51
|
Zvyagin IV, Tsvetkov VO, Chudakov DM, Shugay M. An overview of immunoinformatics approaches and databases linking T cell receptor repertoires to their antigen specificity. Immunogenetics 2019; 72:77-84. [PMID: 31741011 DOI: 10.1007/s00251-019-01139-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
Recent advances in molecular and bioinformatic methods have greatly improved our ability to study the formation of an adaptive immune response towards foreign pathogens, self-antigens, and cancer neoantigens. T cell receptors (TCR) are the key players in this process that recognize peptides presented by major histocompatibility complex (MHC). Owing to the huge diversity of both TCR sequence variants and peptides they recognize, accumulation and complex analysis of large amounts of TCR-antigen specificity data is required for understanding the structure and features of adaptive immune responses towards pathogens, vaccines, cancer, as well as autoimmune responses. In the present review, we summarize recent efforts on gathering and interpreting TCR-antigen specificity data and outline the critical role of tighter integration with other immunoinformatics data sources that include epitope MHC restriction, TCR repertoire structure models, and TCR/peptide/MHC structural data. We suggest that such integration can lead to the ability to accurately annotate individual TCR repertoires, efficiently estimate epitope and neoantigen immunogenicity, and ultimately, in silico identify TCRs specific to yet unstudied antigens and predict self-peptides related to autoimmunity.
Collapse
Affiliation(s)
- Ivan V Zvyagin
- Pirogov Russian Medical State University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vasily O Tsvetkov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M Chudakov
- Pirogov Russian Medical State University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail Shugay
- Pirogov Russian Medical State University, Moscow, Russia.
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
52
|
Wong WK, Leem J, Deane CM. Comparative Analysis of the CDR Loops of Antigen Receptors. Front Immunol 2019; 10:2454. [PMID: 31681328 PMCID: PMC6803477 DOI: 10.3389/fimmu.2019.02454] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022] Open
Abstract
The adaptive immune system uses two main types of antigen receptors: T-cell receptors (TCRs) and antibodies. While both proteins share a globally similar β-sandwich architecture, TCRs are specialized to recognize peptide antigens in the binding groove of the major histocompatibility complex, while antibodies can bind an almost infinite range of molecules. For both proteins, the main determinants of target recognition are the complementarity-determining region (CDR) loops. Five of the six CDRs adopt a limited number of backbone conformations, known as the "canonical classes"; the remaining CDR (β3in TCRs and H3 in antibodies) is more structurally diverse. In this paper, we first update the definition of canonical forms in TCRs, build an auto-updating sequence-based prediction tool (available at http://opig.stats.ox.ac.uk/resources) and demonstrate its application on large scale sequencing studies. Given the global similarity of TCRs and antibodies, we then examine the structural similarity of their CDRs. We find that TCR and antibody CDRs tend to have different length distributions, and where they have similar lengths, they mostly occupy distinct structural spaces. In the rare cases where we found structural similarity, the underlying sequence patterns for the TCR and antibody version are different. Finally, where multiple structures have been solved for the same CDR sequence, the structural variability in TCR loops is higher than that in antibodies, suggesting TCR CDRs are more flexible. These structural differences between TCR and antibody CDRs may be important to their different biological functions.
Collapse
|
53
|
Mahajan S, Yan Z, Jespersen MC, Jensen KK, Marcatili P, Nielsen M, Sette A, Peters B. Benchmark datasets of immune receptor-epitope structural complexes. BMC Bioinformatics 2019; 20:490. [PMID: 31601176 PMCID: PMC6785892 DOI: 10.1186/s12859-019-3109-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/20/2019] [Indexed: 02/05/2023] Open
Abstract
Background The development of accurate epitope prediction tools is important in facilitating disease diagnostics, treatment and vaccine development. The advent of new approaches making use of antibody and TCR sequence information to predict receptor-specific epitopes have the potential to transform the epitope prediction field. Development and validation of these new generation of epitope prediction methods would benefit from regularly updated high-quality receptor-antigen complex datasets. Results To address the need for high-quality datasets to benchmark performance of these new generation of receptor-specific epitope prediction tools, a webserver called SCEptRe (Structural Complexes of Epitope-Receptor) was created. SCEptRe extracts weekly updated 3D complexes of antibody-antigen, TCR-pMHC and MHC-ligand from the Immune Epitope Database and clusters them based on antigen, receptor and epitope features to generate benchmark datasets. SCEptRe also provides annotated information such as CDR sequences and VDJ genes on the receptors. Users can generate custom datasets based by selecting thresholds for structural quality and clustering parameters (e.g. resolution, R-free factor, antigen or epitope sequence identity) based on their need. Conclusions SCEptRe provides weekly updated, user-customized comprehensive benchmark datasets of immune receptor-epitope structural complexes. These datasets can be used to develop and benchmark performance of receptor-specific epitope prediction tools in the future. SCEptRe is freely accessible at http://tools.iedb.org/sceptre.
