51
|
Feng T, Wu S, Zhou H, Fang Z. MOBFinder: a tool for mobilization typing of plasmid metagenomic fragments based on a language model. Gigascience 2024; 13:giae047. [PMID: 39101782 PMCID: PMC11299106 DOI: 10.1093/gigascience/giae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Mobilization typing (MOB) is a classification scheme for plasmid genomes based on their relaxase gene. The host ranges of plasmids of different MOB categories are diverse, and MOB is crucial for investigating plasmid mobilization, especially the transmission of resistance genes and virulence factors. However, MOB typing of plasmid metagenomic data is challenging due to the highly fragmented characteristics of metagenomic contigs. RESULTS We developed MOBFinder, an 11-class classifier, for categorizing plasmid fragments into 10 MOB types and a nonmobilizable category. We first performed MOB typing to classify complete plasmid genomes according to relaxase information and then constructed an artificial benchmark dataset of plasmid metagenomic fragments (PMFs) from those complete plasmid genomes whose MOB types are well annotated. Next, based on natural language models, we used word vectors to characterize the PMFs. Several random forest classification models were trained and integrated to predict fragments of different lengths. Evaluating the tool using the benchmark dataset, we found that MOBFinder outperforms previous tools such as MOBscan and MOB-suite, with an overall accuracy approximately 59% higher than that of MOB-suite. Moreover, the balanced accuracy, harmonic mean, and F1-score reached up to 99% for some MOB types. When applied to a cohort of patients with type 2 diabetes (T2D), MOBFinder offered insights suggesting that the MOBF type plasmid, which is widely present in Escherichia and Klebsiella, and the MOBQ type plasmid might accelerate antibiotic resistance transmission in patients with T2D. CONCLUSIONS To the best of our knowledge, MOBFinder is the first tool for MOB typing of PMFs. The tool is freely available at https://github.com/FengTaoSMU/MOBFinder.
Collapse
Affiliation(s)
- Tao Feng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shufang Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhencheng Fang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
52
|
Hamilton T, Joris BR, Shrestha A, Browne TS, Rodrigue S, Karas BJ, Gloor GB, Edgell DR. De Novo Synthesis of a Conjugative System from Human Gut Metagenomic Data for Targeted Delivery of Cas9 Antimicrobials. ACS Synth Biol 2023; 12:3578-3590. [PMID: 38049144 PMCID: PMC10729033 DOI: 10.1021/acssynbio.3c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023]
Abstract
Metagenomic sequences represent an untapped source of genetic novelty, particularly for conjugative systems that could be used for plasmid-based delivery of Cas9-derived antimicrobial agents. However, unlocking the functional potential of conjugative systems purely from metagenomic sequences requires the identification of suitable candidate systems as starting scaffolds for de novo DNA synthesis. Here, we developed a bioinformatics approach that searches through the metagenomic "trash bin" for genes associated with conjugative systems present on contigs that are typically excluded from common metagenomic analysis pipelines. Using a human metagenomic gut data set representing 2805 taxonomically distinct units, we identified 1598 contigs containing conjugation genes with a differential distribution in human cohorts. We synthesized de novo an entire Citrobacter spp. conjugative system of 54 kb containing at least 47 genes and assembled it into a plasmid, pCitro. We found that pCitro conjugates from Escherichia coli to Citrobacter rodentium with a 30-fold higher frequency than to E. coli, and is compatible with Citrobacter resident plasmids. Mutations in the traV and traY conjugation components of pCitro inhibited conjugation. We showed that pCitro can be repurposed as an antimicrobial delivery agent by programming it with the TevCas9 nuclease and Citrobacter-specific sgRNAs to kill C. rodentium. Our study reveals a trove of uncharacterized conjugative systems in metagenomic data and describes an experimental framework to animate these large genetic systems as novel target-adapted delivery vectors for Cas9-based editing of bacterial genomes.
Collapse
Affiliation(s)
- Thomas
A. Hamilton
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Benjamin R. Joris
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Arina Shrestha
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Tyler S. Browne
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Sébastien Rodrigue
- Départment
de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada
| | - Bogumil J. Karas
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Gregory B. Gloor
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - David R. Edgell
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| |
Collapse
|
53
|
Suzuki Y, Fukazawa A, Sugawara K, Galipon J, Arakawa K. Complete genome sequence of PETase type IIa-harboring Marinobacter nanhaiticus D15-8W, isolated from a South China Sea sediment. Microbiol Resour Announc 2023; 12:e0086823. [PMID: 38095478 PMCID: PMC10720532 DOI: 10.1128/mra.00868-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 12/17/2023] Open
Abstract
Marinobacter nanhaiticus D15-8W is known for its ability to metabolize polycyclic aromatic hydrocarbons. Here, we report the complete circular genome sequence of this strain to be 5,336,660 bp (G + C content, 58.6%; 4,869 protein-coding sequences) with one plasmid (69,655 bp).
Collapse
Affiliation(s)
- Yukako Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Ayako Fukazawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Kanagawa, Japan
| | - Koki Sugawara
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Yamagata Prefectural Sakata Higashi High School, Sakata, Yamagata, Japan
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
54
|
Sun L, Chen Y, Qu T, Shi K, Han X, Wu W, Jiang Y, Yu Y. Characterisation of a Novel Hybrid IncFII pHN7A8:IncR:IncN Plasmid Co-Harboring blaNDM-5 and blaKPC-2 from a Clinical ST11 Carbapenem-Resistant Klebsiella pneumoniae Strain. Infect Drug Resist 2023; 16:7621-7628. [PMID: 38107435 PMCID: PMC10725640 DOI: 10.2147/idr.s435195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose We aimed to characterize a novel blaNDM-5 and blaKPC-2 co-carrying hybrid plasmid from a clinical carbapenem-resistant Klebsiella pneumoniae (CRKP) strain. Methods Antimicrobial susceptibility was determined by the broth microdilution method. Plasmid size and localization were estimated using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Plasmid transfer ability was evaluated by conjugation experiments. Whole genome sequencing (WGS) was performed using Illumina NovaSeq6000 and Oxford Nanopore MinION platforms. Genomic characteristics were analyzed using bioinformatics methods. Results Strain ZY27320 was a multidrug-resistant (MDR) clinical ST11 K. pneumoniae strain that confers high-level resistance to carbapenems (meropenem, MIC 128 mg/L; imipenem, MIC 64 mg/L) and ceftazidime/avibactam (MIC >128/4 mg/L). Both S1-PFGE-Southern blotting and whole genome sequencing revealed that the carbapenemase genes blaKPC-2 and blaNDM-5 were carried by the same IncFIIpHN7A8:IncR:IncN hybrid plasmid (pKPC2_NDM5). Conjugation experiments indicated that pKPC2_NDM5 was a non-conjugative plasmid. Conclusion This is the first report of a hybrid plasmid carrying both carbapenemase genes blaNDM-5 and blaKPC-2 in a clinical K. pneumoniae ST11 isolate that confers resistance to both ceftazidime/avibactam and carbapenems, thereby presenting a serious threat to treatment in clinical practice.
Collapse
Affiliation(s)
- Lingyan Sun
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Clinical in Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, People’s Republic of China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People’s Republic of China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People’s Republic of China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xinhong Han
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People’s Republic of China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wenhao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People’s Republic of China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People’s Republic of China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
55
|
Tian D, Zhao M, Zheng S, Jiang X, Zhang B. Involvement of Tn3 transposon in formation and transmission of hypervirulent and carbapenem-resistant Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0303823. [PMID: 37982629 PMCID: PMC10714771 DOI: 10.1128/spectrum.03038-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/14/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) is resistant to most common antibiotics, becoming the most important and prevalent nosocomial opportunity pathogen. Besides, K. pneumoniae can also cause severe community-acquired infections, such as primary liver abscess and endophthalmitis. These pathogens are commonly referred to as hvKp. CRKP and hvKp have evolved separately, each occupying its own clonal lineage and exhibiting a variety of properties. Our study provides important insights into the evolutionary events related to the arousal of virulence and drug resistance in K. pneumoniae through plasmid transmission, mediated by Tn3 transposon. Our study also provides evidence that multiple mechanisms contribute to the successful transfer of non-conjugative virulence plasmid, and the involvement of transposons enhances the efficiency. A good knowledge of its transmission mechanisms is fundamental to finding effective strategies to combat these threatening pathogens. Transposons are widely present in bacteria, spreading resistance and virulence genes between the environment and humans. Therefore, emerging transposon-mediated hypervirulent and carbapenem-resistant pathogens should be highly valued.
Collapse
Affiliation(s)
- Dongxing Tian
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Mingqi Zhao
- Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Sasa Zheng
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Xiaofei Jiang
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
56
|
Chenhaka LH, Van Wyk DAB, Mienie C, Bezuidenhout CC, Lekota KE. The phylogenomic landscape of extended-spectrum β-lactamase producing Citrobacter species isolated from surface water. BMC Genomics 2023; 24:755. [PMID: 38062371 PMCID: PMC10704729 DOI: 10.1186/s12864-023-09867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Citrobacter species are Gram-negative opportunistic pathogens commonly reported in nosocomial-acquired infections. This study characterised four Citrobacter species that were isolated from surface water in the North West Province, South Africa. RESULTS Phenotypic antimicrobial susceptibility profiles of the isolates demonstrated their ability to produce the extended-spectrum β-lactamase (ESBL). Whole genomes were sequenced to profile antibiotic resistance and virulence genes, as well as mobile genetic elements. In silico taxonomic identification was conducted by using multi-locus sequence typing and average nucleotide identity. A pangenome was used to determine the phylogenomic landscape of the Citrobacter species by using 109 publicly available genomes. The strains S21 and S23 were identified as C. braakii, while strains S24 and S25 were C. murliniae and C. portucalensis, respectively. Comparative genomics and sequenced genomes of the ESBL-producing isolates consisted of n = 91; 83% Citrobacter species in which bla-CMY-101 (n = 19; 32,2%) and bla-CMY-59 (n = 12; 38,7%) were prevalent in C. braakii, and C. portucalensis strains, respectively. Macrolide (acrAB-TolC, and mdtG) and aminoglycoside (acrD) efflux pumps genes were identified in the four sequenced Citrobacter spp. isolates. The quinolone resistance gene, qnrB13, was exclusive to the C. portucalensis S25 strain. In silico analysis detected plasmid replicon types IncHI1A, IncP, and Col(VCM04) in C. murliniae S24 and C. portucalensis S25, respectively. These potentially facilitate the T4SS secretion system in Citrobacter species. In this study, the C. braakii genomes could be distinguished from C. murliniae and C. portucalensis on the basis of gene encoding for cell surface localisation of the CPS (vexC) and identification of genes involved in capsule polymer synthesis (tviB and tviE). A cluster for the salmochelin siderophore system (iro-BCDEN) was found in C. murliniae S24. This is important when it comes to the pathogenicity pathway that confers an advantage in colonisation. CONCLUSIONS The emerging and genomic landscapes of these ESBL-producing Citrobacter species are of significant concern due to their dissemination potential in freshwater systems. The presence of these ESBL and multidrug-resistant (MDR) pathogens in aquatic environments is of One Health importance, since they potentially impact the clinical domain, that is, in terms of human health and the agricultural domain, that is, in terms of animal health and food production as well as the environmental domain.
Collapse
Affiliation(s)
- Lee-Hendra Chenhaka
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Deidré A B Van Wyk
- Unit for Environment Science and Management, Microbiology, North-West University, Mahikeng campus, Private Bag X2046, Mahikeng, 2745, South Africa.
