51
|
Intracranial pulse pressure waveform analysis using the higher harmonics centroid. Acta Neurochir (Wien) 2021; 163:3249-3258. [PMID: 34387744 PMCID: PMC8599247 DOI: 10.1007/s00701-021-04958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
Background The pulse waveform of intracranial pressure (ICP) is its distinctive feature almost always present in the clinical recordings. In most cases, it changes proportionally to rising ICP, and observation of these changes may be clinically useful. We introduce the higher harmonics centroid (HHC) which can be defined as the center of mass of harmonics of the ICP pulse waveform from the 2nd to 10th, where mass corresponds to amplitudes of these harmonics. We investigate the changes in HHC during ICP monitoring, including isolated episodes of ICP plateau waves. Material and methods Recordings from 325 patients treated between 2002 and 2010 were reviewed. Twenty-six patients with ICP plateau waves were identified. In the first step, the correlation between HHC and ICP was examined for the entire monitoring period. In the second step, the above relation was calculated separately for periods of elevated ICP during plateau wave and the baseline. Results For the values averaged over the whole monitoring period, ICP (22.3 ± 6.9 mm Hg) correlates significantly (R = 0.45, p = 0.022) with HHC (3.64 ± 0.46). During the ICP plateau waves (ICP increased from 20.9 ± 6.0 to 53.7 ± 9.7 mm Hg, p < 10−16), we found a significant decrease in HHC (from 3.65 ± 0.48 to 3.21 ± 0.33, p = 10−5). Conclusions The good correlation between HHC and ICP supports the clinical application of pressure waveform analysis in addition to the recording of ICP number only. Mean ICP may be distorted by a zero drift, but HHC remains immune to this error. Further research is required to test whether a decline in HHC with elevated ICP can be an early warning sign of intracranial hypertension, whether individual breakpoints of correlation between ICP and its centroid are of clinical importance.
Collapse
|
52
|
Gomez A, Sainbhi AS, Froese L, Batson C, Alizadeh A, Mendelson AA, Zeiler FA. Near Infrared Spectroscopy for High-Temporal Resolution Cerebral Physiome Characterization in TBI: A Narrative Review of Techniques, Applications, and Future Directions. Front Pharmacol 2021; 12:719501. [PMID: 34803673 PMCID: PMC8602694 DOI: 10.3389/fphar.2021.719501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
Multimodal monitoring has been gaining traction in the critical care of patients following traumatic brain injury (TBI). Through providing a deeper understanding of the individual patient's comprehensive physiologic state, or "physiome," following injury, these methods hold the promise of improving personalized care and advancing precision medicine. One of the modalities being explored in TBI care is near-infrared spectroscopy (NIRS), given it's non-invasive nature and ability to interrogate microvascular and tissue oxygen metabolism. In this narrative review, we begin by discussing the principles of NIRS technology, including spatially, frequency, and time-resolved variants. Subsequently, the applications of NIRS in various phases of clinical care following TBI are explored. These applications include the pre-hospital, intraoperative, neurocritical care, and outpatient/rehabilitation setting. The utility of NIRS to predict functional outcomes and evaluate dysfunctional cerebrovascular reactivity is also discussed. Finally, future applications and potential advancements in NIRS-based physiologic monitoring of TBI patients are presented, with a description of the potential integration with other omics biomarkers.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Asher A Mendelson
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
53
|
Batson C, Froese L, Gomez A, Sainbhi AS, Stein KY, Alizadeh A, Zeiler FA. Impact of Age and Biological Sex on Cerebrovascular Reactivity in Adult Moderate/Severe Traumatic Brain Injury: An Exploratory Analysis. Neurotrauma Rep 2021; 2:488-501. [PMID: 34901944 PMCID: PMC8655816 DOI: 10.1089/neur.2021.0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Age and biological sex are two potential important modifiers of cerebrovascular reactivity post-traumatic brain injury (TBI) requiring close evaluation for potential subgroup responses. The goal of this study was to provide a preliminary exploratory analysis of the impact of age and biological sex on measures of cerebrovascular function in moderate/severe TBI. Forty-nine patients from the prospectively maintained TBI database at the University of Manitoba with archived high-frequency digital cerebral physiology were evaluated. Cerebrovascular reactivity indices were derived as follows: PRx (correlation between intracranial pressure [ICP] and mean arterial pressure [MAP]), PAx (correlation between pulse amplitude of ICP [AMP] and MAP), and RAC (correlation between AMP and cerebral perfusion pressure [CPP]). Time above clinically significant thresholds for each index was calculated over different periods of the acute intensive care unit stay. The association between PRx, PAx, and RAC measures with age was assessed using linear regression, and an age trichotomization scheme (<40, 40-60, >60) using Kruskal-Wallis testing. Similarly, association with biological sex was tested using Mann-Whitney U testing. Biological sex did not demonstrate an impact on any measures of cerebrovascular reactivity. Linear regression between age and PAx and RAC demonstrated a statistically significant positive linear relationship. Median PAx and RAC measures between trichotomized age categories demonstrated statistically significant increases with advancing age. The PRx failed to demonstrate any statistically significant relationship with age in this cohort, suggesting that in elderly patients with controlled ICP, PAx and RAC may be better metrics for detecting impaired cerebrovascular reactivity. Biological sex appears to not be associated with differences in cerebrovascular reactivity in this cohort. The PRx performed the worst in detecting impaired cerebrovascular reactivity in those with advanced age, where PAx and RAC appear to have excelled. Future work is required to validate these findings and explore the utility of different cerebrovascular reactivity indices.
Collapse
Affiliation(s)
- Carleen Batson
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
54
|
Mangat HS, Wu X, Gerber LM, Shabani HK, Lazaro A, Leidinger A, Santos MM, McClelland PH, Schenck H, Joackim P, Ngerageza JG, Schmidt F, Stieg PE, Hartl R. Severe traumatic brain injury management in Tanzania: analysis of a prospective cohort. J Neurosurg 2021; 135:1190-1202. [PMID: 33482641 PMCID: PMC8295409 DOI: 10.3171/2020.8.jns201243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/03/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Given the high burden of neurotrauma in low- and middle-income countries (LMICs), in this observational study, the authors evaluated the treatment and outcomes of patients with severe traumatic brain injury (TBI) accessing care at the national neurosurgical institute in Tanzania. METHODS A neurotrauma registry was established at Muhimbili Orthopaedic Institute, Dar-es-Salaam, and patients with severe TBI admitted within 24 hours of injury were included. Detailed emergency department and subsequent medical and surgical management of patients was recorded. Two-week mortality was measured and compared with estimates of predicted mortality computed with admission clinical variables using the Corticoid Randomisation After Significant Head Injury (CRASH) core model. RESULTS In total, 462 patients (mean age 33.9 years) with severe TBI were enrolled over 4.5 years; 89% of patients were male. The mean time to arrival to the hospital after injury was 8 hours; 48.7% of patients had advanced airway management in the emergency department, 55% underwent cranial CT scanning, and 19.9% underwent surgical intervention. Tiered medical therapies for intracranial hypertension were used in less than 50% of patients. The observed 2-week mortality was 67%, which was 24% higher than expected based on the CRASH core model. CONCLUSIONS The 2-week mortality from severe TBI at a tertiary referral center in Tanzania was 67%, which was significantly higher than the predicted estimates. The higher mortality was related to gaps in the continuum of care of patients with severe TBI, including cardiorespiratory monitoring, resuscitation, neuroimaging, and surgical rates, along with lower rates of utilization of available medical therapies. In ongoing work, the authors are attempting to identify reasons associated with the gaps in care to implement programmatic improvements. Capacity building by twinning provides an avenue for acquiring data to accurately estimate local needs and direct programmatic education and interventions to reduce excess in-hospital mortality from TBI.
