51
|
Gillespie MS, Ward CM, Davies CC. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel) 2023; 15:1897. [PMID: 36980782 PMCID: PMC10047301 DOI: 10.3390/cancers15061897] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
First-line cancer treatments successfully eradicate the differentiated tumour mass but are comparatively ineffective against cancer stem cells (CSCs), a self-renewing subpopulation thought to be responsible for tumour initiation, metastasis, heterogeneity, and recurrence. CSCs are thus presented as the principal target for elimination during cancer treatment. However, CSCs are challenging to drug target because of numerous intrinsic and extrinsic mechanisms of drug resistance. One such mechanism that remains relatively understudied is the DNA damage response (DDR). CSCs are presumed to possess properties that enable enhanced DNA repair efficiency relative to their highly proliferative bulk progeny, facilitating improved repair of double-strand breaks induced by radiotherapy and most chemotherapeutics. This can occur through multiple mechanisms, including increased expression and splicing fidelity of DNA repair genes, robust activation of cell cycle checkpoints, and elevated homologous recombination-mediated DNA repair. Herein, we summarise the current knowledge concerning improved genome integrity in non-transformed stem cells and CSCs, discuss therapeutic opportunities within the DDR for re-sensitising CSCs to genotoxic stressors, and consider the challenges posed regarding unbiased identification of novel DDR-directed strategies in CSCs. A better understanding of the DDR mediating chemo/radioresistance mechanisms in CSCs could lead to novel therapeutic approaches, thereby enhancing treatment efficacy in cancer patients.
Collapse
Affiliation(s)
- Matthew S. Gillespie
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
- School of Cancer Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ciara M. Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| |
Collapse
|
52
|
Dmello C, Zhao J, Chen L, Gould A, Castro B, Arrieta VA, Zhang DY, Kim KS, Kanojia D, Zhang P, Miska J, Yeeravalli R, Habashy K, Saganty R, Kang SJ, Fares J, Liu C, Dunn G, Bartom E, Schipma MJ, Hsu PD, Alghamri MS, Lesniak MS, Heimberger AB, Rabadan R, Lee-Chang C, Sonabend AM. Checkpoint kinase 1/2 inhibition potentiates anti-tumoral immune response and sensitizes gliomas to immune checkpoint blockade. Nat Commun 2023; 14:1566. [PMID: 36949040 PMCID: PMC10033639 DOI: 10.1038/s41467-023-36878-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/24/2023] Open
Abstract
Whereas the contribution of tumor microenvironment to the profound immune suppression of glioblastoma (GBM) is clear, tumor-cell intrinsic mechanisms that regulate resistance to CD8 T cell mediated killing are less understood. Kinases are potentially druggable targets that drive tumor progression and might influence immune response. Here, we perform an in vivo CRISPR screen to identify glioma intrinsic kinases that contribute to evasion of tumor cells from CD8 T cell recognition. The screen reveals checkpoint kinase 2 (Chek2) to be the most important kinase contributing to escape from CD8 T-cell recognition. Genetic depletion or pharmacological inhibition of Chek2 with blood-brain-barrier permeable drugs that are currently being evaluated in clinical trials, in combination with PD-1 or PD-L1 blockade, lead to survival benefit in multiple preclinical glioma models. Mechanistically, loss of Chek2 enhances antigen presentation, STING pathway activation and PD-L1 expression in mouse gliomas. Analysis of human GBMs demonstrates that Chek2 expression is inversely associated with antigen presentation and T-cell activation. Collectively, these results support Chek2 as a promising target for enhancement of response to immune checkpoint blockade therapy in GBM.
Collapse
Affiliation(s)
- Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrew Gould
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Section of Neurological Surgery, University of Chicago Medicine, Chicago, IL, USA
| | - Victor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Y Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kwang-Soo Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ragini Yeeravalli
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karl Habashy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth Saganty
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Seong Jae Kang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Connor Liu
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gavin Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - Elizabeth Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Matthew J Schipma
- NUSeq Core, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick D Hsu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Department of Neurology, Department of Pathology, Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
53
|
Zhu X, Fang Y, Chen Y, Chen Y, Hong W, Wei W, Tu J. Interaction of tumor-associated microglia/macrophages and cancer stem cells in glioma. Life Sci 2023; 320:121558. [PMID: 36889666 DOI: 10.1016/j.lfs.2023.121558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Glioma is the most common tumor of the primary central nervous system, and its malignant phenotype has been shown to be closely related to glioma stem cells (GSCs). Although temozolomide has significantly improved the therapeutic outcome of glioma with a high penetration rate of the blood-brain barrier, resistance is often present in patients. Moreover, evidence has shown that the crosstalk between GSCs and tumor-associated microglia/macrophages (TAMs) affect the clinical occurrence, growth, and multi-tolerance of chemoradiotherapy in gliomas. Here, we highlight its vital roles in the maintenance of the stemness of GSCs and the ability of GSCs to recruit TAMs to the tumor microenvironment and promote their polarization into tumor-promoting macrophages, hence providing groundwork for future research into new treatment strategies of cancer.
Collapse
Affiliation(s)
- Xiangling Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Chen
- Department of Gynecology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| |
Collapse
|
54
|
Azadi S, Torkashvand E, Mohammadi E, Tafazzoli-Shadpour M. Analysis of EMT induction in a non-invasive breast cancer cell line by mesenchymal stem cell supernatant: Study of 2D and 3D microfluidic based aggregate formation and migration ability, and cytoskeleton remodeling. Life Sci 2023; 320:121545. [PMID: 36871932 DOI: 10.1016/j.lfs.2023.121545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
AIMS The process of Epithelial-to-mesenchymal transition (EMT) as a phenotypic invasive shift and the factors affecting it, are under extensive research. Application of supernatants of human adipose-derived mesenchymal stem cells (hADMSCs) on non-invasive cancer cells is a well known method of in vitro induction of EMT like process. While previous researches have focused on the effects of hADMSCs supernatant on the biochemical signaling pathways of the cells through expression of different proteins and genes, we investigated pro-carcinogic alterations of physico-mechanical cues in terms of changes in cell motility and aggregated formation in 3D microenvironments, and cytoskeletal actin-myosin content and fiber arrangement. MAIN METHODS MCF-7 cancer cells were treated by the supernatant from 48 hour-starved hADMSCs, and their vimentin/E-cadherin expressions were evaluated. The invasive potential of treated and non-treated cells was measured and compared through aggregate formation and migration capability. Furthermore, alterations in cell and nucleus morphologies were studied, and F-actin and myosin-II alterations in terms of content and arrangement were investigated. KEY FINDINGS Results indicated that application of hADMSCs supernatant enhanced vimentin expression as the biomarker of EMT, and induced pro-carcinogenic effects on non-invasive cancer cells through increased invasive potential by higher cell motility and reduced aggregate formation, rearrangement of actin structure and generation of more stress fibers, together with increased myosin II that lead to enhanced cell motility and traction force. SIGNIFICANCE Our results indicated that in vitro induction of EMT through mesenchymal supernatant influenced biophysical features of cancer cells through cytoskeletal remodeling that emphasizes the interconnection of chemical and physical signaling pathways during cancer progress and invasion. Results give a better insight to EMT as a biological process and the synergy between biochemical and biophysical parameters that contribute to this process, and eventually assist in improving cancer treatment strategies.
Collapse
Affiliation(s)
- Shohreh Azadi
- Cell Engineering and Biomicrofluidic Systems Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Elham Torkashvand
- Cell Engineering and Biomicrofluidic Systems Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ehsan Mohammadi
- Cell Engineering and Biomicrofluidic Systems Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cell Engineering and Biomicrofluidic Systems Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
55
|
Cheng X, Liu Z, Liang W, Zhu Q, Wang C, Wang H, Zhang J, Li P, Gao Y. ECM2, a prognostic biomarker for lower grade glioma, serves as a potential novel target for immunotherapy. Int J Biochem Cell Biol 2023; 158:106409. [PMID: 36997057 DOI: 10.1016/j.biocel.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Extracellular matrix protein 2 (ECM2), which regulates cell proliferation and differentiation, has recently been reported as a prognostic indicator for multiple cancers, but its value in lower grade glioma (LGG) remains unknown. In this study, LGG transcriptomic data of 503 cases in The Cancer Genome Atlas (TCGA) database and 403 cases in The Chinese Glioma Genome Atlas (CGGA) database were collected to analyze ECM2 expression patterns and the relationship with clinical characteristics, prognosis, enriched signaling pathways, and immune-related markers. In addition, a total of 12 laboratory samples were used for experimental validation. Wilcoxon or Kruskal-Wallis tests demonstrated highly expressed ECM2 in LGG was positively associated with malignant histological features and molecular features such as recurrent LGG and isocitrate dehydrogenase (IDH) wild-type. Also, Kaplan-Meier (KM) curves proved high ECM2 expression could predict shorter overall survival in LGG patients, as multivariate analysis and meta-analysis claimed ECM2 was a deleterious factor for LGG prognosis. In addition, the enrichment of immune-related pathways for ECM2, for instance JAK-STAT pathway, was obtained by Gene Set Enrichment Analysis (GSEA) analysis. Furthermore, positive relationships between ECM2 expression with immune cells infiltration and cancer-associated fibroblasts (CAFs), iconic markers (CD163), and immune checkpoints (CD274, encoding PD-L1) were proved by Pearson correlation analysis. Finally, laboratory experiments of RT-qPCR and immunohistochemistry showed high expression of ECM2, as well as CD163 and PD-L1 in LGG samples. This study identifies ECM2, for the first time, as a subtype marker and prognostic indicator for LGG. ECM2 could also provide a reliable guarantee for further personalized therapy, synergizing with tumor immunity, to break through the current limitations and thus reinvigorating immunotherapy for LGG. AVAILABILITY OF DATA AND MATERIALS: Raw data from all public databases involved in this study are stored in the online repository (chengMD2022/ECM2 (github.com)).
