51
|
Abstract
Autologous arteriovenous fistula (AVF) is the preferred choice for providing vascular access to hemodialysis (HD) patients, but it is still affected by high incidence of non-maturation or early failure. After creation, AVF must undergo vascular remodeling, a process characterized by an increase in blood vessel diameter and wall thickness, to allow efficient and adequate HD. A growing body of evidence indicates that AVF maturation is related to the response of endothelial cells (ECs) to changes in wall shear stress (WSS), and in particular, to changes of its peak value. The reasons why important number of AVFs are affected by non-maturation or early failure still remain to be elucidated, but it has been suggested that local hemodynamic conditions with highly disturbed flow patterns may play an important role. In the present contribution, we addressed the role of WSS on AVF maturation, clarifying mechanisms that affect the clinical outcome of AVF creation. We also pointed out the need of non-invasive longitudinal studies, with repeated observations of hemodynamic parameters and structural changes during time, to obtain evidence of a cause-and-effect relationship between the presence of disturbed flow and AVF maturation failure. This understanding may be fundamental in the future to ameliorate clinical outcome of AVF creation, with a great impact on the clinical management of HD patients and their quality of life.
Collapse
|
52
|
Brahmbhatt A, Remuzzi A, Franzoni M, Misra S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int 2017; 89:303-316. [PMID: 26806833 PMCID: PMC4734360 DOI: 10.1016/j.kint.2015.12.019] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/20/2015] [Indexed: 01/01/2023]
Abstract
The arteriovenous fistula has been used for more than 50 years to provide vascular access for patients undergoing hemodialysis. More than 1.5 million patients worldwide have end stage renal disease and this population will continue to grow. The arteriovenous fistula is the preferred vascular access for patients, but its patency rate at 1 year is only 60%. The majority of arteriovenous fistulas fail because of intimal hyperplasia. In recent years, there have been many studies investigating the molecular mechanisms responsible for intimal hyperplasia and subsequent thrombosis. These studies have identified common pathways including inflammation, uremia, hypoxia, sheer stress, and increased thrombogenicity. These cellular mechanisms lead to increased proliferation, migration, and eventually stenosis. These pathways work synergistically through shared molecular messengers. In this review, we will examine the literature concerning the molecular basis of hemodialysis vascular access malfunction.
Collapse
Affiliation(s)
- Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Remuzzi
- Biomedical Engineering Department, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
- Engineering Department, University of Bergamo, Dalmine, Italy
| | - Marco Franzoni
- Biomedical Engineering Department, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
53
|
Zaragatski E, Grommes J, Schurgers LJ, Langer S, Kennes L, Tamm M, Koeppel TA, Kranz J, Hackhofer T, Arakelyan K, Jacobs MJ, Kokozidou M. Vitamin K antagonism aggravates chronic kidney disease-induced neointimal hyperplasia and calcification in arterialized veins: role of vitamin K treatment? Kidney Int 2016; 89:601-11. [PMID: 26466318 DOI: 10.1038/ki.2015.298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/09/2022]
Abstract
Arteriovenous fistula (AVF) is the common vascular access type for a hemodialysis patient. Its failure is due to neointimal hyperplasia. Vitamin K antagonists are given to lower thrombosis tendency, but have side effects that enhance arterial calcifications. Here, we investigated the effects of vitamin K antagonists and vitamin K2 (K2) treatment on neointimal hyperplasia development and calcification in rats and in arterialized human veins. AVF was generated in female rats while chronic kidney disease (CKD) was induced using an adenine-enriched diet. Arterialization, CKD, and vitamin K antagonists all significantly enhanced venous neointimal hyperplasia. K2 treatment, additional to vitamin K antagonists, significantly reduced neointimal hyperplasia in arterialized veins in healthy rats but not in rats with CKD. Arterialization, CKD, and vitamin K antagonism all significantly increased, whereas K2 supplementation attenuated calcification in healthy rats and rats with CKD. K2 significantly enhanced matrix Gla protein carboxylation in control rats and rats with CKD. Arterialized human vein samples contained inactive matrix Gla protein at calcification and neointimal hyperplasia sites, indicating local vitamin K deficiency. Thus, vitamin K antagonists have detrimental effects on AVF remodeling, whereas K2 reduced neointimal hyperplasia and calcification indicating vasoprotective effects. Hence, K2 administration may be useful to prevent neointimal hyperplasia and calcification in arterialized veins
Collapse
|
54
|
Does pre- and post-angioplasty Doppler ultrasound evaluation help in predicting vascular access outcome? J Vasc Access 2016; 17:465-470. [PMID: 27716891 DOI: 10.5301/jva.5000604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Kidney Disease - Improving Global Outcomes (KDIGO) recommends post-percutaneous transluminal angioplasty (PTA) <30% residual stenosis (RS) and hemodynamic parameters improvement. Primary end point: how post-PTA access blood flow (ABF) improvement predicts vascular access (VA) outcome. Secondary: compare Doppler ultrasound (DU) and angiography diagnostic accuracy; determine how other factors predict outcome. METHODS Eighty patients. DU evaluation performed pre- and post-PTA. Several parameters recorded. Secondary patency verified after 6 months. RESULTS Initial ABF 537 ± 248 mL/min; final ABF 1013 ± 354 mL/min. Number and location of stenosis was highly correlated between DU and angiography (p<0.001); central vessels mismatching. First semester overall survival was 63%; significantly better for fistulas (76%) than grafts (51.7%), p 0.044. Final RS>30% associated to better survival, p 0.038. Initial ABF<500 mL/min and multiple stenosis did not affect outcome (p>0.05). A >2-fold ABF increase had no significant impact on fistulas (p>0.05) but was significantly associated with worst outcomes in grafts (23.1% vs. 73.5%, p 0.009). Grafts had lower survival (HR 3.3, p 0.034). CONCLUSIONS Although less accurate for central lesions, DU has a key role on VA surveillance, allowing a morphologic and hemodynamic assessment. Angioplasty is effective in preserving VA; however, it may increase restenosis due to accelerated neointimal hyperplasia. Current parameters are not useful. Trials addressing this issue are needed.
Collapse
|
55
|
Hu H, Patel S, Hanisch JJ, Santana JM, Hashimoto T, Bai H, Kudze T, Foster TR, Guo J, Yatsula B, Tsui J, Dardik A. Future research directions to improve fistula maturation and reduce access failure. Semin Vasc Surg 2016; 29:153-171. [PMID: 28779782 DOI: 10.1053/j.semvascsurg.2016.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the increasing prevalence of end-stage renal disease, there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis, but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes in the setting of uremia, systemic inflammation, oxidative stress, and pre-existent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis and development of neointimal hyperplasia that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to neointimal hyperplasia involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure require a multidisciplinary approach involving nephrologists, vascular surgeons, and interventional radiologists, careful patient selection, and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy.
Collapse
Affiliation(s)
- Haidi Hu
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Sandeep Patel
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; Royal Free Hospital, University College London, London, UK
| | - Jesse J Hanisch
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Jeans M Santana
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Takuya Hashimoto
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Hualong Bai
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Tambudzai Kudze
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Trenton R Foster
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Jianming Guo
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Bogdan Yatsula
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Janice Tsui
- Royal Free Hospital, University College London, London, UK
| | - Alan Dardik
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; VA Connecticut Healthcare System, West Haven, CT.
| |
Collapse
|
56
|
Boitet A, Massy ZA, Goeau-Brissonniere O, Javerliat I, Coggia M, Coscas R. Drug-coated balloon angioplasty for dialysis access fistula stenosis. Semin Vasc Surg 2016; 29:178-185. [PMID: 28779784 DOI: 10.1053/j.semvascsurg.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Maintaining vascular access patency represents a tremendous challenge in hemodialysis patients. Although "native" arteriovenous fistula (AVF) is currently recommended as primary vascular access, neointimal hyperplasia stenoses frequently develop, with a risk for AVF thrombosis and vascular access loss. For years, first-line treatment of AVFs stenoses has been percutaneous transluminal angioplasty, generally with high-pressure or cutting uncoated balloons. However, restenosis and reintervention rates remain incredibly high and occur, according to recent studies, in up to 60% and 70% of patients at 6 and 12 months, respectively. Drug-coated balloons delivering paclitaxel at the angioplasty site have proved their superiority in the treatment of coronary and peripheral arterial stenoses. Paclitaxel reduces neointimal hyperplasia and drug-coated balloons, therefore, it represents an attractive option for AVF stenoses. Because data are scarce, the aim of this paper was to review the concepts and current results of drug-coated balloons in AVF stenosis management.