Collapse
Affiliation(s)
- Halinder S. Mangat
- Department of Neurology, Weill Cornell Brain and Spine Institute, New York
- Department of Neurological Surgery, Weill Cornell Brain and Spine Institute, New York
| | - Xian Wu
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York
| | - Linda M. Gerber
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York
| | - Hamisi K. Shabani
- Department of Neurological Surgery, Muhimbili Orthopaedic Institute, Dar-es-Salaam, Tanzania
| | - Albert Lazaro
- Department of Neurological Surgery, Muhimbili Orthopaedic Institute, Dar-es-Salaam, Tanzania
| | - Andreas Leidinger
- Department of Neurological Surgery, Weill Cornell Brain and Spine Institute, New York
- Department of Neurological Surgery, Muhimbili Orthopaedic Institute, Dar-es-Salaam, Tanzania
| | - Maria M. Santos
- Department of Neurological Surgery, Weill Cornell Brain and Spine Institute, New York
- Department of Neurological Surgery, Muhimbili Orthopaedic Institute, Dar-es-Salaam, Tanzania
| | - Paul H. McClelland
- Department of Neurological Surgery, Weill Cornell Brain and Spine Institute, New York
| | | | - Pascal Joackim
- Department of Neurological Surgery, Muhimbili Orthopaedic Institute, Dar-es-Salaam, Tanzania
| | - Japhet G. Ngerageza
- Department of Neurological Surgery, Muhimbili Orthopaedic Institute, Dar-es-Salaam, Tanzania
| | - Franziska Schmidt
- Department of Neurological Surgery, Weill Cornell Brain and Spine Institute, New York
| | - Philip E. Stieg
- Department of Neurological Surgery, Weill Cornell Brain and Spine Institute, New York
| | - Roger Hartl
- Department of Neurological Surgery, Weill Cornell Brain and Spine Institute, New York
| |
Collapse
|
55
|
Zeiler FA, Iturria-Medina Y, Thelin EP, Gomez A, Shankar JJ, Ko JH, Figley CR, Wright GEB, Anderson CM. Integrative Neuroinformatics for Precision Prognostication and Personalized Therapeutics in Moderate and Severe Traumatic Brain Injury. Front Neurol 2021; 12:729184. [PMID: 34557154 PMCID: PMC8452858 DOI: 10.3389/fneur.2021.729184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023] Open
Abstract
Despite changes in guideline-based management of moderate/severe traumatic brain injury (TBI) over the preceding decades, little impact on mortality and morbidity have been seen. This argues against the "one-treatment fits all" approach to such management strategies. With this, some preliminary advances in the area of personalized medicine in TBI care have displayed promising results. However, to continue transitioning toward individually-tailored care, we require integration of complex "-omics" data sets. The past few decades have seen dramatic increases in the volume of complex multi-modal data in moderate and severe TBI care. Such data includes serial high-fidelity multi-modal characterization of the cerebral physiome, serum/cerebrospinal fluid proteomics, admission genetic profiles, and serial advanced neuroimaging modalities. Integrating these complex and serially obtained data sets, with patient baseline demographics, treatment information and clinical outcomes over time, can be a daunting task for the treating clinician. Within this review, we highlight the current status of such multi-modal omics data sets in moderate/severe TBI, current limitations to the utilization of such data, and a potential path forward through employing integrative neuroinformatic approaches, which are applied in other neuropathologies. Such advances are positioned to facilitate the transition to precision prognostication and inform a top-down approach to the development of personalized therapeutics in moderate/severe TBI.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Eric P. Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jai J. Shankar
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Chase R. Figley
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Galen E. B. Wright
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris M. Anderson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
56
|
Hogg FRA, Kearney S, Gallagher MJ, Zoumprouli A, Papadopoulos MC, Saadoun S. Spinal Cord Perfusion Pressure Correlates with Anal Sphincter Function in a Cohort of Patients with Acute, Severe Traumatic Spinal Cord Injuries. Neurocrit Care 2021; 35:794-805. [PMID: 34100181 PMCID: PMC8692299 DOI: 10.1007/s12028-021-01232-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022]
Abstract
Background Acute, severe traumatic spinal cord injury often causes fecal incontinence. Currently, there are no treatments to improve anal function after traumatic spinal cord injury. Our study aims to determine whether, after traumatic spinal cord injury, anal function can be improved by interventions in the neuro-intensive care unit to alter the spinal cord perfusion pressure at the injury site. Methods We recruited a cohort of patients with acute, severe traumatic spinal cord injuries (American Spinal Injury Association Impairment Scale grades A–C). They underwent surgical fixation within 72 h of the injury and insertion of an intrathecal pressure probe at the injury site to monitor intraspinal pressure and compute spinal cord perfusion pressure as mean arterial pressure minus intraspinal pressure. Injury-site monitoring was performed at the neuro-intensive care unit for up to a week after injury. During monitoring, anorectal manometry was also conducted over a range of spinal cord perfusion pressures. Results Data were collected from 14 patients with consecutive traumatic spinal cord injury aged 22–67 years. The mean resting anal pressure was 44 cmH2O, which is considerably lower than the average for healthy patients, previously reported at 99 cmH2O. Mean resting anal pressure versus spinal cord perfusion pressure had an inverted U-shaped relation (Ȓ2 = 0.82), with the highest resting anal pressures being at a spinal cord perfusion pressure of approximately 100 mmHg. The recto-anal inhibitory reflex (transient relaxation of the internal anal sphincter during rectal distension), which is important for maintaining fecal continence, was present in 90% of attempts at high (90 mmHg) spinal cord perfusion pressure versus 70% of attempts at low (60 mmHg) spinal cord perfusion pressure (P < 0.05). During cough, the rise in anal pressure from baseline was 51 cmH2O at high (86 mmHg) spinal cord perfusion pressure versus 37 cmH2O at low (62 mmHg) spinal cord perfusion pressure (P < 0.0001). During anal squeeze, higher spinal cord perfusion pressure was associated with longer endurance time and spinal cord perfusion pressure of 70–90 mmHg was associated with stronger squeeze. There were no complications associated with anorectal manometry. Conclusions Our data indicate that spinal cord injury causes severe disruption of anal sphincter function. Several key components of anal continence (resting anal pressure, recto-anal inhibitory reflex, and anal pressure during cough and squeeze) markedly improve at higher spinal cord perfusion pressure. Maintaining too high of spinal cord perfusion pressure may worsen anal continence. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-021-01232-1.