| | - Charlotte Mienie
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Cornelius C Bezuidenhout
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Kgaugelo E Lekota
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
57
|
Zhang J, Xu Y, Wang M, Li X, Liu Z, Kuang D, Deng Z, Ou HY, Qu J. Mobilizable plasmids drive the spread of antimicrobial resistance genes and virulence genes in Klebsiella pneumoniae. Genome Med 2023; 15:106. [PMID: 38041146 PMCID: PMC10691111 DOI: 10.1186/s13073-023-01260-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a notorious clinical pathogen and frequently carries various plasmids, which are the main carriers of antimicrobial resistance and virulence genes. In comparison to self-transmissible conjugative plasmids, mobilizable plasmids have received much less attention due to their defects in conjugative elements. However, the contribution of mobilizable plasmids to the horizontal transfer of antimicrobial resistance genes and virulence genes of K. pneumoniae remains unclear. In this study, the transfer, stability, and cargo genes of the mobilizable plasmids of K. pneumoniae were examined via genetic experiments and genomic analysis. METHODS Carbapenem-resistant (CR) plasmid pHSKP2 and multidrug-resistant (MDR) plasmid pHSKP3 of K. pneumoniae HS11286, virulence plasmid pRJF293 of K. pneumoniae RJF293 were employed in conjugation assays to assess the transfer ability of mobilizable plasmids. Mimic mobilizable plasmids and genetically modified plasmids were constructed to confirm the cotransfer models. The plasmid morphology was evaluated through XbaI and S1 nuclease pulsed-field gel electrophoresis and/or complete genome sequencing. Mobilizable plasmid stability in transconjugants was analyzed via serial passage culture. In addition, in silico genome analysis of 3923 plasmids of 1194 completely sequenced K. pneumoniae was performed to investigate the distribution of the conjugative elements, the cargo genes, and the targets of the CRISPR-Cas system. The mobilizable MDR plasmid and virulence plasmid of K. pneumoniae were investigated, which carry oriT but lack other conjugative elements. RESULTS Our results showed that mobilizable MDR and virulence plasmids carrying oriT but lacking the relaxase gene were able to cotransfer with a helper conjugative CR plasmid across various Klebsiella and Escherichia coli strains. The transfer and stability of mobilizable plasmids rather than conjugative plasmids were not interfered with by the CRISPR-Cas system of recipient strains. According to the in silico analysis, the mobilizable plasmids carry about twenty percent of acquired antimicrobial resistance genes and more than seventy-five percent of virulence genes in K. pneumoniae. CONCLUSIONS Our work observed that a mobilizable MDR or virulence plasmid that carries oriT but lacks the relaxase genes transferred with the helper CR conjugative plasmid and mobilizable plasmids escaped from CRISPR-Cas defence and remained stable in recipients. These results highlight the threats of mobilizable plasmids as vital vehicles in the dissemination of antibiotic resistance and virulence genes in K. pneumoniae.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanping Xu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, 519000, China
| | - Zhiyuan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dai Kuang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- National Health Commission (NHC) Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
58
|
Beig M, Badmasti F, Solgi H, Nikbin VS, Sholeh M. Carbapenemase genes distribution in clonal lineages of Acinetobacter baumannii: a comprehensive study on plasmids and chromosomes. Front Cell Infect Microbiol 2023; 13:1283583. [PMID: 38106472 PMCID: PMC10722191 DOI: 10.3389/fcimb.2023.1283583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Background The global spread of plasmids carrying carbapenemase genes within carbapenem resistant Acinetobacter baumannii (CRAB) strains poses a worldwide public health issue. In this study, we conducted a comprehensive genetic analysis of plasmids and chromosomes harboring the major carbapenemase genes (bla NDM, bla KPC, bla VIM, bla IMP, bla GES, bla OXA-58-like, bla OXA-24/40-like, bla OXA-143-like, and bla OXA-23-like) in CRAB strains using bioinformatic tools. Methods We retrieved plasmids and chromosomes carrying the major carbapenemase genes from GenBank. The size, replicon type, and conjugal apparatus of the plasmids were also determined. Furthermore, allele types, co-existence of other antimicrobial resistance genes alongside carbapenemases in plasmids or chromosomes, co-occurrence of carbapenemase genes, gene repetition, and sequence types (ST) of whole genomes were characterized. Results The database contained 113 plasmids and 38 chromosomes harboring carbapenemase genes. This investigation revealed that bla NDM and bla OXA-58-like were the predominant allele types in both the plasmids and chromosomes. Nine (7.96%) plasmids with bla NDM-1 were potentially conjugative. The most common replicon types of the plasmids were R3-T1, R3-T8, R3-T2, R3-T23, and RP-T1. The analysis revealed that bla NDM-1 and bla OXA-58-like genes possessed the highest variety of co-existence with other antibiotic resistance genes. The co-occurrence of dual carbapenemases was identified in 12 plasmids and 19 chromosomes. Carbapenemase gene repetitions were identified in 10 plasmids and one chromosome. Circular alignment revealed that the plasmids carrying the co-occurrence of bla NDM-1 and bla OXA-58 were more homogeneous. However, there was heterogeneity in certain regions of these plasmids. According to the minimum spanning tree (MST) results, the majority of the plasmids belonged to the genomes of ST2Pas, ST1Pas, ST422Pas, ST622Pas, and ST85Pas. Conclusion A. baumannii appears to have a strong ability for genome plasticity to incorporate carbapenemase genes on its plasmids and chromosomes to develop resistance against carbapenems. Mobilizable plasmids harboring carbapenemases significantly contribute to the dissemination of these genes. The genetic structure of the plasmids revealed a strong associations of class I integrons, ISAba-like structures, Tn4401 elements, and aac (6')-Ib with carbapenemases. Furthermore, gene repetition may also be associated with carbapenem heteroresistance.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
59
|
Ferreira C, Luzietti L, Ribeirinho-Soares S, Nunes OC, Vaz-Moreira I, Manaia CM. Survival of clinical and environmental carbapenem-resistant Klebsiella pneumoniae ST147 in surface water. ENVIRONMENTAL RESEARCH 2023; 237:116928. [PMID: 37607624 DOI: 10.1016/j.envres.2023.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Carbapenem-resistant Klebsiella pneumoniae represents a healthcare threat, already disseminated in the environment. This study aimed to compare the behaviour of a clinical and an environmental K. pneumoniae strain (multilocus sequence type ST147) harbouring the gene blaKPC-3 in water. The abundance of the genes phoE (specific for K. pneumoniae) and blaKPC-3 was monitored by quantitative PCR in urban runoff water and sterile ultra-pure water microcosms, aiming to assess survival, blaKPC-3 persistence, and the effect of the native water microbiota. In sterile ultra-pure water, the abundance of cultivable K. pneumoniae and blaKPC-3 gene did not change over the incubation period (8 days). In contrast, in urban runoff, the K. pneumoniae and the genes phoE and blaKPC genes decreased by up to 3 log-units. These results suggest that K. pneumoniae were outcompeted by the native microbiota of the urban runoff water and that the decay of blaKPC-3 gene was due to host death, rather than to gene loss. The study highlights that although native microbiota is essential to hamper the persistence of non-native bacteria, carbapenemase producing K. pneumoniae can survive in urban runoff water for at least one week.
Collapse
Affiliation(s)
- Catarina Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Lara Luzietti
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
60
|
Cambronero-Heinrichs JC, Battisti A, Biedermann PHW, Cavaletto G, Castro-Gutierrez V, Favaro L, Santoiemma G, Rassati D. Erwiniaceae bacteria play defensive and nutritional roles in two widespread ambrosia beetles. FEMS Microbiol Ecol 2023; 99:fiad144. [PMID: 37951293 PMCID: PMC10664977 DOI: 10.1093/femsec/fiad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023] Open
Abstract
Ambrosia beetles are fungal-growing insects excavating galleries deep inside the wood. Their success as invaders increased scientific interest towards them. However, most studies on their microbiota targeted their fungal associates whereas the role of bacterial associates is understudied. To explore the role of abundant microbial associates, we isolated bacteria from active galleries of two widespread ambrosia beetles, Xylosandrus crassiusculus and X. germanus. These isolates were classified within the Erwiniaceae family and through a phylogenetic analysis including isolates from other insects we showed that they clustered with isolates obtained from ambrosia and bark beetles, including Erwinia typographi. The whole genome analysis of the isolate from active galleries of X. crassiusculus suggested that this bacterium plays both a nutritional role, by providing essential amino acids and enzymes for the hydrolysis of plant biomass, and a defensive role, by producing antibiotics. This defensive role was also tested in vitro against fungi, including mutualists, common associates, and parasites. The bacteria inhibited the growth of some of the common associates and parasites but did not affect mutualists. Our study supported the hypothesis of a mutualist role of Erwiniaceae bacteria in ambrosia beetles and highlighed the importance of bacteria in maintaining the symbiosis of their host with nutritional fungi.
Collapse
Affiliation(s)
- Juan Carlos Cambronero-Heinrichs
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Andrea Battisti
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Peter H W Biedermann
- Chair for Forest Entomology and Protection, University of Freiburg, Stegen-Wittental 79252, Germany
| | - Giacomo Cavaletto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Víctor Castro-Gutierrez
- Center for Research on Environmental Pollution (CICA), University of Costa Rica, Montes de Oca 11501, Costa Rica
| | - Lorenzo Favaro
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Giacomo Santoiemma
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| | - Davide Rassati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) 35020, Italy
| |
Collapse
|
61
|
An T, Cai Y, Li G, Li S, Wong PK, Guo J, Zhao H. Prevalence and transmission risk of colistin and multidrug resistance in long-distance coastal aquaculture. ISME COMMUNICATIONS 2023; 3:115. [PMID: 37935916 PMCID: PMC10630474 DOI: 10.1038/s43705-023-00321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Due to the wide use of antibiotics, intensive aquaculture farms have been recognized as a significant reservoir of antibiotic resistomes. Although the prevalence of colistin resistance genes and multidrug-resistant bacteria (MDRB) has been documented, empirical evidence for the transmission of colistin and multidrug resistance between bacterial communities in aquaculture farms through horizontal gene transfer (HGT) is lacking. Here, we report the prevalence and transmission risk of colistin and multidrug resistance in 27 aquaculture water samples from 9 aquaculture zones from over 5000 km of subtropical coastlines in southern China. The colistin resistance gene mcr-1, mobile genetic element (MGE) intl1 and 13 typical antibiotic resistance genes (ARGs) were prevalent in all the aquaculture water samples. Most types of antibiotic (especially colistin) resistance are transmissible in bacterial communities based on evidence from laboratory conjugation and transformation experiments. Diverse MDRB were detected in most of the aquaculture water samples, and a strain with high-level colistin resistance, named Ralstonia pickettii MCR, was isolated. The risk of horizontal transfer of the colistin resistance of R. pickettii MCR through conjugation and transformation was low, but the colistin resistance could be steadily transmitted to offspring through vertical transfer. The findings have important implications for the future regulation of antibiotic use in aquaculture farms globally to address the growing threat posed by antibiotic resistance to human health.
Collapse
Affiliation(s)
- Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yiwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaoting Li
- College of Biological and Pharmaceutical Science, Guangdong University of Technology, Guangzhou, 510006, China
| | - Po Keung Wong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| | - Huijun Zhao
- Centre for Clean Environment and Energy, and Griffith School of Environment, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| |
Collapse
|
62
|
Dahiya S, Katiyar A, Rai S, Sharma P, Punit Kaur, Kapil A. Ceftriaxone-resistant Salmonella Typhi isolated from paediatric patients in north India: Insights into genetic profiles and antibiotic resistance mechanisms. Indian J Med Microbiol 2023; 46:100448. [PMID: 37945130 DOI: 10.1016/j.ijmmb.2023.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE To investigate the antibiotic resistance and genetic profile of ceftriaxone-resistant Salmonella Typhi isolated from the blood culture of two paediatric cases of typhoid fever and one from the stool culture of their household contact, in North India. METHODS In this study, whole-genome sequencing was carried out with paired-end 2 × 150 bp reads on Illumina MiSeq (Illumina, USA) employing v2 and v3 chemistry. To check data quality, adapters and low-quality sequences were removed through Trimmomatic-v0.36. High quality reads were then assembled de novo using A5-miseq pipeline. For further refinement, reference-guided contig ordering and orienting were performed on the scaffold assemblies using ABACAS (http://abacas.sourceforge.net/). The assembled genome was annotated using Prokka v1.12 to identify and annotate the gene content. Plasmid replicons in bacterial isolates were identified by PlasmidFinder, whereas mobile genetic elements were predicted using Mobile Element Finder. Referenced-based SNP tree with maximum likelihood method was built with CSI phylogeny v1.4. RESULTS All three isolates exhibited resistance to ceftriaxone, cefixime, ciprofloxacin, ampicillin, and co-trimoxazole, while demonstrating sensitivity to azithromycin and chloramphenicol. The whole-genome sequencing of these strains revealed the presence of blaCTX-M-15 gene for cephalosporin resistance in addition to gyrA, qnr and IncY plasmid replicon. A 5 kb IS91 Sbo1 gene cassette (IncY plasmid) was identified which carried extended spectrum β-lactamase blaCTX-M-15, blaTEM-1D (resistance to ampicillin and cephalosporin), sul2, dfrA14 (resistant to trimethoprim-sulfamethoxazole) and qnrS (resistant to ciprofloxacin). These isolates belong to H58 lineage and grouped as sequence type 1 (ST1) on multilocus sequence typing (MLST) analysis. CONCLUSION In the present study we report the isolation of blaCTX-M-15 positive S. Typhi from two paediatric patients presenting with fever and one from stool culture of their contact from North India and highlight the need for further investigations to understand the different factors contributing to ceftriaxone resistance in Salmonella Typhi.
Collapse
Affiliation(s)
- Sushila Dahiya
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Amit Katiyar
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Sumit Rai
- Department of Clinical Microbiology and Infectious Diseases, Super Speciality Child Hospital and Post Graduate Teaching Institute, NOIDA, India.
| | - Priyanka Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
63
|
Wardal E, Żabicka D, Skalski T, Kubiak-Pulkowska J, Hryniewicz W, Sadowy E. Characterization of a Tigecycline-, Linezolid- and Vancomycin-Resistant Clinical Enteroccoccus faecium Isolate, Carrying vanA and vanB Genes. Infect Dis Ther 2023; 12:2545-2565. [PMID: 37821741 PMCID: PMC10651664 DOI: 10.1007/s40121-023-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
INTRODUCTION Increasing incidence of Enterococcus faecium resistant to key antimicrobials used in therapy of hospitalized patients is a worrisome phenomenon observed worldwide. Our aim was to characterize a tigecycline-, linezolid- and vancomycin-resistant E. faecium isolate with the vanA and vanB genes, originating from a hematoma of a patient hospitalized in an intensive care unit in Poland. METHODS Antimicrobial susceptibility (a broad panel) was tested using gradient tests with predefined antibiotic concentrations. The complete genome sequence was obtained from a mixed assembly of Illumina MiSeq and Oxford Nanopore's MinION reads. The genome was analyzed with appropriate tools available at the Center for Genomic Epidemiology, PubMLST and GenBank. Transferability of oxazolidinone, tigecycline and vancomycin resistance genes was investigated by conjugation, followed by PCR screen of transconjugants for antimicrobial resistance genes and plasmid rep genes characteristic for the donor and genomic sequencing of selected transconjugants. RESULTS The isolate was resistant to most antimicrobials tested; susceptibility to daptomycin, erythromycin and chloramphenicol was significantly reduced, and only oritavancin retained the full activity. The isolate represented sequence type 18 (ST18) and carried vanA, vanB, poxtA, fexB, tet(L), tet(M), aac(6')-aph(2''), ant(6)-Ia and ant(6')-Ii. The vanA, poxtA and tet(M) genes located on ~ 40-kb plasmids were transferable by conjugation yielding transconjugants resistant to vancomycin, linezolid and tigecycline. The substitutions in LiaS, putative histidine kinase, SulP, putative sulfate transporter, RpoB and RpoC were potential determinants of an elevated daptomycin MIC. Comparative analyses of the studied isolate with E. faecium isolates from other countries revealed its similarity to ST18 isolates from Ireland and Uganda from human infections. CONCLUSIONS We provide the detailed characteristics of the genomic determinants of antimicrobial resistance of a clinical E. faecium demonstrating the concomitant presence of both vanA and vanB and resistance to vancomycin, linezolid, tigecycline and several other compounds and decreased daptomycin susceptibility. This isolate is a striking example of an accumulation of resistance determinants involving various mechanisms by a single hospital strain.