Collapse
Affiliation(s)
- Auréline Boitet
- Department of Vascular Surgery, Ambroise Paré University Hospital, Assistance Publique, Hôpitaux de Paris, Boulogne-Billancourt, France; Faculté de Médecine Paris-Ile de France-Ouest, UFR des sciences de la santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Montigny-le-Bretonneux, France
| | - Ziad A Massy
- Faculté de Médecine Paris-Ile de France-Ouest, UFR des sciences de la santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Montigny-le-Bretonneux, France; Department of Nephrology, Ambroise Paré University Hospital, Assistance Publique, Hôpitaux de Paris, Boulogne-Billancourt, France; UMR 1018, Inserm-Paris11-CESP, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Paul Brousse Hospital, 94807 Villejuif, France
| | - Olivier Goeau-Brissonniere
- Department of Vascular Surgery, Ambroise Paré University Hospital, Assistance Publique, Hôpitaux de Paris, Boulogne-Billancourt, France; Faculté de Médecine Paris-Ile de France-Ouest, UFR des sciences de la santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Montigny-le-Bretonneux, France; UMR 1018, Inserm-Paris11-CESP, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Paul Brousse Hospital, 94807 Villejuif, France
| | - Isabelle Javerliat
- Department of Vascular Surgery, Ambroise Paré University Hospital, Assistance Publique, Hôpitaux de Paris, Boulogne-Billancourt, France; Faculté de Médecine Paris-Ile de France-Ouest, UFR des sciences de la santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Montigny-le-Bretonneux, France
| | - Marc Coggia
- Department of Vascular Surgery, Ambroise Paré University Hospital, Assistance Publique, Hôpitaux de Paris, Boulogne-Billancourt, France; Faculté de Médecine Paris-Ile de France-Ouest, UFR des sciences de la santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Montigny-le-Bretonneux, France
| | - Raphaël Coscas
- Department of Vascular Surgery, Ambroise Paré University Hospital, Assistance Publique, Hôpitaux de Paris, Boulogne-Billancourt, France; Faculté de Médecine Paris-Ile de France-Ouest, UFR des sciences de la santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Montigny-le-Bretonneux, France; UMR 1018, Inserm-Paris11-CESP, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Paul Brousse Hospital, 94807 Villejuif, France.
| |
Collapse
|
57
|
Lee T, Misra S. New Insights into Dialysis Vascular Access: Molecular Targets in Arteriovenous Fistula and Arteriovenous Graft Failure and Their Potential to Improve Vascular Access Outcomes. Clin J Am Soc Nephrol 2016; 11:1504-1512. [PMID: 27401527 PMCID: PMC4974876 DOI: 10.2215/cjn.02030216] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular access dysfunction remains a major cause of morbidity and mortality in hemodialysis patients. At present there are few effective therapies for this clinical problem. The poor understanding of the pathobiology that leads to arteriovenous fistula (AVF) and graft (AVG) dysfunction remains a critical barrier to development of novel and effective therapies. However, in recent years we have made substantial progress in our understanding of the mechanisms of vascular access dysfunction. This article presents recent advances and new insights into the pathobiology of AVF and AVG dysfunction and highlights potential therapeutic targets to improve vascular access outcomes.
Collapse
Affiliation(s)
- Timmy Lee
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
- Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
58
|
Vazquez-Padron RI, Allon M. New Insights into Dialysis Vascular Access: Impact of Preexisting Arterial and Venous Pathology on AVF and AVG Outcomes. Clin J Am Soc Nephrol 2016; 11:1495-1503. [PMID: 27401525 PMCID: PMC4974874 DOI: 10.2215/cjn.01860216] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite significant improvements in preoperative patient evaluation and surgical planning, vascular access failure in patients on hemodialysis remains a frequent and often unforeseeable complication. Our inability to prevent this complication is, in part, because of an incomplete understanding of how preexisting venous and arterial conditions influence the function of newly created arteriovenous fistulas and grafts. This article reviews the relationship between three preexisting vascular pathologies associated with CKD (intimal hyperplasia, vascular calcification, and medial fibrosis) and hemodialysis access outcomes. The published literature indicates that the pathogenesis of vascular access failure is multifactorial and not determined by any of these pathologies individually. Keeping this observation in mind should help focus our research on the true causes responsible for vascular access failure and the much needed therapies to prevent it.
Collapse
Affiliation(s)
- Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida; and
| | - Michael Allon
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
59
|
Kim JK, Choi SR, Lee WY, Park MJ, Lee HS, Song YR, Kim HJ, Kim SG. Leptin, pre-existing vascular disease, and increased arteriovenous fistula maturation failure in dialysis patients. J Vasc Surg 2016; 64:402-410.e1. [PMID: 27134129 DOI: 10.1016/j.jvs.2016.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/01/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND The adipocytokine leptin is an independent cardiovascular risk factor and exerts proatherogenic effect. Pre-existing vascular disease is an important cause of arteriovenous fistula (AVF) maturation failure. We explored the association between serum leptin, pre-existing vascular disease, and AVF maturation failure in incident hemodialysis patients. METHODS Vein samples from 62 patients were collected at the time of AVF creation. Pre-existing vascular disease was evaluated with histologic changes and immunohistochemical characteristics of cellular phenotypes in intima. AVF maturation failure was defined as an AVF that could not be used successfully by the third month after its creation. RESULTS The prevalence of body mass index ≥30 kg/m2 was 17%, and AVF maturation failure occurred in 28 (45%) patients. Patients within the highest leptin tertile showed significantly higher maturation failure rate, independent of age, gender, diabetes, and body mass index. On histologic examination, significant differences in intimal hyperplasia (13.3 ± 4.5 vs 18.2 ± 5.2 vs 30.3 ± 14.3 μm) and medial thickening (76.8 ± 23.7 vs 103.9 ± 33.6 vs 109.3 ± 36.5 μm) were observed across leptin tertiles. Similarly, medial fibrosis was most severe in the highest tertile. According to the immunohistochemical staining, most intimal cells were α-smooth muscle actin-positive, vimentin-positive, desmin-negative myofibroblasts. However, in the lowest tertile, desmin-positive contractile smooth muscle cells were also frequently observed, suggesting relatively slow phenotypic changes in this group. Furthermore, as leptin tertiles increased, the expression of leptin receptor in the luminal border of intima was significantly decreased. CONCLUSIONS Obesity-related higher fistula maturation failure rate may be partly mediated by higher leptin level-associated pre-existing vascular diseases in end-stage renal disease patients. Decreased expression of leptin receptor may be related to this association.
Collapse
Affiliation(s)
- Jwa-Kyung Kim
- Department of Internal Medicine, Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Korea; Department of Clinical Immunology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Sun Ryoung Choi
- Department of Nephrology, Sahmyook Medical Center, Seoul, Korea
| | - Won Yong Lee
- Department of Cardiovascular and Thoracic Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Mi Jin Park
- Department of Clinical Immunology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Hyung Suk Lee
- Department of Nephrology, Sahmyook Medical Center, Seoul, Korea
| | - Young Rim Song
- Department of Internal Medicine, Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Hyung Jik Kim
- Department of Internal Medicine, Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Sung Gyun Kim
- Department of Internal Medicine, Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Korea; Department of Clinical Immunology, Hallym University Sacred Heart Hospital, Anyang, Korea.
| |
Collapse
|
60
|
Abstract
Arteriovenous fistulas (AVFs) are essential for patients and clinicians faced with end-stage renal disease (ESRD). While this method of vascular access for hemodialysis is preferred to others due to its reduced rate of infection and complications, they are plagued by intimal hyperplasia. The pathogenesis of intimal hyperplasia and subsequent thrombosis is brought on by uremia, hypoxia, and shear stress. These forces upregulate inflammatory and proliferative cytokines acting on leukocytes, fibroblasts, smooth muscle cells, and platelets. This activation begins initially with the progression of uremia, which induces platelet dysfunction and primes the body for an inflammatory response. The vasculature subsequently undergoes changes in oxygenation and shear stress during AVF creation. This propagates a strong inflammatory response in the vessel leading to cellular proliferation. This combined response is then further subjected to the stressors of cannulation and dialysis, eventually leading to stenosis and thrombosis. This review aims to help interventional radiologists understand the biological changes and pathogenesis of access failure.
Collapse
Affiliation(s)
- Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
61
|
Tabbara M, Duque JC, Martinez L, Escobar LA, Wu W, Pan Y, Fernandez N, Velazquez OC, Jaimes EA, Salman LH, Vazquez-Padron RI. Pre-existing and Postoperative Intimal Hyperplasia and Arteriovenous Fistula Outcomes. Am J Kidney Dis 2016; 68:455-64. [PMID: 27012909 DOI: 10.1053/j.ajkd.2016.02.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/07/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The contribution of intimal hyperplasia (IH) to arteriovenous fistula (AVF) failure is uncertain. This observational study assessed the relationship between pre-existing, postoperative, and change in IH over time and AVF outcomes. STUDY DESIGN Prospective cohort study with longitudinal assessment of IH at the time of AVF creation (pre-existing) and transposition (postoperative). Patients were followed up for up to 3.3 years. SETTING & PARTICIPANTS 96 patients from a single center who underwent AVF surgery initially planned as a 2-stage procedure. Veins and AVF samples were collected from 66 and 86 patients, respectively. Matched-pair tissues were available from 56 of these patients. PREDICTORS Pre-existing, postoperative, and change in IH over time. OUTCOMES Anatomic maturation failure was defined as an AVF that never reached a diameter > 6mm. Primary unassisted patency was defined as the time elapsed from the second-stage surgery to the first intervention. MEASUREMENTS Maximal intimal thickness in veins and AVFs and change in intimal thickness over time. RESULTS Pre-existing IH (>0.05mm) was present in 98% of patients. In this group, the median intimal thickness increased 4.40-fold (IQR, 2.17- to 4.94-fold) between AVF creation and transposition. However, this change was not associated with pre-existing thickness (r(2)=0.002; P=0.7). Ten of 96 (10%) AVFs never achieved maturation, whereas 70% of vascular accesses remained patent at the end of the observational period. Postoperative IH was not associated with anatomic maturation failure using univariate logistic regression. Pre-existing, postoperative, and change in IH over time had no effects on primary unassisted patency. LIMITATIONS The small number of patients from whom longitudinal tissue samples were available and low incidence of anatomic maturation failure, which decreased the statistical power to find associations between end points and IH. CONCLUSIONS Pre-existing, postoperative, and change in IH over time were not associated with 2-stage AVF outcomes.