Collapse
Affiliation(s)
- Florence R A Hogg
- Academic Neurosurgery Unit, MCS Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Siobhan Kearney
- Academic Neurosurgery Unit, MCS Institute, St. George's, University of London, London, SW17 0RE, UK.,Neuroanaesthesia Department and Neuro Intensive Care Unit, St. George's Hospital, London, UK
| | - Mathew J Gallagher
- Academic Neurosurgery Unit, MCS Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Argyro Zoumprouli
- Neuroanaesthesia Department and Neuro Intensive Care Unit, St. George's Hospital, London, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, MCS Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Samira Saadoun
- Academic Neurosurgery Unit, MCS Institute, St. George's, University of London, London, SW17 0RE, UK.
| |
Collapse
|
57
|
Saadoun S, Papadopoulos MC. Acute, Severe Traumatic Spinal Cord Injury: Monitoring from the Injury Site and Expansion Duraplasty. Neurosurg Clin N Am 2021; 32:365-376. [PMID: 34053724 DOI: 10.1016/j.nec.2021.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We discuss 2 evolving management options for acute spinal cord injury that hold promise to further improve outcome: pressure monitoring from the injured cord and expansion duraplasty. Probes surgically implanted at the injury site can transduce intraspinal pressure, spinal cord perfusion pressure, and cord metabolism. Intraspinal pressure is not adequately reduced by bony decompression alone because the swollen, injured cord is compressed against the dura. Expansion duraplasty may be necessary to effectively decompress the injured cord. A randomized controlled trial called DISCUS is investigating expansion duraplasty as a novel treatment for acute, severe traumatic cervical spinal cord injury.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Marios C Papadopoulos
- Department of Neurosurgery, Atkinson Morley Wing, St. George's Hospital NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| |
Collapse
|
58
|
Sedation and cerebrovascular reactivity in traumatic brain injury: another potential avenue for personalized approaches in neurocritical care? Acta Neurochir (Wien) 2021; 163:1383-1389. [PMID: 33404872 DOI: 10.1007/s00701-020-04662-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Impaired cerebrovascular reactivity appears to be linked to worse global outcome in adult traumatic brain injury (TBI). Literature suggests that current treatments administered in TBI care, in the intensive care unit (ICU), fail to greatly impact recorded cerebrovascular reactivity measures. In particular, the impact of sedation on cerebrovascular reactivity in traumatic brain injury (TBI) remains unclear in vivo. The goal of this study was to preliminarily assess the relationship between objectively measured depth of sedation and cerebrovascular reactivity in TBI. METHODS Within, we describe a case series of 5 adult TBI patients with TBI, during which objective high-frequency physiology for sedation depth, using bispectral index (BIS), and both intracranial pressure (ICP) and arterial blood pressure (ABP) were recorded. Pressure reactivity index (PRx) and RAP (a metric of cerebral compensatory reserve) were derived. Relationships between cerebrovascular reactivity and compensatory reserve monitoring with BIS metrics were explored using descriptive plots. RESULTS A total of 5 cases in our prospectively maintained database with high-frequency physiology for ICP, ABP, and BIS. Through error bar plotting, it can be seen that each patient displays a parabolic relationship between BIS and PRx. This suggests a potential "optimal" depth of sedation where cerebrovascular reactivity is the most intact. CONCLUSIONS This small series highlights the potential impact of depth of sedation on cerebrovascular reactivity in TBI. It suggests that there may be an individual optimal depth of sedation, so as to optimize cerebrovascular reactivity. Further study of objective depth of sedation and its impact on cerebrovascular physiology in TBI is required.
Collapse
|
59
|
How do we identify the crashing traumatic brain injury patient - the neurosurgeon's view. Curr Opin Crit Care 2021; 27:87-94. [PMID: 33395087 DOI: 10.1097/mcc.0000000000000799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW To provide an overview on recent advances in the field of assessment and monitoring of patients with severe traumatic brain injury (sTBI) in neurocritical care from a neurosurgical point of view. RECENT FINDINGS In high-income countries, monitoring of patients with sTBI heavily relies on multimodal neurocritical parameters, nonetheless clinical assessment still has a solid role in decision-making. There are guidelines and consensus-based treatment algorithms that can be employed in both absence and presence of multimodal monitoring in the management of patients with sTBI. Additionally, novel dynamic monitoring options and machine learning-based prognostic models are introduced. Currently, the acute management and treatment of secondary injury/insults is focused on dealing with the objective evident pathology. An ongoing paradigm shift is emerging towards more proactive treatment of neuroworsening as soon as premonitory signs of deterioration are detected. SUMMARY Based on the current evidence, serial clinical assessment, neuroimaging, intracranial and cerebral perfusion pressure and brain tissue oxygen monitoring are key components of sTBI care. Clinical assessment has a crucial role in identifying the crashing patient with sTBI, especially from a neurosurgical standpoint. Multimodal monitoring and clinical assessment should be seen as complementary evaluation methods that support one another.
Collapse
|
60
|
Lalou AD, Czosnyka M, Placek MM, Smielewski P, Nabbanja E, Czosnyka Z. CSF Dynamics for Shunt Prognostication and Revision in Normal Pressure Hydrocephalus. J Clin Med 2021; 10:jcm10081711. [PMID: 33921142 PMCID: PMC8071572 DOI: 10.3390/jcm10081711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite the quantitative information derived from testing of the CSF circulation, there is still no consensus on what the best approach could be in defining criteria for shunting and predicting response to CSF diversion in normal pressure hydrocephalus (NPH). OBJECTIVE We aimed to review the lessons learned from assessment of CSF dynamics in our center and summarize our findings to date. We have focused on reporting the objective perspective of CSF dynamics testing, without further inferences to individual patient management. DISCUSSION No single parameter from the CSF infusion study has so far been able to serve as an unquestionable outcome predictor. Resistance to CSF outflow (Rout) is an important biological marker of CSF circulation. It should not, however, be used as a single predictor for improvement after shunting. Testing of CSF dynamics provides information on hydrodynamic properties of the cerebrospinal compartment: the system which is being modified by a shunt. Our experience of nearly 30 years of studying CSF dynamics in patients requiring shunting and/or shunt revision, combined with all the recent progress made in producing evidence on the clinical utility of CSF dynamics, has led to reconsidering the relationship between CSF circulation testing and clinical improvement. CONCLUSIONS Despite many open questions and limitations, testing of CSF dynamics provides unique perspectives for the clinician. We have found value in understanding shunt function and potentially shunt response through shunt testing in vivo. In the absence of infusion tests, further methods that provide a clear description of the pre and post-shunting CSF circulation, and potentially cerebral blood flow, should be developed and adapted to the bed-space.