Collapse
Affiliation(s)
- Ewa Wardal
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Tomasz Skalski
- Department of Clinical Microbiology and Molecular Diagnostics, University Hospital No 2, ul. Ujejskiego 75, Bydgoszcz, Poland
| | - Joanna Kubiak-Pulkowska
- Department of Clinical Microbiology and Molecular Diagnostics, University Hospital No 2, ul. Ujejskiego 75, Bydgoszcz, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
64
|
Chang J, Zhang Y, Zhang Z, Chen B, He S, Zhan Z, Zhong N, Tian X, Kang S, Arunachalam K, Shi C. Prevalence, antimicrobial resistance, and genetic characteristics of Staphylococcus aureus isolates in frozen flour and rice products in Shanghai, China. Curr Res Food Sci 2023; 7:100631. [PMID: 38021263 PMCID: PMC10660022 DOI: 10.1016/j.crfs.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Staphylococcus aureus is widely recognized as a highly hazardous pathogen that poses significant threats to food safety and public health. This study aimed to assess the prevalence, antimicrobial resistance, and genetic characteristics of S. aureus isolates recovered from 288 frozen flour and rice product samples in Shanghai, China, between September 2019 and May 2020. A total of 81 S. aureus isolates were obtained, representing 25 sequence types (STs), with ST7 being the most prevalent (17.28%, n = 14). The majority of S. aureus isolates (85.19%, n = 69) carried at least one enterotoxin gene, with the seg gene being the most frequently detected (51.85%, n = 42). Additionally, 12 isolates (14.81%) were identified as methicillin-resistant S. aureus (MRSA) through mecA gene detection. Notably, this study reported the presence of an ST398 MRSA isolate in frozen flour and rice products for the first time. All MRSA isolates displayed multidrug resistance, with the highest resistance observed against cefoxitin (100.00%), followed by penicillin (91.67%) and erythromycin (66.67%). Genomic analysis of the 12 MRSA isolates revealed the presence of twenty distinct acquired antimicrobial resistance genes (ARGs), eight chromosomal point mutations, and twenty-four unique virulence genes. Comparative genome analysis indicated close genetic relationships between these MRSA isolates and previously reported MRSA isolates from clinical infections, highlighting the potential transmission of MRSA through the food chain and its implications for public health. Significantly, the identification of three plasmids harboring ARGs, insertion sequences (ISs), the origin of transfer site (oriT), and the relaxase gene suggested the potential for horizontal transfer of ARGs via conjugative plasmids in S. aureus. In conclusion, this study revealed significant contamination of retail frozen flour and rice products with S. aureus, and provided essential data for ensuring food safety and protecting public health.
Collapse
Affiliation(s)
- Jiang Chang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yi Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zengfeng Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Bo Chen
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shoukui He
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Nan Zhong
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaorong Tian
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shimo Kang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kannappan Arunachalam
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
65
|
Mavroidi A, Gartzonika K, Spanakis N, Froukala E, Kittas C, Vrioni G, Tsakris A. Comprehensive Analysis of Virulence Determinants and Genomic Islands of blaNDM-1-Producing Enterobacter hormaechei Clinical Isolates from Greece. Antibiotics (Basel) 2023; 12:1549. [PMID: 37887250 PMCID: PMC10604629 DOI: 10.3390/antibiotics12101549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Nosocomial outbreaks of multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) are often reported worldwide, mostly associated with a small number of multilocus-sequence types of E. hormaechei and E. cloacae strains. In Europe, the largest clonal outbreak of blaNDM-1-producing ECC has been recently reported, involving an ST182 E. hormaechei strain in a Greek teaching hospital. In the current study, we aimed to further investigate the genetic make-up of two representative outbreak isolates. Comparative genomics of whole genome sequences (WGS) was performed, including whole genome-based taxonomic analysis and in silico prediction of virulence determinants of the bacterial cell surface, plasmids, antibiotic resistance genes and virulence factors present on genomic islands. The enterobacterial common antigen and the colanic antigen of the cell surface were identified in both isolates, being similar to the gene clusters of the E. hormaechei ATCC 49162 and E. cloacae ATCC 13047 type strains, whereas the two strains possessed different gene clusters encoding lipopolysaccharide O-antigens. Other virulence factors of the bacterial cell surface, such as flagella, fimbriae and pili, were also predicted to be encoded by gene clusters similar to those found in Enterobacter spp. and other Enterobacterales. Secretion systems and toxin-antitoxin systems, which also contribute to pathogenicity, were identified. Both isolates harboured resistance genes to multiple antimicrobial classes, including β-lactams, aminoglycosides, quinolones, chloramphenicol, trimethoprim, sulfonamides and fosfomycin; they carried blaTEM-1, blaOXA-1, blaNDM-1, and one of them also carried blaCTXM-14, blaCTXM-15 and blaLAP-2 plasmidic alleles. Our comprehensive analysis of the WGS assemblies revealed that blaNDM-1-producing outbreak isolates possess components of the bacterial cell surface as well as genomic islands, harbouring resistance genes to several antimicrobial classes and various virulence factors. Differences in the plasmids carrying β-lactamase genes between the two strains have also shown diverse modes of acquisition and an ongoing evolution of these mobile elements.
Collapse
Affiliation(s)
- Angeliki Mavroidi
- Department of Microbiology, General University Hospital of Patras, 26504 Patras, Greece;
| | - Konstantina Gartzonika
- Department of Microbiology, Medical School, Ioannina University Hospital, 45110 Ioannina, Greece; (K.G.); (C.K.)
| | - Nick Spanakis
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece; (N.S.); (E.F.); (G.V.)
| | - Elisavet Froukala
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece; (N.S.); (E.F.); (G.V.)
| | - Christos Kittas
- Department of Microbiology, Medical School, Ioannina University Hospital, 45110 Ioannina, Greece; (K.G.); (C.K.)
| | - Georgia Vrioni
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece; (N.S.); (E.F.); (G.V.)
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, University of Athens, 11527 Athens, Greece; (N.S.); (E.F.); (G.V.)
| |
Collapse
|
66
|
Balbuena-Alonso MG, Camps M, Cortés-Cortés G, Carreón-León EA, Lozano-Zarain P, Rocha-Gracia RDC. Strain belonging to an emerging, virulent sublineage of ST131 Escherichia coli isolated in fresh spinach, suggesting that ST131 may be transmissible through agricultural products. Front Cell Infect Microbiol 2023; 13:1237725. [PMID: 37876872 PMCID: PMC10591226 DOI: 10.3389/fcimb.2023.1237725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Food contamination with pathogenic Escherichia coli can cause severe disease. Here, we report the isolation of a multidrug resistant strain (A23EC) from fresh spinach. A23EC belongs to subclade C2 of ST131, a virulent clone of Extraintestinal Pathogenic E. coli (ExPEC). Most A23EC virulence factors are concentrated in three pathogenicity islands. These include PapGII, a fimbrial tip adhesin linked to increased virulence, and CsgA and CsgB, two adhesins known to facilitate spinach leaf colonization. A23EC also bears TnMB1860, a chromosomally-integrated transposon with the demonstrated potential to facilitate the evolution of carbapenem resistance among non-carbapenemase-producing enterobacterales. This transposon consists of two IS26-bound modular translocatable units (TUs). The first TU carries aac(6')-lb-cr, bla OXA-1, ΔcatB3, aac(3)-lle, and tmrB, and the second one harbors bla CXT-M-15. A23EC also bears a self-transmissible plasmid that can mediate conjugation at 20°C and that has a mosaic IncF [F(31,36):A(4,20):B1] and Col156 origin of replication. Comparing A23EC to 86 additional complete ST131 sequences, A23EC forms a monophyletic cluster with 17 other strains that share the following four genomic traits: (1) virotype E (papGII+); (2) presence of a PAI II536-like pathogenicity island with an additional cnf1 gene; (3) presence of chromosomal TnMB1860; and (4) frequent presence of an F(31,36):A(4,20):B1 plasmid. Sequences belonging to this cluster (which we named "C2b sublineage") are highly enriched in septicemia samples and their associated genetic markers align with recent reports of an emerging, virulent sublineage of the C2 subclade, suggesting significant pathogenic potential. This is the first report of a ST131 strain belonging to subclade C2 contaminating green leafy vegetables. The detection of this uropathogenic clone in fresh food is alarming. This work suggests that ST131 continues to evolve, gaining selective advantages and new routes of transmission. This highlights the pressing need for rigorous epidemiological surveillance of ExPEC in vegetables with One Health perspective.
Collapse
Affiliation(s)
- Maria G. Balbuena-Alonso
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Manel Camps
- Departament of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Gerardo Cortés-Cortés
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departament of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Eder A. Carreón-León
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
67
|
Szmolka A, Gellért Á, Szemerits D, Rapcsák F, Spisák S, Adorján A. Emergence and Genomic Features of a mcr-1 Escherichia coli from Duck in Hungary. Antibiotics (Basel) 2023; 12:1519. [PMID: 37887221 PMCID: PMC10604428 DOI: 10.3390/antibiotics12101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Plasmids carrying high-risk resistance mechanisms in pathogenic E. coli have gained particular attention in veterinary medicine, especially since the discovery of the colistin resistance gene, mcr-1. Here, we provide the first evidence of its emergence and describe the complete mcr-1 plasmid sequence of a multi-resistant avian pathogenic E. coli (APEC) strain from waterfowl in Hungary. Whole-genome sequencing analysis and core-genome MLST were performed to characterize the genome structure of the mcr-1 plasmid and to reveal the phylogenetic relation between the Hungarian duck strain Ec45-2020 and the internationally circulating mcr-1-positive E. coli strains from poultry and humans. Results showed that plasmid pEc45-2020-33kb displayed a high level of genome identity with mcr-1 plasmids of IncX4 type widespread among human, animal and food reservoirs of enteric bacteria of public health. The mcr-1-positive E. coli strain Ec45-2020 belongs to the ST162 genotype, considered as one of the globally disseminated zoonotic genotypes of MDR E. coli. In accordance with international findings, our results underline the importance of continuous surveillance of enteric bacteria with high-risk antimicrobial resistance genotypes, including neglected animals, such as waterfowls, as possible reservoirs for the colistin resistance gene mcr-1.
Collapse
Affiliation(s)
- Ama Szmolka
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (Á.G.); (F.R.)
| | - Ákos Gellért
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (Á.G.); (F.R.)
| | - Dóra Szemerits
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, 1143 Budapest, Hungary; (D.S.); (A.A.)
| | - Fanni Rapcsák
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (Á.G.); (F.R.)
| | - Sándor Spisák
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| | - András Adorján
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, 1143 Budapest, Hungary; (D.S.); (A.A.)
| |
Collapse
|
68
|
Veloso M, Arros P, Acosta J, Rojas R, Berríos-Pastén C, Varas M, Araya P, Hormazábal JC, Allende ML, Chávez FP, Lagos R, Marcoleta AE. Antimicrobial resistance, pathogenic potential, and genomic features of carbapenem-resistant Klebsiella pneumoniae isolated in Chile: high-risk ST25 clones and novel mobile elements. Microbiol Spectr 2023; 11:e0039923. [PMID: 37707451 PMCID: PMC10581085 DOI: 10.1128/spectrum.00399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
Multidrug- and carbapenem-resistant Klebsiella pneumoniae (CR-Kp) are critical threats to global health and key traffickers of resistance genes to other pathogens. Despite the sustained increase in CR-Kp infections in Chile, few strains have been described at the genomic level, lacking details of their resistance and virulence determinants and the mobile elements mediating their dissemination. In this work, we studied the antimicrobial susceptibility and performed a comparative genomic analysis of 10 CR-Kp isolates from the Chilean surveillance of carbapenem-resistant Enterobacteriaceae. High resistance was observed among the isolates (five ST25, three ST11, one ST45, and one ST505), which harbored 44 plasmids, most carrying genes for conjugation and resistance to several antibiotics and biocides. Ten plasmids encoding carbapenemases were characterized, including novel plasmids or variants with additional resistance genes, a novel genetic environment for blaKPC-2, and plasmids widely disseminated in South America. ST25 K2 isolates belonging to CG10224, a clone traced back to 2012 in Chile, which recently acquired blaNDM-1, blaNDM-7, or blaKPC-2 plasmids stood out as high-risk clones. Moreover, this corresponds to the first report of ST25 and ST45 Kp producing NDM-7 in South America and ST505 CR-Kp producing both NDM-7 and KPC-2 worldwide. Also, we characterized a variety of genomic islands carrying virulence and fitness factors. These results provide baseline knowledge for a detailed understanding of molecular and genetic determinants behind antibiotic resistance and virulence of CR-Kp in Chile and South America. IMPORTANCE In the ongoing antimicrobial resistance crisis, carbapenem-resistant strains of Klebsiella pneumoniae are critical threats to public health. Besides globally disseminated clones, the burden of local problem clones remains substantial. Although genomic analysis is a powerful tool for improving pathogen and antimicrobial resistance surveillance, it is still restricted in low- to middle-income countries, including Chile, causing them to be underrepresented in genomic databases and epidemiology surveys. This study provided the first 10 complete genomes of the Chilean surveillance for carbapenem-resistant K. pneumoniae in healthcare settings, unveiling their resistance and virulence determinants and the mobile genetic elements mediating their dissemination, placed in the South American and global K. pneumoniae epidemiological context. We found ST25 with K2 capsule as an emerging high-risk clone, along with other lineages producing two carbapenemases and several other resistance and virulence genes encoded in novel plasmids and genomic islands.
