R Costa
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, 94080, CA, USA
| | - Scott E Martin
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, 94080, CA, USA
| |
Collapse
|
90
|
Liang P, Xie X, Zhi S, Sun H, Zhang X, Chen Y, Chen Y, Xiong Y, Ma W, Liu D, Huang J, Songyang Z. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat Commun 2019; 10:67. [PMID: 30622278 PMCID: PMC6325126 DOI: 10.1038/s41467-018-07988-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022] Open
Abstract
The adenine base editor (ABE), capable of catalyzing A•T to G•C conversions, is an important gene editing toolbox. Here, we systematically evaluate genome-wide off-target deamination by ABEs using the EndoV-seq platform we developed. EndoV-seq utilizes Endonuclease V to nick the inosine-containing DNA strand of genomic DNA deaminated by ABE in vitro. The treated DNA is then whole-genome sequenced to identify off-target sites. Of the eight gRNAs we tested with ABE, 2-19 (with an average of 8.0) off-target sites are found, significantly fewer than those found for canonical Cas9 nuclease (7-320, 160.7 on average). In vivo off-target deamination is further validated through target site deep sequencing. Moreover, we demonstrated that six different ABE-gRNA complexes could be examined in a single EndoV-seq assay. Our study presents the first detection method to evaluate genome-wide off-target effects of ABE, and reveals possible similarities and differences between ABE and canonical Cas9 nuclease.
Collapse
Affiliation(s)
- Puping Liang
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the the First Affiliated Hospital, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xiaowei Xie
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 3000000, Tianjin, China
| | - Shengyao Zhi
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Hongwei Sun
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xiya Zhang
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yu Chen
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yuxi Chen
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yuanyan Xiong
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wenbin Ma
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, 77030, Houston, TX, USA
| | - Junjiu Huang
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the the First Affiliated Hospital, Sun Yat-sen University, 510275, Guangzhou, China.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, 510150, Guangzhou, China.
| | - Zhou Songyang
- The First Affiliated Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the the First Affiliated Hospital, Sun Yat-sen University, 510275, Guangzhou, China.
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, 77030, Houston, TX, USA.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
91
|
Globyte V, Lee SH, Bae T, Kim JS, Joo C. CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion. EMBO J 2018; 38:embj.201899466. [PMID: 30573670 DOI: 10.15252/embj.201899466] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022] Open
Abstract
The Streptococcus pyogenes CRISPR/Cas9 (SpCas9) nuclease has been widely applied in genetic engineering. Despite its importance in genome editing, aspects of the precise molecular mechanism of Cas9 activity remain ambiguous. In particular, because of the lack of a method with high spatio-temporal resolution, transient interactions between Cas9 and DNA could not be reliably investigated. It therefore remains controversial how Cas9 searches for protospacer adjacent motif (PAM) sequences. We have developed single-molecule Förster resonance energy transfer (smFRET) assays to monitor transient interactions of Cas9 and DNA in real time. Our study shows that Cas9 interacts with the PAM sequence weakly, yet probing neighboring sequences via facilitated diffusion. This dynamic mode of interactions leads to translocation of Cas9 to another PAM nearby and consequently an on-target sequence. We propose a model in which lateral diffusion competes with three-dimensional diffusion and thus is involved in PAM finding and consequently on-target binding. Our results imply that the neighboring sequences can be very important when choosing a target in genetic engineering applications.