Collapse
Affiliation(s)
- Afroditi Despina Lalou
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
- Correspondence: ; Tel.: +44-774-3567-585
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
- Institute of Electronic Systems, Faculty of Electronics and Information Sciences, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Michal M. Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
| | - Eva Nabbanja
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
| | - Zofia Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (M.C.); (M.M.P.); (P.S.); (E.N.); (Z.C.)
| |
Collapse
|
61
|
Gomez A, Dian J, Zeiler FA. Continuous and entirely non-invasive method for cerebrovascular reactivity assessment: technique and implications. J Clin Monit Comput 2021; 35:307-315. [PMID: 31989415 PMCID: PMC7382981 DOI: 10.1007/s10877-020-00472-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Continuous cerebrovascular reactivity assessment in traumatic brain injury (TBI) has been limited by the need for invasive monitoring of either cerebral physiology or arterial blood pressure (ABP). This restricts the application of continuous measures to the acute phase of care, typically in the intensive care unit. It remains unknown if ongoing impairment of cerebrovascular reactivity occurs in the subacute and long-term phase, and if it drives ongoing morbidity in TBI. We describe an entirely non-invasive method for continuous assessment of cerebrovascular reactivity. We describe the technique for entirely non-invasive continuous assessment of cerebrovascular reactivity utilizing near-infrared spectroscopy (NIRS) and robotic transcranial Doppler (rTCD) technology, with details provided for NIRS. Recent advances in continuous high-frequency non-invasive ABP measurement, combined with NIRS or rTCD, can be employed to derive continuous and entirely non-invasive cerebrovascular reactivity metrics. Such non-invasive measures can be obtained during any aspect of patient care post-TBI, and even during outpatient follow-up, avoiding classical intermittent techniques and costly neuroimaging based metrics obtained only at specialized centers. This combination of technology and signal analytic techniques creates avenues for future investigation of the long-term consequences of cerebrovascular reactivity, integrating high-frequency non-invasive cerebral physiology, neuroimaging, proteomics and clinical phenotype at various stages post-injury.
Collapse
Affiliation(s)
- A Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - J Dian
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - F A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada.
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
62
|
Wolf S. The State of Autoregulation. Neurocrit Care 2021; 34:5-7. [PMID: 32548809 PMCID: PMC7940286 DOI: 10.1007/s12028-020-01021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
63
|
How to Choose a Shunt for Patients with Normal Pressure Hydrocephalus: A Short Guide to Selecting the Best Shunt Assembly. J Clin Med 2021; 10:jcm10061210. [PMID: 33803977 PMCID: PMC7999679 DOI: 10.3390/jcm10061210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Most patients with hydrocephalus are still managed with the implantation of a cerebrospinal fluid (CSF) shunt in which the CSF flow is regulated by a differential-pressure valve (DPV). Our aim in this review is to discuss some basic concepts in fluid mechanics that are frequently ignored but that should be understood by neurosurgeons to enable them to choose the most adequate shunt for each patient. We will present data, some of which is not provided by manufacturers, which may help neurosurgeons in selecting the most appropriate shunt. To do so, we focused on the management of patients with idiopathic “normal-pressure hydrocephalus” (iNPH), as one of the most challenging scenarios, in which the combination of optimal technology, patient characteristics, and knowledge of fluid mechanics can significantly modify the surgical results. For a better understanding of the available hardware and its evolution over time, we will have a second look at the design of the first DPV and the reasons why additional devices were incorporated to control for shunt overdrainage and its related complications. We try to persuade the reader that a clear understanding of the physical concepts of the CSF and shunt dynamics is key to understand the pathophysiology of iNPH and to improve its treatment.
Collapse
|
64
|
Launey Y, Fryer TD, Hong YT, Steiner LA, Nortje J, Veenith TV, Hutchinson PJ, Ercole A, Gupta AK, Aigbirhio FI, Pickard JD, Coles JP, Menon DK. Spatial and Temporal Pattern of Ischemia and Abnormal Vascular Function Following Traumatic Brain Injury. JAMA Neurol 2021; 77:339-349. [PMID: 31710336 PMCID: PMC6865302 DOI: 10.1001/jamaneurol.2019.3854] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Question How does 15oxygen positron emission tomography characterization of cerebral physiology after traumatic brain injury inform clinical practice? Findings In this single-center observational cohort study of 68 patients and 27 control participants, early ischemia was common in patients, but hyperemia coexisted in different brain regions. Cerebral blood volume was consistently increased, despite low cerebral blood flow. Meaning Per this analysis, pathophysiologic heterogeneity indicates that bedside physiological monitoring with devices that measure global (jugular venous saturation) or focal (tissue oximetry) brain oxygenation should be interpreted with caution. Importance Ischemia is an important pathophysiological mechanism after traumatic brain injury (TBI), but its incidence and spatiotemporal patterns are poorly characterized. Objective To comprehensively characterize the spatiotemporal changes in cerebral physiology after TBI. Design, Setting, and Participants This single-center cohort study uses 15oxygen positron emission tomography data obtained in a neurosciences critical care unit from February 1998 through July 2014 and analyzed from April 2018 through August 2019. Patients with TBI requiring intracranial pressure monitoring and control participants were recruited. Exposures Cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen metabolism (CMRO2), and oxygen extraction fraction. Main Outcomes and Measures Ratios (CBF/CMRO2 and CBF/CBV) were calculated. Ischemic brain volume was compared with jugular venous saturation and brain tissue oximetry. Results A total of 68 patients with TBI and 27 control participants were recruited. Results from 1 patient with TBI and 7 health volunteers were excluded. Sixty-eight patients with TBI (13 female [19%]; median [interquartile range (IQR)] age, 29 [22-47] years) underwent 90 studies at early (day 1 [n = 17]), intermediate (days 2-5 [n = 54]), and late points (days 6-10 [n = 19]) and were compared with 20 control participants (5 female [25%]; median [IQR] age, 43 [31-47] years). The global CBF and CMRO2 findings for patients with TBI were less than the ranges for control participants at all stages (median [IQR]: CBF, 26 [22-30] mL/100 mL/min vs 38 [29-49] mL/100 mL/min; P < .001; CMRO2, 62 [55-71] μmol/100 mL/min vs 131 [101-167] μmol/100 mL/min; P < .001). Early CBF reductions showed a trend of high oxygen extraction fraction (suggesting classical ischemia), but this was inconsistent at later phases. Ischemic brain volume was elevated even in the absence of intracranial hypertension and highest at less than 24 hours after TBI (median [IQR], 36 [10-82] mL), but many patients showed later increases (median [IQR] 6-10 days after TBI, 24 [4-42] mL; across all points: patients, 10 [5-39] mL vs control participants, 1 [0-3] mL; P < 001). Ischemic brain volume was a poor indicator of jugular venous saturation and brain tissue oximetry. Patients’ CBF/CMRO2 ratio was higher than controls (median [IQR], 0.42 [0.35-0.49] vs 0.3 [0.28-0.33]; P < .001) and their CBF/CBV ratio lower (median [IQR], 7.1 [6.4-7.9] vs 12.3 [11.0-14.0]; P < .001), suggesting abnormal flow-metabolism coupling and vascular reactivity. Patients’ CBV was higher than controls (median [IQR], 3.7 [3.4-4.1] mL/100 mL vs 3.0 [2.7-3.6] mL/100 mL; P < .001); although values were lower in patients with intracranial hypertension, these were still greater than controls (median [IQR], 3.7 [3.2-4.0] vs 3.0 [2.7-3.6] mL/100 mL; P = .002), despite more profound reductions in partial pressure of carbon dioxide (median [IQR], 4.3 [4.1-4.6] kPa vs 4.7 [4.3-4.9] kPa; P = .001). Conclusions and Relevance Ischemia is common early, detectable up to 10 days after TBI, possible without intracranial hypertension, and inconsistently detected by jugular or brain tissue oximetry. There is substantial between-patient and within-patient pathophysiological heterogeneity; ischemia and hyperemia commonly coexist, possibly reflecting abnormalities in flow-metabolism coupling. Increased CBV may contribute to intracranial hypertension but can coexist with abnormal CBF/CBV ratios. These results emphasize the need to consider cerebrovascular pathophysiological complexity when managing patients with TBI.
