51
|
|
52
|
Sun X, Zheng X, Zhao S, Liu Y, Wang B. DNA circuits driven by conformational changes in DNAzyme recognition arms. RSC Adv 2020; 10:7956-7966. [PMID: 35492184 PMCID: PMC9049901 DOI: 10.1039/d0ra00115e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
DNA computing plays an important role in nanotechnology due to the unique programmability and parallelism of DNA molecules. As an important tool to realize DNA computation, various logic computing devices have great application potential. The application of DNAzyme makes the achievements in the field of logical computing more diverse. In order to improve the efficiency of the logical units run by DNAzyme, we proposed a strategy to regulate the DNA circuit by the conformational change of the E6-type DNAzyme recognition arms driven by Mg2+. This strategy changes the single mode of DNAzyme signal transmission, extends the functions of E6-type DNAzyme, and saves the time of signal transmission in the molecular scale. To verify the feasibility of this strategy, first, we constructed DNA logic gates (YES, OR, and AND). Second, we cascade different logic gates (YES-YES, YES-AND) to prove the scalability. Finally, a self-catalytic DNA circuit is established. Through the experimental results, we verified that this DNAzyme regulation strategy relatively reduces the cost of logic circuits to some extent and significantly increases the reaction rate, and can also be used to indicate the range of Mg2+ concentrations. This research strategy provides new thinking for logical computing and explores new directions for detection and biosensors.
Collapse
Affiliation(s)
- Xinyi Sun
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University Shenyang 110136 China
| | - Sue Zhao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Yuan Liu
- School of Computer Scicence and Technology, Dalian University of Technology Dalian 116024 China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| |
Collapse
|
53
|
Li X, Wang B, Lv H, Yin Q, Zhang Q, Wei X. Constraining DNA Sequences With a Triplet-Bases Unpaired. IEEE Trans Nanobioscience 2020; 19:299-307. [PMID: 32031945 DOI: 10.1109/tnb.2020.2971644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DNA computing, the combination of computer science and molecular biology, is a burgeoning research field that holds promise for many applications. The accuracy of DNA computing is determined by reliable DNA sequences, the quality of which affects the accuracy of hybridization reactions. Evaluating the sequences obtained from the previous combination constraints in NUPACK for simulation experiments, we find that the concentration of the sequences after entering solution was significantly lower than that before entering solution, which should affect the accuracy of DNA hybridization reactions. Therefore, in this study, we propose a new constraint, a triplet-bases unpaired constraint, which can be combined with other constraints to form a new combination constraint. In addition, we combine the Harmony Search algorithm with the Whale Optimization Algorithm (WOA) to present a new algorithm, termed HSWOA, which we used to design DNA sequences that meet the new combination constraint. Finally, compared with previous findings, our result shows that our algorithm not only improves the efficiency of hybridization reactions but also yields a better fitness value.
Collapse
|
54
|
Zhao S, Liu Y, Wang B, Zhou C, Zhang Q. DNA logic circuits based on FokI enzyme regulation. NEW J CHEM 2020. [DOI: 10.1039/c9nj05510j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of DNA logic devices was constructed based on the allosteric strategy of the enzyme-assisted cleavage regulation system, which are simple in scale, modular, and work efficiently.
Collapse
Affiliation(s)
- Sue Zhao
- Key Laboratory of Advanced Design and Intelligent Computing
- Ministry of Education
- School of Software Engineering
- Dalian University
- Dalian 116622
| | - Yuan Liu
- School of Computer Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing
- Ministry of Education
- School of Software Engineering
- Dalian University
- Dalian 116622
| | - Changjun Zhou
- College of Computer Science and Engineering
- Dalian Minzu University
- Dalian
- China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing
- Ministry of Education
- School of Software Engineering
- Dalian University
- Dalian 116622
| |
Collapse
|
55
|
Geng H, Zhou C, Guo C. DNA-based digital comparator systems constructed by multifunctional nanoswitches. NANOSCALE 2019; 11:21856-21866. [PMID: 31696192 DOI: 10.1039/c9nr08216f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, we propose a strategy involving coupling DNA structural nanoswitches with toehold mediated strand displacement for constructing novel DNA-based digital comparator (DC) logic systems, which are a basic part of traditional electronic computers and can compare whether two or more input numbers are equal. However, when the number of DC inputs is increased to a certain level, the speed and quality of the computing circuit can be affected because of the limitations of conventional electronic computers when it comes to handling large-scale quantities of data. To solve this problem, in this work, we introduce a multi-input to multi-output DNA switch-based platform that can enable complex DC logical comparison. These multifunctional DNA-based switches, each including two hairpin-shaped molecular beacons and a G4/NMM complex, were used as platforms for the step-by-step realization of 2-3 DC, 3-3 DC, and 4-3 DC logic operations. Also, experiments were designed to further verify the excellent selectivity, achieving single-base mismatch operations with the digital comparator. Based on our design, comparators (">", "<" and "=") can be realized. Our prototype can inspire new designs and have intelligent digital comparator and in-field applications.