Collapse
|
56
|
TRUONG NC, HUYNH NT, PHAM KD, PHAM PV. Roles of cancer stem cells in cancer immune surveillance. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
57
|
Al-Holou WN, Wang H, Ravikumar V, Shankar S, Oneka M, Fehmi Z, Verhaak RG, Kim H, Pratt D, Camelo-Piragua S, Speers C, Wahl DR, Hollon T, Sagher O, Heth JA, Muraszko KM, Lawrence TS, de Carvalho AC, Mikkelsen T, Rao A, Rehemtulla A. Subclonal evolution and expansion of spatially distinct THY1-positive cells is associated with recurrence in glioblastoma. Neoplasia 2023; 36:100872. [PMID: 36621024 PMCID: PMC9841165 DOI: 10.1016/j.neo.2022.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Glioblastoma(GBM) is a lethal disease characterized by inevitable recurrence. Here we investigate the molecular pathways mediating resistance, with the goal of identifying novel therapeutic opportunities. EXPERIMENTAL DESIGN We developed a longitudinal in vivo recurrence model utilizing patient-derived explants to produce paired specimens(pre- and post-recurrence) following temozolomide(TMZ) and radiation(IR). These specimens were evaluated for treatment response and to identify gene expression pathways driving treatment resistance. Findings were clinically validated using spatial transcriptomics of human GBMs. RESULTS These studies reveal in replicate cohorts, a gene expression profile characterized by upregulation of mesenchymal and stem-like genes at recurrence. Analyses of clinical databases revealed significant association of this transcriptional profile with worse overall survival and upregulation at recurrence. Notably, gene expression analyses identified upregulation of TGFβ signaling, and more than one-hundred-fold increase in THY1 levels at recurrence. Furthermore, THY1-positive cells represented <10% of cells in treatment-naïve tumors, compared to 75-96% in recurrent tumors. We then isolated THY1-positive cells from treatment-naïve patient samples and determined that they were inherently resistant to chemoradiation in orthotopic models. Additionally, using image-guided biopsies from treatment-naïve human GBM, we conducted spatial transcriptomic analyses. This revealed rare THY1+ regions characterized by mesenchymal/stem-like gene expression, analogous to our recurrent mouse model, which co-localized with macrophages within the perivascular niche. We then inhibited TGFBRI activity in vivo which decreased mesenchymal/stem-like protein levels, including THY1, and restored sensitivity to TMZ/IR in recurrent tumors. CONCLUSIONS These findings reveal that GBM recurrence may result from tumor repopulation by pre-existing, therapy-resistant, THY1-positive, mesenchymal cells within the perivascular niche.
Collapse
Affiliation(s)
- Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hanxiao Wang
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States; AstraZeneca, United States
| | - Visweswaran Ravikumar
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sunita Shankar
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Morgan Oneka
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Ziad Fehmi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | | | - Hoon Kim
- The Jackson Laboratory, Farmington, CT 06032, United States; Department of Biopharmaceutical Convergence, Sungkyunkwan University, South Korea
| | - Drew Pratt
- Department of Pathology, University of Michigan, United States
| | | | - Corey Speers
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Oren Sagher
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jason A Heth
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Karin M Muraszko
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Ana C de Carvalho
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, United States
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, United States
| | - Arvind Rao
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States; Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States.
| |
Collapse
|
58
|
Lee-Chang C, Lesniak MS. Next-generation antigen-presenting cell immune therapeutics for gliomas. J Clin Invest 2023; 133:e163449. [PMID: 36719372 PMCID: PMC9888388 DOI: 10.1172/jci163449] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell-centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo-differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics' past, present, and future in the context of primary brain tumors.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
59
|
Extracellular vesicles throughout development: A potential roadmap for emerging glioblastoma therapies. Semin Cell Dev Biol 2023; 133:32-41. [PMID: 35697594 DOI: 10.1016/j.semcdb.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are membrane-delimited vesicular bodies carrying different molecules, classified according to their size, density, cargo, and origin. Research on this topic has been actively growing through the years, as EVs are associated with critical pathological processes such as neurodegenerative diseases and cancer. Despite that, studies exploring the physiological functions of EVs are sparse, with particular emphasis on their role in organismal development, initial cell differentiation, and morphogenesis. In this review, we explore the topic of EVs from a developmental perspective, discussing their role in the earliest cell-fate decisions and neural tissue morphogenesis. We focus on the function of EVs through development to highlight possible conserved or novel processes that can impact disease progression. Specifically, we take advantage of what was learned about their role in development so far to discuss EVs impact on glioblastoma, a particular brain tumor of stem-cell origin and poor prognosis, and how their function can be hijacked to improve current therapies.
Collapse
|
60
|
Li Y, Wang W, Hou X, Huang W, Zhang P, He Y, Wang B, Duan Q, Mao F, Guo D. Glioma-derived LRIG3 interacts with NETO2 in tumor-associated macrophages to modulate microenvironment and suppress tumor growth. Cell Death Dis 2023; 14:28. [PMID: 36639372 PMCID: PMC9839712 DOI: 10.1038/s41419-023-05555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Tumor-associated macrophages (TAMs) account for 30-50% of glioma microenvironment. The interaction between glioma tumor cells and TAMs can promote tumor progression, but the intrinsic mechanisms remain unclear. Herein, we reported that soluble LRIG3 (sLRIG3) derived from glioma tumor cells can block the M2 polarization of TAMs via interacting with NETO2, thus suppressing GBM malignant progression. The expression or activity of ADAM17 in glioma cells was positively correlated with the expression of sLRIG3 in cell supernatant. Soluble LRIG3 can suppress the M2-like polarity transformation of TAMs and inhibit the growth of tumor. High expression of LRIG3 predicts a good prognosis in patients with glioma. Mass spectrometry and Co-immunoprecipitation showed that sLRIG3 interacts with the CUB1 domain of NETO2 in TAMs. Silencing or knockout of NETO2 could block the effect of sLRIG3, which inhibited the M2-like polarity transformation of TAMs and promoted GBM tumor growth. However, overexpressing His-target NETO2 with CUB1 deletion mutation does not fully recover the suppressive effects of sLRIG3 on the TAM M2-polarization in NETO2-Knockout TAMs. Our study revealed vital molecular crosstalk between GBM tumor cells and TAMs. Glioma cells mediated the M2 polarization of TAM through the sLRIG3-NETO2 pathway and inhibited the progression of GBM, suggesting that sLRIG3-NETO2 may be a potential target for GBM treatment.
Collapse
Affiliation(s)
- Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoshuang Hou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Po Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
61
|
Cancer Stem Cell Relationship with Pro-Tumoral Inflammatory Microenvironment. Biomedicines 2023; 11:biomedicines11010189. [PMID: 36672697 PMCID: PMC9855358 DOI: 10.3390/biomedicines11010189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory processes and cancer stem cells (CSCs) are increasingly recognized as factors in the development of tumors. Emerging evidence indicates that CSCs are associated with cancer properties such as metastasis, treatment resistance, and disease recurrence. However, the precise interaction between CSCs and the immune microenvironment remains unexplored. Although evasion of the immune system by CSCs has been extensively studied, new research demonstrates that CSCs can also control and even profit from the immune response. This review provides an overview of the reciprocal interplay between CSCs and tumor-infiltrating immune cells, collecting pertinent data about how CSCs stimulate leukocyte reprogramming, resulting in pro-tumor immune cells that promote metastasis, chemoresistance, tumorigenicity, and even a rise in the number of CSCs. Tumor-associated macrophages, neutrophils, Th17 and regulatory T cells, mesenchymal stem cells, and cancer-associated fibroblasts, as well as the signaling pathways involved in these pro-tumor activities, are among the immune cells studied. Although cytotoxic leukocytes have the potential to eliminate CSCs, immune evasion mechanisms in CSCs and their clinical implications are also known. We intended to compile experimental findings that provide direct evidence of interactions between CSCs and the immune system and CSCs and the inflammatory milieu. In addition, we aimed to summarize key concepts in order to comprehend the cross-talk between CSCs and the tumor microenvironment as a crucial process for the effective design of anti-CSC therapies.
Collapse
|
62
|
Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:158-181. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM), classified as a grade IV glioma, is a rapidly growing, aggressive, and most commonly occurring tumor of the central nervous system. Despite the therapeutic advances, it carries an ominous prognosis, with a median survival of 14.6 months after diagnosis. Accumulating evidence suggests that cancer stem cells in GBM, termed glioma stem cells (GSCs), play a crucial role in tumor propagation, treatment resistance, and tumor recurrence. GSCs, possessing the capacity for self-renewal and multilineage differentiation, are responsible for tumor growth and heterogeneity, leading to primary obstacles to current cancer therapy. In this respect, increasing efforts have been devoted to the development of anti-GSC strategies based on targeting GSC surface markers, blockage of essential signaling pathways of GSCs, and manipulating the tumor microenvironment (GSC niches). In this review, we will discuss the research knowledge regarding GSC-based therapy and the underlying mechanisms for the treatment of GBM. Given the rapid progression in nanotechnology, innovative nanomedicines developed for GSC targeting will also be highlighted from the perspective of rationale, advantages, and limitations. The goal of this review is to provide broader understanding and key considerations toward the future direction of GSC-based nanotheranostics to fight against GBM.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Te-I Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Siew Suan Ng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
63
|
Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, Clavreul A, Constantin B, Coronas V, Daubon T, Dontenwill M, Ducray F, Enz-Werle N, Figarella-Branger D, Fournier I, Frenel JS, Gabut M, Galli T, Gavard J, Huberfeld G, Hugnot JP, Idbaih A, Junier MP, Mathivet T, Menei P, Meyronet D, Mirjolet C, Morin F, Mosser J, Moyal ECJ, Rousseau V, Salzet M, Sanson M, Seano G, Tabouret E, Tchoghandjian A, Turchi L, Vallette FM, Vats S, Verreault M, Virolle T. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 2023; 9:9-27. [PMID: 36400694 DOI: 10.1016/j.trecan.2022.09.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France.