Collapse
Affiliation(s)
- Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Juan C Duque
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Luis A Escobar
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Wensong Wu
- Department of Mathematics and Statistics, Florida International University, Miami, FL
| | - Yue Pan
- Department of Epidemiology and Public Health, University of Miami, Coral Gables, FL
| | - Natasha Fernandez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Omaida C Velazquez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Edgar A Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Loay H Salman
- Section of Interventional Nephrology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL.
| |
Collapse
|
62
|
Heparin-bonded expanded polytetrafluorethylene grafts in hemodialysis access. J Vasc Access 2016; 17 Suppl 1:S79-84. [PMID: 26951912 DOI: 10.5301/jva.5000515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2015] [Indexed: 01/22/2023] Open
Abstract
When options for autologous arteriovenous (AV) fistulas have been fully exhausted, AV grafts continue to play an important role in access creation for hemodialysis, offering long-term hemodialysis access that is a better alternative to central vein catheters. The drawbacks of AV grafts are their poor patency, infection and higher cost. Their main advantages are that they are widely available, are easy to create, and mature early. In the context of the "Fistula First" initiative, many patients with low quality veins suffer from fistula failure and non-maturation resulting in prolonged catheter days that would otherwise be prevented by initial creation of an AV graft. Endeavors to improve graft patency include administration of pharmacological agents, changing graft configuration, altering graft biology, and altering the graft surface. In this review, the current status of heparin-bonded AV grafts for hemodialysis is discussed.
Collapse
|
63
|
Wu Y, Liu G, Chen W, Yang M, Zhu C. 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside reduces intimal hyperplasia of tissue engineering blood vessel by inhibiting phenotype switch of vascular smooth muscle cell. J Biomed Mater Res B Appl Biomater 2016; 105:744-752. [PMID: 26743435 DOI: 10.1002/jbm.b.33585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/11/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022]
Abstract
Intimal hyperplasia (IH) is the cause of clinical failure in patients with vascular transplants and intravascular stents. The proliferation and phenotype switching of vascular smooth muscle cells (VSMCs) play important roles in IH. Inhibiting the proliferation of VSMCs and maintaining the differentiated phenotype of VSMCs is one way to reduce IH. In this article, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) was used in experiments after drug screening. We found that the metabolism, autophagy, and differentiation of VSMCs were enhanced which were important to the normal function of VSMCs, but the secretion of VSMCs was reduced after AICAR treatment. AICAR induces G1 phase arrest and inhibits the proliferation of VSMCs using the MTT and EdU assays and cell cycle analysis. Then, the rat carotid artery vessel transplantation model was used to evaluate the function of AICAR in vivo. AICAR-modified tissue-engineered blood vessels (TEBVs) had a higher patency rate and less IH than the control TEBVs. In conclusion, AICAR can improve the normal function of VSMCs by increasing the metabolism and autophagy of VSMCs but inhibit the proliferation, paracrine, and phenotypes switching of VSMCs, further contribute the reducing of IH in TEBVs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 744-752, 2017.
Collapse
Affiliation(s)
- Yangxiao Wu
- Department of Anatomy, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ge Liu
- Department of Anatomy, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Wen Chen
- Department of Anatomy, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Mingcan Yang
- Department of Anatomy, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
64
|
Development and evaluation of in vivo tissue engineered blood vessels in a porcine model. Biomaterials 2016; 75:82-90. [DOI: 10.1016/j.biomaterials.2015.10.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023]
|
65
|
Browne LD, Bashar K, Griffin P, Kavanagh EG, Walsh SR, Walsh MT. The Role of Shear Stress in Arteriovenous Fistula Maturation and Failure: A Systematic Review. PLoS One 2015; 10:e0145795. [PMID: 26716840 PMCID: PMC4696682 DOI: 10.1371/journal.pone.0145795] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Non-maturation and post-maturation venous stenosis are the primary causes of failure within arteriovenous fistulae (AVFs). Although the exact mechanisms triggering failure remain unclear, abnormal hemodynamic profiles are thought to mediate vascular remodelling and can adversely impact on fistula patency. AIM The review aims to clarify the role of shear stress on outward remodelling during maturation and evaluate the evidence supporting theories related to the localisation and development of intimal hyperplasia within AVFs. METHODS A systematic review of studies comparing remodelling data with hemodynamic data obtained from computational fluid dynamics of AVFs during and after maturation was conducted. RESULTS Outward remodelling occurred to reduce or normalise the level of shear stress over time in fistulae with a large radius of curvature (curved) whereas shear stress was found to augment over time in fistulae with a small radius of curvature (straight) coinciding with minimal to no increases in lumen area. Although this review highlighted that there is a growing body of evidence suggesting low and oscillating shear stress may stimulate the initiation and development of intimal medial thickening within AVFs. Further lines of evidence are needed to support the disturbed flow theory and outward remodelling findings before surgical configurations and treatment strategies are optimised to conform to them. This review highlighted that variation between the time of analysis, classification of IH, resolution of simulations, data processing techniques and omission of various shear stress metrics prevented forming pooling of data amongst studies. CONCLUSION Standardised measurements and data processing techniques are needed to comprehensively evaluate the relationship between shear stress and intimal medial thickening. Advances in image acquisition and flow quantifications coupled with the increasing prevalence of longitudinal studies commencing from fistula creation offer viable techniques and strategies to robustly evaluate the relationship between shear stress and remodelling during maturation and thereafter.
Collapse
Affiliation(s)
- Leonard D. Browne
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical, Aeronautical and Biomedical Engineering, Materials and Surface Science Institute, The Health Research Institute, University of Limerick, Limerick, Ireland
| | - Khalid Bashar
- Department of Vascular Surgery, Limerick University Hospital, Dooradoyle, Limerick, Ireland
| | - Philip Griffin
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical, Aeronautical and Biomedical Engineering, Materials and Surface Science Institute, The Health Research Institute, University of Limerick, Limerick, Ireland
| | - Eamon G. Kavanagh
- Department of Vascular Surgery, Limerick University Hospital, Dooradoyle, Limerick, Ireland
| | - Stewart R. Walsh
- Department of Vascular Surgery, Limerick University Hospital, Dooradoyle, Limerick, Ireland
- Department of Surgery, National University of Ireland, Galway, Ireland
| | - Michael T. Walsh
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical, Aeronautical and Biomedical Engineering, Materials and Surface Science Institute, The Health Research Institute, University of Limerick, Limerick, Ireland
- * E-mail:
| |
Collapse
|
66
|
Bozzetto M, Ene-Iordache B, Remuzzi A. Transitional Flow in the Venous Side of Patient-Specific Arteriovenous Fistulae for Hemodialysis. Ann Biomed Eng 2015; 44:2388-2401. [PMID: 26698581 DOI: 10.1007/s10439-015-1525-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/29/2015] [Indexed: 01/28/2023]
Abstract
Arteriovenous fistula (AVF) is the first choice for providing vascular access for hemodialysis patients, but maintaining its patency is challenging. AVF failure is primarily due to development of neointimal hyperplasia (NH) and subsequent stenosis. Using idealized models of AVF we previously suggested that reciprocating hemodynamic wall shear is implicated in vessel stenosis. The aim of the present study was to investigate local hemodynamics in patient-specific side-to-end AVF. We reconstructed realistic geometrical models of four AVFs from magnetic resonance images acquired in a previous clinical study. High-resolution computational fluid dynamics simulations using patient-specific blood rheology and flow boundary conditions were performed. We then characterized the flow field and categorized disturbed flow areas by means of established hemodynamic wall parameters. In all AVF, either in upper or lower arm location, we consistently observed transitional laminar to turbulent-like flow developing in the juxta-anastomotic vein and damping towards the venous outflow, but not in the proximal artery. High-frequency fluctuations of the velocity vectors in these areas result in eddies that induce similar oscillations of wall shear stress vector. This condition may importantly impair the physiological response of endothelial cells to blood flow and be responsible for NH formation in newly created AVF.
Collapse
Affiliation(s)
- Michela Bozzetto
- Department of Biomedical Engineering, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via G.B. Camozzi, 3, 24020, Ranica, BG, Italy
| | - Bogdan Ene-Iordache
- Department of Biomedical Engineering, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via G.B. Camozzi, 3, 24020, Ranica, BG, Italy
| | - Andrea Remuzzi
- Department of Biomedical Engineering, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via G.B. Camozzi, 3, 24020, Ranica, BG, Italy. .,Department of Management, Information and Production and Engineering, University of Bergamo, Viale Marconi, 5, Dalmine, 24044, BG, Italy.
| |
Collapse
|
67
|
Lee T, Haq NU. New Developments in Our Understanding of Neointimal Hyperplasia. Adv Chronic Kidney Dis 2015; 22:431-7. [PMID: 26524947 DOI: 10.1053/j.ackd.2015.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/26/2015] [Indexed: 12/20/2022]
Abstract
The vascular access remains the lifeline for the hemodialysis patient. The most common etiology of vascular access dysfunction is venous stenosis at the vein-artery anastomosis in arteriovenous fistula and at the vein-graft anastomosis in arteriovenous grafts (AVG). This stenotic lesion is typically characterized on histology as aggressive venous neointimal hyperplasia in both arteriovenous fistula and AVG. In recent years, we have advanced our knowledge and understanding of neointimal hyperplasia in vascular access and begun testing several novel therapies. This article will (1) review recent developments in our understanding of the pathophysiology of neointimal hyperplasia development in AVG and fistula failure, (2) discuss atypical factors leading to neointimal hyperplasia development, (3) highlight key novel therapies that have been evaluated in clinical trials, and (4) discuss future opportunities and challenges to improve our understanding of vascular access dysfunction and translate this knowledge into novel and innovative therapies.