Collapse
Affiliation(s)
- Yoann Launey
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Anaesthesia and Critical Care Medicine, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Young T Hong
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Luzius A Steiner
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Anaesthesiology, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Jurgens Nortje
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Anaesthesia, Norfolk and Norwich University Hospitals National Health Service Foundation Trust, Norwich, United Kingdom
| | - Tonny V Veenith
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Birmingham Acute Care Research Group, Department of Critical Care Medicine, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Arun K Gupta
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Franklin I Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan P Coles
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
65
|
Gomez A, Zeiler FA. Non-Invasive Continuous Cerebrovascular Monitoring for Subacute Bedside and Outpatient Settings: An Important Advancement. Neurotrauma Rep 2021; 2:25-26. [PMID: 34223545 PMCID: PMC8240829 DOI: 10.1089/neur.2020.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada.,Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
66
|
Dobrzeniecki M, Trofimov A, Martynov D, Agarkova D, Trofimova K, Semenova ZB, Bragin DE. Secondary Cerebral Ischemia at Traumatic Brain Injury Is More Closely Related to Cerebrovascular Reactivity Impairment than to Intracranial Hypertension. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 131:159-162. [PMID: 33839838 PMCID: PMC8109249 DOI: 10.1007/978-3-030-59436-7_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The purpose of this study was to investigate the relationship between the development of secondary cerebral ischemia (SCI), intracranial pressure (ICP) and cerebrovascular reactivity (CVR) after traumatic brain injury (TBI). METHODS 89 patients with severe TBI with ICP monitoring were studied retrospectively. The mean age was 36.3 ± 4.8 years, 53 men, 36 women. The median Glasgow Coma Score (GCS) was 6.2 ± 0.7. The median Injury Severity Score was 38.2 ± 12.5. To specify the degree of impact of changes in ICP and CVR on the SCI progression in TBI patients, logistic regression was performed. Significant p-values were <0.05. RESULTS The deterioration of CVR in combination with the severity of ICP has a significant impact on the increase in the prevalence rate of SCI. A logistic regression analysis for a model of SCI dependence on intracranial hypertension and CVR was performed. The results of the analysis showed that CVR was the most significant factor affecting SCI development in TBI. CONCLUSIONS The development of SCI in severe TBI depends largely on CVR impairment and to a lesser extent on ICP level. Treatment for severe TBI patients with SCI progression should not be aimed solely at intracranial hypertension correction but also at CVR recovery.
Collapse
Affiliation(s)
- Michael Dobrzeniecki
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alex Trofimov
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
| | - Dmitry Martynov
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Darya Agarkova
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ksenia Trofimova
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Zhanna B Semenova
- Department of Neurosurgery, Children's Clinical and Research Institute of Emergency Surgery and Trauma, Moscow, Russia
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Neurosurgery, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
67
|
Zeiler FA, Mathieu F, Monteiro M, Glocker B, Ercole A, Cabeleira M, Stocchetti N, Smielewski P, Czosnyka M, Newcombe V, Menon DK. Systemic Markers of Injury and Injury Response Are Not Associated with Impaired Cerebrovascular Reactivity in Adult Traumatic Brain Injury: A Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study. J Neurotrauma 2020; 38:870-878. [PMID: 33096953 DOI: 10.1089/neu.2020.7304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of extra-cranial injury burden and systemic injury response on cerebrovascular response in traumatic brain injury (TBI) is poorly documented. This study preliminarily assesses the association between admission features of extra-cranial injury burden on cerebrovascular reactivity. Using the Collaborative European Neurotrauma Effectiveness Research in TBI High-Resolution ICU (HR ICU) sub-study cohort, we evaluated those patients with both archived high-frequency digital intra-parenchymal intra-cranial pressure monitoring data of a minimum of 6 h in duration, and the presence of a digital copy of their admission computed tomography (CT) scan. Digital physiologic signals were processed for pressure reactivity index (PRx) and both the percent time above defined PRx thresholds and mean hourly dose above threshold. This was conducted for both the first 72 h and entire duration of recording. Admission extra-cranial injury characteristics and CT injury scores were obtained from the database, with quantitative contusion, edema, intraventricular hemorrhage, and extra-axial lesion volumes were obtained via semi-automated segmentation. Comparison between admission extra-cranial markers of injury and PRx metrics was conducted using Mann-Whitney U testing, and logistic regression techniques, adjusting for known CT injury metrics associated with impaired PRx. A total of 165 patients were included. Evaluating the entire ICU recording period, there was limited association between metrics of extra-cranial injury burden and impaired cerebrovascular reactivity. Using the first 72 h of recording, admission temperature (p = 0.042) and white blood cell % (WBC %; p = 0.013) were statistically associated with impaired cerebrovascular reactivity on Mann-Whitney U and univariate logistic regression. After adjustment for admission age, pupillary status, GCS motor score, pre-hospital hypoxia/hypotension, and intra-cranial CT characteristics associated with impaired reactivity, temperature (p = 0.021) and WBC % (p = 0.013) remained significantly associated with mean PRx values above +0.25 and +0.35, respectively. Markers of extra-cranial injury burden and systemic injury response do not appear to be strongly associated with impaired cerebrovascular reactivity in TBI during both the initial and entire ICU stay.