Collapse
Affiliation(s)
- Swapnil Mahajan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Zhen Yan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | | | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Department of Medicine, University of California, San Diego, CA, 92093, USA
| |
Collapse
|
54
|
Knapp B, van der Merwe PA, Dushek O, Deane CM. MHC binding affects the dynamics of different T-cell receptors in different ways. PLoS Comput Biol 2019; 15:e1007338. [PMID: 31498801 PMCID: PMC6752857 DOI: 10.1371/journal.pcbi.1007338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/19/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
T cells use their T-cell receptors (TCRs) to scan other cells for antigenic peptides presented by MHC molecules (pMHC). If a TCR encounters a pMHC, it can trigger a signalling pathway that could lead to the activation of the T cell and the initiation of an immune response. It is currently not clear how the binding of pMHC to the TCR initiates signalling within the T cell. One hypothesis is that conformational changes in the TCR lead to further downstream signalling. Here we investigate four different TCRs in their free state as well as in their pMHC bound state using large scale molecular simulations totalling 26 000 ns. We find that the dynamical features within TCRs differ significantly between unbound TCR and TCR/pMHC simulations. However, apart from expected results such as reduced solvent accessibility and flexibility of the interface residues, these features are not conserved among different TCR types. The presence of a pMHC alone is not sufficient to cause cross-TCR-conserved dynamical features within a TCR. Our results argue against models of TCR triggering involving conserved allosteric conformational changes. The interaction between T-cells and other cells is one of the most important interactions in the human immune system. If T-cells are not triggered major parts of the immune system cannot be activated or are not working effectively. Despite many years of research the exact mechanism of how a T-cell is initially triggered is not clear. One hypothesis is that conformational changes within the T-cell receptor (TCR) can cause further downstream signalling within the T-cell. In this study we computationally investigate the dynamics of four different TCRs in their free and bound configuration. Our large scale simulations show that all four TCRs react to binding in different ways. In some TCRs mainly the areas close to the binding region are affected while in other TCRs areas further apart from the binding region are also affected. Our results argue against a conserved structural activation mechanism across different types of TCRs.
Collapse
Affiliation(s)
- Bernhard Knapp
- Department of Basic Sciences, International University of Catalonia, Barcelona, Spain
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
55
|
Thakkar N, Bailey-Kellogg C. Balancing sensitivity and specificity in distinguishing TCR groups by CDR sequence similarity. BMC Bioinformatics 2019; 20:241. [PMID: 31092185 PMCID: PMC6521430 DOI: 10.1186/s12859-019-2864-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Repertoire sequencing is enabling deep explorations into the cellular immune response, including the characterization of commonalities and differences among T cell receptor (TCR) repertoires from different individuals, pathologies, and antigen specificities. In seeking to understand the generality of patterns observed in different groups of TCRs, it is necessary to balance how well each pattern represents the diversity among TCRs from one group (sensitivity) vs. how many TCRs from other groups it also represents (specificity). The variable complementarity determining regions (CDRs), particularly the third CDRs (CDR3s) interact with major histocompatibility complex (MHC)-presented epitopes from putative antigens, and thus encode the determinants of recognition. Results We here systematically characterize the predictive power that can be obtained from CDR3 sequences, using representative, readily interpretable methods for evaluating CDR sequence similarity and then clustering and classifying sequences based on similarity. An initial analysis of CDR3s of known structure, clustered by structural similarity, helps calibrate the limits of sequence diversity among CDRs that might have a common mode of interaction with presented epitopes. Subsequent analyses demonstrate that this same range of sequence similarity strikes a favorable specificity/sensitivity balance in distinguishing twins from non-twins based on overall CDR3 repertoires, classifying CDR3 repertoires by antigen specificity, and distinguishing general pathologies. Conclusion We conclude that within a fairly broad range of sequence similarity, matching CDR3 sequences are likely to share specificities. Electronic supplementary material The online version of this article (10.1186/s12859-019-2864-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neerja Thakkar
- Department of Computer Science, Dartmouth, Hanover, NH, USA
| | | |
Collapse
|
56
|
Targeting the MHC Ligandome by Use of TCR-Like Antibodies. Antibodies (Basel) 2019; 8:antib8020032. [PMID: 31544838 PMCID: PMC6640717 DOI: 10.3390/antib8020032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibodies (mAbs) are valuable as research reagents, in diagnosis and in therapy. Their high specificity, the ease in production, favorable biophysical properties and the opportunity to engineer different properties make mAbs a versatile class of biologics. mAbs targeting peptide–major histocompatibility molecule (pMHC) complexes are often referred to as “TCR-like” mAbs, as pMHC complexes are generally recognized by T-cell receptors (TCRs). Presentation of self- and non-self-derived peptide fragments on MHC molecules and subsequent activation of T cells dictate immune responses in health and disease. This includes responses to infectious agents or cancer but also aberrant responses against harmless self-peptides in autoimmune diseases. The ability of TCR-like mAbs to target specific peptides presented on MHC allows for their use to study peptide presentation or for diagnosis and therapy. This extends the scope of conventional mAbs, which are generally limited to cell-surface or soluble antigens. Herein, we review the strategies used to generate TCR-like mAbs and provide a structural comparison with the analogous TCR in pMHC binding. We further discuss their applications as research tools and therapeutic reagents in preclinical models as well as challenges and limitations associated with their use.