Collapse
|
68
|
Abstract
Arteriovenous (AV) grafts are required for hemodialysis access when options for native fistulas have been fully exhausted, where they continue to play an important role in hemodialysis patients, offering a better alternative to central vein catheters. When planning autogenous accesses using Doppler ultrasound, adequate arterial inflow and venous outflow must be consciously preserved for future access creation with grafts. Efforts to improve graft patency include changing graft configuration, graft biology and hemodynamics. Industry offers early cannulation grafts to reduce central catheter use and a bioengineered graft is undergoing clinical studies. Although the outcome of AV grafts is inferior to fistulas, grafts can provide long-term hemodialysis access that is a better alternative to central venous catheters. AV grafts have significant drawbacks, mainly poor patency, infection and cost but also have some advantages: early maturation, ease of creation and needling and widespread availability. The outcome of AV graft surgery is variable from center to center. The primary patency rate for AV grafts is 58% at 6 months and the secondary patency rate is 76% at 6 months and 55% at 18 months. There are centers of excellence that report a 1 year secondary patency rate of up to 91%. In this review of the use of AV grafts for hemodialysis access in the upper extremities, technical issues involved in planning the access and performing the surgery in its different configurations are discussed and the role of surveillance and maintenance with their attendant surgical and radiological interventions is described.
Collapse
|
69
|
A prospective randomized study of heparin-bonded graft (Propaten) versus standard graft in prosthetic arteriovenous access. J Vasc Surg 2015; 62:115-22. [DOI: 10.1016/j.jvs.2015.01.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/27/2015] [Indexed: 11/24/2022]
|
70
|
Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima. Kidney Int 2015; 88:490-502. [PMID: 25786100 PMCID: PMC4677993 DOI: 10.1038/ki.2015.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 01/31/2023]
Abstract
A major factor contributing to failure of arteriovenous fistulas (AVFs) is migration of smooth muscle cells into the forming neointima. To identify the source of smooth muscle cells in neointima, we created end-to-end AVFs by anastomosing the common carotid artery to the jugular vein and studied neural crest-derived smooth muscle cells from the carotid artery which are Wnt1-positive during development. In Wnt1-cre-GFP mice, smooth muscle cells in the carotid artery but not the jugular vein are labeled with GFP. About half of the cells were GFP-positive in the neointima indicating their migration from the carotid artery to the jugular vein in AVFs created in these mice. Since fibroblast-specific protein-1 (FSP-1) regulates smooth muscle cell migration, we examined FSP-1 in failed AVFs and polytetrafluoroethylene (PTFE) grafts from patients with ESRD or from AVFs in mice with chronic kidney disease. In smooth muscle cells of AVFs or PTFE grafts, FSP-1 and activation of Notch1 are present. In smooth muscle cells, Notch1 increased RBP-Jκ transcription factor activity and RBP-Jκ stimulated FSP-1 expression. Conditional knockout of RBP-Jκ in smooth muscle cells or general knockout of FSP-1, suppressed neointima formation in AVFs in mice. Thus, the artery of AVFs is the major source of smooth muscle cells during neointima formation. Knockout of RBP-Jκ or FSP-1 ameliorates neointima formation and might improve AVF patency during long-term follow up.
Collapse
|
71
|
Roy-Chaudhury P, Kruska L. Future Directions for Vascular Access for Hemodialysis. Semin Dial 2014; 28:107-13. [DOI: 10.1111/sdi.12329] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Prabir Roy-Chaudhury
- Dialysis Vascular Access Research Group; Division of Nephrology; University of Cincinnati and Cincinnati VA Medical Center; Cincinnati Ohio
| | - Lindsay Kruska
- Division of Nephrology; University of North Carolina; Chapel Hill North Carolina
| |
Collapse
|
72
|
Drug-Eluting Balloon for the Treatment of Failing Hemodialytic Radiocephalic Arteriovenous Fistulas: Our Experience in the Treatment of Juxta-Anastomotic Stenoses. J Vasc Access 2014; 15:338-43. [DOI: 10.5301/jva.5000211] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2013] [Indexed: 12/19/2022] Open
Abstract
Purpose The purpose of this article is to report our experience with drug-eluting balloons for the treatment of juxta-anastomotic stenoses of failing radiocephalic hemodialytic arteriovenous shunt and to evaluate the primary and secondary patency (PP and SP). Methods After approval by the local hospital's Ethical and Scientific Review Board, 26 consecutive patients with juxta-anastomotic stenosis of radiocephalic hemodialytic shunt were treated with angioplasty with drug-eluting balloon. The main objective was to evaluate PP defined, in accordance with the Kidney Disease Outcomes Quality Initiative recommendation, as the absence of dysfunction of the vascular access, patent lesion or residual stenosis <30% and no need for further reintervention of the target lesion (TL). PP and SP at 6, 12 and 24 months were evaluated, with echo color doppler and phlebography, for both arteriovenous fistulae, defined as absolute, and TL. Results Immediate postprocedural technical and clinical success was 100% for all the patients; we had only one technical failure in repeated treatments. At 6 months the absolute and TL PP was 96.1%; at 12 months the absolute PP was 81.8%, TL PP 90.9%, absolute SP 95.4%, TL SP 100%; at 24 months the absolute and TL PP was 57.8%; absolute and TL SP 94.7%; only one arteriovenous fistula was lost during the period. Conclusions The use of drug-eluting balloons, after standard angioplasty, improves primary patency and decreases reinterventions of TL in juxta-anastomotic stenoses of failing native dialytic arteriovenous shunts.
Collapse
|
73
|
Terry CM, Carlson ML, He Y, Ulu A, Morisseau C, Blumenthal DK, Hammock BD, Cheung AK. Aberrant soluble epoxide hydrolase and oxylipin levels in a porcine arteriovenous graft stenosis model. J Vasc Res 2014; 51:269-82. [PMID: 25196102 DOI: 10.1159/000365251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
Synthetic arteriovenous grafts (AVGs) used for hemodialysis frequently fail due to the development of neointimal hyperplasia (NH) at the vein-graft anastomosis. Inflammation and smooth-muscle cell (SMC) and myofibroblast proliferation and migration likely play an important role in the pathogenesis of NH. Epoxyeicosatrienoic acids (EETs), the products of the catabolism of arachidonic acid by cytochrome P450 enzymes, possess anti-inflammatory, antiproliferative, antimigratory and vasodilatory properties that should reduce NH. The degradation of vasculoprotective EETs is catalyzed by the enzyme, soluble epoxide hydrolase (sEH). sEH upregulation may thus contribute to NH development by the enhanced removal of vasculoprotective EETs. In this study, sEH, cytochrome P450 and EETs were examined after AVG placement in a porcine model to explore their potential roles in AVG stenosis. Increased sEH protein expression, decreased P450 epoxygenase activity and dysregulation of 5 oxylipin mediators were observed in the graft-venous anastomotic tissues when compared to control veins. Pharmacological inhibitors of sEH decreased the growth factor-induced migration of SMCs and fibroblasts, although they had no significant effect on the proliferation of these cells. These results provide insights on epoxide biology in vascular disorders and a rationale for the development of novel pharmacotherapeutic strategies to prevent AVG failure due to NH and stenosis.
Collapse
Affiliation(s)
- Christi M Terry
- Division of Nephrology and Hypertension, University of Utah, Utah, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Chan JS, Campos B, Wang Y, Mistry M, Lee T, Munda R, Arend L, Roy-Chaudhury P. Proliferation Patterns in a Pig Model of AV Fistula Stenosis: Can we Translate Biology into Novel Therapies? Semin Dial 2014; 27:626-32. [DOI: 10.1111/sdi.12240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jenq-Shyong Chan
- Dialysis Vascular Access Research Group; Division of Nephrology; Department of Medicine; University of Cincinnati; Cincinnati Ohio
- Division of Nephrology; Armed Forces Tao-Yuan General Hospital; Tao-Yuan County Taiwan
- Department of Medicine of the National Defense Medical Center; Taipei Taiwan
| | - Begoña Campos
- Dialysis Vascular Access Research Group; Division of Nephrology; Department of Medicine; University of Cincinnati; Cincinnati Ohio
| | - Yang Wang
- Dialysis Vascular Access Research Group; Division of Nephrology; Department of Medicine; University of Cincinnati; Cincinnati Ohio
| | - Meenakshi Mistry
- Dialysis Vascular Access Research Group; Division of Nephrology; Department of Medicine; University of Cincinnati; Cincinnati Ohio
| | - Timmy Lee
- Dialysis Vascular Access Research Group; Division of Nephrology; Department of Medicine; University of Cincinnati; Cincinnati Ohio
- Cincinnati VA Medical Center; Cincinnati Ohio
| | - Rino Munda
- Department of Surgery; University of Cincinnati; Cincinnati Ohio
| | - Lois Arend
- Department of Pathology; University of Cincinnati; Cincinnati Ohio
| | - Prabir Roy-Chaudhury
- Dialysis Vascular Access Research Group; Division of Nephrology; Department of Medicine; University of Cincinnati; Cincinnati Ohio
- Cincinnati VA Medical Center; Cincinnati Ohio
| |
Collapse
|
75
|
Lee T, Wang Y, Arend L, Cornea V, Campos B, Munda R, Roy-Chaudhury P. Comparative analysis of cellular phenotypes within the neointima from vein segments collected prior to vascular access surgery and stenotic arteriovenous dialysis accesses. Semin Dial 2014; 27:303-9. [PMID: 24341903 PMCID: PMC3999181 DOI: 10.1111/sdi.12172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Venous stenosis, secondary to venous neointimal hyperplasia (VNH), at the arteriovenous anastomosis (AV) is a major etiology of vascular access failure in AV fistulas (AVF) and AV grafts (AVG). Recently, our group has reported that severe VNH also occurs prior to vascular access placement. The objective of this study was to perform a comparison of the cellular phenotypes within the neointima from veins collected from subjects at the time of new vascular access creation and stenotic veins from subjects with failed AVGs and AVFs. Vein samples, collected at the time of new access surgery, and stenotic vein segments, collected at access revision, were evaluated for expression of α-smooth muscle actin (SMA), vimentin, and desmin within the neointima, and quantified using semiquantitative scoring. Within the neointima, the majority of cells from vein samples collected at the time of new access surgery were contractile smooth muscle cells, and veins from stenotic AVF and AVG were predominately myofibroblasts. Our results suggest the possibility of different mechanistic pathways in response to vascular injury that occurs prior to vascular access creation vs. after access creation, and that divergent therapeutic approaches may be needed for treating vascular injury in these two settings.