Collapse
Affiliation(s)
- Hongmei Geng
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Zhou
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, P. R. China.
| | - Chunlei Guo
- The Guo China-US Photonics Laboratory, State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, P. R. China. and The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
56
|
Constructing Controllable Logic Circuits Based on DNAzyme Activity. Molecules 2019; 24:molecules24224134. [PMID: 31731630 PMCID: PMC6891523 DOI: 10.3390/molecules24224134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
Recently, DNA molecules have been widely used to construct advanced logic devices due to their unique properties, such as a simple structure and predictable behavior. In fact, there are still many challenges in the process of building logic circuits. Among them, the scalability of the logic circuit and the elimination of the crosstalk of the cascade circuit have become the focus of research. Inspired by biological allosteric regulation, we developed a controllable molecular logic circuit strategy based on the activity of DNAzyme. The E6 DNAzyme sequence was temporarily blocked by hairpin DNA and activated under appropriate input trigger conditions. Using a substrate with ribonucleobase (rA) modification as the detection strand, a series of binary basic logic gates (YES, AND, and INHIBIT) were implemented on the computational component platform. At the same time, we demonstrate a parallel demultiplexer and two multi-level cascade circuits (YES-YES and YES-Three input AND (YES-TAND)). In addition, the leakage of the cascade process was reduced by exploring factors such as concentration and DNA structure. The proposed DNAzyme activity regulation strategy provides great potential for the expansion of logic circuits in the future.
Collapse
|
57
|
Liu X, Zhou X, Xia X, Xiang H. Catalytic hairpin assembly-based double-end DNAzyme cascade-feedback amplification for sensitive fluorescence detection of HIV-1 DNA. Anal Chim Acta 2019; 1096:159-165. [PMID: 31883582 DOI: 10.1016/j.aca.2019.10.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/30/2022]
Abstract
In this work, a simple all-nucleic acid cascade-feedback amplification strategy for homogeneous and protein enzyme-free fluorescence detection of HIV-1 related DNA (HIV-1 DNA) has been proposed by integrating catalytic hairpin assembly (CHA) circuit with double-end Mg2+-dependent DNAzyme autocatalytic feedback amplification. Here, the active double-end DNAzyme assemblies were derived from target-catalyzed CHA circuit, which further circularly cleaved the ribonucleotide-containing quenched fluorogenic hairpin substrates to generate distinctly amplified fluorescence signal. Meanwhile, the released quencher-labeled fragments as target DNA analogues were also able to autocatalyze CHA-DNAzyme reaction process, thus improving the determination sensitivity of HIV-1 DNA. The result demonstrated that the fluorescence intensity increment of double-end DNAzyme was over 3 times higher than that of single-end DNAzyme. The sensing method displayed a good linear range from 1 pM to 2 nM with a detectable minimum concentration of 1 pM and high specificity towards different mismatched target DNAs. Moreover, the practical application potential of the proposed method for target DNA detection in complex biological matrices was also assessed. Considering the appealing feature of programmable nucleic acids in CHA-DNAzyme sensing platform, the current strategy may provide a prospective design for detection of broad-spectrum nucleic acid biomarkers.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaomei Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinyu Xia
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hua Xiang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
58
|
Hölz K, Schaudy E, Lietard J, Somoza MM. Multi-level patterning nucleic acid photolithography. Nat Commun 2019; 10:3805. [PMID: 31444344 PMCID: PMC6707258 DOI: 10.1038/s41467-019-11670-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
The versatile and tunable self-assembly properties of nucleic acids and engineered nucleic acid constructs make them invaluable in constructing microscale and nanoscale devices, structures and circuits. Increasing the complexity, functionality and ease of assembly of such constructs, as well as interfacing them to the macroscopic world requires a multifaceted and programmable fabrication approach that combines efficient and spatially resolved nucleic acid synthesis with multiple post-synthetic chemical and enzymatic modifications. Here we demonstrate a multi-level photolithographic patterning approach that starts with large-scale in situ surface synthesis of natural, modified or chimeric nucleic acid molecular structures and is followed by chemical and enzymatic nucleic acid modifications and processing. The resulting high-complexity, micrometer-resolution nucleic acid surface patterns include linear and branched structures, multi-color fluorophore labeling and programmable targeted oligonucleotide immobilization and cleavage.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria
| | - Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria.