Collapse
Affiliation(s)
- Frederick A Zeiler
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biomedical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada.,Center on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| | - François Mathieu
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Miguel Monteiro
- Biomedical Image Analysis Group, Imperial College London, London, United Kingdom
| | - Ben Glocker
- Biomedical Image Analysis Group, Imperial College London, London, United Kingdom
| | - Ari Ercole
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Cabeleira
- Brain Physics Laboratory, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nino Stocchetti
- Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Physiopathology and Transplantation, Milan University, Milan, Italy
| | - Peter Smielewski
- Brain Physics Laboratory, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Virginia Newcombe
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
68
|
Visualising the pressure-time burden of elevated intracranial pressure after severe traumatic brain injury: a retrospective confirmatory study. Br J Anaesth 2020; 126:e15-e17. [PMID: 33183738 DOI: 10.1016/j.bja.2020.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 01/13/2023] Open
|
69
|
Froese L, Dian J, Batson C, Gomez A, Alarifi N, Unger B, Zeiler FA. The Impact of Vasopressor and Sedative Agents on Cerebrovascular Reactivity and Compensatory Reserve in Traumatic Brain Injury: An Exploratory Analysis. Neurotrauma Rep 2020; 1:157-168. [PMID: 33274344 PMCID: PMC7703494 DOI: 10.1089/neur.2020.0028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The impact of vasopressor and sedative drugs on cerebrovascular reactivity in traumatic brain injury (TBI) remains unclear. The aim of this study was to evaluate the impact of changes of doses of commonly administered sedation (i.e., propofol, fentanyl, and ketamine) and vasopressor agents (i.e., norepinephrine [NE], phenylephrine [PE], and vasopressin[VSP]) on cerebrovascular reactivity and compensatory reserve in patients with moderate/severe TBI. Using the Winnipeg Acute TBI Database, we identified 38 patients with more than 1000 distinct changes of infusion rates and more than 500 h of paired drug infusion/physiology data. Cerebrovascular reactivity was assessed using pressure reactivity index (PRx) and cerebral compensatory reserve was assessed using RAP (the correlation [R] between pulse amplitude of intracranial pressure [ICP; A] and ICP [P]). We evaluated the data in two phases. First, we assessed the relationship between mean hourly dose of medication and its relation to both mean hourly index values, and time spent above a given index threshold. Second, we evaluated time-series data for each individual dose change per medication, assessing for a statistically significant change in PRx and RAP metrics. The results of the analysis confirmed that, overall, the mean hourly dose of sedative (propofol, fentanyl, and ketamine) and vasopressor (NE, PE, and VSP) agents does not impact hourly cerebrovascular reactivity or compensatory reserve measures. Similarly, incremental dose changes in these medications in general do not lead to significant changes in cerebrovascular reactivity or compensatory reserve. For propofol with incremental dose increases, in situations where PRx is intact (i.e., PRx <0 prior), a statistically significant increase in PRx was seen. However, this may not indicate deteriorating cerebrovascular reactivity as the final PRx (∼0.05) may still be considered to be intact cerebrovascular reactivity. As such, this finding with regards to propofol remains “weak.” This study indicates that commonly administered sedative and vasopressor agents with incremental dosing changes have no clinically significant influence on cerebrovascular reactivity or compensatory reserve in TBI. These results should be considered preliminary, requiring further investigation.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joshua Dian
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carleen Batson
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Norah Alarifi
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bertram Unger
- Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
70
|
Froese L, Dian J, Batson C, Gomez A, Unger B, Zeiler FA. The impact of hypertonic saline on cerebrovascular reactivity and compensatory reserve in traumatic brain injury: an exploratory analysis. Acta Neurochir (Wien) 2020; 162:2683-2693. [PMID: 32959342 PMCID: PMC7505542 DOI: 10.1007/s00701-020-04579-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 01/17/2023]
Abstract
Background Intravenous hypertonic saline is utilized commonly in critical care for treatment of acute or refractory elevations of intracranial pressure (ICP) in traumatic brain injury (TBI) patients. Though there is a clear understanding of the general physiological effects of a hypertonic saline solution over long periods of time, smaller epoch effects of hypertonic saline (HTS) have not been thoroughly analyzed. The aim of this study was to perform a direct evaluation of the high-frequency response of HTS on the cerebrovascular physiological responses in TBI. Methods We retrospectively reviewed our prospectively maintained adult TBI database for those with archived high-frequency cerebral physiology and available HTS treatment information. We evaluated different epochs of physiology around HTS bolus dosing, comparing pre- with post-HTS. We assessed for changes in slow fluctuations in ICP, pulse amplitude of ICP (AMP), cerebral perfusion pressure (CPP), mean arterial pressure (MAP), cerebrovascular reactivity (as measured through pressure reactivity index (PRx)), and cerebral compensatory reserve (correlation (R) between AMP (A) and ICP (P)). Comparisons of mean measures and percentage time above clinically relevant thresholds for the physiological parameters were compared pre- and post-HTS using descriptive statistics and Mann-Whitney U testing. We assessed for subgroups of physiological responses using latent profile analysis (LPA). Results Fifteen patients underwent 69 distinct bolus infusions of hypertonic saline. Apart from the well-documented decrease in ICP, there was also a reduction in AMP. The analysis of cerebrovascular reactivity response to HTS solution had two main effects. For patients with grossly impaired cerebrovascular reactivity pre-HTS (PRx > + 0.30), HTS bolus led to improved reactivity. However, for those with intact cerebrovascular reactivity pre-HTS (PRx < 0), HTS bolus demonstrated a trend towards more impaired reactivity. This indicates that HTS has different impacts, dependent on pre-bolus cerebrovascular status. There was no significant change in metrics of cerebral compensatory reserve. LPA failed to demonstrate any subgroups of physiological responses to HTS administration. Conclusions The direct decrease in ICP and AMP confirms that a bolus dose of a HTS solution is an effective therapeutic agent for intracranial hypertension. However, in patients with intact autoregulation, hypertonic saline may impair cerebral hemodynamics. These findings regarding cerebrovascular reactivity remain preliminary and require further investigation. Electronic supplementary material The online version of this article (10.1007/s00701-020-04579-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Joshua Dian
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
| | - Carleen Batson
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Bertram Unger
- Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
71
|