| | - Cristine Alves da Costa
- Côte d'Azur University, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Team "Laboratory of Excellence (LABEX) Distalz", F-06560 Nice, France
| | - Tony Avril
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Luc Bauchet
- Montpellier University Medical Center, Department of Neurosurgery, INSERM U1191, F-34090 Montpellier, France
| | - Lucie Brisson
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | | | - Hélène Castel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Eric Chevet
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Hervé Chneiweiss
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Anne Clavreul
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - Bruno Constantin
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Valérie Coronas
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Thomas Daubon
- Bordeaux University, CNRS, IBGC, UMR 5095, F-33 077 Bordeaux, France
| | - Monique Dontenwill
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Francois Ducray
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Natacha Enz-Werle
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Dominique Figarella-Branger
- Aix-Marseille University, Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, F-13385 Marseille, France
| | - Isabelle Fournier
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Jean-Sébastien Frenel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Mathieu Gabut
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Julie Gavard
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Gilles Huberfeld
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Université PSL, Paris 75005, France
| | - Jean-Philippe Hugnot
- Montpellier University, Institut de Génomique Fonctionnelle, CNRS, INSERM, F-34094 Montpellier, France
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Pierre Junier
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Thomas Mathivet
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | - Philippe Menei
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, F-69008, Lyon, France
| | - Céline Mirjolet
- Centre Georges-François Leclerc, UNICANCER, Dijon, France. Inserm U1231, Equipe Cadir, F-21000 Dijon, France
| | - Fabrice Morin
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Jean Mosser
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Elisabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, NSERM 1037, CRCT Team RADOPT, Département de Radiothérapie, IUCT-Oncopole, F-31100 Toulouse, France
| | - Véronique Rousseau
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Michel Salzet
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marc Sanson
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Giorgio Seano
- Curie Institute Research Center, Tumor Microenvironment Laboratory, PSL Research University, Inserm U1021, CNRS UMR3347, F-91898 Orsay, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Laurent Turchi
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| | - Francois M Vallette
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Somya Vats
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Maité Verreault
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Thierry Virolle
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| |
Collapse
|
64
|
Suarez-Meade P, Watanabe F, Ruiz-Garcia H, Rafferty SB, Moniz-Garcia D, Schiapparelli PV, Jentoft ME, Imitola J, Quinones-Hinojosa A. SARS-CoV2 entry factors are expressed in primary human glioblastoma and recapitulated in cerebral organoid models. J Neurooncol 2023; 161:67-76. [PMID: 36595192 PMCID: PMC9808689 DOI: 10.1007/s11060-022-04205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults with a median overall survival of only 14.6 months despite aggressive treatment. While immunotherapy has been successful in other cancers, its benefit has been proven elusive in GBM, mainly due to a markedly immunosuppressive tumor microenvironment. SARS-CoV-2 has been associated with the development of a pronounced central nervous system (CNS) inflammatory response when infecting different cells including astrocytes, endothelial cells, and microglia. While SARS-CoV2 entry factors have been described in different tissues, their presence and implication on GBM aggressiveness or microenvironment has not been studied on appropriate preclinical models. METHODS We evaluated the presence of crucial SARS-CoV-2 entry factors: ACE2, TMPRSS2, and NRP1 in matched surgically-derived GBM tissue, cells lines, and organoids; as well as in human brain derived specimens using immunohistochemistry, confocal pixel line intensity quantification, and transcriptome analysis. RESULTS We show that patient derived-GBM tissue and cell cultures express SARS-CoV2 entry factors, being NRP1 the most crucial facilitator of SARS-CoV-2 infection in GBM. Moreover, we demonstrate that, receptor expression remains present in our GBM organoids, making them an adequate model to study the effect of this virus in GBM for the potential development of viral therapies in the future. CONCLUSION Our findings suggest that the SARS-CoV-2 virus entry factors are expressed in primary tissues and organoid models and could be potentially utilized to study the susceptibility of GBM to this virus to target or modulate the tumor microenviroment.
Collapse
Affiliation(s)
- Paola Suarez-Meade
- Brain Tumor Stem Cell Laboratory, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Fumihiro Watanabe
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, Farmington, CT, 06030, USA
| | - Henry Ruiz-Garcia
- Brain Tumor Stem Cell Laboratory, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Seamus B Rafferty
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, Farmington, CT, 06030, USA
| | - Diogo Moniz-Garcia
- Brain Tumor Stem Cell Laboratory, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Paula V Schiapparelli
- Brain Tumor Stem Cell Laboratory, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Mark E Jentoft
- Division of Anatomic Pathology, Mayo Clinic, Jacksonville, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, Farmington, CT, 06030, USA.
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, UConn Health Comprehensive Multiple Sclerosis Center, UConn School of Medicine, 263 Farmington Avenue, Farmington, 06030, USA.
| | - Alfredo Quinones-Hinojosa
- Brain Tumor Stem Cell Laboratory, Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA.
- Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA.
| |
Collapse
|
65
|
The Role of Cancer Stem Cells and Their Extracellular Vesicles in the Modulation of the Antitumor Immunity. Int J Mol Sci 2022; 24:ijms24010395. [PMID: 36613838 PMCID: PMC9820747 DOI: 10.3390/ijms24010395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are a population of tumor cells that share similar properties to normal stem cells. CSCs are able to promote tumor progression and recurrence due to their resistance to chemotherapy and ability to stimulate angiogenesis and differentiate into non-CSCs. Cancer stem cells can also create a significant immunosuppressive environment around themselves by suppressing the activity of effector immune cells and recruiting cells that support tumor escape from immune response. The immunosuppressive effect of CSCs can be mediated by receptors located on their surface, as well as by secreted molecules, which transfer immunosuppressive signals to the cells of tumor microenvironment. In this article, the ability of CSCs to regulate the antitumor immune response and a contribution of CSC-derived EVs into the avoidance of the immune response are discussed.
Collapse
|
66
|
Tian Y, Liu H, Wang M, Wang R, Yi G, Zhang M, Chen R. Role of STAT3 and NRF2 in Tumors: Potential Targets for Antitumor Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248768. [PMID: 36557902 PMCID: PMC9781355 DOI: 10.3390/molecules27248768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) and nuclear factor erythroid-derived 2-like 2 (NRF2, also known as NFE2L2), are two of the most complicated transcription regulators, which participate in a variety of physiological processes. Numerous studies have shown that they are overactivated in multiple types of tumors. Interestingly, STAT3 and NRF2 can also interact with each other to regulate tumor progression. Hence, these two important transcription factors are considered key targets for developing a new class of antitumor drugs. This review summarizes the pivotal roles of the two transcription regulators and their interactions in the tumor microenvironment to identify potential antitumor drug targets and, ultimately, improve patients' health and survival.
Collapse
Affiliation(s)
- Yanjun Tian
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Haiqing Liu
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250024, China
| | - Mengwei Wang
- School of Stomatology, Jining Medical University, Jining 272067, China
| | - Ruihao Wang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Guandong Yi
- School of Nursing, Jining Medical University, Jining 272067, China
| | - Meng Zhang
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Ruijiao Chen
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
- Correspondence: ; Tel.: +86-537-361-6216
| |
Collapse
|
67
|
Liu YY, Yao RQ, Long LY, Liu YX, Tao BY, Liu HY, Liu JL, Li Z, Chen L, Yao YM. Worldwide productivity and research trend of publications concerning glioma-associated macrophage/microglia: A bibliometric study. Front Neurol 2022; 13:1047162. [PMID: 36570441 PMCID: PMC9772275 DOI: 10.3389/fneur.2022.1047162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Glioma-associated macrophage/microglia (GAM) represents a key player in shaping a unique glioma ecosystem to facilitate tumor progression and therapeutic resistance. Numerous studies have been published concerning GAM, but no relevant bibliometric study has been performed yet. Our bibliometric study aimed to comprehensively summarize and analyze the global scientific output, research hotspots, and trendy topics of publications on GAM over time. Data on publications on GAM were collected using the Web of Science (WoS). The search date was 16 January 2022, and the publications were collected from 2002 to 2021. Totally, 1,224 articles and reviews were incorporated and analyzed in the current study. It showed that the annual publications concerning GAM kept increasing over the past 20 years. The United States had the largest number of publications and total citations. Holland, Kettenmann, and Gutmann were the top three authors in terms of citation frequency. Neuro-oncology represented the most influential journal in GAM studies, with the highest H-index, total citations, and publication numbers. The paper published by Hambardzumyan in 2016 had the highest local citations. Additionally, the analysis of keywords implied that "prognosis," "tumor microenvironment," and "immunotherapy" might become research hotspots. Furthermore, trendy topics in GAM studies suggested that "immune infiltration," "immune microenvironment," "bioinformatics," "prognosis," and "immunotherapy" deserved additional attention. In conclusion, this bibliometric study comprehensively analyzed the publication trend of GAM studies for the past 20 years, in which the research hotspots and trendy topics were also uncovered. This information offered scholars critical references for conducting in-depth studies on GAM in the future.
Collapse
Affiliation(s)
- Yu-yang Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China,Medical School of Chinese PLA, Beijing, China,Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China,Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li-yan Long
- Library, Medical School of Chinese PLA, Beijing, China
| | - Yu-xiao Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Bing-Yan Tao
- Medical School of Chinese PLA, Beijing, China,Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Hong-yu Liu
- Medical School of Chinese PLA, Beijing, China,Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jia-lin Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Ze Li
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China,Ling Chen
| | - Yong-ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China,*Correspondence: Yong-ming Yao
| |
Collapse
|
68
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
69
|
Makandar AI, Jain M, Yuba E, Sethi G, Gupta RK. Canvassing Prospects of Glyco-Nanovaccines for Developing Cross-Presentation Mediated Anti-Tumor Immunotherapy. Vaccines (Basel) 2022; 10:vaccines10122049. [PMID: 36560459 PMCID: PMC9784904 DOI: 10.3390/vaccines10122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
In view of the severe downsides of conventional cancer therapies, the quest of developing alternative strategies still remains of critical importance. In this regard, antigen cross-presentation, usually employed by dendritic cells (DCs), has been recognized as a potential solution to overcome the present impasse in anti-cancer therapeutic strategies. It has been established that an elevated cytotoxic T lymphocyte (CTL) response against cancer cells can be achieved by targeting receptors expressed on DCs with specific ligands. Glycans are known to serve as ligands for C-type lectin receptors (CLRs) expressed on DCs, and are also known to act as a tumor-associated antigen (TAA), and, thus, can be harnessed as a potential immunotherapeutic target. In this scenario, integrating the knowledge of cross-presentation and glycan-conjugated nanovaccines can help us to develop so called 'glyco-nanovaccines' (GNVs) for targeting DCs. Here, we briefly review and analyze the potential of GNVs as the next-generation anti-tumor immunotherapy. We have compared different antigen-presenting cells (APCs) for their ability to cross-present antigens and described the potential nanocarriers for tumor antigen cross-presentation. Further, we discuss the role of glycans in targeting of DCs, the immune response due to pathogens, and imitative approaches, along with parameters, strategies, and challenges involved in cross-presentation-based GNVs for cancer immunotherapy. It is known that the effectiveness of GNVs in eradicating tumors by inducing strong CTL response in the tumor microenvironment (TME) has been largely hindered by tumor glycosylation and the expression of different lectin receptors (such as galectins) by cancer cells. Tumor glycan signatures can be sensed by a variety of lectins expressed on immune cells and mediate the immune suppression which, in turn, facilitates immune evasion. Therefore, a sound understanding of the glycan language of cancer cells, and glycan-lectin interaction between the cancer cells and immune cells, would help in strategically designing the next-generation GNVs for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Amina I. Makandar
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Mannat Jain
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| |
Collapse
|
70
|
Rao P, Furst L, Meyran D, Mayoh C, Neeson PJ, Terry R, Khuong-Quang DA, Mantamadiotis T, Ekert PG. Advances in CAR T cell immunotherapy for paediatric brain tumours. Front Oncol 2022; 12:873722. [PMID: 36505819 PMCID: PMC9727400 DOI: 10.3389/fonc.2022.873722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
Brain tumours are the most common solid tumour in children and the leading cause of cancer related death in children. Current treatments include surgery, chemotherapy and radiotherapy. The need for aggressive treatment means many survivors are left with permanent severe disability, physical, intellectual and social. Recent progress in immunotherapy, including genetically engineered T cells with chimeric antigen receptors (CARs) for treating cancer, may provide new avenues to improved outcomes for patients with paediatric brain cancer. In this review we discuss advances in CAR T cell immunotherapy, the major CAR T cell targets that are in clinical and pre-clinical development with a focus on paediatric brain tumours, the paediatric brain tumour microenvironment and strategies used to improve CAR T cell therapy for paediatric tumours.