Collapse
Affiliation(s)
- Marcelo Veloso
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Arros
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Joaquin Acosta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Roberto Rojas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Macarena Varas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation (CGR), Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco P. Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés E. Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
69
|
Tian C, Shi Y, Ren L, Huang D, Wang S, Zhao Y, Fu L, Bai Y, Xia D, Fan X. Emergence of IS26-mediated pLVPK-like virulence and NDM-1 conjugative fusion plasmid in hypervirulent carbapenem-resistant Klebsiella pneumoniae. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105471. [PMID: 37353184 DOI: 10.1016/j.meegid.2023.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) has been widely reported and poses a global threat. However, the comprehensive genetic structure of ST11-KL64 hv-CRKP and the possible evolutionary mechanisms from a genetic structure perspective of this high-risk clone remain unclear. Here, a blaKPC-2-blaNDM-1-positive ST11-KL64 hv-CRKP isolate was obtained from a human bloodstream infection (BSI). Whole-genome sequencing and bioinformatics analyses revealed that it contained a fusion plasmid, pKPTCM2-1. pKPTCM2-1 is a conjugative plasmid composed of an oriT-positive pLVPK-like virulence plasmid and a type IV secretion system-produced blaNDM-1-bearing IncX3 plasmid mediated by IS26-based co-integration. This progress generated 8-bp target site duplications (TGAAAACC) on both sides. The fusion plasmid possessed self-transferability and could be transferred to blaKPC-2-harboring ST11-KL64 CRKP to form the ST11-KL64 hv-CRKP clone. The pLVPK-like-positive ST11-KL64 strain exhibited virulence levels similar to those of the typical hypervirulent K. pneumoniae NTUH-2044. The mutation, Tet(A) (A276S), which was believed to lead to tigecycline resistance was observed. Overall, this high-risk clone has emerged as a tremendous threat in fatal BSIs and thus, targeted surveillance is an urgent need to contain the hv-CRKP clones.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang 312000, China
| | - Yueyue Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lingzhi Ren
- Department of Clinical Laboratory, The People's Hospital of Zhangqiu Area, Jinan 250200, China
| | - Delian Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siwei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang 312000, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang 312000, China
| | - Yongfeng Bai
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xueyu Fan
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
70
|
Hurtado R, Barh D, de Jesus LCL, Canário Viana MV, Tiwari S, Aburjaile FF, Carhuaricra Huaman DE, Brenig B, Hernández LM, Azevedo V. The genomic approach of antimicrobial resistance of Salmonella Typhimurium isolates from guinea pigs in Lima, Peru. Res Microbiol 2023; 174:104086. [PMID: 37307910 DOI: 10.1016/j.resmic.2023.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/12/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023]
Abstract
Salmonella Typhimurium is an important agent of foodborne diseases. In Peru, the emergence of multidrug-resistant isolates of S. Typhimurium from the food chain could be linked to guinea pig farming as a potential reservoir and their uncontrolled antibiotic treatment against salmonellosis. In this study, we performed the sequencing, genomic diversity, and characterization of resistance elements transmitted by isolates from farm and meat guinea pigs. The genomic diversity and antimicrobial resistance of S. Typhimurium isolates were performed using nucleotide similarity, cgMLST, serotyping, phylogenomic analyses, and characterization of resistance plasmids. We found at least four populations of isolates from farm guinea pigs and four populations from meat guinea pigs without finding isolated transmission between both resources. Genotypic resistance to antibiotics was observed in at least 50% of the isolates. Among the farm guinea pig isolates, ten were found to be resistant to nalidixic acid, and two isolates exhibited multidrug resistance to aminoglycosides, tetracycline-fluoroquinolone (carrying strA-strB-tetA-tetB genes and gyrA S83F mutation), or trimethoprim-sulfonamide (carrying AaadA1-drfA15-sul1 genes). Additionally, two isolates from the meat source were resistant to fluoroquinolones (one of which had enrofloxacin resistance). The transmissible resistance plasmids with insertion sequences (IS) such as IncI-gamma-K1-ISE3-IS6, IncI1-I (alpha)-IS21-Tn10, and Col (pHAD28) were commonly found in isolates belonging to the HC100-9757 cluster from both guinea pigs and human hosts. Altogether, our work provides resistance determinants profiles and Salmonella sp. circulating lineages using WGS data that can promote better sanitary control and adequate antimicrobial prescription.
Collapse
Affiliation(s)
- Raquel Hurtado
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil; Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, 721172, India.
| | - Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Marcus Vinicius Canário Viana
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Sandeep Tiwari
- Pós-graduação em Microbiologia, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahía, Brazil; Programa de Pós-graduação em Imunologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahía, Brazil.
| | - Flávia Figueira Aburjaile
- Preventive Veterinary Medicine Department, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Dennis E Carhuaricra Huaman
- SANIGEN, Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, San Borja, Lima, 15021, Peru.
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Burckhardtweg 2, Göttingen, Germany.
| | - Lenin Maturrano Hernández
- SANIGEN, Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, San Borja, Lima, 15021, Peru.
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
71
|
Tian C, Song J, Ren L, Huang D, Wang S, Fu L, Zhao Y, Bai Y, Fan X, Ma T, Ying J. Complete genetic characterization of carbapenem-resistant Acinetobacter johnsonii, co-producing NDM-1, OXA-58, and PER-1 in a patient source. Front Cell Infect Microbiol 2023; 13:1227063. [PMID: 37692162 PMCID: PMC10486904 DOI: 10.3389/fcimb.2023.1227063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
The emergence of carbapenemase-producing Acinetobacter spp. has been widely reported and become a global threat. However, carbapenem-resistant A. johnsonii strains are relatively rare and without comprehensive genetic structure analysis, especially for isolates collected from human specimen. Here, one A. johnsonii AYTCM strain, co-producing NDM-1, OXA-58, and PER-1 enzymes, was isolated from sputum in China in 2018. Antimicrobial susceptibility testing showed that it was resistant to meropenem, imipenem, ceftazidime, ciprofloxacin, and cefoperazone/sulbactam. Whole-genome sequencing and bioinformatic analysis revealed that it possessed 11 plasmids. bla OXA-58 and bla PER-1 genes were located in the pAYTCM-1 plasmid. Especially, a complex class 1 integron consisted of a 5' conserved segment (5' CS) and 3' CS, which was found to carry sul1, arr-3, qnrVC6, and bla PER-1 cassettes. Moreover, the bla NDM-1 gene was located in 41,087 conjugative plasmids and was quite stable even after 70 passages under antibiotics-free conditions. In addition, six prophage regions were identified. Tracking of closely related plasmids in the public database showed that pAYTCM-1 was similar to pXBB1-9, pOXA23_010062, pOXA58_010030, and pAcsw19-2 plasmids, which were collected from the strains of sewage in China. Concerning the pAYTCM-3 plasmids, results showed that strains were collected from different sources and their hosts were isolated from various countries, such as China, USA, Japan, Brazil, and Mexico, suggesting that a wide spread occurred all over the world. In conclusion, early surveillance is warranted to avoid the extensive spread of this high-risk clone in the healthcare setting.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang, China
| | - Jianqin Song
- Department of Traditional Chinese Medicine, Hangzhou Linping District Hospital of Integrated Chinese and Western Medicine, Hangzhou, China
| | - Lingzhi Ren
- Department of Clinical Laboratory, The People’s Hospital of Zhangqiu Area, Jinan, China
| | - Delian Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang, China
| | - Yongfeng Bai
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xueyu Fan
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Tianhong Ma
- Department of Pharmacy, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Junjie Ying
- Department of Urology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
72
|
Zhang F, Li Z, Liu X, Hu Y, Zhao J, Zhang Y, Fan Y, Lei Z, Yang X, Li Z, Li C, Wu Y, Lu B. Carbapenem-resistant Citrobacter freundii harboring blaKPC-2 and blaNDM-1: a study on their transferability and potential dissemination via generating a transferrable hybrid plasmid mediated by IS 6100. Front Microbiol 2023; 14:1239538. [PMID: 37664119 PMCID: PMC10469622 DOI: 10.3389/fmicb.2023.1239538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The increase in clinical Enterobacteriaceae with dual carbapenemase has become a serious healthcare concern. It is essential to characterize the transferability and potential dissemination of blaKPC-2- and blaNDM-1-coharboring carbapenem-resistant Citrobacter freundii (CRCF). Methods Four blaKPC-2- and blaNDM-1-coharboring CRCF strains were collected from our surveillance of the prevalence of carbapenem-resistant Enterobacteriaceae. The isolates were assessed using species identification, antimicrobial susceptibility testing, conjugation assays, whole-genome sequencing, plasmid stability, and fitness costs. Clonality, genome, plasmidome, and phylogeny were analyzed to reveal potential dissemination. Results Three ST523 blaKPC-2- and blaNDM-1-coharboring CRCF strains, collected from the same hospital within 1 month, exhibited high homology (both identity and coverage >99%), implying clonal dissemination and a small-scale outbreak. Moreover, the blaKPC-2 and blaNDM-1 genes were coharbored on an IncR plasmid, probably generated by a blaKPC-2-harboring plasmid acquiring blaNDM-1, in these three strains. Importantly, the IncR plasmid may form a transferable hybrid plasmid, mediated by IS6100 via transposition, with another IncFII plasmid included in the same C. freundii strain. Furthermore, the blaKPC-2 and blaNDM-1 of the fourth CRCF strain are located on two different non-transferable plasmids lacking complete transfer elements. Additionally, throughout the course of the 10-day continuous passage, the genetic surroundings of blaNDM-1 in four CRCF strains were gradually excised from their plasmids after the 8th day, whereas they maintained 100% retention for blaKPC-2. Genome and plasmidome analyses revealed that blaKPC-2- or blaNDM-1-harboring C. freundii were divergent, and these plasmids have high homology to plasmids of other Enterobacteriaceae. Conclusion Clonal dissemination of ST523 blaKPC-2- and blaNDM-1-coharboring CRCF strains was detected, and we first reported blaKPC-2 and blaNDM-1 concomitantly located on one plasmid, which could be transferred with mediation by IS6100 via transposition. Continued surveillance should urgently be implemented.
Collapse
Affiliation(s)
- Feilong Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziyao Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
| | - Xinmeng Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanning Hu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanyan Fan
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zichen Lei
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
| | - Xinrui Yang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihua Li
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Li
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Liuyang Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Yongli Wu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Binghuai Lu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
73
|
Pan S, Liu S, Tai S, Yu J, Yuan E, Duan Y. Genomic Analysis of an Escherichia coli Sequence Type 167 Isolate Harboring a Multidrug-Resistant Conjugative Plasmid, Suggesting the Potential Transmission of the Type Strains from Animals to Humans. Infect Drug Resist 2023; 16:5077-5084. [PMID: 37576518 PMCID: PMC10422969 DOI: 10.2147/idr.s420635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose The E. coli ST167 clone is the globally dominant ST among extraintestinal pathogenic E. coli (ExPEC) and is frequently associated with carbapenem resistance. This study reports genomic characterization of a pandrug-resistant E. coli ST167 isolate (ECO3183) and the possibility of the type strains' transmission. Materials and Methods Antibiotic susceptibility testing was performed using disk diffusion and the VITEK 2 automated system. The E. coli ECO3183 genome was sequenced. We used the genome to analyze the phylogenetic relationship, phylogenetic group, sequence type (ST), acquired antibiotic resistance genes (ARGs), IS elements, genomics islands, the replicon type and transferability of the plasmids. The conjugative transfer of plasmids was assessed using filter mating experiments. Results ECO3183 contained a 4.87-Mb chromosome and two plasmids [pECO3183-1 (167.63 Kb) and pECO3183-2 (46.16 Kb)]. It belonged to phylogenetic group A, clonal complex 10 (CC10), and ST167. ECO3183 is a pandrug-resistant strain nonsusceptible to 24 tested antimicrobials representing 8 different antimicrobial classes. Among 55 E. coli isolates phylogenetically related to ECO3183, 47% (26/55) were from humans, while 35% (19/55) were from animals. Further analysis revealed that among 1140 ST167 isolates (in the EnteroBase database), 4% (47/1140) originated from environments, 17% (192/1140) were isolated from humans, and 78% (890/1140) were obtained from animals. The pECO3183-1 contained two identical repeats of a 9633 bp region (IS6100-sul1-ΔaadA16-dfrA27-arr-3-aac(6')-Ib-cr-IS26) and a 17.88-kb resistance island (sul2-aph(3″)-Ib-aph(6)-Id-IS26-Δaph(3')-Ia-IS26-tet(A)-ΔfloR-ΔISVsa3-IS26-Δaac(3)-IId-IS26-mph(A)), and these three regions contained most of ECO3183 carrying ARGs. It was identified as a conjugative plasmid, which confers MDR resistance and has the potential to spread. Conclusion ECO3183 exhibited pandrug-resistance phenotype that was mediated by pECO3183-1 carrying MDR ARGs and pECO3183-2 carrying blaNDM-5. Source analysis of strains indicated that ST167 E. coli might be transmitted between species from animals to humans, which needs continued monitoring.