Zeiler FA, Ercole A, Cabeleira M, Stocchetti N, Hutchinson PJ, Smielewski P, Czosnyka M. Descriptive analysis of low versus elevated intracranial pressure on cerebral physiology in adult traumatic brain injury: a CENTER-TBI exploratory study. Acta Neurochir (Wien) 2020; 162:2695-2706. [PMID: 32886226 PMCID: PMC7550280 DOI: 10.1007/s00701-020-04485-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Background To date, the cerebral physiologic consequences of persistently elevated intracranial pressure (ICP) have been based on either low-resolution physiologic data or retrospective high-frequency data from single centers. The goal of this study was to provide a descriptive multi-center analysis of the cerebral physiologic consequences of ICP, comparing those with normal ICP to those with elevated ICP. Methods The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) High-Resolution Intensive Care Unit (HR-ICU) sub-study cohort was utilized. The first 3 days of physiologic recording were analyzed, evaluating and comparing those patients with mean ICP < 15 mmHg versus those with mean ICP > 20 mmHg. Various cerebral physiologic parameters were derived and evaluated, including ICP, brain tissue oxygen (PbtO2), cerebral perfusion pressure (CPP), pulse amplitude of ICP (AMP), cerebrovascular reactivity, and cerebral compensatory reserve. The percentage time and dose above/below thresholds were also assessed. Basic descriptive statistics were employed in comparing the two cohorts. Results 185 patients were included, with 157 displaying a mean ICP below 15 mmHg and 28 having a mean ICP above 20 mmHg. For admission demographics, only admission Marshall and Rotterdam CT scores were statistically different between groups (p = 0.017 and p = 0.030, respectively). The high ICP group displayed statistically worse CPP, PbtO2, cerebrovascular reactivity, and compensatory reserve. The high ICP group displayed worse 6-month mortality (p < 0.0001) and poor outcome (p = 0.014), based on the Extended Glasgow Outcome Score. Conclusions Low versus high ICP during the first 72 h after moderate/severe TBI is associated with significant disparities in CPP, AMP, cerebrovascular reactivity, cerebral compensatory reserve, and brain tissue oxygenation metrics. Such ICP extremes appear to be strongly related to 6-month patient outcomes, in keeping with previous literature. This work provides multi-center validation for previously described single-center retrospective results.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Department of Physical Medicine and Rehabilitation, University hospital Northern Norway, Tromsø, Norway
- Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neurosurgery & Anesthesia & intensive care medicine, Karolinska University Hospital, Stockholm, Sweden
- NeuroIntensive Care, Niguarda Hospital, Milan, Italy
- Department of Neurosurgery, Medical School, University of Pécs, Hungary and Neurotrauma Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ari Ercole
- Department of Physical Medicine and Rehabilitation, University hospital Northern Norway, Tromsø, Norway
| | - Manuel Cabeleira
- Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Nino Stocchetti
- Neuro ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- NeuroIntensive Care Unit, Department of Anesthesia & Intensive Care, ASST di Monza, Monza, Italy
| | | | - Peter Smielewski
- Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
72
|
El Ahmadieh TY, Bedros N, Stutzman SE, Nyancho D, Venkatachalam AM, MacAllister M, Ban VS, Dahdaleh NS, Aiyagari V, Figueroa S, White JA, Batjer HH, Bagley CA, Olson DM, Aoun SG. Automated Pupillometry as a Triage and Assessment Tool in Patients with Traumatic Brain Injury. World Neurosurg 2020; 145:e163-e169. [PMID: 33011358 DOI: 10.1016/j.wneu.2020.09.152] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in young adults. Automated infrared pupillometry (AIP) has shown promising results in predicting neural damage in aneurysmal subarachnoid hemorrhage and ischemic stroke. We aimed to explore potential uses of AIP in triaging patients with TBI. We hypothesized that a brain injury severe enough to require an intervention would show Neurologic Pupil Index (NPI) changes. METHODS We conducted a prospective pilot study at a level-1 trauma center between November 2019 and February 2020. AIP readings of consecutive patients seen in the emergency department with blunt TBI and abnormal imaging findings on computed tomography were recorded by the assessing neurosurgery resident. The relationship between NPI and surgical intervention was studied. RESULTS Thirty-six patients were enrolled, 9 of whom received an intervention. NPI was dichotomized into normal (≥3) versus abnormal (<3) and was predictive of intervention (Fisher exact test; P < 0.0001). Six of the 9 patients had a Glasgow Coma Scale (GCS) score ≤8 and imaging signs of increased intracranial pressure (ICP) and underwent craniectomy (n = 4) or ICP monitor placement (n = 2) and had an abnormal NPI. Three patients underwent ICP monitor placement for GCS score ≤8 in accordance with TBI guidelines despite minimal imaging findings and had a normal NPI. The GCS score of these patients improved within 24 hours, requiring ICP monitor removal. NPI was normal in all patients who did not require intervention. CONCLUSIONS AIP could be useful in triaging comatose patients after blunt TBI. An NPI ≥3 may be reassuring in patients with no signs of mass effect or increased ICP.
Collapse
Affiliation(s)
- Tarek Y El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Bedros
- Division of Trauma, Department of Surgery, Baylor University Medical Center, Baylor, Texas, USA
| | - Sonja E Stutzman
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Nyancho
- Department of Neurosurgery, Northwestern University, Chicago, Illinois, USA
| | - Aardhra M Venkatachalam
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew MacAllister
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vin Shen Ban
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nader S Dahdaleh
- Department of Neurosurgery, Northwestern University, Chicago, Illinois, USA
| | - Venkatesh Aiyagari
- Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Neuro-Critical Care, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stephen Figueroa
- Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Neuro-Critical Care, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan A White
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - H Hunt Batjer
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Carlos A Bagley
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - DaiWai M Olson
- Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Neuro-Critical Care, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Salah G Aoun
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
73
|
Thelin EP, Raj R, Bellander BM, Nelson D, Piippo-Karjalainen A, Siironen J, Tanskanen P, Hawryluk G, Hasen M, Unger B, Zeiler FA. Comparison of high versus low frequency cerebral physiology for cerebrovascular reactivity assessment in traumatic brain injury: a multi-center pilot study. J Clin Monit Comput 2020; 34:971-994. [PMID: 31573056 PMCID: PMC7447671 DOI: 10.1007/s10877-019-00392-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/22/2019] [Indexed: 01/16/2023]
Abstract
Current accepted cerebrovascular reactivity indices suffer from the need of high frequency data capture and export for post-acquisition processing. The role for minute-by-minute data in cerebrovascular reactivity monitoring remains uncertain. The goal was to explore the statistical time-series relationships between intra-cranial pressure (ICP), mean arterial pressure (MAP) and pressure reactivity index (PRx) using both 10-s and minute data update frequency in TBI. Prospective data from 31 patients from 3 centers with moderate/severe TBI and high-frequency archived physiology were reviewed. Both 10-s by 10-s and minute-by-minute mean values were derived for ICP and MAP for each patient. Similarly, PRx was derived using 30 consecutive 10-s data points, updated every minute. While long-PRx (L-PRx) was derived via similar methodology using minute-by-minute data, with L-PRx derived using various window lengths (5, 10, 20, 30, 40, and 60 min; denoted L-PRx_5, etc.). Time-series autoregressive integrative moving average (ARIMA) and vector autoregressive integrative moving average (VARIMA) models were created to analyze the relationship of these parameters over time. ARIMA modelling, Granger causality testing and VARIMA impulse response function (IRF) plotting demonstrated that similar information is carried in minute mean ICP and MAP data, compared to 10-s mean slow-wave ICP and MAP data. Shorter window L-PRx variants, such as L-PRx_5, appear to have a similar ARIMA structure, have a linear association with PRx and display moderate-to-strong correlations (r ~ 0.700, p < 0.0001 for each patient). Thus, these particular L-PRx variants appear closest in nature to standard PRx. ICP and MAP derived via 10-s or minute based averaging display similar statistical time-series structure and co-variance patterns. PRx and L-PRx based on shorter windows also behave similarly over time. These results imply certain L-PRx variants may carry similar information to PRx in TBI.