Collapse
Affiliation(s)
- Padmashree Rao
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia
| | - Liam Furst
- Department of Microbiology & Immunology, The University of Melbourne, Victoria, VIC, Australia,Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia,Université de Paris, Inserm, U976 Human Immunology Pathophysiology Immunotherapy (HIPI) Unit, Institut de Recherche Saint-Louis, Paris, France,Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Chelsea Mayoh
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,School of Women and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Rachael Terry
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,School of Women and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Dong-Anh Khuong-Quang
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia,Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Microbiology & Immunology, The University of Melbourne, Victoria, VIC, Australia,Department of Surgery Royal Melbourne Hospital (RMH), The University of Melbourne, Parkville, VIC, Australia,*Correspondence: Theo Mantamadiotis, ; Paul G. Ekert,
| | - Paul G. Ekert
- Translational Tumour Biology, Children’s Cancer Institute, Randwick, NSW, Australia,Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia,School of Women and Children’s Health, University of New South Wales, Randwick, NSW, Australia,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia,*Correspondence: Theo Mantamadiotis, ; Paul G. Ekert,
| |
Collapse
|
71
|
Kim HJ, Park JH, Kim HC, Kim CW, Kang I, Lee HK. Blood monocyte-derived CD169 + macrophages contribute to antitumor immunity against glioblastoma. Nat Commun 2022; 13:6211. [PMID: 36266311 PMCID: PMC9585054 DOI: 10.1038/s41467-022-34001-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Infiltrating tumor-associated macrophages (TAM) are known to impede immunotherapy against glioblastoma (GBM), however, TAMs are heterogeneous, and there are no clear markers to distinguish immunosuppressive and potentially immune-activating populations. Here we identify a subset of CD169+ macrophages promoting an anti-tumoral microenvironment in GBM. Using single-cell transcriptome analysis, we find that CD169+ macrophages in human and mouse gliomas produce pro-inflammatory chemokines, leading to the accumulation of T cells and NK cells. CD169 expression on macrophages facilitates phagocytosis of apoptotic glioma cells and hence tumor-specific T cell responses. Depletion of CD169+ macrophages leads to functionally impaired antitumor lymphocytes and poorer survival of glioma-bearing mice. We show that NK-cell-derived IFN-γ is critical for the accumulation of blood monocyte-derived CD169+ macrophages in gliomas. Our work thus identifies a well-distinguished TAM subset promoting antitumor immunity against GBM, and identifies key factors that might shift the balance from immunosuppressive to anti-tumor TAM.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- grid.37172.300000 0001 2292 0500Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Jang Hyun Park
- grid.37172.300000 0001 2292 0500Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Hyeon Cheol Kim
- grid.37172.300000 0001 2292 0500Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Chae Won Kim
- grid.37172.300000 0001 2292 0500Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - In Kang
- grid.37172.300000 0001 2292 0500Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Heung Kyu Lee
- grid.37172.300000 0001 2292 0500Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| |
Collapse
|
72
|
Silver A, Feier D, Ghosh T, Rahman M, Huang J, Sarkisian MR, Deleyrolle LP. Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Front Oncol 2022; 12:1022716. [PMID: 36338705 PMCID: PMC9628999 DOI: 10.3389/fonc.2022.1022716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM) is an extremely aggressive and incurable primary brain tumor with a 10-year survival of just 0.71%. Cancer stem cells (CSCs) are thought to seed GBM's inevitable recurrence by evading standard of care treatment, which combines surgical resection, radiotherapy, and chemotherapy, contributing to this grim prognosis. Effective targeting of CSCs could result in insights into GBM treatment resistance and development of novel treatment paradigms. There is a major ongoing effort to characterize CSCs, understand their interactions with the tumor microenvironment, and identify ways to eliminate them. This review discusses the diversity of CSC lineages present in GBM and how this glioma stem cell (GSC) mosaicism drives global intratumoral heterogeneity constituted by complex and spatially distinct local microenvironments. We review how a tumor's diverse CSC populations orchestrate and interact with the environment, especially the immune landscape. We also discuss how to map this intricate GBM ecosystem through the lens of metabolism and immunology to find vulnerabilities and new ways to disrupt the equilibrium of the system to achieve improved disease outcome.
Collapse
Affiliation(s)
- Aryeh Silver
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Diana Feier
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Tanya Ghosh
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Jianping Huang
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Matthew R. Sarkisian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Loic P. Deleyrolle
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,*Correspondence: Loic P. Deleyrolle,
| |
Collapse
|
73
|
Khan I, Mahfooz S, Karacam B, Elbasan EB, Akdur K, Karimi H, Sakarcan A, Hatiboglu MA. Glioma cancer stem cells modulating the local tumor immune environment. Front Mol Neurosci 2022; 15:1029657. [PMID: 36299858 PMCID: PMC9589274 DOI: 10.3389/fnmol.2022.1029657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma stem cells (GSCs) drive the resistance mechanism in glioma tumors and mediate the suppression of innate and adaptive immune responses. Here we investigate the expression of mesenchymal-epithelial transition factor (c-Met) and Fas receptor in GSCs and their role in potentiating the tumor-mediated immune suppression through modulation of tumor infiltrating lymphocyte (TIL) population. Tumor tissues were collected from 4 patients who underwent surgery for glioblastoma. GSCs were cultured as neurospheres and evaluated for the co-expression of CD133, c-Met and FasL through flow cytometry. TILs were isolated and evaluated for the lymphocyte subset frequencies including CD3 +, CD4 +, CD8 +, regulatory T cells (FOXP3 + CD25) and microglia (CD11b + CD45) using flow cytometry. Our findings revealed that a significant population of GSCs in all four samples expressed c-Met (89–99%) and FasL (73–97%). A significantly low microglia population was found in local immune cells ranging from 3 to 5%. We did not find a statistically significant correlation between expressions of c-Met + GSC and FasL + GSC with local and systemic immune cells. This may be regarded to the small sample size. The percent c-Met + and FasL + GSC population appeared to be related to percent cytotoxic T cells, regulatory T cells and microglia populations in glioblastoma patients. Further investigation is warranted in a larger sample size.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Busra Karacam
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Elif Burce Elbasan
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Istanbul, Turkey
| | - Kerime Akdur
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Istanbul, Turkey
| | - Hasiba Karimi
- Bezmialem Vakif University Medical School, Istanbul, Turkey
| | - Ayten Sakarcan
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Istanbul, Turkey
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Istanbul, Turkey
- *Correspondence: Mustafa Aziz Hatiboglu, ;
| |
Collapse
|
74
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
75
|
Johnson AL, Laterra J, Lopez-Bertoni H. Exploring glioblastoma stem cell heterogeneity: Immune microenvironment modulation and therapeutic opportunities. Front Oncol 2022; 12:995498. [PMID: 36212415 PMCID: PMC9532940 DOI: 10.3389/fonc.2022.995498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Despite its growing use in cancer treatment, immunotherapy has been virtually ineffective in clinical trials for gliomas. The inherently cold tumor immune microenvironment (TIME) in gliomas, characterized by a high ratio of pro-tumor to anti-tumor immune cell infiltrates, acts as a seemingly insurmountable barrier to immunotherapy. Glioma stem cells (GSCs) within these tumors are key contributors to this cold TIME, often functioning indirectly through activation and recruitment of pro-tumor immune cell types. Furthermore, drivers of GSC plasticity and heterogeneity (e.g., reprogramming transcription factors, epigenetic modifications) are associated with induction of immunosuppressive cell states. Recent studies have identified GSC-intrinsic mechanisms, including functional mimicry of immune suppressive cell types, as key determinants of anti-tumor immune escape. In this review, we cover recent advancements in our understanding of GSC-intrinsic mechanisms that modulate GSC-TIME interactions and discuss cutting-edge techniques and bioinformatics platforms available to study immune modulation at high cellular resolution with exploration of both malignant (i.e., GSC) and non-malignant (i.e., immune) cell fractions. Finally, we provide insight into the therapeutic opportunities for targeting immunomodulatory GSC-intrinsic mechanisms to potentiate immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: John Laterra, ; Hernando Lopez-Bertoni,
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: John Laterra, ; Hernando Lopez-Bertoni,
| |
Collapse
|
76
|
Smith GT, Radin DP, Tsirka SE. From protein-protein interactions to immune modulation: Therapeutic prospects of targeting Neuropilin-1 in high-grade glioma. Front Immunol 2022; 13:958620. [PMID: 36203599 PMCID: PMC9532003 DOI: 10.3389/fimmu.2022.958620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
In the past several years there has been a marked increase in our understanding of the pathophysiological hallmarks of glioblastoma development and progression, with specific respect to the contribution of the glioma tumor microenvironment to the rapid progression and treatment resistance of high-grade gliomas. Despite these strides, standard of care therapy still only targets rapidly dividing tumor cells in the glioma, and does little to curb the pro-tumorigenic functions of non-cancerous cells entrenched in the glioma microenvironment. This tumor promoting environment as well as the heterogeneity of high-grade gliomas contribute to the poor prognosis of this malignancy. The interaction of non-malignant cells in the microenvironment with the tumor cells accentuate phenotypes such as rapid proliferation or immunosuppression, so therapeutically modulating one target expressed on one cell type may be insufficient to restrain these rapidly developing neoplasias. With this in mind, identifying a target expressed on multiple cell types and understanding how it governs tumor-promoting functions in each cell type may have great utility in better managing this disease. Herein, we review the physiology and pathological effects of Neuropilin-1, a transmembrane co-receptor which mediates signal transduction pathways when associated with multiple other receptors. We discuss its effects on the properties of endothelial cells and on immune cell types within gliomas including glioma-associated macrophages, microglia, cytotoxic T cells and T regulatory cells. We also consider its effects when elaborated on the surface of tumor cells with respect to proliferation, stemness and treatment resistance, and review attempts to target Neuroplin-1 in the clinical setting.