Collapse
Affiliation(s)
- Sijia Pan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shuangqing Liu
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Shuhong Tai
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jing Yu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yitao Duan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
74
|
He X, Xu L, Dai H, Ge M, Zhu J, Fu H, Zhu S, Shao J. Genomic Characteristics of a Multidrug-Resistant ST648 Escherichia coli Isolate Co-Carrying blaKPC-2 and blaCTX-M-15 Genes Recovered from a Respiratory Infection in China. Infect Drug Resist 2023; 16:3535-3540. [PMID: 37293536 PMCID: PMC10246572 DOI: 10.2147/idr.s415846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Background The transmission of carbapenem-resistant Enterobacterales pose a significant threat to global public health, which weakens the effectiveness of most antimicrobial agents. The aim of this study is to present the genomic characteristics of a multidrug-resistant Escherichia coli, which contains both blaKPC-2 and blaCTX-M-15 genes, discovered from a respiratory infection in China. Methods The antimicrobial susceptibility of E. coli isolate 488 was measured by using the broth microdilution method. The Oxford Nanopore MinION and Illumina NovaSeq 6000 platforms were applied to determine the whole-genome sequence of this isolate. De novo assembly of short Illumina reads and long MinION reads were performed by Unicycler. In silico multilocus sequence typing (MLST), antimicrobial resistance genes and plasmid replicon types were determined using the genome sequencing data. Additionally, a pairwise core genome single nucleotide polymorphism (cgSNP) comparison between E. coli 488 and all ST648 E. coli strains retrieved from NCBI GenBank database were conducted using the BacWGSTdb 2.0 server. Results E. coli 488 was resistant to aztreonam, levofloxacin, cefepime, fosfomycin, amikacin, imipenem, cefotaxime, and meropenem. The complete genome sequence of E. coli 488 (belong to ST648) is made up of eleven contigs totaling 5,573,915 bp, including one chromosome and ten plasmids. Eight antimicrobial resistance genes were identified, including blaKPC-2 located in a 46,161 bp IncI1-type plasmid and the blaCTX-M-15 gene situated in the chromosome. Other two E. coli S617-2 and R616-1 isolates, recovered from China in 2018, are the closest relatives of E. coli 488, with only 52 SNPs difference. The genome also contains at least 57 genomic islands and several IS elements. Conclusion Our study reveals the first ST648 E. coli isolate containing both blaKPC-2 and blaCTX-M-15 in China. These results could provide valuable insights into the genetic characteristics, antimicrobial resistance mechanisms, and transmission dynamics of carbapenem-resistant Enterobacterales in clinical settings.
Collapse
Affiliation(s)
- Xianhong He
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Liwei Xu
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Hangdong Dai
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Minxia Ge
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Jufang Zhu
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Hangyu Fu
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Shuilong Zhu
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Jiayu Shao
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| |
Collapse
|
75
|
Štrancar V, Marušić M, Tušar J, Praček N, Kolenc M, Šuster K, Horvat S, Janež N, Peterka M. Isolation and in vitro characterization of novel S. epidermidis phages for therapeutic applications. Front Cell Infect Microbiol 2023; 13:1169135. [PMID: 37293203 PMCID: PMC10244729 DOI: 10.3389/fcimb.2023.1169135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
S. epidermidis is an important opportunistic pathogen causing chronic prosthetic joint infections associated with biofilm growth. Increased tolerance to antibiotic therapy often requires prolonged treatment or revision surgery. Phage therapy is currently used as compassionate use therapy and continues to be evaluated for its viability as adjunctive therapy to antibiotic treatment or as an alternative treatment for infections caused by S. epidermidis to prevent relapses. In the present study, we report the isolation and in vitro characterization of three novel lytic S. epidermidis phages. Their genome content analysis indicated the absence of antibiotic resistance genes and virulence factors. Detailed investigation of the phage preparation indicated the absence of any prophage-related contamination and demonstrated the importance of selecting appropriate hosts for phage development from the outset. The isolated phages infect a high proportion of clinically relevant S. epidermidis strains and several other coagulase-negative species growing both in planktonic culture and as a biofilm. Clinical strains differing in their biofilm phenotype and antibiotic resistance profile were selected to further identify possible mechanisms behind increased tolerance to isolated phages.
Collapse
Affiliation(s)
- Vida Štrancar
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Monika Marušić
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Jasmina Tušar
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Neža Praček
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Šuster
- Valdoltra Orthopaedic Hospital, Ankaran, Slovenia
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Nika Janež
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Matjaž Peterka
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| |
Collapse
|
76
|
Cai Z, Li P, Zhu W, Wei J, Lu J, Song X, Li K, Li S, Li M. Metagenomic analysis reveals gut plasmids as diagnosis markers for colorectal cancer. Front Microbiol 2023; 14:1130446. [PMID: 37283932 PMCID: PMC10239823 DOI: 10.3389/fmicb.2023.1130446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is linked to distinct gut microbiome patterns. The efficacy of gut bacteria as diagnostic biomarkers for CRC has been confirmed. Despite the potential to influence microbiome physiology and evolution, the set of plasmids in the gut microbiome remains understudied. Methods We investigated the essential features of gut plasmid using metagenomic data of 1,242 samples from eight distinct geographic cohorts. We identified 198 plasmid-related sequences that differed in abundance between CRC patients and controls and screened 21 markers for the CRC diagnosis model. We utilize these plasmid markers combined with bacteria to construct a random forest classifier model to diagnose CRC. Results The plasmid markers were able to distinguish between the CRC patients and controls [mean area under the receiver operating characteristic curve (AUC = 0.70)] and maintained accuracy in two independent cohorts. In comparison to the bacteria-only model, the performance of the composite panel created by combining plasmid and bacteria features was significantly improved in all training cohorts (mean AUCcomposite = 0.804 and mean AUCbacteria = 0.787) and maintained high accuracy in all independent cohorts (mean AUCcomposite = 0.839 and mean AUCbacteria = 0.821). In comparison to controls, we found that the bacteria-plasmid correlation strength was weaker in CRC patients. Additionally, the KEGG orthology (KO) genes in plasmids that are independent of bacteria or plasmids significantly correlated with CRC. Conclusion We identified plasmid features associated with CRC and showed how plasmid and bacterial markers could be combined to further enhance CRC diagnosis accuracy.
Collapse
Affiliation(s)
- Zhiyuan Cai
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wen Zhu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jingyue Wei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jieyu Lu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaoyi Song
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Kunwei Li
- Radiology Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Sikai Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Man Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
77
|
Han K, Li Y, Zhang Z, Sun L, Wang ET, Li Y. Comparative genome analysis of Sesbania cannabina-nodulating Rhizobium spp. revealing the symbiotic and transferrable characteristics of symbiosis plasmids. Microb Genom 2023; 9. [PMID: 37133904 DOI: 10.1099/mgen.0.001004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Symbiotic nitrogen fixation between legumes and rhizobia makes a great contribution to the terrestrial ecosystem. The successful symbiosis between the partners mainly depends on the nod and nif genes in rhizobia, while the specific symbiosis is mainly determined by the structure of Nod factors and the corresponding secretion systems (type III secretion system; T3SS), etc. These symbiosis genes are usually located on symbiotic plasmids or a chromosomal symbiotic island, both could be transferred interspecies. In our previous studies, Sesbania cannabina-nodulating rhizobia across the world were classified into 16 species of four genera and all the strains, especially those of Rhizobium spp., harboured extraordinarily highly conserved symbiosis genes, suggesting that horizontal transfer of symbiosis genes might have happened among them. In order to learn the genomic basis of diversification of rhizobia under the selection of host specificity, we performed this study to compare the complete genome sequences of four Rhizobium strains associated with S. cannabina, YTUBH007, YTUZZ027, YTUHZ044 and YTUHZ045. Their complete genomes were sequenced and assembled at the replicon level. Each strain represents a different species according to the average nucleotide identity (ANI) values calculated using the whole-genome sequences; furthermore, except for YTUBH007, which was classified as Rhizobium binae, the remaining three strains were identified as new candidate species. A single symbiotic plasmid sized 345-402 kb containing complete nod, nif, fix, T3SS and conjugal transfer genes was detected in each strain. The high ANI and amino acid identity (AAI) values, as well as the close phylogenetic relationships among the entire symbiotic plasmid sequences, indicate that they have the same origin and the entire plasmid has been transferred among different Rhizobium species. These results indicate that S. cannabina stringently selects a certain symbiosis gene background of the rhizobia for nodulation, which might have forced the symbiosis genes to transfer from some introduced rhizobia to the related native or local-condition-adapted bacteria. The existence of almost complete conjugal transfer related elements, but not the gene virD, indicated that the self-transfer of the symbiotic plasmid in these rhizobial strains may be realized via a virD-independent pathway or through another unidentified gene. This study provides insight for the better understanding of high-frequency symbiotic plasmid transfer, host-specific nodulation and the host shift for rhizobia.
Collapse
Affiliation(s)
- Kunming Han
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Zhenpeng Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, PR China
| | - Liqin Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| |
Collapse
|
78
|
Guarneri F, Bertasio C, Romeo C, Formenti N, Scali F, Parisio G, Canziani S, Boifava C, Guadagno F, Boniotti MB, Alborali GL. First Detection of mcr-9 in a Multidrug-Resistant Escherichia coli of Animal Origin in Italy Is Not Related to Colistin Usage on a Pig Farm. Antibiotics (Basel) 2023; 12:antibiotics12040689. [PMID: 37107051 PMCID: PMC10134971 DOI: 10.3390/antibiotics12040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The emergence of colistin resistance raises growing concerns because of its use as a last-resort antimicrobial for the treatment of severe gram-negative bacterial infections in humans. Plasmid-borne mobile colistin resistance genes (mcr) are particularly worrisome due to their high propensity to spread. An mcr-9-positive Escherichia coli was isolated from a piglet in Italy, representing the first isolation of this gene from an E. coli of animal origin in the country. Whole genome sequencing (WGS) revealed that mcr-9 was borne by an IncHI2 plasmid carrying several other resistance genes. The strain was indeed phenotypically resistant to six different antimicrobial classes, including 3rd and 4th generation cephalosporins. Despite the presence of mcr-9, the isolate was susceptible to colistin, probably because of a genetic background unfavourable to mcr-9 expression. The lack of colistin resistance, coupled with the fact that the farm of origin had not used colistin in years, suggests that mcr-9 in such a multidrug-resistant strain can be maintained thanks to the co-selection of neighbouring resistance genes, following usage of different antimicrobials. Our findings highlight how a comprehensive approach, integrating phenotypical testing, targeted PCR, WGS-based techniques, and information on antimicrobial usage is crucial to shed light on antimicrobial resistance.
Collapse
Affiliation(s)
- Flavia Guarneri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| | - Cristina Bertasio
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| | - Nicoletta Formenti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| | - Federico Scali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| | - Giovanni Parisio
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| | - Chiara Boifava
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| | - Federica Guadagno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| | - Giovanni Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, v. Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
79
|
Ma W, Zhu B, Wang W, Wang Q, Cui X, Wang Y, Dong X, Li X, Ma J, Cheng F, Shi X, Chen L, Niu S, Hao M. Genetic and enzymatic characterization of two novel bla NDM-36, -37 variants in Escherichia coli strains. Eur J Clin Microbiol Infect Dis 2023; 42:471-480. [PMID: 36810726 PMCID: PMC9998317 DOI: 10.1007/s10096-023-04576-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
The widespread of different NDM variants in clinical Enterobacterales isolates poses a serious public health concern, which requires continuous monitoring. In this study, three E. coli strains carrying two novel blaNDM variants of blaNDM-36, -37 were identified from a patient with refractory urinary tract infection (UTI) in China. We conducted antimicrobial susceptibility testing (AST), enzyme kinetics analysis, conjugation experiment, whole-genome sequencing (WGS), and bioinformatics analysis to characterize the blaNDM-36, -37 enzymes and their carrying strains. The blaNDM-36, -37 harboring E. coli isolates belonged to ST227, O9:H10 serotype and exhibited intermediate or resistance to all β-lactams tested except aztreonam and aztreonam/avibactam. The genes of blaNDM-36, -37 were located on a conjugative IncHI2-type plasmid. NDM-37 differed from NDM-5 by a single amino acid substitution (His261Tyr). NDM-36 differed from NDM-37 by an additional missense mutation (Ala233Val). NDM-36 had increased hydrolytic activity toward ampicillin and cefotaxime relative to NDM-37 and NDM-5, while NDM-37 and NDM-36 had lower catalytic activity toward imipenem but higher activity against meropenem in comparison to NDM-5. This is the first report of co-occurrence of two novel blaNDM variants in E. coli isolated from the same patient. The work provides insights into the enzymatic function and demonstrates the ongoing evolution of NDM enzymes.
Collapse
Affiliation(s)
- Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, No. 16766 Jingshi Road, Lixia District, Jinan, China
| | - Bo Zhu
- Xiamen Key Laboratory of Genetic Testing, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Friendship Road, Yuzhong District, Chongqing, China
| | - Qian Wang
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaodi Cui
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Yujiao Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, No. 16766 Jingshi Road, Lixia District, Jinan, China
| | - Xiutao Dong
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, No. 16766 Jingshi Road, Lixia District, Jinan, China
| | - Xiaofeng Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, No. 16766 Jingshi Road, Lixia District, Jinan, China
| | - Jianping Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, No. 16766 Jingshi Road, Lixia District, Jinan, China
| | - Fang Cheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, No. 16766 Jingshi Road, Lixia District, Jinan, China
| | - Xiaohong Shi
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, No. 16766 Jingshi Road, Lixia District, Jinan, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Friendship Road, Yuzhong District, Chongqing, China.
| | - Mingju Hao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, No. 16766 Jingshi Road, Lixia District, Jinan, China.
| |
Collapse
|
80
|
Goh YX, Wang M, Hou XP, He Y, Ou HY. Analysis of CRISPR-Cas Loci and their Targets in Levilactobacillus brevis. Interdiscip Sci 2023:10.1007/s12539-023-00555-1. [PMID: 36849628 DOI: 10.1007/s12539-023-00555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The CRISPR‒Cas system acts as a bacterial defense mechanism by conferring adaptive immunity and limiting genetic reshuffling. However, under adverse environmental hazards, bacteria can employ their CRISPR‒Cas system to exchange genes that are vital for adaptation and survival. Levilactobacillus brevis is a lactic acid bacterium with great potential for commercial purposes because it can be genetically manipulated to enhance its functionality and nutritional value. Nevertheless, the CRISPR‒Cas system might interfere with the genetic modification process. Additionally, little is known about the CRISPR‒Cas system in this industrially important microorganism. Here, we investigate the prevalence, diversity, and targets of CRISPR‒Cas systems in the genus Levilactobacillus, further focusing on complete genomes of L. brevis. Using the CRISPRCasFinder webserver, we identified 801 putative CRISPR-Cas systems in the genus Levilactobacillus. Further investigation focusing on the complete genomes of L. brevis revealed 54 putative CRISPR-Cas systems. Of these, 46 were orphan CRISPRs, and eight were CRISPR‒Cas systems. The type II-A CRISPR‒Cas system is the most common in Levilactobacillus and L. brevis complete genomes. Analysis of the spacer's target showed that the CRISPR‒Cas systems of L. brevis mainly target the enterococcal plasmids. Comparative analysis of putative CRISPR-Cas loci in Levilactobacillus brevis.