Collapse
Affiliation(s)
- Viktorija Globyte
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Seung Hwan Lee
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.,Center for Genome Engineering, Institute for Basic Science, Seoul, Korea
| | - Taegeun Bae
- Center for Genome Engineering, Institute for Basic Science, Seoul, Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul, Korea .,Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
92
|
Is Pooled CRISPR-Screening the Dawn of a New Era for Functional Genomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:171-176. [PMID: 29943304 DOI: 10.1007/978-981-13-0502-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional genomics aims to develop an in-depth understanding of how specific gene dysfunctions are related to diseases. A common method for investigating the genome and its complex functions is via perturbation of the interactions between the DNA, RNA and their protein respective protein derivatives. Commonly, arrayed and pooled genetic screens are utilized to achieve this and in recent years have been fundamental in achieving the current level of understanding for gene dysfunctions. However, they are limited in specific aspects which scientists have attempted to address. Clustered regularly palindromic repeats (CRISPR)-based methods for genetic screens have in recent years become more prevalent but crucially shared similar properties to previous methods and failing to provide a distinct advantage over previous methods. CROP-seq, Perturb-seq, and CRISPR-seq have combined CRISPR and single-cell RNA-sequencing (scRNA-seq) and is the newest addition to the geneticist's arsenal, providing scientists with methods to edit DNA with improved speed, accuracy, and efficiency which could usher us into a new era of study methods for functional genomics. We briefly overview the CRISPR-Cas9 systems, the evolution of genetic screening in recent years, and evaluate and discuss the significance of CROP-seq, Perturb-seq, and CRISPR-seq.
Collapse
|
93
|
Liu SJ, Lim DA. Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep 2018; 19:embr.201846955. [PMID: 30467236 DOI: 10.15252/embr.201846955] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell biology. The mechanisms by which lncRNAs function are likely numerous, and most are poorly understood. Currently, the mechanisms of functional lncRNAs include those that directly involve the lncRNA transcript, the process of their own transcription and splicing, and even underlying transcriptional regulatory elements within the genomic DNA that encodes the lncRNA As our understanding of lncRNA biology evolves, so have the methods that are utilized to elucidate their functions. In this review, we survey a collection of different methods used to modulate lncRNA expression levels for the assessment of biological function. From RNA-targeted strategies, genetic deletions, to engineered gene regulatory systems, the advantages and caveats of each method will be discussed. Ultimately, the selection of tools will be guided by which potential lncRNA mechanisms are being investigated, and no single method alone will likely be sufficient to reveal the function of any particular lncRNA.
Collapse
Affiliation(s)
- S John Liu
- Department of Neurological Surgery, University of California, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.,San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
94
|
Li H, Sheng C, Liu H, Wang S, Zhao J, Yang L, Jia L, Li P, Wang L, Xie J, Xu D, Sun Y, Qiu S, Song H. Inhibition of HBV Expression in HBV Transgenic Mice Using AAV-Delivered CRISPR-SaCas9. Front Immunol 2018; 9:2080. [PMID: 30254645 PMCID: PMC6141737 DOI: 10.3389/fimmu.2018.02080] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
The chronic production of hepatitis B viral (HBV) antigens could cause inflammation and necrosis, leading to elevation of liver enzymes from necrotic hepatocytes, hepatitis, cirrhosis, hepatocellular carcinoma, and liver failure. However, no current treatment is capable of significantly reducing HBsAg expression in patients. Our previous studies had confirmed the ability of CRISPR-Cas9 in disrupting HBV cccDNA. Here, to inhibit HBV expression efficiently in the mouse model of chronic HBV infection, the miniaturized CRISPR-SaCas9 system compatible with a HBV core region derived guide-RNA had been packaged in recombinant adeno-associated virus (AAV) type 8, which lowered the levels of serum HBsAg, HBeAg, and HBV DNA efficiently in HBV transgenic mice during 58 days continuous observation after vein injection. It further confirms the potential of the CRISPR-Cas9 technique for use in hepatitis B gene therapy.
Collapse
Affiliation(s)
- Hao Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Chunyu Sheng
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Hongbo Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Shan Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Jiangyun Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Lang Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Leili Jia
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Peng Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Ligui Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Jing Xie
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Dongping Xu
- Research Centre for Liver Failure, Beijing 302nd Hospital, Beijing, China
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
95
|
Wilson LOW, O’Brien AR, Bauer DC. The Current State and Future of CRISPR-Cas9 gRNA Design Tools. Front Pharmacol 2018; 9:749. [PMID: 30050439 PMCID: PMC6052051 DOI: 10.3389/fphar.2018.00749] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
Recent years have seen the development of computational tools to assist researchers in performing CRISPR-Cas9 experiment optimally. More specifically, these tools aim to maximize on-target activity (guide efficiency) while also minimizing potential off-target effects (guide specificity) by analyzing the features of the target site. Nonetheless, currently available tools cannot robustly predict experimental success as prediction accuracy depends on the approximations of the underlying model and how closely the experimental setup matches the data the model was trained on. Here, we present an overview of the available computational tools, their current limitations and future considerations. We discuss new trends around personalized health by taking genomic variants into account when predicting target sites as well as discussing other governing factors that can improve prediction accuracy.