Collapse
Affiliation(s)
- Gregory T. Smith
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Daniel P. Radin
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Stony Brook Medical Scientist Training Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Stella E. Tsirka
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Stony Brook Medical Scientist Training Program, Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- *Correspondence: Stella E. Tsirka,
| |
Collapse
|
77
|
Li D, Zhang Q, Li L, Chen K, Yang J, Dixit D, Gimple RC, Ci S, Lu C, Hu L, Gao J, Shan D, Li Y, Zhang J, Shi Z, Gu D, Yuan W, Wu Q, Yang K, Zhao L, Qiu Z, Lv D, Gao W, Yang H, Lin F, Wang Q, Man J, Li C, Tao W, Agnihotri S, Qian X, Shi Y, You Y, Zhang N, Rich JN, Wang X. β2-Microglobulin Maintains Glioblastoma Stem Cells and Induces M2-like Polarization of Tumor-Associated Macrophages. Cancer Res 2022; 82:3321-3334. [PMID: 35841593 DOI: 10.1158/0008-5472.can-22-0507] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is a complex ecosystem that includes a heterogeneous tumor population and the tumor-immune microenvironment (TIME), prominently containing tumor-associated macrophages (TAM) and microglia. Here, we demonstrated that β2-microglobulin (B2M), a subunit of the class I major histocompatibility complex (MHC-I), promotes the maintenance of stem-like neoplastic populations and reprograms the TIME to an anti-inflammatory, tumor-promoting state. B2M activated PI3K/AKT/mTOR signaling by interacting with PIP5K1A in GBM stem cells (GSC) and promoting MYC-induced secretion of transforming growth factor-β1 (TGFβ1). Inhibition of B2M attenuated GSC survival, self-renewal, and tumor growth. B2M-induced TGFβ1 secretion activated paracrine SMAD and PI3K/AKT signaling in TAMs and promoted an M2-like macrophage phenotype. These findings reveal tumor-promoting functions of B2M and suggest that targeting B2M or its downstream axis may provide an effective approach for treating GBM. SIGNIFICANCE β2-microglobulin signaling in glioblastoma cells activates a PI3K/AKT/MYC/TGFβ1 axis that maintains stem cells and induces M2-like macrophage polarization, highlighting potential therapeutic strategies for targeting tumor cells and the immunosuppressive microenvironment in glioblastoma.
Collapse
Affiliation(s)
- Daqi Li
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Zhang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Li
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kexin Chen
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junlei Yang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deobrat Dixit
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shusheng Ci
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenfei Lu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lang Hu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiancheng Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danyang Shan
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqing Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danling Gu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Yuan
- Department of Pathology, The Fourth Affiliated Hospital of Nantong University, The First people's Hospital of Yancheng, Yancheng, China
| | - Qiulian Wu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Linjie Zhao
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Zhixin Qiu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Deguan Lv
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Lin
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | - Weiwei Tao
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shi
- Institute of Pathology, Ministry of Education Key Laboratory of Tumor Immunopathology, Southwest Hospital, Chongqing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, China
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
78
|
Moslemizadeh A, Nematollahi MH, Amiresmaili S, Faramarz S, Jafari E, Khaksari M, Rezaei N, Bashiri H, Kheirandish R. Combination therapy with interferon-gamma as a potential therapeutic medicine in rat's glioblastoma: A multi-mechanism evaluation. Life Sci 2022; 305:120744. [PMID: 35798069 DOI: 10.1016/j.lfs.2022.120744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study assessed the effects of single or combined administration of temozolomide (TMZ) and interferon-gamma (IFN-ᵞ) on anxiety-like behaviors, balance disorders, learning and memory, TNF-α, IL-10, some oxidant and antioxidants factors with investigating the toll-like receptor-4 (TLR4) and p-CREB signaling pathway in C6-induced glioblastoma of rats. METHODS 40 male Sprague-Dawley rats bearing intra-caudate nucleus (CN) culture medium or C6 inoculation were randomly divided into five groups as follows: Sham, Tumor, TMZ, IFN-ᵞ and a TMZ + IFN-ᵞ combination. The open-field test (OFT), elevated plus maze (EPM), rotarod, and passive avoidance test (PAT) were done on days 14-17. On day 17 after tumor implantation, brain tissues were extracted for histopathological evaluation. TNF-α, IL-10, SOD, GPX, TAC, MDA, the protein level of TLR4 and p-CREB was measured. RESULTS Combination therapy inhibited the growth of the tumor. Treatment groups alleviated tumor-induced anxiety-like behaviors and improved imbalance and memory impairment. SOD, GPX, and TAC decreased in the tumor group. The combination group augmented GPX and TAC. MDA decreased in treatment groups. TMZ, IFN-ᵞ reduced tumor-increased TNF-α and IL-10 level. The combination group declined TNF-α level in serum and IL-10 level in serum and brain. Glioblastoma induced significant upregulation of TLR4 and p-CREB in the brain which inhibited by IFN-ᵞ and TMZ+ IFN-ᵞ. CONCLUSION The beneficial effects of TMZ, IFN-ᵞ, and TMZ+ IFN-ᵞ on neurocognitive functioning of rats with C6-induced glioblastoma may be mediated via modulating oxidative stress, reduced cytokines, and the downregulation of expression of TLR4 and p-CREB. Combination treatment appears to be more effective than single treatment.
Collapse
Affiliation(s)
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sanaz Faramarz
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Kheirandish
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
79
|
Microglia-T cell conversations in brain cancer progression. Trends Mol Med 2022; 28:951-963. [PMID: 36075812 DOI: 10.1016/j.molmed.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/26/2022]
Abstract
The highly immunosuppressive and heterogeneous milieu of brain malignancies contributes to their dismal prognosis. Regardless of their cellular origin, brain tumors grow in an environment with various specialized organ-resident cells. Although homeostatic microglia contribute to a healthy brain, conversations between disease-associated microglia and T cells compromise their individual and collective capacity to curb malignant growth. We review the mechanisms of T cell-microglia interactions and discuss how their collaboration fosters heterogeneity and immunosuppression in brain cancers. Because of the importance of microglia and T cells in the brain tumor microenvironment, it is crucial to understand their interactions to derive innovative therapeutics.
Collapse
|
80
|
Li H, Yan X, Ou S. Correlation of the prognostic value of FNDC4 in glioblastoma with macrophage polarization. Cancer Cell Int 2022; 22:273. [PMID: 36056336 PMCID: PMC9440505 DOI: 10.1186/s12935-022-02688-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioblastoma is among the most malignant tumors in the central nervous system and characterized by strong invasion and poor prognosis. Fibronectin type III domain-containing 4 (FNDC4) plays various important roles in the human body, including participating in cellular metabolism and inflammatory responses to cardiovascular diseases, influencing immune cells, and exerting anti-inflammatory effects; however, the role of FNDC4 in glioblastoma has not been reported. METHODS In this study, bioinformatics databases, including TCGA, CGGA, GTEx, and TIMER, were used to analyze the differential expression of FNDC4 genes and cell survival, in addition to investigating its relationship with immune cell infiltration. Additionally, we overexpressed FNDC4 in glioblastoma cell lines U87 and U251 by lentiviral transfection and detected changes in proliferation, cell cycle progression, and apoptosis. Following collection of monocytes from the peripheral blood of healthy individuals and transformation into M0 macrophages, we performed flow cytometry to detect the polarizing effect of exogenous FNDC4, as well as the effect of FNDC4-overexpressing glioblastoma cells on macrophage polarization in a co-culture system. RESULTS We identified that significantly higher FNDC4 expression in glioblastoma tissue relative to normal brain tissue was associated with worse prognosis. Moreover, we found that FNDC4 overexpression in U87 and U251 cells resulted in increased proliferation and affected the S phase of tumor cells, whereas cell apoptosis remained unchanged. Furthermore, exogenous FNDC4 inhibited the M1 polarization of M0 macrophages without affecting M2 polarization; this was also observed in glioblastoma cells overexpressing FNDC4. CONCLUSIONS FNDC4 expression is elevated in glioblastoma, closely associated with poor prognosis, and promoted the proliferation of glioblastoma cells, affected the S phase of tumor cells while inhibiting macrophage polarization.
Collapse
Affiliation(s)
- Hongwu Li
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, The First People's Hospital of Nantong City (Affiliated Hospital 2 of Nantong University), Nantong, China
| | - Xiaofei Yan
- Department of Pathology, The First People's Hospital of Nantong City (Affiliated Hospital 2 of Nantong University), Nantong, China
| | - Shaowu Ou
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
81
|
Michiba A, Shiogama K, Tsukamoto T, Hirayama M, Yamada S, Abe M. Morphologic Analysis of M2 Macrophage in Glioblastoma: Involvement of Macrophage Extracellular Traps (METs). Acta Histochem Cytochem 2022; 55:111-118. [PMID: 36060293 PMCID: PMC9427541 DOI: 10.1267/ahc.22-00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations.