Collapse
Affiliation(s)
- Timmy Lee
- Department of Internal Medicine and Division of Nephrology and Hypertension, University of Cincinnati, OH
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH
- Dialysis Vascular Access Research Group, Cincinnati, OH
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham
| | - Yang Wang
- Department of Internal Medicine and Division of Nephrology and Hypertension, University of Cincinnati, OH
- Dialysis Vascular Access Research Group, Cincinnati, OH
| | - Lois Arend
- Department of Pathology, Johns Hopkins University, Baltimore, MD
| | - Virgilius Cornea
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Begona Campos
- Department of Internal Medicine and Division of Nephrology and Hypertension, University of Cincinnati, OH
- Dialysis Vascular Access Research Group, Cincinnati, OH
| | - Rino Munda
- Dialysis Vascular Access Research Group, Cincinnati, OH
- Department of Surgery and Division of Transplant Surgery, University of Cincinnati
| | - Prabir Roy-Chaudhury
- Department of Internal Medicine and Division of Nephrology and Hypertension, University of Cincinnati, OH
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH
- Dialysis Vascular Access Research Group, Cincinnati, OH
| |
Collapse
|
76
|
Parisotto MT, Schoder VU, Miriunis C, Grassmann AH, Scatizzi LP, Kaufmann P, Stopper A, Marcelli D. Cannulation technique influences arteriovenous fistula and graft survival. Kidney Int 2014; 86:790-7. [PMID: 24717298 PMCID: PMC4184025 DOI: 10.1038/ki.2014.96] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 12/17/2022]
Abstract
Hemodialysis patient survival is dependent on the availability of a reliable vascular access. In clinical practice, procedures for vascular access cannulation vary from clinic to clinic. We investigated the impact of cannulation technique on arteriovenous fistula and graft survival. Based on an April 2009 cross-sectional survey of vascular access cannulation practices in 171 dialysis units, a cohort of patients with corresponding vascular access survival information was selected for follow-up ending March 2012. Of the 10,807 patients enrolled in the original survey, access survival data were available for 7058 patients from nine countries. Of these, 90.6% had an arteriovenous fistula and 9.4% arteriovenous graft. Access needling was by area technique for 65.8%, rope-ladder for 28.2%, and buttonhole for 6%. The most common direction of puncture was antegrade with bevel up (43.1%). A Cox regression model was applied, adjusted for within-country effects, and defining as events the need for creation of a new vascular access. Area cannulation was associated with a significantly higher risk of access failure than rope-ladder or buttonhole. Retrograde direction of the arterial needle with bevel down was also associated with an increased failure risk. Patient application of pressure during cannulation appeared more favorable for vascular access longevity than not applying pressure or using a tourniquet. The higher risk of failure associated with venous pressures under 100 or over 150 mm Hg should open a discussion on limits currently considered acceptable.
Collapse
Affiliation(s)
| | | | - Cristina Miriunis
- NephroCare Coordination, Fresenius Medical Care, Bad Homburg, Germany
| | | | - Laura P Scatizzi
- EMEALA Medical Board, Fresenius Medical Care, Bad Homburg, Germany
| | - Peter Kaufmann
- NephroCare Coordination, Fresenius Medical Care, Bad Homburg, Germany
| | - Andrea Stopper
- NephroCare Coordination, Fresenius Medical Care, Bad Homburg, Germany
| | - Daniele Marcelli
- EMEALA Medical Board, Fresenius Medical Care, Bad Homburg, Germany
| |
Collapse
|
77
|
Natural history of venous morphologic changes in dialysis access stenosis. J Vasc Access 2014; 15:298-305. [PMID: 24500849 DOI: 10.5301/jva.5000212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2013] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Venous stenosis secondary to neointimal hyperplasia is a major etiology of early arteriovenous fistula (AVF) failure. The natural history of AVF failure is likely influenced by progressive vascular insults to the vein prior to and after AVF creation. The main objectives of this study were to (1) provide a histologic and morphometric description of non-chronic kidney disease (CKD), upper extremity vein specimens and (2) perform a morphometric analysis to study venous histology from non-CKD upper extremity veins, veins collected at the time of new vascular access surgery and veins collected from failed stenotic AVFs. METHODS Vein samples from 11 non-CKD deceased donors, 29 subjects receiving new vascular access creation and 20 subjects with stenotic failed AVFs were collected for histologic and morphometric analysis. RESULTS The mean values of average intima/media thickness ± S.E. from veins collected from non-CKD subjects, subjects receiving new vascular access and subjects with stenotic AVFs were 0.16±0.02, 0.43±0.07 and 3.84±0.55, respectively (p<0.0001). Among donor, non-CKD, vein samples, only diabetes (p=0.0007) was associated with increased average intima/media thickness. CONCLUSIONS Our results demonstrate a progressively increasing venous neointimal hyperplasia development from the non-CKD period through the period of AVF creation and failure. Vascular injuries from complications of progressive CKD prior to access placement and vascular injuries after vascular access placement may play important roles in these progressive vascular changes, and need to be further elucidated.
Collapse
|
78
|
Lu DY, Chen EY, Wong DJ, Yamamoto K, Protack CD, Williams WT, Assi R, Hall MR, Sadaghianloo N, Dardik A. Vein graft adaptation and fistula maturation in the arterial environment. J Surg Res 2014; 188:162-73. [PMID: 24582063 DOI: 10.1016/j.jss.2014.01.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/25/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022]
Abstract
Veins are exposed to the arterial environment during two common surgical procedures, creation of vein grafts and arteriovenous fistulae (AVF). In both cases, veins adapt to the arterial environment that is characterized by different hemodynamic conditions and increased oxygen tension compared with the venous environment. Successful venous adaptation to the arterial environment is critical for long-term success of the vein graft or AVF and, in both cases, is generally characterized by venous dilation and wall thickening. However, AVF are exposed to a high flow, high shear stress, low-pressure arterial environment and adapt mainly via outward dilation with less intimal thickening. Vein grafts are exposed to a moderate flow, moderate shear stress, high-pressure arterial environment and adapt mainly via increased wall thickening with less outward dilation. We review the data that describe these differences, as well as the underlying molecular mechanisms that mediate these processes. Despite extensive research, there are few differences in the molecular pathways that regulate cell proliferation and migration or matrix synthesis, secretion, or degradation currently identified between vein graft adaptation and AVF maturation that account for the different types of venous adaptation to arterial environments.
Collapse
Affiliation(s)
- Daniel Y Lu
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Y Chen
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel J Wong
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Kota Yamamoto
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut
| | - Clinton D Protack
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Willis T Williams
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Roland Assi
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Michael R Hall
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Nirvana Sadaghianloo
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; Department of Vascular Surgery, University Hospital of Nice, Nice, France
| | - Alan Dardik
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
79
|
Remuzzi A, Ene-Iordache B. Novel paradigms for dialysis vascular access: upstream hemodynamics and vascular remodeling in dialysis access stenosis. Clin J Am Soc Nephrol 2013; 8:2186-93. [PMID: 23990161 PMCID: PMC3848396 DOI: 10.2215/cjn.03450413] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Failure of hemodialysis access is caused mostly by venous intimal hyperplasia, a fibro-muscular thickening of the vessel wall. The pathogenesis of venous neointimal hyperplasia in primary arteriovenous fistulae consists of processes that have been identified as upstream and downstream events. Upstream events are the initial events producing injury of the endothelial layer (surgical trauma, hemodynamic shear stress, vessel wall injury due to needle punctures, etc.). Downstream events are the responses of the vascular wall at the endothelial injury that consist of a cascade of processes including leukocyte adhesion, migration of smooth muscle cells from the media to the intimal layer, and proliferation. In arteriovenous fistulae, the stenoses occur in specific sites, consistently related to the local hemodynamics determined by the vessel geometry and blood flow pattern. Recent findings that the localization of these sites matches areas of disturbed flow may add new insights into the pathogenesis of neointimal hyperplasia in the venous side of vascular access after the creation of the anastomosis. The detailed study of fluid flow motion acting on the vascular wall in anastomosed vessels and in the arm vasculature at the patient-specific level may help to elucidate the role of hemodynamics in vascular remodeling and neointimal hyperplasia formation. These computational approaches may also help in surgical planning for the amelioration of clinical outcome. This review aims to discuss the role of the disturbed flow condition in acting as upstream event in the pathogenesis of venous intimal hyperplasia and in producing subsequent local vascular remodeling in autogenous arteriovenous fistulae used for hemodialysis access. The potential use of blood flow analysis in the management of vascular access is also discussed.