Collapse
|
57
|
Jiang J, Natarajan K, Margulies DH. MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:21-62. [PMID: 31628650 DOI: 10.1007/978-981-13-9367-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D12, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| |
Collapse
|
58
|
Mahajan S, Vita R, Shackelford D, Lane J, Schulten V, Zarebski L, Jespersen MC, Marcatili P, Nielsen M, Sette A, Peters B. Epitope Specific Antibodies and T Cell Receptors in the Immune Epitope Database. Front Immunol 2018; 9:2688. [PMID: 30515166 PMCID: PMC6255941 DOI: 10.3389/fimmu.2018.02688] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
The Immune Epitope Database (IEDB) is a free public resource which catalogs experiments characterizing immune epitopes. To accommodate data from next generation repertoire sequencing experiments, we recently updated how we capture and query epitope specific antibodies and T cell receptors. Specifically, we are now storing partial receptor sequences sufficient to determine CDRs and VDJ gene usage which are commonly identified by repertoire sequencing. For previously captured full length receptor sequencing data, we have calculated the corresponding CDR sequences and gene usage information using IMGT numbering and VDJ gene nomenclature format. To integrate information from receptors defined at different levels of resolution, we grouped receptors based on their host species, receptor type and CDR3 sequence. As of August 2018, we have cataloged sequence information for more than 22,510 receptors in 18,292 receptor groups, shown to bind to more than 2,241 distinct epitopes. These data are accessible as full exports and through a new dedicated query interface. The later combines the new ability to search by receptor characteristics with previously existing capability to search by epitope characteristics such as the infectious agent the epitope is derived from, or the kind of immune response involved in its recognition. We expect that this comprehensive capture of epitope specific immune receptor information will provide new insights into receptor-epitope interactions, and facilitate the development of novel tools that help in the analysis of receptor repertoire data.
Collapse
Affiliation(s)
- Swapnil Mahajan
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Randi Vita
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Deborah Shackelford
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Jerome Lane
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Veronique Schulten
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Laura Zarebski
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Martin Closter Jespersen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| | - Bjoern Peters
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
59
|
Venturi V, Thomas PG. The expanding role of systems immunology in decoding the T cell receptor repertoire. ACTA ACUST UNITED AC 2018; 12:37-45. [PMID: 31106281 DOI: 10.1016/j.coisb.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cells play a crucial role in the immune system's defense against many infectious diseases, including persistent infections for which no effective vaccines currently exist. The T cell component of the adaptive immune system is highly complex involving a constantly evolving landscape of various inter-related T cell populations. These T cell populations are characterized by their phenotypic and functional properties as well as the collection, or repertoire, of T cell receptors (TCR) that mediate T cell recognition of antigenic peptides derived from pathogens. Understanding the various processes and factors that impact the development and evolution of the broader T cell repertoire available to recognize and respond to pathogens and the characteristics of antigen-experienced T cell repertoires associated with effective immune control of pathogens is critical to the rational design of T cell-based vaccines and therapies. In this article we discuss, using examples of recent research, the promise that systems immunology approaches, involving quantitative analysis and mathematical and computational modeling of immunological data, hold for decoding the complex TCR repertoire system in the current era of advancing technologies.
Collapse
Affiliation(s)
- Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
60
|
Sau S, Iyer AK. Immunotherapy and molecular role of T-cell in PD-1 antibody treated resectable lung cancer patients. J Thorac Dis 2018; 10:4682-4685. [PMID: 30233838 DOI: 10.21037/jtd.2018.07.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, USA
| |
Collapse
|
61
|
Rigden DJ, Fernández XM. The 2018 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res 2018; 46:D1-D7. [PMID: 29316735 PMCID: PMC5753253 DOI: 10.1093/nar/gkx1235] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
The 2018 Nucleic Acids Research Database Issue contains 181 papers spanning molecular biology. Among them, 82 are new and 84 are updates describing resources that appeared in the Issue previously. The remaining 15 cover databases most recently published elsewhere. Databases in the area of nucleic acids include 3DIV for visualisation of data on genome 3D structure and RNArchitecture, a hierarchical classification of RNA families. Protein databases include the established SMART, ELM and MEROPS while GPCRdb and the newcomer STCRDab cover families of biomedical interest. In the area of metabolism, HMDB and Reactome both report new features while PULDB appears in NAR for the first time. This issue also contains reports on genomics resources including Ensembl, the UCSC Genome Browser and ENCODE. Update papers from the IUPHAR/BPS Guide to Pharmacology and DrugBank are highlights of the drug and drug target section while a number of proteomics databases including proteomicsDB are also covered. The entire Database Issue is freely available online on the Nucleic Acids Research website (https://academic.oup.com/nar). The NAR online Molecular Biology Database Collection has been updated, reviewing 138 entries, adding 88 new resources and eliminating 47 discontinued URLs, bringing the current total to 1737 databases. It is available at http://www.oxfordjournals.org/nar/database/c/.
Collapse
Affiliation(s)
- Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | |
Collapse
|