Collapse
Affiliation(s)
- Ying-Xian Goh
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266100, China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Ping Hou
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266100, China
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266100, China.
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
81
|
Emergence and Evolution of OXA-23-Producing ST46 Pas-ST462 Oxf-KL28-OCL1 Carbapenem-Resistant Acinetobacter baumannii Mediated by a Novel IS Aba1-Based Tn 7534 Transposon. Antibiotics (Basel) 2023; 12:antibiotics12020396. [PMID: 36830307 PMCID: PMC9951949 DOI: 10.3390/antibiotics12020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) isolates of global clone 1 (GC1) and global clone 2 (GC2) have been widely reported. Nevertheless, non-GC1 and non-GC2 CRAB strains have been studied less. In particular, no reports concerning sequence type 46 (ST46Pas) CRAB strains have been described thus far. In this work, the genomic features and possible evolution mechanism of ST46Pas OXA-23-producing CRAB isolates from clinical specimens are reported for the first time. Antimicrobial susceptibility testing of three ST46Pas strains revealed identical resistance profiles (resistance to imipenem, meropenem, ciprofloxacin and the combination of cefoperazone/sulbactam at a 2:1 ratio). They were found to belong to ST46Pas and ST462Oxf with capsular polysaccharide 28 (KL28) and lipooligosaccharide 1 (OCL1), respectively. Whole-genome sequencing (WGS) revealed that all contained one copy of chromosomal blaOXA-23, which was located in a novel ISAba1-based Tn7534 composite transposon. In particular, another copy of the Tn7534 composite transposon was identified in an Hgz_103-type plasmid with 9 bp target site duplications (TSDs, ACAACATGC) in the A. baumannii ZHOU strain. As the strains originated from two neighboring intensive care units (ICUs), ST46Pas OXA-23-producing CRAB strains may have evolved via transposition events or a pdif module. Based on the GenBank database, ST46Pas strains were collected from various sources; however, most were collected in Hangzhou (China) from 2014 to 2021. Pan-genome analysis revealed 3276 core genes, 0 soft-core genes, 768 shell genes and 443 cloud genes shared among all ST46Pas strains. In conclusion, the emergence of ST46Pas CRAB strains might present a new threat to healthcare settings; therefore, effective surveillance is required to prevent further dissemination.
Collapse
|
82
|
Fàbregas N, Pérez D, Viñes J, Cuscó A, Migura-García L, Ferrer L, Francino O. Diverse Populations of Staphylococcus pseudintermedius Colonize the Skin of Healthy Dogs. Microbiol Spectr 2023; 11:e0339322. [PMID: 36786649 PMCID: PMC10100665 DOI: 10.1128/spectrum.03393-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Staphylococcus pseudintermedius is a commensal bacterium of the canine skin but is also a key opportunistic pathogen that is responsible for most cases of pyoderma in dogs. The current paradigm indicates that infection arises when predisposing factors alter the healthy skin barrier. Despite their importance, the characteristics of the S. pseudintermedius populations colonizing the skin of healthy dogs are yet largely unknown. Here, we retrieved 67 complete circular genomes and 19 associated plasmids from S. pseudintermedius isolated from the skin of 9 healthy dogs via long-reads Nanopore sequencing. Within the S. pseudintermedius populations isolated from healthy skin, multilocus sequence typing (MLST) detected 10 different STs, distributed mainly by the host. 39% of the 18 representative genomes isolated herein were methicillin-resistant S. pseudintermedius (MRSP), and they showed, on average, a higher number of antibiotic resistance genes and prophages than did the methicillin-sensitive (MSSP). In summary, our results revealed that the S. pseudintermedius populations inhabiting the skin of healthy dogs are relatively diverse and heterogeneous in terms of MLST and methicillin resistance. In this study, all of the 67 commensal S. pseudintermedius populations that were isolated from healthy dogs contained antibiotic resistance genes, indicating the extent and severity of the problem of antimicrobial resistance in staphylococci with zoonotic potential. IMPORTANCE Staphylococcus pseudintermedius is a commensal canine bacterium that can become an opportunistic pathogen and is responsible for most cases of canine pyoderma. It can also cause occasional zoonotic infections. Infections caused by antibiotic-resistant Staphylococcus are a global concern. Skin commensal Staphylococcus pseudintermedius is understudied. To provide insight into the commensal strains circulating in healthy dogs, we performed whole-genome sequencing of 67 S. pseudintermedius isolates from different skin sites in 9 healthy dogs. Through the bioinformatic analysis of these genomes, we identified a genomic diversity that is more complete than those afforded by traditional molecular typing strategies. We identified 7 new STs. All of the isolates harbored genes associated with antibiotic resistance, and 39% of the representative genomes were methicillin-resistant. Our data provide critical insights for future skin infection control and antibiotic surveillance within veterinary medicine.
Collapse
Affiliation(s)
- Norma Fàbregas
- Vetgenomics, Edifici EUREKA, PRUAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Daniel Pérez
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Joaquim Viñes
- Vetgenomics, Edifici EUREKA, PRUAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Anna Cuscó
- Vetgenomics, Edifici EUREKA, PRUAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Lourdes Migura-García
- Joint Research Unit IRTA-UAB in Animal Health, Animal Health Research Centre (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- IRTA, Animal Health Program, Animal Health Research Centre (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Lluís Ferrer
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Olga Francino
- SVGM, Molecular Genetics Veterinary Service, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| |
Collapse
|
83
|
Molecular Characteristics of an NDM-4 and OXA-181 Co-Producing K51-ST16 Carbapenem-Resistant Klebsiella pneumoniae: Study of Its Potential Dissemination Mediated by Conjugative Plasmids and Insertion Sequences. Antimicrob Agents Chemother 2023; 67:e0135422. [PMID: 36602346 PMCID: PMC9872697 DOI: 10.1128/aac.01354-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The carbapenem-resistant Klebsiella pneumoniae (CRKP) strain GX34 was recovered from the respiratory tract of an elderly male with severe pneumonia, and only susceptible to amikacin, tigecycline, and colistin. Complete genome suggested that it belonged to K51-ST16 and harbored plasmid-encoded NDM-4 and OXA-181, located on IncFIB plasmid GX34p1_NDM-4 and ColKP3/IncX3 plasmid GX34p4_OXA-181, respectively. A series of transconjugants generated in the plasmid conjugation assays, including Escherichia coli J53-N1 (harboring a self-transmissible and blaNDM-1-producing plasmid Eco-N-1-p), J53-N2 (harboring a blaNDM-4-producing plasmid and a helper plasmid GX34p5), and J53-O (harboring a blaOXA-181-producing plasmid), could be stably inherited after 10 days of serial passage and no significant biological fitness costs were detected. Furthermore, we first reported the blaNDM-1 gene, derived from blaNDM-4 mutation (460C>A) under meropenem pressure, could be in vitro transferred into a self-conjugative, recombined plasmid Eco-N-1-p of J53-N1. Eco-N-1-p was mainly recombined by GX34p4_OXA-181 (40,449 bp, 75.16%) and GX34p1_NDM-4 (8,553 bp, 15.89%), in which IS26 and IS5-like probably played a major role. Eco-N-1-p could be transferred into the conjugation recipient K. pneumoniae KP54 and make the latter sacrifice fitness. The retention rates of blaNDM-1 remained high stability (>80% after 200 generations). The comparative genomic analysis of GX34 and those carrying blaNDM-4 or blaOXA-181 genes retrieved from the NCBI RefSeq database showed all blaNDM-4 (26/26, 100.00%) and blaOXA-181 (13/13, 100.00%) were surrounded by IS26. The immediate environment of blaNDM-4 and blaOXA-181 in GX34 and some retrieved strains shared identical features, hinting at their possible dissemination. Effective measures should be taken to monitor the spread of this clone.
Collapse
|
84
|
Exploiting a conjugative endogenous CRISPR-Cas3 system to tackle multidrug-resistant Klebsiella pneumoniae. EBioMedicine 2023; 88:104445. [PMID: 36696817 PMCID: PMC9879765 DOI: 10.1016/j.ebiom.2023.104445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/25/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Mobile plasmids play a key role in spurring the global dissemination of multidrug-resistant (MDR) K. pneumoniae, while plasmid curing has been recognized as a promising strategy to combat antimicrobial resistance. Here we exploited a K. pneumoniae native CRISPR system to cure the high-risk IncFII plasmids. METHODS We examined matched protospacers in 725 completely sequenced IncFII plasmids from K. pneumoniae genomes. Then, we re-engineered a native CRISPR-Cas3 system and deliver the CRISPR-Cas3 system via conjugation. Plasmid killing efficiency and G. mellonella infection model were applied to evaluate the CRISPR-Cas3 immunity in vitro and in vivo. FINDINGS Genomic analysis revealed that most IncFII plasmids could be targeted by the native CRISPR-Cas3 system with multiple matched protospacers, and the targeting regions were highly conserved across different IncFII plasmids. This conjugative endogenous CRISPR-Cas3 system demonstrated high plasmid curing efficiency in vitro (8-log decrease) and in vivo (∼100% curing) in a Galleria mellonella infection model, as well as provided immunization against the invasion of IncFII plasmids once the system entering a susceptible bacterial host. INTERPRETATION Overall, our work demonstrated the applicability of using native CRISPR-mediated plasmid curing to re-sensitize drug-resistant K. pneumoniae to multiple antibiotics. This work provided strong support for the idea of utilizing native CRISPR-Cas systems to tackle AMR in K. pneumoniae. FUNDING This work was supported by research grants National Natural Science Foundation of China [grant numbers 81871692, 82172315, 82102439, and 82202564], the Shanghai Science and Technology Commission [grant number 19JC1413002], and Shanghai Sailing Program [grant number 22YF1437500].
Collapse
|
85
|
Hu X, Zhang H, Liu Y, Liu X, Qiao J, Ge H, Zhao J, Ma X, Chen M, Liu R. Genetic characterization and virulence determinants of multidrug-resistant NDM-1-producing Aeromonas caviae. Front Microbiol 2023; 13:1055654. [PMID: 36726560 PMCID: PMC9885098 DOI: 10.3389/fmicb.2022.1055654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The emergence of carbapenemase significantly threatens public health. It is prevalent worldwide but rare in Aeromonas caviae. Unlike most bacterial species, A. caviae has two distinct flagella systems, which are closely related to biofilm formation. The ability to form biofilms on host tissues or inert surfaces constitutes an important cause of many persistent infections, which causes difficulties in clinical treatment. Here, we report on a multidrug-resistant (MDR) A. caviae carrying bla NDM-1 with a novel sequence type 1,416. The strong ability of biofilm formation of FAHZZU2447 was verified by a crystal violet assay. The resistome profile and location of the bla NDM-1 gene were determined by antimicrobial susceptibility testing, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), and Southern blot analysis. Moreover, the strain underwent whole-genome sequencing to identify its genomic characteristics. In addition, the bla NDM-1 gene was located on a ∼243 kb plasmid with genetic context IS1R-bla NDM-1-ble-trpF-dsbD-hp-sul1-qacE. Phylogenetic analysis indicated the transmission of A. caviae in China, Japan, and Thailand. Our study aimed to elucidate the genomic features of bla NDM-1-producing A. caviae, thereby clarifying the distribution of A. caviae worldwide and emphasizing the harmfulness of biofilm formation to the clinic. Further comprehensive surveillance of this species is needed to control further dissemination.
Collapse
Affiliation(s)
- Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Huanran Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojing Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jie Qiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Ge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junhui Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohan Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Mantao Chen
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruishan Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
86
|
Fono-Tamo EUK, Kamika I, Dewar JB, Lekota KE. Comparative Genomics Revealed a Potential Threat of Aeromonas rivipollensis G87 Strain and Its Antibiotic Resistance. Antibiotics (Basel) 2023; 12:131. [PMID: 36671332 PMCID: PMC9855013 DOI: 10.3390/antibiotics12010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Aeromonas rivipollensis is an emerging pathogen linked to a broad range of infections in humans. Due to the inability to accurately differentiate Aeromonas species using conventional techniques, in-depth comparative genomics analysis is imperative to identify them. This study characterized 4 A. rivipollensis strains that were isolated from river water in Johannesburg, South Africa, by whole-genome sequencing (WGS). WGS was carried out, and taxonomic classification was employed to profile virulence and antibiotic resistance (AR). The AR profiles of the A. rivipollensis genomes consisted of betalactams and cephalosporin-resistance genes, while the tetracycline-resistance gene (tetE) was only determined to be in the G87 strain. A mobile genetic element (MGE), transposons TnC, was determined to be in this strain that mediates tetracycline resistance MFS efflux tetE. A pangenomic investigation revealed the G87 strain's unique characteristic, which included immunoglobulin A-binding proteins, extracellular polysialic acid, and exogenous sialic acid as virulence factors. The identified polysialic acid and sialic acid genes can be associated with antiphagocytic and antibactericidal properties, respectively. MGEs such as transposases introduce virulence and AR genes in the A. rivipollensis G87 genome. This study showed that A. rivipollensis is generally resistant to a class of beta-lactams and cephalosporins. MGEs pose a challenge in some of the Aeromonas species strains and are subjected to antibiotics resistance and the acquisition of virulence genes in the ecosystem.