Collapse
Affiliation(s)
- Andrea Remuzzi
- Biomedical Engineering Department, IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri,” Bergamo, Italy; and
- Engineering Department, University of Bergamo, Bergamo, Italy
| | - Bogdan Ene-Iordache
- Biomedical Engineering Department, IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri,” Bergamo, Italy; and
| |
Collapse
|
80
|
Feng W, Chumley P, Allon M, George J, Scott DW, Patel RP, Litovsky S, Jaimes EA. The transcription factor E26 transformation-specific sequence-1 mediates neointima formation in arteriovenous fistula. J Am Soc Nephrol 2013; 25:475-87. [PMID: 24203999 DOI: 10.1681/asn.2013040424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hemodialysis vascular access dysfunction contributes to increased morbidity and mortality in hemodialysis patients. Arteriovenous fistula (AVF) is the preferred type of vascular access for hemodialysis but has high rates of dysfunction, in part because of excessive neointima formation. The transcription factor E26 transformation-specific sequence-1 (ETS-1) is a mediator of proinflammatory responses in hypertension and endovascular injury. We examined the role of ETS-1 in the formation of neointima in AVF. Right carotid artery to internal jugular vein fistulas were created in C57BL/6 mice and assigned to treatment with an ETS-1-dominant negative peptide (ETS-DN), an inactive mutant peptide (ETS-MU), or vehicle (n=6 per group). After 7 and 21 days, AVFs or contralateral internal jugular veins were processed for PCR, immunofluorescence, immunohistochemistry, and morphometry. In AVFs, ETS-1 mRNA increased 2.5-fold at 7 days and 4-fold at 21 days. By immunofluorescence, we confirmed increased expression of ETS-1 predominantly in the neointima and overlying endothelium. Similarly, ETS-1 expression increased in human AVFs compared with normal veins. In mice, ETS-DN, but not ETS-MU, reduced neointima formation at days 7 and 21 and reduced the expression of nitric oxide synthase 2, NADPH oxidase (NOX) 2, NOX4, E-selectin, and monocyte chemotactic protein-1. Shear stress increased ETS-1 phosphorylation in human umbilical vein cells in a NOX-dependent manner, demonstrating a role for reactive oxygen species in ETS-1 activation. These results unveil the role of ETS-1 as a mediator of neointima formation in AVF and may result in the development of novel strategies for the treatment of AVF dysfunction.
Collapse
|
81
|
The impact of inflammatory factors associated with primary arteriovenous failure. Int J Artif Organs 2013; 36:710-6. [PMID: 23918269 DOI: 10.5301/ijao.5000235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2013] [Indexed: 01/06/2023]
Abstract
PURPOSE Very scarce data exist regarding the relationship between differential white blood cell (WBC) counts and primary arteriovenous fistula (AVF) failure. Thus, the current study aimed to investigate the specific relationship between primary AVF failure and differential WBC counts.
METHODS Sociodemographic, clinical, and laboratory parameters including automatically determined complete blood counts of the patients (from medical records and hospital charts) prior to AVF fistula surgery were recorded. Primary AVF failure was described as a complication of the AVF before the first successful cannulation for HD treatment.
RESULTS In total 94 patients (Male/Female: 49/45, Aged: 50.9 ± 15.0 years) were included. Ferritin, high sensitive C-reactive protein (hs-crp), total WBC count, neutrophil count, red cell distribution width (RDW) were higher in patients with primary AVF failure compared to patients without primary AVF failure. Logistic regression analysis showed that presence of diabetes (OR = 3.654, p = 0.035), RDW (OR = 0.449, p = 0.033) and ferritin (OR = 1.097, p = 0.021) were independently related with primary AVF failure.
CONCLUSIONS Neither total WBC counts nor WBC subtypes were related with primary AVF failure. Higher RDW and ferritin levels had a prognostic value for development of primary AVF failure.
Collapse
|
82
|
Gene expression changes in venous segment of overflow arteriovenous fistula. Int J Nephrol 2013; 2013:980923. [PMID: 23710358 PMCID: PMC3655589 DOI: 10.1155/2013/980923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/06/2013] [Accepted: 04/06/2013] [Indexed: 12/03/2022] Open
Abstract
Aim. The objective of this study was to characterize coordinated molecular changes in the structure and composition of the walls of venous segments of arteriovenous (AV) fistulas evoked by overflow. Methods. Venous tissue samples were collected from 6 hemodialysis patients with AV fistulas exposed to overflow and from the normal cephalic veins of 4 other hemodialysis patients. Total RNA was extracted from the venous tissue samples, and gene expression between the 2 groups was compared using Whole Human Genome DNA microarray 44 K. Microarray data were analyzed by GeneSpring GX software and Ingenuity Pathway Analysis. Results. The cDNA microarray analysis identified 397 upregulated genes and 456 downregulated genes. Gene ontology analysis with GeneSpring GX software revealed that biological developmental processes and glycosaminoglycan binding were the most upregulated. In addition, most upregulation occurred extracellularly. In the pathway analysis, the TGF beta signaling pathway, cytokines and inflammatory response pathway, hypertrophy model, and the myometrial relaxation and contraction pathway were significantly upregulated compared with the control cephalic vein. Conclusion. Combining microarray results and pathway information available via the Internet provided biological insight into the structure and composition of the venous wall of overflow AV fistulas.
Collapse
|
83
|
Wong CY, de Vries MR, Wang Y, van der Vorst JR, Vahrmeijer AL, van Zonneveld AJ, Roy-Chaudhury P, Rabelink TJ, Quax PHA, Rotmans JI. Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure. J Vasc Surg 2013; 59:192-201.e1. [PMID: 23684425 DOI: 10.1016/j.jvs.2013.02.242] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/06/2013] [Accepted: 02/21/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The arteriovenous fistula (AVF) still suffers from a high number of failures caused by insufficient outward remodeling and intimal hyperplasia (IH) formation from which the exact mechanism is largely unknown. A suitable animal model is of vital importance in the unraveling of the underlying pathophysiology. However, current murine models of AVF failure do not incorporate the surgical configuration that is commonly used in humans. Because the hemodynamic profile is one of the key determinants that play a role in vascular remodeling in the AVF, it is preferable to use this same configuration in an animal model. Here we describe a novel murine model of AVF failure in which the configuration (end-to-side) is similar to what is most frequently performed in humans. METHODS An AVF was created in 45 C57BL/6 mice by anastomosing the end of a branch of the external jugular vein to the side of the common carotid artery with interrupted sutures. The AVFs were harvested and analyzed histologically at days 7, 14, and 28. Identical veins of unoperated-on mice served as controls. Intravenous near-infrared fluorescent fluorophores were used to assess the patency of the fistula. RESULTS The patency rates at days 7, 14, and 28 days were 88%, 90%, and 50%, respectively. The mean circumference increased up to day 14, with a maximum 1.4-fold increase at day 7 compared with the control group (1.82 ± 0.7 vs 1.33 ± 0.3 mm; P = .443). Between days 14 and 28, the circumference remained constant (2.36 ± 0.2 vs 2.45 ± 0.2 mm; P = .996). At 7 days after surgery, the intimal area consisted mainly of an acellular layer that was structurally analogous to a focal adherent thrombus. Starting at 14 days after surgery, venous IH increased significantly compared with the unoperated-on group (14 days: 115,090 ± 22,594 μm(2), 28 days: 234,619 ± 47,828 μm(2), unoperated group: 2368 ± 1056 μm(2); P = .001 and P < .001, respectively) and was mainly composed of cells positive for α-smooth muscle actin. We observed leukocytes in the adventitial side of the vein at all time points. CONCLUSIONS Our novel murine AVF model, which incorporates a clinically relevant configuration of the anastomosis, displays similar features that are characteristic of failing human AVFs. Moreover, our findings suggest that coagulation and inflammation could both potentially play an important role in the formation of IH and subsequent AVF failure. Near-infrared fluoroscopy was a suitable alternative for conventional imaging techniques. This murine AVF-model is a valuable addition to the AVF animal model arsenal.
Collapse
Affiliation(s)
- Chun-Yu Wong
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Margreet R de Vries
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Wang
- Division of Nephrology, University of Cincinnati, Cincinnati, Ohio
| | | | | | - Anton Jan van Zonneveld
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
84
|
Riella MC, Roy-Chaudhury P. Vascular access in haemodialysis: strengthening the Achilles' heel. Nat Rev Nephrol 2013; 9:348-57. [DOI: 10.1038/nrneph.2013.76] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
85
|
Verschuren JJW, Ocak G, Dekker FW, Rabelink TJ, Jukema JW, Rotmans JI. Candidate gene analysis of arteriovenous fistula failure in hemodialysis patients. Clin J Am Soc Nephrol 2013; 8:1358-66. [PMID: 23559680 DOI: 10.2215/cjn.11091012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Arteriovenous fistula (AVF) failure remains an important cause of morbidity in hemodialysis patients. The exact underlying mechanisms responsible for AVF failure are unknown but processes like proliferation, inflammation, vascular remodeling, and thrombosis are thought to be involved. The current objective was to investigate the association between AVF failure and single nucleotide polymorphisms (SNPs) in genes related to these pathophysiologic processes in a large population of incident hemodialysis patients. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A total of 479 incident hemodialysis patients were included between January 1997 and April 2004. Follow-up lasted 2 years or until AVF failure, defined as surgery, percutaneous endovascular intervention, or abandonment of the vascular access. Forty-three SNPs in 26 genes, related to proliferation, inflammation, endothelial function, vascular remodeling, coagulation, and calcium/phosphate metabolism, were genotyped. Relations were analyzed using Cox regression analysis. RESULTS In total, 207 (43.2%) patients developed AVF failure. After adjustment, two SNPs were significantly associated with an increased risk of AVF failure. The hazard ratio (95% confidence interval) of LRP1 rs1466535 was 1.75 (1.15 to 2.66) and patients with factor V Leiden had a hazard ratio of 2.54 (1.41 to 4.56) to develop AVF failure. The other SNPs were not associated with AVF failure. CONCLUSIONS In this large cohort of hemodialysis patients, only 2 of the 43 candidate SNPs were associated with an increased risk of AVF failure. Whether other factors, like local hemodynamic circumstances, are more important or other SNPs play a role in AVF failure remains to be elucidated.