Collapse
Affiliation(s)
- Ayano Michiba
- Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine
| | - Kazuya Shiogama
- Department of Morphology and Pathology, Fujita Health University Medical Science, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine
| | - Masaya Hirayama
- Department of Morphology and Pathology, Fujita Health University Medical Science, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan
| | - Seiji Yamada
- Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine
| | - Masato Abe
- Department of Morphology and Pathology, Fujita Health University Medical Science, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan
| |
Collapse
|
82
|
Guo L, Yan T, Guo W, Niu J, Wang W, Ren T, Huang Y, Xu J, Wang B. Molecular subtypes of osteosarcoma classified by cancer stem cell related genes define immunological cell infiltration and patient survival. Front Immunol 2022; 13:986785. [PMID: 36059448 PMCID: PMC9437352 DOI: 10.3389/fimmu.2022.986785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that tumor stemness has biological significance in tumorigenicity and tumor progression. However, the characteristics of TME immune infiltration in osteosarcoma mediated by the combined effects of multiple cancer stem cell-related genes remain unknown.MethodsIn this study, we identified different cancer stem cell-associated subtypes in osteosarcoma based on 25 cancer stem cell-associated genes by consensus clustering analysis, and we comprehensively evaluated the association between these subtypes and immunocytes infiltration in the TME. The cancer stem cell (CSC) score was constructed to quantify the stemness of individual tumors.ResultsWe performed a comprehensive evaluation of 218 osteosarcoma patients based on 25 cancer stem cell-related genes. Three different cancer stem cells related subtypes were identified, which were related to different biological processes and clinical outcomes. The three subtypes have different TME cells infiltrating characteristics, and CSC Cluster A had a higher level of immunocyte infiltration compared to CSC Cluster B and C. We constructed a scoring system, called the CSC score, to assess the stemness of individual patients. Then we found that the prognosis of patients was predicted by CSC score, and patients with low CSC score had prolonged survival. Further analyses showed that low CSC score was correlated with enhanced immune infiltration. CSC score may predict the effect of immunotherapy, and patients with low CSC score may have better immune response and clinical prognosis.ConclusionsThis study demonstrates that there could be three cancer stem cell-associated subtypes in osteosarcoma and that they were associated with different patient prognosis and TME immune infiltration characteristics. CSC score could be used to assess the stemness of individual patients, improve our comprehension of TME characteristics, and direct more effective immune therapy.
Collapse
Affiliation(s)
- Lei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
- *Correspondence: Taiqiang Yan,
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| |
Collapse
|
83
|
He D, Qin Z, Liu Z, Ji X, Gao J, Guo H, Yang F, Fan H, Wei Y, Wang Z, Liu Q, Pang Q. Comprehensive Analysis of the Prognostic Value and Immune Infiltration of Butyrophilin Subfamily 2/3 (BTN2/3) Members in Pan-Glioma. Front Oncol 2022; 12:816760. [PMID: 36033440 PMCID: PMC9399357 DOI: 10.3389/fonc.2022.816760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
The BTN2/3 subfamilies are overexpressed in many cancers, including pan-glioma (low- and high-grade gliomas). However, the expression and prognosis of BTN2/3 subfamilies and tumor-infiltrating lymphocytes in pan-glioma remain unknown. In the present study, we systematically explored and validated the expression and prognostic value of BTN2/3 subfamily members in pan-glioma [The Cancer Genome Atlas–glioblastoma and low-grade glioma (TCGA-GBMLGG) merge cohort] using multiple public databases. We used clinical specimens for high-throughput verification and cell lines for qRT-PCR verification, which confirmed the expression profiles of BTN2/3 subfamilies. In addition, the function of the BTN2/3 subfamily members and the correlations between BTN2/3 subfamily expression and pan-glioma immune infiltration levels were investigated. We found that BTN2/3 subfamily members were rarely mutated. BTN2/3 subfamilies were overexpressed in pan-glioma; high expression of BTN2/3 subfamily members was correlated with poor prognosis. In addition, BTN2/3 subfamilies might positively regulate proliferation, and the overexpression of BTN2/3 subfamilies influenced cell cycle, differentiation, and glioma stemness. In terms of immune infiltrating levels, BTN2/3 subfamily expression was positively associated with CD4+ T-cell, B-cell, neutrophil, macrophage, and dendritic cell infiltrating levels. These findings suggest that BTN2/3 subfamily expression is correlated with prognosis and immune infiltration levels in glioma. Therefore, the BTN2/3 subfamilies can be used as biomarkers for pan-glioma and prognostic biomarkers for determining the prognosis and immune infiltration levels in pan-glioma.
Collapse
Affiliation(s)
- Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Zhen Qin
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Xiaoshuai Ji
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiajia Gao
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Guo
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haitao Fan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanbang Wei
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Zixiao Wang
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Qian Liu
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
- *Correspondence: Qian Liu, ; Qi Pang,
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Qian Liu, ; Qi Pang,
| |
Collapse
|
84
|
Asija S, Chatterjee A, Yadav S, Chekuri G, Karulkar A, Jaiswal AK, Goda JS, Purwar R. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. Int Rev Immunol 2022; 41:582-605. [PMID: 35938932 DOI: 10.1080/08830185.2022.2101647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The aggressive and recurrent nature of glioblastoma is multifactorial and has been attributed to its biological heterogeneity, dysfunctional metabolic signaling pathways, rigid blood-brain barrier, inherent resistance to standard therapy due to the stemness property of the gliomas cells, immunosuppressive tumor microenvironment, hypoxia and neoangiogenesis which are very well orchestrated and create the tumor's own highly pro-tumorigenic milieu. Once the relay of events starts amongst these components, eventually it becomes difficult to control the cascade using only the balanced contemporary care of treatment consisting of maximal resection, radiotherapy and chemotherapy with temozolamide. Over the past few decades, implementation of contemporary treatment modalities has shown benefit to some extent, but no significant overall survival benefit is achieved. Therefore, there is an unmet need for advanced multifaceted combinatorial strategies. Recent advances in molecular biology, development of innovative therapeutics and novel delivery platforms over the years has resulted in a paradigm shift in gliomas therapeutics. Decades of research has led to emergence of several treatment molecules, including immunotherapies such as immune checkpoint blockade, oncolytic virotherapy, adoptive cell therapy, nanoparticles, CED and BNCT, each with the unique proficiency to overcome the mentioned challenges, present research. Recent years are seeing innovative combinatorial strategies to overcome the multifactorial resistance put forth by the GBM cell and its TME. This review discusses the contemporary and the investigational combinatorial strategies being employed to treat GBM and summarizes the evidence accumulated till date.
Collapse
Affiliation(s)
- Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sandhya Yadav
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Godhanjali Chekuri
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ankesh Kumar Jaiswal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| |
Collapse
|
85
|
Wang G, Zhong K, Wang Z, Zhang Z, Tang X, Tong A, Zhou L. Tumor-associated microglia and macrophages in glioblastoma: From basic insights to therapeutic opportunities. Front Immunol 2022; 13:964898. [PMID: 35967394 PMCID: PMC9363573 DOI: 10.3389/fimmu.2022.964898] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Currently, the standard treatment of glioblastoma includes surgery, radiotherapy, and chemotherapy. Despite aggressive treatment, the median survival is only 15 months. GBM progression and therapeutic resistance are the results of the complex interactions between tumor cells and tumor microenvironment (TME). TME consists of several different cell types, such as stromal cells, endothelial cells and immune cells. Although GBM has the immunologically "cold" characteristic with very little lymphocyte infiltration, the TME of GBM can contain more than 30% of tumor-associated microglia and macrophages (TAMs). TAMs can release cytokines and growth factors to promote tumor proliferation, survival and metastasis progression as well as inhibit the function of immune cells. Thus, TAMs are logical therapeutic targets for GBM. In this review, we discussed the characteristics and functions of the TAMs and evaluated the state of the art of TAMs-targeting strategies in GBM. This review helps to understand how TAMs promote GBM progression and summarizes the present therapeutic interventions to target TAMs. It will possibly pave the way for new immune therapeutic avenues for GBM patients.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
86
|
Zhang P, Zhang Y, Ji N. Challenges in the Treatment of Glioblastoma by Chimeric Antigen Receptor T-Cell Immunotherapy and Possible Solutions. Front Immunol 2022; 13:927132. [PMID: 35874698 PMCID: PMC9300859 DOI: 10.3389/fimmu.2022.927132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), one of the most lethal brain cancers in adults, accounts for 48.6% of all malignant primary CNS tumors diagnosed each year. The 5-year survival rate of GBM patients remains less than 10% even after they receive the standard-of-care treatment, including maximal safe resection, adjuvant radiation, and chemotherapy with temozolomide. Therefore, new therapeutic modalities are urgently needed for this deadly cancer. The last decade has witnessed great advances in chimeric antigen receptor T (CAR-T) cell immunotherapy for the treatment of hematological malignancies. Up to now, the US FDA has approved six CAR-T cell products in treating hematopoietic cancers including B-cell acute lymphoblastic leukemia, lymphoma, and multiple myeloma. Meanwhile, the number of clinical trials on CAR-T cell has increased significantly, with more than 80% from China and the United States. With its achievements in liquid cancers, the clinical efficacy of CAR-T cell therapy has also been explored in a variety of solid malignancies that include GBMs. However, attempts to expand CAR-T cell immunotherapy in GBMs have not yet presented promising results in hematopoietic malignancies. Like other solid tumors, CAR-T cell therapies against GBM still face several challenges, such as tumor heterogeneity, tumor immunosuppressive microenvironment, and CAR-T cell persistence. Hence, developing strategies to overcome these challenges will be necessary to accelerate the transition of CAR-T cell immunotherapy against GBMs from bench to bedside.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- *Correspondence: Nan Ji,
| |
Collapse
|
87
|
Zhang Q, Zhang J, Wang P, Zhu G, Jin G, Liu F. Glioma-associated mesenchymal stem cells-mediated PD-L1 expression is attenuated by Ad5-Ki67/IL-15 in GBM treatment. Stem Cell Res Ther 2022; 13:284. [PMID: 35765095 PMCID: PMC9241198 DOI: 10.1186/s13287-022-02968-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma (GBM) is a highly immunosuppressive and vascular malignant brain tumor. Current therapeutic strategies targeting tumor cells have limited efficacy because of the immunosuppressive microenvironment and vascularization. Glioma-associated mesenchymal stem cells (GA-MSCs) have been identified as important stromal components of the tumor microenvironment, owing to their contribution to tumor angiogenesis and their potential to drive glioma stem cells. However, there are no reports on the effect of oncolytic Ad5-Ki67/IL-15 on programmed death ligand 1 (PD-L1) expression and angiogenesis induced by GA-MSCs. Methods Flow cytometry was respectively performed to detect the PD-L1 of glioma cells and programmed death protein 1 (PD-1), CD3, CD4 and CD8 in lymphocytes, as well as distribution of the cell cycle. CCK-8 assay investigated the proliferation of glioma cells and GA-MSCs in vitro. Tumor-bearing nude mice were established with U87-Luc cells and treated with the viruses, and further the IVIS spectrum was utilized to obtain luciferase images. Finally, the expression of PD-L1 in tumor tissues was also investigated using western blotting. Results We found that GA-MSCs had potential to induce PD-L1 upregulation and involved in vascular mimicry in vitro. Importantly, Ad5-Ki67/IL-15 reduced PD-L1 expression of glioma cells and neovascularization by targeting GA-MSCs. Furthermore, despite the presence of GA-MSCs, the virus has the ability to generate potent antitumor efficacy in vitro and vivo. Conclusions These findings suggest the use of oncolytic Ad5-Ki67/IL-15 targeting GA-MSCs to treat GBM, indicating potential clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02968-z.