Collapse
Affiliation(s)
- Laurence O. W. Wilson
- Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | - Aidan R. O’Brien
- Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, ACT, Australia
| | - Denis C. Bauer
- Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| |
Collapse
|
96
|
Stojic L, Lun AT, Mangei J, Mascalchi P, Quarantotti V, Barr AR, Bakal C, Marioni JC, Gergely F, Odom DT. Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. Nucleic Acids Res 2018; 46:5950-5966. [PMID: 29860520 PMCID: PMC6093183 DOI: 10.1093/nar/gky437] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Loss-of-function (LOF) methods such as RNA interference (RNAi), antisense oligonucleotides or CRISPR-based genome editing provide unparalleled power for studying the biological function of genes of interest. However, a major concern is non-specific targeting, which involves depletion of transcripts other than those intended. Little work has been performed to characterize the off-target effects of these common LOF methods at the whole-transcriptome level. Here, we experimentally compared the non-specific activity of RNAi, antisense oligonucleotides and CRISPR interference (CRISPRi). All three methods yielded non-negligible off-target effects in gene expression, with CRISPRi also exhibiting strong clonal effects. As an illustrative example, we evaluated the performance of each method for determining the role of an uncharacterized long noncoding RNA (lncRNA). Several LOF methods successfully depleted the candidate lncRNA but yielded different sets of differentially expressed genes as well as a different cellular phenotype upon depletion. Similar discrepancies between methods were observed with a protein-coding gene (Ch-TOG/CKAP5) and another lncRNA (MALAT1). We suggest that the differences between methods arise due to method-specific off-target effects and provide guidelines for mitigating such effects in functional studies. Our recommendations provide a framework with which off-target effects can be managed to improve functional characterization of genes of interest.
Collapse
Affiliation(s)
- Lovorka Stojic
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Jasmin Mangei
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Patrice Mascalchi
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Valentina Quarantotti
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Alexis R Barr
- Institute of Cancer Research, 237 Fulham Road London SW3 6JB, UK
| | - Chris Bakal
- Institute of Cancer Research, 237 Fulham Road London SW3 6JB, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
97
|
Chuai G, Ma H, Yan J, Chen M, Hong N, Xue D, Zhou C, Zhu C, Chen K, Duan B, Gu F, Qu S, Huang D, Wei J, Liu Q. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol 2018; 19:80. [PMID: 29945655 PMCID: PMC6020378 DOI: 10.1186/s13059-018-1459-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
A major challenge for effective application of CRISPR systems is to accurately predict the single guide RNA (sgRNA) on-target knockout efficacy and off-target profile, which would facilitate the optimized design of sgRNAs with high sensitivity and specificity. Here we present DeepCRISPR, a comprehensive computational platform to unify sgRNA on-target and off-target site prediction into one framework with deep learning, surpassing available state-of-the-art in silico tools. In addition, DeepCRISPR fully automates the identification of sequence and epigenetic features that may affect sgRNA knockout efficacy in a data-driven manner. DeepCRISPR is available at http://www.deepcrispr.net/ .