| |
Collapse
|
59
|
Abstract
DNA outperforms most conventional storage media in terms of information retention time, physical density, and volumetric coding capacity. Advances in synthesis and sequencing technologies have enabled implementations of large synthetic DNA databases with impressive storage capacity and reliable data recovery. Several robust DNA storage architectures featuring random access, error correction, and content rewritability have been constructed with the potential for scalability and cost reduction. We survey these recent achievements and discuss alternative routes for overcoming the hurdles of engineering practical DNA storage systems. We also review recent exciting work on in vivo DNA memory including intracellular recorders constructed by programmable genome editing tools. Besides information storage, DNA could serve as a versatile molecular computing substrate. We highlight several state-of-the-art DNA computing techniques such as strand displacement, localized hybridization chain reactions, and enzymatic reaction networks. We summarize how these simple primitives have facilitated rational designs and implementations of in vitro DNA reaction networks that emulate digital/analog circuits, artificial neural networks, or nonlinear dynamic systems. We envision these modular primitives could be strategically adapted for sophisticated database operations and massively parallel computations on DNA databases. We also highlight in vivo DNA computing modules such as CRISPR logic gates for building scalable genetic circuits in living cells. To conclude, we discuss various implications and challenges of DNA-based storage and computing, and we particularly encourage innovative work on bridging these two areas of research to further explore molecular parallelism and near-data processing. Such integrated molecular systems could lead to far-reaching applications in biocomputing, security, and medicine.
Collapse
|
60
|
Wang Y, Lv Q, Zhang Y, Wang L, Dong Y. Probe computing model based on small molecular switch. BMC Bioinformatics 2019; 20:285. [PMID: 31182004 PMCID: PMC6557740 DOI: 10.1186/s12859-019-2767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background DNA is a promising candidate for the construction of biological devices due to its unique properties, including structural simplicity, convenient synthesis, high flexibility, and predictable behavior. And DNA has been widely used to construct the advanced logic devices. Results Herein, a molecular probe apparatus was constructed based on DNA molecular computing to perform fluorescent quenching and fluorescent signal recovery, with an ’ ON/OFF’ switching function. In this study, firstly, we program the streptavidin-mediated fluorescent quenching apparatus based on short-distance strand migration. The variation of fluorescent signal is acted as output. Then DNAzyme as a switching controller was involved to regulate the fluorescent signal increase. Finally, on this base, a cascade DNA logic gate consists of two logic AND operations was developed to enrich probe machine. Conclusion The designed probe computing model can be implemented with readout of fluorescence intensity, and exhibits great potential applications in the field of bioimaging as well as disease diagnosis.
Collapse
|
61
|
Zhang S, Li KB, Shi W, Zhang J, Han DM, Xu JJ. Resettable and enzyme-free molecular logic devices for the intelligent amplification detection of multiple miRNAs via catalyzed hairpin assembly. NANOSCALE 2019; 11:5048-5057. [PMID: 30839977 DOI: 10.1039/c8nr10103e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The integration of multi-level DNA logic gates for biological diagnosis is far from being fully realized. In particular, the simplification of logical analysis to implement advanced logic diagnoses is still a critical challenge for DNA computing and bioelectronics. Here, we developed a magnetic bead/DNA system to construct a library of logic gates, enabling the sensing of multiplex target miRNAs. In this assay, the miRNA-catalyzed hairpin assembly (CHA) was successfully applied to construct two/three-input concatenated logic circuits with excellent specificity extended to design a highly sensitive multiplex detection system. Significantly, the CHA-based multiplex detection system can distinguish individual target miRNAs (such as miR-21, miR-155, and miR let-7a) under a logic function control, which presents great applications in the development of rapid and intelligent detection. Another novel feature is that the multiplex detection system can be reset by heating the output system and the magnetic separation of the computing modules. Overall, the proposed logic diagnostics with high amplification efficiency is simple, fast, low-cost, and resettable, and holds great promise in the development of biocomputing, multiparameter sensing, and intelligent disease diagnostics.
Collapse
Affiliation(s)
- Siqi Zhang
- Department of Chemistry, Taizhou University, Jiaojiang, 318000, China.
| | | | | | | | | | | |
Collapse
|