Collapse
Affiliation(s)
- Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China
| | - Peiwen Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China
| | - Guidong Zhu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China. .,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China.
| |
Collapse
|
88
|
Sun K, Fei X, Xu M, Xu R, Xu M. FCGR3A Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Lower-Grade Glioma. JOURNAL OF ONCOLOGY 2022; 2022:9499317. [PMID: 39280892 PMCID: PMC11401682 DOI: 10.1155/2022/9499317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 09/18/2024]
Abstract
Low-grade gliomas (LGGs) are primary invasive brain tumors that grow slowly but are incurable and eventually develop into high malignant glioma. Fc fragment of IgG receptor IIIa (FCGR3A) gene polymorphism may correlate with some cancers' treatment responses. However, the expression and prognosis value of FCGR3A and correlation with tumor-immune infiltrate in LGG remain unclear. FCGR3A mRNA expression in gastric cancer (GC) was examined using TIMER and GEPIA databases. Correlations between FCGR3A expression and clinicopathological parameters were analyzed using ULACAN and CGGA databases. GEPIA, OncoLnc, and ULACAN databases were used to examine the clinical prognostic significance of FCGR3A in LGG. TIMER was used to analyze the correlations among FCGR3A and tumor-infiltrating immune cells. Signaling pathways related to FCGR3A expression were identified by LinkedOmics. We found that FCGR3A expression was higher in LGG than in normal tissue and was correlated with various clinical parameters. In addition, high FCGR3A expression predicted poor overall survival in LGG. More importantly, FCGR3A expression positively correlated with immune checkpoint molecules, including PD1, PD-L1, PD-L2, CTLA4, LAG-3 and TIM-3, and tumor-associated macrophage (TAM) gene markers in LGG. GO and KEGG pathway analyses indicated that TUBA1C may potentially regulate the pathogenesis of LGG through immune-related pathways. These findings indicated that FCGR3A plays a vital role in the infiltration of immune cells and could constitute a promising prognostic biomarker in LGG patients.
Collapse
Affiliation(s)
- Kai Sun
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaowei Fei
- Department of Neurosurgery, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an 710032, China
| | - Mingwei Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
89
|
Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022; 12:biom12060850. [PMID: 35740975 PMCID: PMC9221070 DOI: 10.3390/biom12060850] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of highly tumorigenic cells in tumors. They have enhanced self-renewal properties, are usually chemo-radioresistant, and can promote tumor recurrence and metastasis. They can recruit macrophages into the tumor microenvironment and differentiate them into tumor-associated macrophages (TAMs). TAMs maintain CSC stemness and construct niches that are favorable for CSC survival. However, how CSCs and TAMs interact is not completely understood. An understanding on these mechanisms can provide additional targeting strategies for eliminating CSCs. In this review, we comprehensively summarize the reported mechanisms of crosstalk between CSCs and TAMs and update the related signaling pathways involved in tumor progression. In addition, we discuss potential therapies targeting CSC–TAM interaction, including targeting macrophage recruitment and polarization by CSCs and inhibiting the TAM-induced promotion of CSC stemness. This review also provides the perspective on the major challenge for developing potential therapeutic strategies to overcome CSC-TAM crosstalk.
Collapse
|
90
|
de Groot J, Ott M, Wei J, Kassab C, Fang D, Najem H, O'Brien B, Weathers SP, Matsouka CK, Majd NK, Harrison RA, Fuller GN, Huse JT, Long JP, Sawaya R, Rao G, MacDonald TJ, Priebe W, DeCuypere M, Heimberger AB. A first-in-human Phase I trial of the oral p-STAT3 inhibitor WP1066 in patients with recurrent malignant glioma. CNS Oncol 2022; 11:CNS87. [PMID: 35575067 PMCID: PMC9134932 DOI: 10.2217/cns-2022-0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Aim: To ascertain the maximum tolerated dose (MTD)/maximum feasible dose (MFD) of WP1066 and p-STAT3 target engagement within recurrent glioblastoma (GBM) patients. Patients & methods: In a first-in-human open-label, single-center, single-arm 3 + 3 design Phase I clinical trial, eight patients were treated with WP1066 until disease progression or unacceptable toxicities. Results: In the absence of significant toxicity, the MFD was identified to be 8 mg/kg. The most common adverse event was grade 1 nausea and diarrhea in 50% of patients. No treatment-related deaths occurred; 6 of 8 patients died from disease progression and one was lost to follow-up. Of 8 patients with radiographic follow-up, all had progressive disease. The longest response duration exceeded 3.25 months. The median progression-free survival (PFS) time was 2.3 months (95% CI: 1.7 months-NA months), and 6-month PFS (PFS6) rate was 0%. The median overall survival (OS) rate was 25 months (95% CI: 22.5 months-NA months), with an estimated 1-year OS rate of 100%. Pharmacokinetic (PK) data demonstrated that at 8 mg/kg, the T1/2 was 2-3 h with a dose dependent increase in the Cmax. Immune monitoring of the peripheral blood demonstrated that there was p-STAT3 suppression starting at a dose of 1 mg/kg. Conclusion: Immune analyses indicated that WP1066 inhibited systemic immune p-STAT3. WP1066 had an MFD identified at 8 mg/kg which is the target allometric dose based on prior preclinical modeling in combination with radiation therapy and a Phase II study is being planned for newly diagnosed MGMT promoter unmethylated glioblastoma patients.
Collapse
Affiliation(s)
- John de Groot
- Departments of Neurology & Neurosurgery, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Cynthia Kassab
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
| | - Barbara O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Carlos Kamiya Matsouka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Rebecca A Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Gregory N Fuller
- Department of Neuropathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jason T Huse
- Department of Neuropathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Emory University School of Medicine, Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA 30322, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Michael DeCuypere
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
- Department of Neurological Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
| |
Collapse
|
91
|
Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Zagury J, Sieger D. Wasl is crucial to maintain microglial core activities during glioblastoma initiation stages. Glia 2022; 70:1027-1051. [PMID: 35194846 PMCID: PMC9306864 DOI: 10.1002/glia.24154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
Microglia actively promotes the growth of high-grade gliomas. Within the glioma microenvironment an amoeboid microglial morphology has been observed, however the underlying causes and the related impact on microglia functions and their tumor promoting activities is unclear. Using the advantages of the larval zebrafish model, we identified the underlying mechanism and show that microglial morphology and functions are already impaired during glioma initiation stages. The presence of pre-neoplastic HRasV12 expressing cells induces an amoeboid morphology of microglia, increases microglial numbers and decreases their motility and phagocytic activity. RNA sequencing analysis revealed lower expression levels of the actin nucleation promoting factor wasla in microglia. Importantly, a microglia specific rescue of wasla expression restores microglial morphology and functions. This results in increased phagocytosis of pre-neoplastic cells and slows down tumor progression. In conclusion, we identified a mechanism that de-activates core microglial functions within the emerging glioma microenvironment. Restoration of this mechanism might provide a way to impair glioma growth.
Collapse
Affiliation(s)
- Julie Mazzolini
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Sigrid Le Clerc
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Gregoire Morisse
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Cédric Coulonges
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Jean‐François Zagury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Dirk Sieger
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
92
|
Tao R, Liu Q, Huang R, Wang K, Sun Z, Yang P, Wang J. A Novel TNFSF-Based Signature Predicts the Prognosis and Immunosuppressive Status of Lower-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3194996. [PMID: 35592520 PMCID: PMC9112166 DOI: 10.1155/2022/3194996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
Purpose Tumour necrosis factor (TNF) superfamilies play important roles in cell proliferation, migration, differentiation, and apoptosis. We believe that TNF has a huge potential and might cast new insight into antitumour therapies. Therefore, we established this signature based on TNF superfamilies. Results A six-gene signature derived from the TNF superfamilies was established. The Riskscore correlated significantly with the expression of immune checkpoint genes and infiltrating M2 macrophages in the tumour specimen. This signature was also associated with mutations in genes that regulate tumour cell proliferation. Univariate and multivariate regression analyses further confirmed the Riskscore, TNFRSF11b, and TNFRSF12a as independent risk factors in The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets. Conclusion Our signature could accurately predict the prognosis of lower-grade gliomas (LGG). In addition, this six-gene signature could predict the immunosuppressive status of LGG and provide evidence that TNF superfamilies had correlations with some critical mutations that could be effectively targeted now.
Collapse
Affiliation(s)
- Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kuanyu Wang
- Gamma Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyan Sun
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
93
|
Ezra Manicum AL, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
94
|
Crosstalk between β-Catenin and CCL2 Drives Migration of Monocytes towards Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23094562. [PMID: 35562953 PMCID: PMC9101913 DOI: 10.3390/ijms23094562] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) is a fast growing and highly heterogeneous tumor, often characterized by the presence of glioblastoma stem cells (GSCs). The plasticity of GSCs results in therapy resistance and impairs anti-tumor immune response by influencing immune cells in the tumor microenvironment (TME). Previously, β-catenin was associated with stemness in GBM as well as with immune escape mechanisms. Here, we investigated the effect of β-catenin on attracting monocytes towards GBM cells. In addition, we evaluated whether CCL2 is involved in β-catenin crosstalk between monocytes and tumor cells. Our analysis revealed that shRNA targeting β-catenin in GBMs reduces monocytes attraction and impacts CCL2 secretion. The addition of recombinant CCL2 restores peripheral blood mononuclear cells (PBMC) migration towards medium (TCM) conditioned by shβ-catenin GBM cells. CCL2 knockdown in GBM cells shows similar effects and reduces monocyte migration to a similar extent as β-catenin knockdown. When investigating the effect of CCL2 on β-catenin activity, we found that CCL2 modulates components of the Wnt/β-catenin pathway and alters the clonogenicity of GBM cells. In addition, the pharmacological β-catenin inhibitor MSAB reduces active β-catenin, downregulates the expression of associated genes and alters CCL2 secretion. Taken together, we showed that β-catenin plays an important role in attracting monocytes towards GBM cells in vitro. We hypothesize that the interactions between β-catenin and CCL2 contribute to maintenance of GSCs via modulating immune cell interaction and promoting GBM growth and recurrence.