Collapse
Affiliation(s)
- Guohui Chuai
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 20009, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China
| | - Hanhui Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jifang Yan
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 20009, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China
| | - Ming Chen
- R&D Information, Innovation Center China, AstraZeneca, 199 Liangjing Road, Shanghai, 201203, China
| | - Nanfang Hong
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 20009, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China
| | - Dongyu Xue
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 20009, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China
| | - Chi Zhou
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 20009, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China
| | - Chenyu Zhu
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 20009, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China
| | - Ke Chen
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 20009, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China
| | - Bin Duan
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 20009, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China
| | - Feng Gu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Sheng Qu
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 20009, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China
| | - Deshuang Huang
- Machine Learning & Systems Biology Lab, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China.
| | - Jia Wei
- R&D Information, Innovation Center China, AstraZeneca, 199 Liangjing Road, Shanghai, 201203, China.
| | - Qi Liu
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 20009, China.
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China.
| |
Collapse
|
98
|
Genome editing by natural and engineered CRISPR-associated nucleases. Nat Chem Biol 2018; 14:642-651. [PMID: 29915237 DOI: 10.1038/s41589-018-0080-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
Abstract
Over the last decade, research on distinct types of CRISPR systems has revealed many structural and functional variations. Recently, several novel types of single-polypeptide CRISPR-associated systems have been discovered including Cas12a/Cpf1 and Cas13a/C2c2. Despite distant similarities to Cas9, these additional systems have unique structural and functional features, providing new opportunities for genome editing applications. Here, relevant fundamental features of natural and engineered CRISPR-Cas variants are compared. Moreover, practical matters are discussed that are essential for dedicated genome editing applications, including nuclease regulation and delivery, target specificity, as well as host repair diversity.
Collapse
|
99
|
Hazelbaker DZ, Beccard A, Bara AM, Dabkowski N, Messana A, Mazzucato P, Lam D, Manning D, Eggan K, Barrett LE. A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease. Stem Cell Reports 2018; 9:1315-1327. [PMID: 29020615 PMCID: PMC5639480 DOI: 10.1016/j.stemcr.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022] Open
Abstract
Scaling of CRISPR-Cas9 technology in human pluripotent stem cells (hPSCs) represents an important step for modeling complex disease and developing drug screens in human cells. However, variables affecting the scaling efficiency of gene editing in hPSCs remain poorly understood. Here, we report a standardized CRISPR-Cas9 approach, with robust benchmarking at each step, to successfully target and genotype a set of psychiatric disease-implicated genes in hPSCs and provide a resource of edited hPSC lines for six of these genes. We found that transcriptional state and nucleosome positioning around targeted loci was not correlated with editing efficiency. However, editing frequencies varied between different hPSC lines and correlated with genomic stability, underscoring the need for careful cell line selection and unbiased assessments of genomic integrity. Together, our step-by-step quantification and in-depth analyses provide an experimental roadmap for scaling Cas9-mediated editing in hPSCs to study psychiatric disease, with broader applicability for other polygenic diseases.
Collapse
Affiliation(s)
- Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne M Bara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicole Dabkowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrizia Mazzucato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Danielle Manning
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
100
|
Cromwell CR, Sung K, Park J, Krysler AR, Jovel J, Kim SK, Hubbard BP. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat Commun 2018; 9:1448. [PMID: 29654299 PMCID: PMC5899152 DOI: 10.1038/s41467-018-03927-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Off-target DNA cleavage is a paramount concern when applying CRISPR-Cas9 gene-editing technology to functional genetics and human therapeutic applications. Here, we show that incorporation of next-generation bridged nucleic acids (2',4'-BNANC[N-Me]) as well as locked nucleic acids (LNA) at specific locations in CRISPR-RNAs (crRNAs) broadly reduces off-target DNA cleavage by Cas9 in vitro and in cells by several orders of magnitude. Using single-molecule FRET experiments we show that BNANC incorporation slows Cas9 kinetics and improves specificity by inducing a highly dynamic crRNA-DNA duplex for off-target sequences, which shortens dwell time in the cleavage-competent, "zipped" conformation. In addition to describing a robust technique for improving the precision of CRISPR/Cas9-based gene editing, this study illuminates an application of synthetic nucleic acids.
Collapse
Affiliation(s)
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinho Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Amanda R Krysler
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2R7, Canada
| | - Juan Jovel
- The Applied Genomics Core, Office of Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2R7, Canada.
| |
Collapse
|