Collapse
|
86
|
Rothuizen TC, Wong C, Quax PHA, van Zonneveld AJ, Rabelink TJ, Rotmans JI. Arteriovenous access failure: more than just intimal hyperplasia? Nephrol Dial Transplant 2013; 28:1085-92. [PMID: 23543595 DOI: 10.1093/ndt/gft068] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Haemodialysis vascular access patency is severely compromised by fistula non-maturation and access stenosis. Intimal hyperplasia (IH) is considered the culprit lesion in failed fistulas, resulting in luminal narrowing and stenosis. This review focuses on the biology and pathophysiology of fistula failure and highlights not only the classically associated IH but also some relatively neglected but potentially important contributors such as inadequate outward remodelling. In addition, the complex process and fragile balance of successful fistula maturation might be partially hindered by pre-existent chronic kidney disease-mediated vasculopathy. Further unravelling the (patho)physiology of outward remodelling and IH could contribute to novel therapies and enhance fistula patency.
Collapse
Affiliation(s)
- Tonia C Rothuizen
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
87
|
Ruiz A, Flanagan CE, Masters KS. Differential support of cell adhesion and growth by copolymers of polyurethane with hyaluronic acid. J Biomed Mater Res A 2013; 101:2870-82. [DOI: 10.1002/jbm.a.34597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/04/2012] [Accepted: 01/02/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Amaliris Ruiz
- Materials Science Program; University of Wisconsin; Madison; Wisconsin
| | - Claire E. Flanagan
- Department of Biomedical Engineering; University of Wisconsin; Madison; Wisconsin
| | | |
Collapse
|
88
|
Roy-Chaudhury P, El-Khatib M, Campos-Naciff B, Wadehra D, Ramani K, Leesar M, Mistry M, Wang Y, Chan JS, Lee T, Munda R. Back to the Future: How Biology and Technology Could Change the Role of PTFE Grafts in Vascular Access Management. Semin Dial 2012; 25:495-504. [DOI: 10.1111/j.1525-139x.2012.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
89
|
Restoration of autologous arteriovenous fistula by vascular stripping in a hemodialysis patient with venous neointimal hyperplasia. J Vasc Access 2012; 13:524-6. [PMID: 22865536 DOI: 10.5301/jva.5000090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2012] [Indexed: 11/20/2022] Open
Abstract
A significant number of arteriovenous fistulae fail because of venous neointimal hyperplasia-associated vascular blockage. We developed a surgical technique for repairing arteriovenous fistulae by surgically removing neointimal hyperplasia and vessel re-anastomosis. Here, we report the successful treatment of a case that developed arteriovenous fistula stenosis because of venous neointimal hyperplasia.
Collapse
|
90
|
Sanders WG, Morisseau C, Hammock BD, Cheung AK, Terry CM. Soluble epoxide hydrolase expression in a porcine model of arteriovenous graft stenosis and anti-inflammatory effects of a soluble epoxide hydrolase inhibitor. Am J Physiol Cell Physiol 2012; 303:C278-90. [PMID: 22621785 PMCID: PMC3423029 DOI: 10.1152/ajpcell.00386.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 05/21/2012] [Indexed: 01/09/2023]
Abstract
Synthetic arteriovenous (AV) grafts, placed between an artery and vein, are used for hemodialysis but often fail due to stenosis, typically at the vein-graft anastomosis. This study recorded T lymphocyte and macrophage accumulation at the vein-graft anastomosis, suggesting a role for inflammation in stenosis development. Epoxyeicosatrienoic acids (EETs), products of cytochrome P-450 epoxidation of arachidonic acid, have vasculoprotective and anti-inflammatory effects including inhibition of platelet activation, cell migration, and adhesion. EETs are hydrolyzed by soluble epoxide hydrolase (sEH) to less active diols. The effects of a specific inhibitor of sEH (sEHI) on cytokine release from human monocytes and mouse bone marrow-derived macrophages (BMMΦ) from wild-type (WT) and sEH knockout (KO) animals were investigated. Expression of sEH protein increased over time at the anastomosis as evaluated by immunohistochemistry. Pre-exposure of adherent human monocytes to sEHI (5 μM) significantly inhibited lipopolysaccharide-induced release of monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-α and enhanced the EET-to-diol ratio. Release of MCP-1 from WT BMMΦ was significantly inhibited but release from sEH KO BMMΦ was not attenuated indicating the specificity of the sEHI. In contrast, sEHI did not inhibit the release of macrophage inflammatory protein-1 or interleukin-6. Nuclear translocation of NF-κB, as assessed by immunocytochemical staining, was not decreased with sEHI in monocytes, but the phosphorylation of JNK was completely abrogated, suggesting this pathway is the target of sEHI effects in monocytes. These results suggest that sEHI may be useful for inhibition of inflammation and subsequently stenosis in AV grafts.
Collapse
Affiliation(s)
- William G Sanders
- Department of Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
91
|
Ene-Iordache B, Cattaneo L, Dubini G, Remuzzi A. Effect of anastomosis angle on the localization of disturbed flow in 'side-to-end' fistulae for haemodialysis access. Nephrol Dial Transplant 2012; 28:997-1005. [PMID: 22785110 DOI: 10.1093/ndt/gfs298] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Early failure of the vascular access for haemodialysis (HD) after the surgical creation of a radial-cephalic arteriovenous fistula (AVF) occurs mainly due to a juxta-anastomotic stenosis. Even if elevated blood flow induces high wall shear stress, we have recently shown that disturbed flow, characterized by low and reciprocating flow, may develop in zones of the AVF where it can provide a good indication of the sites of future stenoses. The present study was aimed at investigating whether the anastomosis angle influences disturbed flow in radial-cephalic 'side-to-end' AVF. METHODS By means of a parametric AVF model we created four equivalent meshes with anastomosis angles of 30°, 45°, 60° and 90°, respectively. We then performed transient, non-Newtonian computational fluid dynamics simulations using, as boundary conditions, previously measured blood volume flow and division ratio in subjects requiring primary access. The relative residence time (RRT), a robust indicator of disturbed flow, was calculated for the overall wall surface and disturbed flow was localized as areas having RRT > 1. Quantitative characterization and statistical tests were employed to assess the difference in RRT medians between the four anastomosis angle cases. RESULTS Disturbed flow was located in all AVF models in the same areas where flow recirculation and stagnation occurred, on the inner wall of the swing segment (SS) and on the arterial wall at the anastomosis floor (AF). A smaller angle AVF had smaller disturbed flow areas with lower RRT peak values, either on the venous or the arterial limb. There were significant differences in the RRT medians on the SS and on the AF between sharper (30° and 45°) and wider (60° or 90°) angles. CONCLUSIONS We have found that in 'side-to-end' radial-cephalic AVFs for HD, the anastomosis angle does impact on the local disturbed flow patterns. Among the four geometries we considered in this study, the smaller angle (30°) would be the preferred choice that minimizes the development of neointima. Clinicians should consider this at the time of AVF creation because the anastomosis angle is in part amenable to surgical manipulation.
Collapse
Affiliation(s)
- Bogdan Ene-Iordache
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Mario Negri Institute for Pharmacological Research, Ranica, BG, Italy.
| | | | | | | |
Collapse
|
92
|
Collins MJ, Li X, Lv W, Yang C, Protack CD, Muto A, Jadlowiec CC, Shu C, Dardik A. Therapeutic strategies to combat neointimal hyperplasia in vascular grafts. Expert Rev Cardiovasc Ther 2012; 10:635-47. [PMID: 22651839 PMCID: PMC3401520 DOI: 10.1586/erc.12.33] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neointimal hyperplasia (NIH) in bypass conduits such as veins and prosthetic grafts is an important clinical entity that limits the long-term success of vascular interventions. Although the development of NIH in the conduits shares many of the same features of NIH that develops in native arteries after injury, vascular grafts are exposed to unique circumstances that predispose them to NIH, including surgical trauma related to vein handling, hemodynamic changes creating areas of low flow, and differences in biocompatibility between the conduit and the host environment. Multiple different approaches, including novel surgical techniques and targeted gene therapies, have been developed to target and prevent the causes of NIH. Recently, the PREVENT trials, the first molecular biology trials in vascular surgery aimed at preventing NIH, have failed to produce improved clinical outcomes, highlighting the incomplete knowledge of the pathways leading to NIH in vascular grafts. In this review, we aim to summarize the pathophysiologic pathways that underlie the formation of NIH in both vein and synthetic grafts and discuss current and potential mechanical and molecular approaches under investigation that may limit NIH in vascular grafts.