Collapse
Affiliation(s)
- Esther Ubani K. Fono-Tamo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability (iNanoWS), School of Science, College of Science, Engineering and Technology (CSET), University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - John Barr Dewar
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - Kgaugelo Edward Lekota
- Unit for Environmental Sciences and Management: Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
87
|
Hiding in Plain Sight: Characterization of Aeromonas Species Isolated from a Recreational Estuary Reveals the Carriage and Putative Dissemination of Resistance Genes. Antibiotics (Basel) 2023; 12:antibiotics12010084. [PMID: 36671285 PMCID: PMC9854640 DOI: 10.3390/antibiotics12010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance (AMR) has become one of the greatest challenges worldwide, hampering the treatment of a plethora of infections. Indeed, the AMR crisis poses a threat to the achievement of the United Nations' Sustainable Development Goals and, due to its multisectoral character, a holistic approach is needed to tackle this issue. Thus, the investigation of environments beyond the clinic is of utmost importance. Here, we investigated thirteen strains of antimicrobial-resistant Aeromonas isolated from an urban estuary in Brazil. Most strains carried at least one antimicrobial resistance gene and 11 carried at least one heavy metal resistance gene. Noteworthy, four (30.7%) strains carried the blaKPC gene, coding for a carbapenemase. In particular, the whole-genome sequence of Aeromonas hydrophila strain 34SFC-3 was determined, revealing not only the presence of antimicrobial and heavy metal resistance genes but also a versatile virulome repertoire. Mobile genetic elements, including insertion sequences, transposons, integrative conjugative elements, and an IncQ1 plasmid were also detected. Considering the ubiquity of Aeromonas species, their genetic promiscuity, pathogenicity, and intrinsic features to endure environmental stress, our findings reinforce the concept that A. hydrophila truly is a "Jack of all trades'' that should not be overlooked under the One Health perspective.
Collapse
|
88
|
da Silva Rodrigues R, Machado SG, de Carvalho AF, Nero LA. Comparative genomic and functional annotation of Pseudomonas spp. genomes responsible for blue discoloration of Brazilian fresh soft cheese. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
89
|
Yu M, Wei Q, Song W, Yuan J. Phenotypic and Genetic Analysis of KPC-49, a KPC-2 Variant Conferring Resistance to Ceftazidime-Avibactam and Maintaining Resistance to Imipenem and Meropenem. Infect Drug Resist 2023; 16:2477-2485. [PMID: 37138840 PMCID: PMC10150759 DOI: 10.2147/idr.s406319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose Klebsiella pneumoniae, a gram-negative bacterium, poses a severe hazard to public health, with many bacterial hosts having developed resistance to most antibiotics in clinical use. The goal of this study was to look into the development of resistance to both ceftazidime-avibactam and carbapenems, including imipenem and meropenem, in a K. pneumonia strain expressing a novel K. pneumoniae carbapenemase-2 (KPC-2) variant, referred to as KPC-49. Methods After 1 day of incubation of K1 on agar containing ceftazidime-avibactam (MIC = 16/4 mg/L), a second KPC-producing K. pneumoniae strain (K2) was recovered. Antimicrobial susceptibility assays, cloning assays, and whole genome sequencing were performed to analyse and evaluate antibiotic resistance phenotypes and genotypes. Results K. pneumoniae strain (K1), that produced KPC-2, was susceptible to ceftazidime-avibactam but resistant to carbapenems. The K2 isolate harboured a novel bla KPC-49 variant, which differs from bla KPC-2 by a single nucleotide (C487A), and results in an arginine-serine substitution at amino acid position 163 (R163S). The mutant K2 strain was resistant to both ceftazidime-avibactam and carbapenems. We demonstrated the ability of KPC-49 to hydrolyse carbapenems, which may be attributed to high KPC-49 expression or presence of an efflux pump and/or absence of membrane pore proteins in K2. Furthermore, blaKPC-like was carried on an IncFII (pHN7A8)/IncR-type plasmid within a TnAs1-orf-orf-orf-orf-orf-orf-ISKpn6-bla KPC-ISKpn27 structure. The bla KPC-like gene was flanked by various insertion sequences and transposon elements, including the Tn3 family transposon, such as TnAs1, TnAs3, IS26, and IS481-ISKpn27. Conclusion New KPC variants are emerging owing to sustained exposure to antimicrobials and modifications in their amino acid sequences. We demonstrated the drug resistance mechanisms of the new mutant strains through experimental whole genome sequencing combined with bioinformatics analysis. Enhanced understanding of laboratory and clinical features of infections due to K. pneumoniae of the new KPC subtype is key to early and accurate anti-infective therapy.
Collapse
Affiliation(s)
- Meng Yu
- Clinical Laboratory, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, People’s Republic of China
| | - Qingzheng Wei
- Clinical Laboratory, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, People’s Republic of China
| | - Weiqing Song
- Clinical Laboratory, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, People’s Republic of China
| | - Jiangshui Yuan
- Clinical Laboratory, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, People’s Republic of China
- Correspondence: Jiangshui Yuan; Weiqing Song, Clinical Laboratory, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, People’s Republic of China, Tel +86-0532-6602-7876, Email ;
| |
Collapse
|
90
|
Identification of KPC-112 from an ST15 Klebsiella pneumoniae Strain Conferring Resistance to Ceftazidime-Avibactam. mSphere 2022; 7:e0048722. [PMID: 36374086 PMCID: PMC9769832 DOI: 10.1128/msphere.00487-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ceftazidime-avibactam is an effective antibiotic combination of a β-lactam and a β-lactamase inhibitor against Klebsiella pneumoniae-carbapenemase (KPC)-producing Enterobacterales. Despite a relatively low resistance rate, reports of resistance to ceftazidime-avibactam mainly caused by the mutations in KPC have increased in recent years. Here, we report a ceftazidime-avibactam-resistant and carbapenem-susceptible Klebsiella pneumoniae strain carrying a novel KPC variant, KPC-112, which differs from KPC-2 by 4-amino-acid deletions at Ambler positions 166L/167E and 242G/243T. The isolate was identified as K. pneumoniae by a Vitek mass spectrometer (bioMérieux, France). The MICs of antimicrobial agents were determined using broth microdilution susceptibility method. The result showed that the isolate was resistant to ceftazidime-avibactam (MIC = >128 mg/L) but susceptible to imipenem (MIC = 0.5 mg/L), meropenem (MIC = 1 mg/L), and tigecycline (MIC = 2 mg/L). The carbapenemase genes were confirmed by PCR-based sequencing. Plasmid transformation assay showed that the blaKPC-112-positive transformant increased MICs of ceftazidime-avibactam, ceftazidime, and cefepime by at least 256-fold, 128-fold, and 128-fold, respectively, compared with the recipient Escherichia coli DH5α. According to the whole-genome sequencing analysis, many common resistance genes were identified, including blaKPC-112, blaOXA-1, blaCTX-M-15, blaTEM-1B, blaSHV-28, aac(6')Ib-cr, aac(3)-IId, qnrS1, catA2, catB4, and fosA6, and mutations of GyrA (GyrA-83F and GyrA-87A) and ParC (ParC-80I) were also found. Overall, our study highlights the importance of monitoring susceptibility during ceftazidime-avibactam treatment and accurate detection of KPC variants. IMPORTANCE Carbapenem-resistant Enterobacterales (CRE) are one of the most serious antimicrobial resistance problems in the world, listed as an "urgent" threat by the U.S. Centers for Disease Control and Prevention. Among CRE, K. pneumoniae-carbapenemase-producing Klebsiella pneumoniae (KPC-KP) has become a significant health threat due to its rapid transmissibility and high mortality. With the wider clinical use of ceftazidime-avibactam, reports of resistance have increased in recent years even though the overall resistance rate remains relatively low. Among the reported resistance mechanisms are mainly mutations derived from the blaKPC-2 or blaKPC-3 gene. Here, we describe the characterization of a ceftazidime-avibactam-resistant blaKPC-112-positive K. pneumoniae clinical isolate for the first time. A number of Enterobacteriaceae isolates producing these kinds of KPC variants might be missed by conventional antimicrobial susceptibility testing (AST) methods and lead to irrational drug use. So, this study of KPC-112 will help to establish the diversity of KPCs and remind researchers of the challenge of drug resistance and detection brought by the KPC variants.
Collapse
|
91
|
Tang B, Wang C, Sun D, Lin H, Ma J, Guo H, Yang H, Li X. In Silico Characterization of blaNDM-Harboring Conjugative Plasmids in Acinetobacter Species. Microbiol Spectr 2022; 10:e0210222. [PMID: 36301090 PMCID: PMC9769834 DOI: 10.1128/spectrum.02102-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM)-producing clinical strains in Acinetobacter spp. have been recently reported in many countries and have received considerable attention. The vast majority of blaNDM cases occur on conjugative plasmids, which play a vital role in disseminating blaNDM. To characterize the conjugative plasmids bearing blaNDM genes in Acinetobacter spp., we analyzed the variants of blaNDM, conjugative transfer regions, genetic contexts of blaNDM, and the phylogenetic pattern of the 62 predicted blaNDM-positive plasmids, which were selected from 1,191 plasmids of Acinetobacter species from GenBank. We identified 30 conjugative plasmids from the 62 blaNDM-harboring plasmids in Acinetobacter species, with the oriT sites similar to plasmid pNDM-YR7 in our study, genes coding for relaxases of the MOBQ family, genes encoding type IV coupling proteins (T4CPs) of the TrwB/TraD subfamily, and VirB-like type IV secretion system (T4SS) gene clusters. The genome sizes of all 30 pNDM-YR7-like plasmids ranged from 39.36 kb to 49.65 kb, with a median size of 44.56 kb. The most common species of Acinetobacter containing the blaNDM-positive conjugative plasmids was A. baumannii, followed by Acinetobacter lwoffii and Acinetobacter indicus. Notably, pNDM-YR7 is the first report on a blaNDM-positive conjugative plasmid in Acinetobacter junii. Moreover, all 30 blaNDM-positive conjugative plasmids in Acinetobacter species were found to contain genetic contexts with the structure ISAba14-aph(3')-VI-ISAba125-blaNDM-ble. Our findings provide important insights into the phylogeny and evolution of blaNDM-positive plasmids of Acinetobacter species and further address their role in acquiring and spreading blaNDM genes in Acinetobacter species. IMPORTANCE Conjugative plasmids harboring the blaNDM gene play a vital role in disseminating carbapenem resistance. In this study, we first report a conjugative plasmid, pNDM-YR7, in Acinetobacter junii. Based on the genomic characteristics of the blaNDM-positive pNDM-YR7, we performed in silico typing and comparative analysis of blaNDM-positive plasmids using the 1,191 plasmids of Acinetobacter species available in the NCBI RefSeq database. We analyzed the characteristics of blaNDM-positive plasmids, including the variants of blaNDM, genetic features associated with blaNDM, conjugative transfer regions, and the phylogenetic pattern of the blaNDM-positive plasmids. All 30 blaNDM-positive conjugative plasmids were found to contain an ISAba14-aph(3')-VI-ISAba125-blaNDM-ble region. This study provides novel insights into the phylogeny and evolution of blaNDM-harboring conjugative plasmids and contributes to the repertoire of knowledge surrounding blaNDM-positive plasmids in the genus Acinetobacter.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chenyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Hengzhao Guo
- Department of Radiation Oncology, Zhuhai People’s Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| |
Collapse
|
92
|
Li W, Guo H, Gao Y, Yang X, Li R, Li S, Sun C, Du W, Chen S, Xu P, Huang W, Shi J, Yi X, Li X. Comparative genomic analysis of plasmids harboring bla OXA-48-like genes in Klebsiella pneumoniae. Front Cell Infect Microbiol 2022; 12:1082813. [PMID: 36605127 PMCID: PMC9807924 DOI: 10.3389/fcimb.2022.1082813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence and spread of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a serious medical problem worldwide. Acquired OXA-48-like carbapenemases encoded by plasmids are important causes of carbapenem resistance in K. pneumoniae. To explore the links between plasmids and bla OXA-48-like genes in K. pneumoniae, we systematically analyzed the variants of bla OXA-48-like plasmid replicon types, phylogenetic patterns, geographic distribution, conjugative transfer regions, and the genetic environments surrounding bla OXA-48-like of 191 bla OXA-48-like-harboring plasmids, which were identified from 4451 plasmids of K. pneumoniae downloaded from GenBank. Our results showed that seven different variants of bla OXA-48-like genes were identified from the 191 bla OXA-48-like-harboring plasmids in K. pneumoniae, with bla OXA-48, bla OXA-232, and bla OXA-181 being highly prevalent. In K. pneumoniae, bla OXA-48 was mainly carried by the composite transposon Tn1999.2 located on IncL/M-type conjugative plasmids, which were mainly geographically distributed in Switzerland, Germany, and China. In K. pneumoniae, the blaOXA-232 gene was mainly carried by 6.1-kb ColKP3-type mobilizable plasmids, which were mainly isolated in India. In K. pneumoniae, bla OXA-181 was mainly carried by a group of 50-kb ColKP3-IncX3 hybrid conjugative plasmids and a group of small ColKP3-type mobilizable plasmids with lengths of 5.9-9.3 kb, the former was sporadically discovered in China, South Korea, India, and Czech Republic, while the latter was almost all isolated in India. In addition, five bla OXA-245-harboring 65.9-kb IncL plasmids of K. pneumoniae isolated in Spain were found to have the genetic context of bla OXA-245 more complicated than that of bla OXA-48-harboring IncL/M-type plasmids, with two copies of IS1R inserted both upstream and downstream of bla OXA-245-lysR. These findings enhance our understanding of the genetic diversity of bla OXA-48-like-harboring plasmids in K. pneumoniae.
