51
|
Wenzel M, Schüle M, Casanovas S, Strand D, Strand S, Winter J. Identification of a classic nuclear localization signal at the N terminus that regulates the subcellular localization of Rbfox2 isoforms during differentiation of NMuMG and P19 cells. FEBS Lett 2016; 590:4453-4460. [PMID: 27859055 DOI: 10.1002/1873-3468.12492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 01/02/2023]
Abstract
Nuclear localization of the alternative splicing factor Rbfox2 is achieved by a C-terminal nuclear localization signal (NLS) which can be excluded from some Rbfox2 isoforms by alternative splicing. While this predicts nuclear and cytoplasmic localization, Rbfox2 is exclusively nuclear in some cell types. Here, we identify a second NLS in the N terminus of Rbfox2 isoform 1A that is not included in Rbfox2 isoform 1F. Rbfox2 1A isoforms lacking the C-terminal NLS are nuclear, whereas equivalent 1F isoforms are cytoplasmic. A shift in Rbfox2 expression toward cytoplasmic 1F isoforms occurs during epithelial to mesenchymal transition (EMT) and could be important in regulating the activity and function of Rbfox2.
Collapse
Affiliation(s)
- Manuel Wenzel
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Martin Schüle
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Germany.,Focus Program of Translational Neurosciences, Johannes Gutenberg University Mainz, Germany
| | - Sonia Casanovas
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Germany.,Focus Program of Translational Neurosciences, Johannes Gutenberg University Mainz, Germany
| | - Dennis Strand
- First Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Susanne Strand
- First Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Germany.,Focus Program of Translational Neurosciences, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
52
|
Yadav DK, Lukavsky PJ. NMR solution structure determination of large RNA-protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:57-81. [PMID: 27888840 DOI: 10.1016/j.pnmrs.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Structure determination of RNA-protein complexes is essential for our understanding of the multiple layers of RNA-mediated posttranscriptional regulation of gene expression. Over the past 20years, NMR spectroscopy became a key tool for structural studies of RNA-protein interactions. Here, we review the progress being made in NMR structure determination of large ribonucleoprotein assemblies. We discuss approaches for the design of RNA-protein complexes for NMR structural studies, established and emerging isotope and segmental labeling schemes suitable for large RNPs and how to gain distance restraints from NOEs, PREs and EPR and orientational information from RDCs and SAXS/SANS in such systems. The new combination of NMR measurements with MD simulations and its potential will also be discussed. Application and combination of these various methods for structure determination of large RNPs will be illustrated with three large RNA-protein complexes (>40kDa) and other interesting complexes determined in the past six and a half years.
Collapse
Affiliation(s)
- Deepak Kumar Yadav
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Peter J Lukavsky
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic.
| |
Collapse
|
53
|
Conboy JG. Developmental regulation of RNA processing by Rbfox proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27748060 DOI: 10.1002/wrna.1398] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/17/2016] [Accepted: 08/27/2016] [Indexed: 12/15/2022]
Abstract
The Rbfox genes encode an ancient family of sequence-specific RNA binding proteins (RBPs) that are critical developmental regulators in multiple tissues including skeletal muscle, cardiac muscle, and brain. The hallmark of Rbfox proteins is a single high-affinity RRM domain, highly conserved from insects to humans, that binds preferentially to UGCAUG motifs at diverse regulatory sites in pre-mRNA introns, mRNA 3'UTRs, and pre-miRNAs hairpin structures. Versatile regulatory circuits operate on Rbfox pre-mRNA and mRNA to ensure proper expression of Rbfox1 protein isoforms, which then act on the broader transcriptome to regulate alternative splicing networks, mRNA stability and translation, and microRNA processing. Complex Rbfox expression is encoded in large genes encompassing multiple promoters and alternative splicing options that govern spatiotemporal expression of structurally distinct and tissue-specific protein isoforms with different classes of RNA targets. Nuclear Rbfox1 is a candidate master regulator that binds intronic UGCAUG elements to impact splicing efficiency of target alternative exons, many in transcripts for other splicing regulators. Tissue-specificity of Rbfox-mediated alternative splicing is executed by combinatorial regulation through the integrated activity of Rbfox proteins and synergistic or antagonistic splicing factors. Studies in animal models show that Rbfox1-related genes are critical for diverse developmental processes including germ cell differentiation and memory in Drosophila, neuronal migration and function in mouse brain, myoblast fusion and skeletal muscle function, and normal heart function. Finally, genetic and biochemical evidence suggest that aberrations in Rbfox-regulated circuitry are risk factors for multiple human disorders, especially neurodevelopmental disorders including epilepsy and autism, and cardiac hypertrophy. WIREs RNA 2017, 8:e1398. doi: 10.1002/wrna.1398 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- John G Conboy
- Biological Systems and Engineering Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA
| |
Collapse
|
54
|
Menzi M, Pradère U, Wang Y, Fischer M, Baumann F, Bigatti M, Hall J. Site-Specific Labeling of MicroRNA Precursors: A Structure-Activity Relationship Study. Chembiochem 2016; 17:2012-2017. [PMID: 27577972 DOI: 10.1002/cbic.201600370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 11/09/2022]
Abstract
Functionalized oligoribonucleotides are essential tools in RNA chemical biology. Various synthetic routes have been developed over recent years to conjugate functional groups to oligoribonucleotides. However, the presence of the functional group on the oligoribonucleotide backbone can lead to partial or total loss of biological function. The limited knowledge concerning the positioning of functional groups therefore represents a hurdle for the development of oligoribonucleotide chemical tools. Here we describe a systematic investigation of site-specific labeling of pre-miRNAs to identify positions for the incorporation of functional groups, in order not to hinder their processing into active mature miRNAs.
Collapse
Affiliation(s)
- Mirjam Menzi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Ugo Pradère
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Yuluan Wang
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Matteo Fischer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Fabienne Baumann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Martina Bigatti
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
55
|
Chen Y, Yang F, Zubovic L, Pavelitz T, Yang W, Godin K, Walker M, Zheng S, Macchi P, Varani G. Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins. Nat Chem Biol 2016; 12:717-23. [PMID: 27428511 PMCID: PMC4990487 DOI: 10.1038/nchembio.2128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/02/2016] [Indexed: 02/07/2023]
Abstract
The RNA Recognition Motif (RRM) is the largest family of eukaryotic RNA-binding proteins. Engineered RRMs with new specificity would provide valuable tools and an exacting test of our understanding of specificity. We have achieved the first successful re-design of the specificity of an RRM using rational methods and demonstrated re-targeting of activity in cells. We engineered the conserved RRM of human Rbfox proteins to specifically bind to the terminal loop of miR-21 precursor with high affinity and inhibit its processing by Drosha and Dicer. We further engineered Giardia Dicer by replacing its PAZ domain with the designed RRM. The reprogrammed enzyme degrades pre-miR-21 specifically in vitro and suppresses mature miR-21 levels in cells, which results in increased expression of PDCD4 and significantly decreased viability for cancer cells. The results demonstrate the feasibility of engineering the sequence-specificity of RRMs and of using this ubiquitous platform for diverse biological applications.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Fan Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Lorena Zubovic
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tom Pavelitz
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Katherine Godin
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Matthew Walker
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Suxin Zheng
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Paolo Macchi
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|