Collapse
Affiliation(s)
- Michael J Collins
- Department of Surgery and the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT, USA
| | - Xin Li
- Department of Surgery and the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT, USA
- Department of Vascular Surgery, Xiangya Second Hospital of Central South University, Changsha, Hunan, China
| | - Wei Lv
- Department of Surgery and the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT, USA
- Department of Vascular Surgery, Shandong Provincial Hospital, Shandong University School of Medicine, Jinan, Shandong, China
| | - Chenzi Yang
- Department of Surgery and the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT, USA
- Department of Vascular Surgery, Xiangya Second Hospital of Central South University, Changsha, Hunan, China
| | - Clinton D Protack
- Department of Surgery and the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT, USA
| | - Akihito Muto
- Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Caroline C Jadlowiec
- Department of Surgery and the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT, USA
| | - Chang Shu
- Department of Vascular Surgery, Xiangya Second Hospital of Central South University, Changsha, Hunan, China
| | - Alan Dardik
- Department of Surgery and the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
93
|
Lee T, Safdar N, Mistry MJ, Wang Y, Chauhan V, Campos B, Munda R, Cornea V, Roy-Chaudhury P. Preexisting venous calcification prior to dialysis vascular access surgery. Semin Dial 2012; 25:592-5. [PMID: 22452638 DOI: 10.1111/j.1525-139x.2012.01063.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vascular calcification is present in arterial vessels used for dialysis vascular access creation prior to surgical creation. Calcification in the veins used to create a new vascular access has not previously been documented. The objective of this study was to describe the prevalence of venous calcification in samples collected at the time of vascular access creation. Sixty-seven vein samples were studied. A von Kossa stain was performed to quantify calcification. A semi-quantitative scoring system from 0 to 4+ was used to quantify the percentage positive area for calcification as a fraction of total area (0: 0; 1+: 1-10%; 2+: 11-25%; 3+: 26-50%; 4+: >50% positive). Twenty-two of 67 (33%) samples showed evidence of venous calcification. Histologic examination showed varying degrees of calcification within each cell layer. Among the subset of patients with calcification, 4/22 (18%), 19/22 (86%), 22/22 (100%), and 7/22 (32%) had calcification present within the endothelium, intima, media, and adventitia, respectively. The mean semi-quantitative scores of the 22 samples with calcification were 0.18 ± 0.08, 1.2 ± 0.14, 1.6 ± 0.13, and 0.36 ± 0.12 for the endothelium, intima, media, and adventitia, respectively. Our results demonstrate that vascular calcification is present within veins used to create new dialysis vascular access, and located predominately within the neointimal and medial layers.
Collapse
Affiliation(s)
- Timmy Lee
- Department of Internal Medicine and Division of Nephrology and Hypertension, University of Cincinnati, Ohio 45267-0585, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Globerman AS, Chaouat M, Shlomai Z, Galun E, Zeira E, Zamir G. Efficient transgene expression from naked DNA delivered into an arterio-venous fistula model for kidney dialysis. J Gene Med 2012; 13:611-21. [PMID: 22002501 DOI: 10.1002/jgm.1615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Patients with kidney failure frequently require the formation of an arterio-venous fistula (AVF) in which a vein is connected to an artery resulting in arterialization of the vein to allow adequate blood flow into an external 'artificial kidney'. In most patients, neo-intimal hyperplasia (NIH) ensues, causing narrowing and subsequent occlusion of the vein, leading to significant morbidity. The cellular events causing venous NIH may serve as ideal targets for molecular-based therapies. However, therapeutic gene delivery into the vascular system is seriously impeded by problems related to the low efficacy and toxicity of targeted viral vector delivery. MATERIALS AND METHODS To explore the feasibility of a plasmid-based vascular gene delivery system, we established a rat AVF model that develops NIH. Plasmids encoding for reporter or therapeutic genes were delivered into the blood vessels at the time or after AVF formation. RESULTS Intra-luminal injection of plasmid into the AVF resulted in extensive and long-term reporter gene expression at the venous limb mainly at the site of NIH formation. Transgene expression was confined to endothelial cells and myofibroblasts that migrate inwards from the adventitia and form the NIH lesion. There was no detrimental tissue reaction to plasmid delivery, contrasting with the severe inflammatory response observed after adenovirus infection. Intra-vascular delivery of a plasmid carrying the endothelial nitric oxide synthase gene resulted in sustained production of nitric oxide, previously shown to mitigate NIH formation. CONCLUSIONS These findings open the possibility of vascular transduction with naked DNA bearing therapeutic genes in areas prone to NIH to ameliorate vein graft pathologies using simple and clinically applicable vector delivery methods.
Collapse
Affiliation(s)
- Anat S Globerman
- Laboratory of Experimental Surgery, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
95
|
Baek I, Bai CZ, Hwang J, Nam HY, Park JS, Kim DJ. Paclitaxel coating of the luminal surface of hemodialysis grafts with effective suppression of neointimal hyperplasia. J Vasc Surg 2012; 55:806-814.e1. [DOI: 10.1016/j.jvs.2011.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/01/2011] [Accepted: 09/07/2011] [Indexed: 11/27/2022]
|
96
|
Basile C, Konner K, Lomonte C. The haemodialysis arteriovenous graft: is a new era coming? Nephrol Dial Transplant 2012; 27:876-8. [PMID: 22328734 DOI: 10.1093/ndt/gfs019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
97
|
Manning E, Skartsis N, Orta AM, Velazquez OC, Liu ZJ, Asif A, Salman LH, Vazquez-Padron RI. A new arteriovenous fistula model to study the development of neointimal hyperplasia. J Vasc Res 2012; 49:123-31. [PMID: 22249138 DOI: 10.1159/000332327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022] Open
Abstract
This study describes an alternative arteriovenous fistula (AVF) model in the rat in which the animals develop significant neointimal hyperplasia (NIH) not only at the distal anastomotic site, but also throughout the fistula body. This aortocaval fistula was established by anastomosing the distal end of the renal vein to the abdominal aorta after unilateral nephrectomy. The increased hemodynamic stress resulting from exposing the renal vein to the arterial circulation induced venous NIH as early as 7 days after surgery. This experimental AVF was characterized by the early lack of endothelium, the accumulation of proliferating vascular smooth muscle cells and the neovascularization of the fistula adventitia. In summary, we have described an informative animal model to study the pathobiology of NIH in native AVF.
Collapse
Affiliation(s)
- Eddie Manning
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Fla. 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Jackson AJ, Coats P, Kingsmore DB. Pharmacotherapy to improve outcomes in vascular access surgery: a review of current treatment strategies. Nephrol Dial Transplant 2012; 27:2005-16. [PMID: 22247232 DOI: 10.1093/ndt/gfr552] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Renal failure is a major cause of morbidity in western Europe, with rising prevalence. Vascular access complications are the leading cause of morbidity among patients on haemodialysis. Considering the health care burden of vascular access failure, there is limited research dedicated to the topic. METHODS Randomised control trials of medications aimed at improving vascular access patency were identified using a medline search between January 1950 and January 2011. RESULTS Thirteen randomised trials were identified, investigating antiplatelets, anticoagulants and fish oil in preserving vascular access patency. Outcomes are presented and reviewed in conjunction with the underlying pathophysiological mechanisms of failure of vascular access. DISCUSSION Vascular access failure is a complex process. Most clinical trials so far have involved medications primarily aimed at preventing thrombosis. Other contributing pathways such as neointimal hyperplasia have not been investigated clinically. Improved outcomes may be seen by linking future therapies to these pathways.
Collapse
Affiliation(s)
- Andrew J Jackson
- Department of Transplant Surgery, Western Infirmary, Glasgow, UK.
| | | | | |
Collapse
|
99
|
Baek I, Bai CZ, Hwang J, Park J, Park JS, Kim DJ. Suppression of neointimal hyperplasia by sirolimus-eluting expanded polytetrafluoroethylene (ePTFE) haemodialysis grafts in comparison with paclitaxel-coated grafts. Nephrol Dial Transplant 2011; 27:1997-2004. [DOI: 10.1093/ndt/gfr545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
100
|
Prichard HL, Manson RJ, DiBernardo L, Niklason LE, Lawson JH, Dahl SLM. An early study on the mechanisms that allow tissue-engineered vascular grafts to resist intimal hyperplasia. J Cardiovasc Transl Res 2011; 4:674-82. [PMID: 21748530 PMCID: PMC3175038 DOI: 10.1007/s12265-011-9306-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/26/2011] [Indexed: 11/29/2022]
Abstract
Intimal hyperplasia is one of the prominent failure mechanisms for arteriovenous fistulas and arteriovenous access grafts. Human tissue-engineered vascular grafts (TEVGs) were implanted as arteriovenous grafts in a novel baboon model. Ultrasound was used to monitor flow rates and vascular diameters throughout the study. Intimal hyperplasia in the outflow vein of TEVGs was assessed at the anastomosis and at juxta-anastomotic regions via histological analysis, and was compared to intimal hyperplasia with polytetrafluoroethylene (PTFE) grafts in the baboon model and in literature reports from other animal models. Less venous intimal hyperplasia was observed in histological sections with arteriovenous TEVGs than with arteriovenous PTFE grafts. TEVGs were associated with a mild, noninflammatory intimal hyperplasia. The extent of intimal tissue that formed with TEVG placement correlated with the rate of blood flow through tissue engineered vascular grafts at 2 weeks postimplant. Outflow vein dilatation was observed with increased flow rate. Both mid-graft flow rates and outflow vein diameters reached a plateau by week 4, which suggested that venous remodeling and intimal hyperplasia largely occurred within the first 4 weeks of implant in the baboon model. Given their compliant and noninflammatory nature, TEVGs appear resistant to triggers for venous intimal hyperplasia that are common for PTFE arteriovenous grafts, including (1) abundant proinflammatory macrophage populations that are associated with PTFE grafts and (2) compliance mismatch between PTFE grafts and the outflow vein. Our findings suggest that arteriovenous TEVGs develop only a mild form of venous intimal hyperplasia, which results from the typical hemodynamic changes that are associated with arteriovenous settings.
Collapse
Affiliation(s)
| | - Roberto J. Manson
- Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Louis DiBernardo
- Department of Pathology, Duke University Medical Center, Durham, NC USA
| | - Laura E. Niklason
- Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT USA
| | - Jeffrey H. Lawson
- Departments of Surgery and Pathology, Duke University Medical Center, Durham, NC USA
| | | |
Collapse
|