Collapse
Affiliation(s)
- Wang Li
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Hengzhao Guo
- Department of Radiation Oncology, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Yi Gao
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Xiaofan Yang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Ruirui Li
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shuangyu Li
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Chunlong Sun
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Wen Du
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Shaopeng Chen
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Pengpeng Xu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Wenwen Huang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Jia Shi
- Department of Stomatology, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaobin Li, ; Xinfeng Yi, ; Jia Shi,
| | - Xinfeng Yi
- Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaobin Li, ; Xinfeng Yi, ; Jia Shi,
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaobin Li, ; Xinfeng Yi, ; Jia Shi,
| |
Collapse
|
93
|
Martinez-Vaz BM, Dodge AG, Lucero RM, Stockbridge RB, Robinson AA, Tassoulas LJ, Wackett LP. Wastewater bacteria remediating the pharmaceutical metformin: Genomes, plasmids and products. Front Bioeng Biotechnol 2022; 10:1086261. [PMID: 36588930 PMCID: PMC9800807 DOI: 10.3389/fbioe.2022.1086261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Metformin is used globally to treat type II diabetes, has demonstrated anti-ageing and COVID mitigation effects and is a major anthropogenic pollutant to be bioremediated by wastewater treatment plants (WWTPs). Metformin is not adsorbed well by activated carbon and toxic N-chloro derivatives can form in chlorinated water. Most earlier studies on metformin biodegradation have used wastewater consortia and details of the genomes, relevant genes, metabolic products, and potential for horizontal gene transfer are lacking. Here, two metformin-biodegrading bacteria from a WWTP were isolated and their biodegradation characterized. Aminobacter sp. MET metabolized metformin stoichiometrically to guanylurea, an intermediate known to accumulate in some environments including WWTPs. Pseudomonas mendocina MET completely metabolized metformin and utilized all the nitrogen atoms for growth. Pseudomonas mendocina MET also metabolized metformin breakdown products sometimes observed in WWTPs: 1-N-methylbiguanide, biguanide, guanylurea, and guanidine. The genome of each bacterium was obtained. Genes involved in the transport of guanylurea in Aminobacter sp. MET were expressed heterologously and shown to serve as an antiporter to expel the toxic guanidinium compound. A novel guanylurea hydrolase enzyme was identified in Pseudomonas mendocina MET, purified, and characterized. The Aminobacter and Pseudomonas each contained one plasmid of 160 kb and 90 kb, respectively. In total, these studies are significant for the bioremediation of a major pollutant in WWTPs today.
Collapse
Affiliation(s)
- Betsy M. Martinez-Vaz
- Department of Biology and Biochemistry Program, Hamline University, St. Paul, MN, United States
| | - Anthony G. Dodge
- Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Rachael M. Lucero
- Program in Chemical Biology and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B. Stockbridge
- Program in Chemical Biology and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Ashley A. Robinson
- Department of Biology and Biochemistry Program, Hamline University, St. Paul, MN, United States
| | - Lambros J. Tassoulas
- Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
94
|
Añorga M, Urriza M, Ramos C, Murillo J. Multiple relaxases contribute to the horizontal transfer of the virulence plasmids from the tumorigenic bacterium Pseudomonas syringae pv. savastanoi NCPPB 3335. Front Microbiol 2022; 13:1076710. [PMID: 36578579 PMCID: PMC9791958 DOI: 10.3389/fmicb.2022.1076710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas syringae pv. savastanoi NCPPB 3335 is the causal agent of olive knot disease and contains three virulence plasmids: pPsv48A (pA), 80 kb; pPsv48B (pB), 45 kb, and pPsv48C (pC), 42 kb. Here we show that pB contains a complete MPFT (previously type IVA secretion system) and a functional origin of conjugational transfer adjacent to a relaxase of the MOBP family; pC also contains a functional oriT-MOBP array, whereas pA contains an incomplete MPFI (previously type IVB secretion system), but not a recognizable oriT. Plasmid transfer occurred on solid and in liquid media, and on leaf surfaces of a non-host plant (Phaseolus vulgaris) with high (pB) or moderate frequency (pC); pA was transferred only occasionally after cointegration with pB. We found three plasmid-borne and three chromosomal relaxase genes, although the chromosomal relaxases did not contribute to plasmid dissemination. The MOBP relaxase genes of pB and pC were functionally interchangeable, although with differing efficiencies. We also identified a functional MOBQ mobilization region in pC, which could only mobilize this plasmid. Plasmid pB could be efficiently transferred to strains of six phylogroups of P. syringae sensu lato, whereas pC could only be mobilized to two strains of phylogroup 3 (genomospecies 2). In two of the recipient strains, pB was stably maintained after 21 subcultures in liquid medium. The carriage of several relaxases by the native plasmids of P. syringae impacts their transfer frequency and, by providing functional diversity and redundancy, adds robustness to the conjugation system.
Collapse
Affiliation(s)
- Maite Añorga
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra (UPNA), Edificio de Agrobiotecnología, Mutilva Baja, Spain
| | - Miriam Urriza
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra (UPNA), Edificio de Agrobiotecnología, Mutilva Baja, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain,Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra (UPNA), Edificio de Agrobiotecnología, Mutilva Baja, Spain,*Correspondence: Jesús Murillo
| |
Collapse
|
95
|
Occurrence and Genomic Characterization of mcr-1-Harboring Escherichia coli Isolates from Chicken and Pig Farms in Lima, Peru. Antibiotics (Basel) 2022; 11:antibiotics11121781. [PMID: 36551438 PMCID: PMC9774552 DOI: 10.3390/antibiotics11121781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Resistance to colistin generated by the mcr-1 gene in Enterobacteriaceae is of great concern due to its efficient worldwide spread. Despite the fact that the Lima region has a third of the Peruvian population and more than half of the national pig and poultry production, there are no reports of the occurrence of the mcr-1 gene in Escherichia coli isolated from livestock. In the present work, we studied the occurrence of E. coli carrying the mcr-1 gene in chicken and pig farms in Lima between 2019 and 2020 and described the genomic context of the mcr-1 gene. We collected fecal samples from 15 farms in 4 provinces of Lima including the capital Lima Metropolitana and recovered 341 E. coli isolates. We found that 21.3% (42/197) and 12.5% (18/144) of the chicken and pig strains were mcr-1-positive by PCR, respectively. The whole genome sequencing of 14 mcr-1-positive isolates revealed diverse sequence types (e.g., ST48 and ST602) and the presence of other 38 genes that confer resistance to 10 different classes of antibiotics, including beta-lactamase blaCTX-M-55. The mcr-1 gene was located on diverse plasmids belonging to the IncI2 and IncHI1A:IncHI1B replicon types. A comparative analysis of the plasmids showed that they contained the mcr-1 gene within varied structures (mikB-mcr1-pap2, ISApl1-mcr1-pap2, and Tn6330). To the best of our knowledge, this is the first attempt to study the prevalence of the mcr-1 gene in livestock in Peru, revealing its high occurrence in pig and chicken farms. The genetic diversity of mcr-1-positive strains suggests a complex local epidemiology calling for a coordinated surveillance under the One-Health approach that includes animals, retail meat, farmers, hospitals and the environment to effectively detect and limit the spread of colistin-resistant bacteria.
Collapse
|
96
|
Pillay S, Calderón-Franco D, Urhan A, Abeel T. Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. Front Microbiol 2022; 13:1066995. [PMID: 36532424 PMCID: PMC9755710 DOI: 10.3389/fmicb.2022.1066995] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 08/12/2023] Open
Abstract
The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.
Collapse
Affiliation(s)
- Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | | | - Aysun Urhan
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
97
|
Wang P, Jiang X, Mu K, Jing Y, Yin Z, Cui Y, Li C, Luo X, Chen F, Yu T, Zhu Z, Sun Y, Chen F, Zhou D. DANMEL: A manually curated reference database for analyzing mobile genetic elements associated with bacterial drug resistance. MLIFE 2022; 1:460-464. [PMID: 38818485 PMCID: PMC10989931 DOI: 10.1002/mlf2.12046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/01/2024]
Abstract
We have developed a manually curated online reference database, DANMEL (http://124.239.252.254/danmel/), that addresses the lack of accurate dissection and annotation of the genetic structures of mobile genetic elements (MGEs) with genes for drug resistance. DANMEL contains accurately annotated and genetically dissected reference MGEs covering 5 categories and 135 subcategories/subfamilies of MGEs. Further, DANMEL provides a detailed guide on how to precisely annotate MGEs. DANMEL also provides SEARCH/BLAST functions to facilitate finding reference MGEs. Overall, DANMEL will aid researchers to conduct in-depth genetic analysis of sequenced bacterial MGEs with drug-resistance genes and further facilitate a better understanding of bacterial MGEs associated with drug resistance at a genomic level.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- Beijing Institute of Genomics, Chinese Academy of SciencesChina National Center for BioinformationBeijingChina
| | - Kai Mu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Ying Jing
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Zhe Yin
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yujun Cui
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Cuidan Li
- Beijing Institute of Genomics, Chinese Academy of SciencesChina National Center for BioinformationBeijingChina
| | - Xinhua Luo
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Ting Yu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Zhichen Zhu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yansong Sun
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Fei Chen
- Beijing Institute of Genomics, Chinese Academy of SciencesChina National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| |
Collapse
|
98
|
Gonçalves OS, de Assis JCS, Santana MF. Breaking the ICE: an easy workflow for identifying and analyzing integrative and conjugative elements in bacterial genomes. Funct Integr Genomics 2022; 22:1139-1145. [PMID: 36149586 DOI: 10.1007/s10142-022-00903-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Osiel Silva Gonçalves
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jessica Catarine Silva de Assis
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Mateus Ferreira Santana
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
99
|
Duque E, Udaondo Z, Molina L, de la Torre J, Godoy P, Ramos JL. Providing octane degradation capability to Pseudomonas putida KT2440 through the horizontal acquisition of oct genes located on an integrative and conjugative element. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:934-946. [PMID: 35651318 PMCID: PMC9795978 DOI: 10.1111/1758-2229.13097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 05/17/2023]
Abstract
The extensive use of petrochemicals has produced serious environmental pollution problems; fortunately, bioremediation is considered an efficient way to fight against pollution. In line with Synthetic Biology is that robust microbial chassis with an expanded ability to remove environmental pollutants are desirable. Pseudomonas putida KT2440 is a robust lab microbe that has preserved the ability to survive in the environment and is the natural host for the self-transmissible TOL plasmid, which allows metabolism of toluene and xylenes to central metabolism. We show that the P. putida KT2440 (pWW0) acquired the ability to use octane as the sole C-source after acquisition of an almost 62-kb ICE from a microbial community that harbours an incomplete set of octane metabolism genes. The ICE bears genes for an alkane monooxygenase, a PQQ-dependent alcohol dehydrogenase and aldehyde dehydrogenase but lacks the electron donor enzymes required for the monooxygenase to operate. Host rubredoxin and rubredoxin reductase allow metabolism of octane to octanol. Proteomic assays and mutants unable to grow on octane or octanoic acid revealed that metabolism of octane is mediated by redundant host and ICE enzymes. Octane is oxidized to octanol, octanal and octanoic acid, the latter is subsequently acylated and oxidized to yield acetyl-CoA that is assimilated via the glyoxylate shunt; in fact, a knockout mutant in the aceA gene, encoding isocitrate lyase was unable to grow on octane or octanoic acid.
Collapse
Affiliation(s)
- Estrella Duque
- Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain
| | - Zulema Udaondo
- Department of Biomedical InformaticsUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Lázaro Molina
- Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain
| | - Jesús de la Torre
- Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain
| | - Patricia Godoy
- Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain
| | - Juan L. Ramos
- Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain
| |
Collapse
|
100
|
Ares-Arroyo M, Coluzzi C, P.C. Rocha E. Origins of transfer establish networks of functional dependencies for plasmid transfer by conjugation. Nucleic Acids Res 2022; 51:3001-3016. [PMID: 36442505 PMCID: PMC10123127 DOI: 10.1093/nar/gkac1079] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Abstract
Plasmids can be transferred between cells by conjugation, thereby driving bacterial evolution by horizontal gene transfer. Yet, we ignore the molecular mechanisms of transfer for many plasmids because they lack all protein-coding genes required for conjugation. We solved this conundrum by identifying hundreds of plasmids and chromosomes with conjugative origins of transfer in Escherichia coli and Staphylococcus aureus. These plasmids (pOriT) hijack the relaxases of conjugative or mobilizable elements, but not both. The functional dependencies between pOriT and other plasmids explain their co-occurrence: pOriT are abundant in cells with many plasmids, whereas conjugative plasmids are the most common in the others. We systematically characterized plasmid mobility in relation to conjugation and alternative mechanisms of transfer and can now propose a putative mechanism of transfer for ∼90% of them. In most cases, plasmid mobility seems to involve conjugation. Interestingly, the mechanisms of mobility are important determinants of plasmid-encoded accessory traits, since pOriTs have the highest densities of antimicrobial resistance genes, whereas plasmids lacking putative mechanisms of transfer have the lowest. We illuminate the evolutionary relationships between plasmids and suggest that many pOriT may have arisen by gene deletions in other types of plasmids. These results suggest that most plasmids can be transferred by conjugation.
Collapse
Affiliation(s)
- Manuel Ares-Arroyo
- Institut Pasteur, Université de Paris Cité , CNRS UMR3525, Microbial Evolutionary Genomics, Paris , France
| | - Charles Coluzzi
- Institut Pasteur, Université de Paris Cité , CNRS UMR3525, Microbial Evolutionary Genomics, Paris , France
| | - Eduardo P.C. Rocha
- Institut Pasteur, Université de Paris Cité , CNRS UMR3525, Microbial Evolutionary Genomics, Paris , France
| |
Collapse
|