Collapse
|
95
|
Wei J, Song R, Sabbagh A, Marisetty A, Shukla N, Fang D, Najem H, Ott M, Long J, Zhai L, Lesniak MS, James CD, Platanias L, Curran M, Heimberger AB. Cell-directed aptamer therapeutic targeting for cancers including those within the central nervous system. Oncoimmunology 2022; 11:2062827. [PMID: 35433114 PMCID: PMC9009928 DOI: 10.1080/2162402x.2022.2062827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteopontin (OPN) is produced by tumor cells as well as by myeloid cells and is enriched in the tumor microenvironment (TME) of many cancers. Given the roles of OPN in tumor progression and immune suppression, we hypothesized that targeting OPN with aptamers that have high affinity and specificity could be a promising therapeutic strategy. Bi-specific aptamers targeting ligands for cellular internalization were conjugated to siRNAs to suppress OPN were created, and therapeutic leads were selected based on target engagement and in vivo activity. Aptamers as carriers for siRNA approaches were created including a cancer targeting nucleolin aptamer Ncl-OPN siRNA and a myeloid targeting CpG oligodeoxynucleotide (ODN)-OPN siRNA conjugate. These aptamers were selected as therapeutic leads based on 70–90% OPN inhibition in cancer (GL261, 344SQ, 4T1B2b) and myeloid (DC2.4) cells relative to scramble controls. In established immune competent 344SQ lung cancer and 4T1B2b breast cancer models, these aptamers, including in combination, demonstrate therapeutic activity by inhibiting tumor growth. The Ncl-OPN siRNA aptamer demonstrated efficacy in an immune competent orthotopic glioma model administered systemically secondary to the ability of the aptamer to access the glioma TME. Therapeutic activity was demonstrated using both aptamers in a breast cancer brain metastasis model. Targeted inhibition of OPN in tumor cells and myeloid cells using bifunctional aptamers that are internalized by specific cell types and suppress OPN expression once internalized may have clinical potential in cancer treatment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renduo Song
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aria Sabbagh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anantha Marisetty
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neal Shukla
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Charles David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Leonidas Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Michael Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
96
|
Guo Y, Xie Y, Luo Y. The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Front Immunol 2022; 13:851004. [PMID: 35222443 PMCID: PMC8863945 DOI: 10.3389/fimmu.2022.851004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Tumorigenesis is a complicated process caused by successive genetic and epigenetic alterations. The past decades demonstrated that the immune system affects tumorigenesis, tumor progression, and metastasis. Although increasing immunotherapies are revealed, only a tiny proportion of them are effective. Long non-coding RNAs (lncRNAs) are a class of single-stranded RNA molecules larger than 200 nucleotides and are essential in the molecular network of oncology and immunology. Increasing researches have focused on the connection between lncRNAs and cancer immunotherapy. However, the in-depth mechanisms are still elusive. In this review, we outline the latest studies on the functions of lncRNAs in the tumor immune microenvironment. Via participating in various biological processes such as neutrophil recruitment, macrophage polarization, NK cells cytotoxicity, and T cells functions, lncRNAs regulate tumorigenesis, tumor invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In addition, we reviewed the current understanding of the relevant strategies for targeting lncRNAs. LncRNAs-based therapeutics may represent promising approaches in serving as prognostic biomarkers or potential therapeutic targets in cancer, providing ideas for future research and clinical application on cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Yingli Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yajuan Xie
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
97
|
The Pivotal Immunoregulatory Functions of Microglia and Macrophages in Glioma Pathogenesis and Therapy. JOURNAL OF ONCOLOGY 2022; 2022:8903482. [PMID: 35419058 PMCID: PMC9001141 DOI: 10.1155/2022/8903482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Gliomas are mixed solid tumors composed of both neoplastic and nonneoplastic cells. In glioma microenvironment, the most common nonneoplastic and infiltrating cells are macrophages and microglia. Microglia are the exact phagocytes of the central nervous system, whereas macrophages are myeloid immune cells that are depicted with ardent phagocytosis. Microglia are heterogeneously located in almost all nonoverlapping sections of the brain as well as the spinal cord, while macrophages are derived from circulating monocytes. Microglia and macrophages utilize a variety of receptors for the detection of molecules, particles, and cells that they engulf. Both microglia and peripheral macrophages interact directly with vessels both in the periphery of and within the tumor. In glioma milieu, normal human astrocytes, glioma cells, and microglia all exhibited the ability of phagocytosing glioma cells and precisely apoptotic tumor cells. Also, microglia and macrophages are robustly triggered by the glioma via the expression of chemoattractants such as monocyte chemoattractant protein, stromal-derived factor-1, and macrophage-colony stimulating factor. Glioma-associated microglia and/or macrophages positively correlated with glioma invasiveness, immunosuppression, and patients' poor outcome, making these cells a suitable target for immunotherapeutic schemes.
Collapse
|
98
|
Uyar R. Glioblastoma microenvironment: The stromal interactions. Pathol Res Pract 2022; 232:153813. [PMID: 35228161 DOI: 10.1016/j.prp.2022.153813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Glioblastomas (GBMs) are the most common primary brain tumors with poor prognosis due to their aggressive growth accompanied by invasive behavior and therapy-resistance. These features promote a high rate of recurrence; therefore, they are largely incurable. One major cause of the incurability is brought about by the intimate relationship of GBM cells with the microenvironment, which supports the tumor growth in various ways by providing a permissive neighborhood. In the tumor microenvironment are glioma stem cells (GSC); endothelial cells (EC) and hypoxic regions; immune cells and immune modulatory cues; astrocytes; neural stem/precursor cells (NPC) and mesenchymal stem cells (MSC). Each cell type contributes to GBM pathology in unique ways; therefore, it is necessary to understand such interactions between GBM cells and the stromal cells in order to establish a through understanding of the GBM pathology. By explaining the contribution of each stromal entity to GBM pathology we aim to draw an interaction map for GBMs and promote awareness of the complexity of the GBM microenvironment.
Collapse
Affiliation(s)
- Ramazan Uyar
- Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.
| |
Collapse
|
99
|
Ren C, Li J, Zhou Y, Zhang S, Wang Q. Typical tumor immune microenvironment status determine prognosis in lung adenocarcinoma. Transl Oncol 2022; 18:101367. [PMID: 35176624 PMCID: PMC8851380 DOI: 10.1016/j.tranon.2022.101367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Immune cells infiltration level in lung adenocarcinoma immune microenvironment were quantified and compared. Three distinct tumor immune microenvironment subtypes were consistent with cancer immunity cycle in cancer dynamic development. Immune infiltration status of three subtypes were correlated with significant mutated genes, copy number variation and cancer stemness Prognostic biomarker lung adenocarcinoma immune microenvironment score model was constructed to assess immune infiltration status, evaluate immunotherapy response, and predict patient prognosis.
Background Immune cells, vital components of tumor microenvironment, regulate tumor survival and progression. Lung adenocarcinoma (LUAD), the tumor with the highest mortality rate worldwide, reconstitutes tumor immune microenvironment (TIME) to avoid immune destruction. Data have shown that TIME influences LUAD prognosis and predicts immunotherapeutic efficacy. The related information about the role of TIME's characteristics in LUAD is limited. Methods We performed unsupervised consensus clustering via machine-learning techniques to identify TIME clusters among 1906 patients and gathered survival data. The characteristics of TIME clusters of LUAD were visualized by multi-omics analysis, pseudo-time dynamic analysis, and enrichment analysis. TIME score model was constructed by principal component analysis. Comprehensive analysis and validation were conducted to test the prognostic efficacy and immunotherapeutic response of TIME score. Results TIME clusters (A, B and C) were constructed and exhibited different immune infiltration states. Multi-omics analyses included significant mutated genes (SMG), copy number variation (CNV) and cancer stemness that were significantly different among the three clusters. TIME cluster A had a lower SMG, lower CNV, and lower stemness but a higher immune infiltration level compared to TIME clusters B and C. TIME score showed that patients in low TIME score group had higher overall survival rates, higher immune infiltration level and high expression of immune checkpoints. In validation cohorts, low TIME score subgroup had better drug sensitivity and favorable immunotherapeutic response. Conclusion We constructed a stable model of LUAD immune microenvironment characteristics that may improve the prognostic accuracy of patients, provide improved explanations of LUAD responses to immunotherapy, and provide new strategies for LUAD treatment.
Collapse
Affiliation(s)
- Caixia Ren
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Jinyu Li
- Department of Breast Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, 116023, China.
| | - Yang Zhou
- Liaoning Clinical Research Center for Lung Cancer,The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Shuyu Zhang
- China National Nuclear Corporation 416 Hospital, The Second Affiliated Hospital of Chengdu Medical College, Chengdu 610051, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
100
|
Transcription Factors with Targeting Potential in Gliomas. Int J Mol Sci 2022; 23:ijms23073720. [PMID: 35409080 PMCID: PMC8998804 DOI: 10.3390/ijms23073720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022] Open
Abstract
Gliomas portray a large and heterogeneous group of CNS tumors, encompassing a wide range of low- to high-grade tumors, as defined by histological and molecular characteristics. The identification of signature mutations and other molecular abnormalities has largely impacted tumor classification, diagnosis, and therapy. Transcription factors (TFs) are master regulators of gene expression programs, which ultimately shape cell fate and homeostasis. A variety of TFs have been detected to be aberrantly expressed in brain tumors, being highly implicated in critical pathological aspects and progression of gliomas. Herein, we describe a selection of oncogenic (GLI-1/2/3, E2F1–8, STAT3, and HIF-1/2) and tumor suppressor (NFI-A/B, TBXT, MYT1, and MYT1L) TFs that are deregulated in gliomas and are subsequently associated with tumor development, progression, and migratory potential. We further discuss the current targeting options against these TFs, including chemical (Bortezomib) and natural (Plumbagin) compounds, small molecules, and inhibitors, and address their potential implications in glioma therapy.
Collapse
|