Collapse
Affiliation(s)
- Eric P. Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Theme Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Theme Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - David Nelson
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Anna Piippo-Karjalainen
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jari Siironen
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Tanskanen
- Division of Anesthesiology, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Gregory Hawryluk
- Section of Neurosurgery, Division of Surgery, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
| | - Mohammed Hasen
- Section of Neurosurgery, Division of Surgery, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
- Department of Neurosurgery, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Bertram Unger
- Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Frederick A. Zeiler
- Section of Neurosurgery, Division of Surgery, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
74
|
Froese L, Dian J, Gomez A, Unger B, Zeiler FA. The cerebrovascular response to norepinephrine: A scoping systematic review of the animal and human literature. Pharmacol Res Perspect 2020; 8:e00655. [PMID: 32965778 PMCID: PMC7510331 DOI: 10.1002/prp2.655] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Intravenous norepinephrine (NE) is utilized commonly in critical care for cardiovascular support. NE's impact on cerebrovasculature is unclear and may carry important implications during states of critical neurological illness. The aim of the study was to perform a scoping review of the literature on the cerebrovascular/cerebral blood flow (CBF) effects of NE. A search of MEDLINE, BIOSIS, EMBASE, Global Health, SCOPUS, and Cochrane Library from inception to December 2019 was performed. All manuscripts pertaining to the administration of NE, in which the impact on CBF/cerebral vasculature was recorded, were included. We identified 62 animal studies and 26 human studies. Overall, there was a trend to a direct vasoconstriction effect of NE on the cerebral vasculature, with conflicting studies having demonstrated both increases and decreases in regional CBF (rCBF) or global CBF. Healthy animals and those undergoing cardiopulmonary resuscitation demonstrated a dose-dependent increase in CBF with NE administration. However, animal models and human patients with acquired brain injury had varied responses in CBF to NE administration. The animal models indicate an increase in cerebral vasoconstriction with NE administration through the alpha receptors in vessels. Global and rCBF during the injection of NE displays a wide variation depending on treatment and model/patient.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical EngineeringFaculty of EngineeringUniversity of ManitobaWinnipegCanada
| | - Joshua Dian
- Section of NeurosurgeryDepartment of SurgeryRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
| | - Alwyn Gomez
- Section of NeurosurgeryDepartment of SurgeryRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
- Department of Anatomy and Cell ScienceRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
| | - Bertram Unger
- Section of Critical CareDepartment of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
| | - Frederick A. Zeiler
- Biomedical EngineeringFaculty of EngineeringUniversity of ManitobaWinnipegCanada
- Department of Anatomy and Cell ScienceRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
- Centre on AgingUniversity of ManitobaWinnipegCanada
- Division of AnaesthesiaDepartment of MedicineAddenbrooke’s HospitalUniversity of CambridgeCambridgeUK
| |
Collapse
|
75
|
Zeiler FA, Beqiri E, Cabeleira M, Hutchinson PJ, Stocchetti N, Menon DK, Czosnyka M, Smielewski P, Ercole A. Brain Tissue Oxygen and Cerebrovascular Reactivity in Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Exploratory Analysis of Insult Burden. J Neurotrauma 2020; 37:1854-1863. [PMID: 32253987 PMCID: PMC7484893 DOI: 10.1089/neu.2020.7024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pressure reactivity index (PRx) and brain tissue oxygen (PbtO2) are associated with outcome in traumatic brain injury (TBI). This study explores the relationship between PRx and PbtO2 in adult moderate/severe TBI. Using the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) high resolution intensive care unit (ICU) sub-study cohort, we evaluated those patients with archived high-frequency digital intraparenchymal intracranial pressure (ICP) and PbtO2 monitoring data of, a minimum of 6 h in duration, and the presence of a 6 month Glasgow Outcome Scale -Extended (GOSE) score. Digital physiological signals were processed for ICP, PbtO2, and PRx, with the % time above/below defined thresholds determined. The duration of ICP, PbtO2, and PRx derangements was characterized. Associations with dichotomized 6-month GOSE (alive/dead, and favorable/unfavorable outcome; ≤ 4 = unfavorable), were assessed. A total of 43 patients were included. Severely impaired cerebrovascular reactivity was seen during elevated ICP and low PbtO2 episodes. However, most of the acute ICU physiological derangements were impaired cerebrovascular reactivity, not ICP elevations or low PbtO2 episodes. Low PbtO2 without PRx impairment was rarely seen. % time spent above PRx threshold was associated with mortality at 6 months for thresholds of 0 (area under the curve [AUC] 0.734, p = 0.003), > +0.25 (AUC 0.747, p = 0.002) and > +0.35 (AUC 0.745, p = 0.002). Similar relationships were not seen for % time with ICP >20 mm Hg, and PbtO2 < 20 mm Hg in this cohort. Extreme impairment in cerebrovascular reactivity is seen during concurrent episodes of elevated ICP and low PbtO2. However, the majority of the deranged cerebral physiology seen during the acute ICU phase is impairment in cerebrovascular reactivity, with most impairment occurring in the presence of normal PbtO2 levels. Measures of cerebrovascular reactivity appear to display the most consistent associations with global outcome in TBI, compared with ICP and PbtO2.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Cabeleira
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Peter J. Hutchinson
- Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nino Stocchetti
- Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Milan University, Milan, Italy
| | - David K. Menon
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ari Ercole
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
76
|
Froese L, Dian J, Gomez A, Unger B, Zeiler FA. Cerebrovascular Response to Phenylephrine in Traumatic Brain Injury: A Scoping Systematic Review of the Human and Animal Literature. Neurotrauma Rep 2020; 1:46-62. [PMID: 34223530 PMCID: PMC8240891 DOI: 10.1089/neur.2020.0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intravenous phenylephrine (PE) is utilized commonly in critical care for cardiovascular support. Its impact on the cerebrovasculature is unclear and its use may have important implications during states of critical neurological illness. The aim of this study was to perform a scoping review of the literature on the cerebrovascular/cerebral blood flow (CBF) effects of PE in traumatic brain injury (TBI), evaluating both animal models and human studies. We searched MEDLINE, BIOSIS, EMBASE, Global Health, SCOPUS, and the Cochrane Library from inception to January 2020. We identified 12 studies with various animal models and 4 studies in humans with varying TBI pathology. There was a trend toward a consistent increase in mean arterial pressure (MAP) by the injection of PE systemically, and by proxy, an increase of the cerebral perfusion pressure (CPP). There was a consistent constriction of cerebral vessels by PE reported in the small number of studies documenting such a response. However, the heterogeneity of the literature on the CBF/cerebral blood volume (CBV) response makes the strength of the conclusions on PE limited. Studies were heterogeneous in design and had significant limitations, with most failing to adjust for confounding factors in cerebrovascular/CBF response. This review highlights the significant knowledge gap on the cerebrovascular/CBF effects of PE administration in TBI, calling for further study on the impact of PE on the cerebrovasculature both in vivo and in experimental settings.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joshua Dian
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bertram Unger
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Center on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
77
|
Zeiler FA, Mathieu F, Monteiro M, Glocker B, Ercole A, Beqiri E, Cabeleira M, Stocchetti N, Smielewski P, Czosnyka M, Newcombe V, Menon DK. Diffuse Intracranial Injury Patterns Are Associated with Impaired Cerebrovascular Reactivity in Adult Traumatic Brain Injury: A CENTER-TBI Validation Study. J Neurotrauma 2020; 37:1597-1608. [PMID: 32164482 PMCID: PMC7336886 DOI: 10.1089/neu.2019.6959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent single-center retrospective analysis displayed the association between admission computed tomography (CT) markers of diffuse intracranial injury and worse cerebrovascular reactivity. The goal of this study was to further explore these associations using the prospective multi-center Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) high-resolution intensive care unit (HR ICU) data set. Using the CENTER-TBI HR ICU sub-study cohort, we evaluated those patients with both archived high-frequency digital physiology (100 Hz or higher) and the presence of a digital admission CT scan. Physiological signals were processed for pressure reactivity index (PRx) and both the percent (%) time above defined PRx thresholds and mean hourly dose above threshold. Admission CT injury scores were obtained from the database. Quantitative contusion, edema, intraventricular hemorrhage (IVH), and extra-axial lesion volumes were obtained via semi-automated segmentation. Comparison between admission CT characteristics and PRx metrics was conducted using Mann-U, Jonckheere-Terpstra testing, with a combination of univariate linear and logistic regression techniques. A total of 165 patients were included. Cisternal compression and high admission Rotterdam and Helsinki CT scores, and Marshall CT diffuse injury sub-scores were associated with increased percent (%) time and hourly dose above PRx threshold of 0, +0.25, and +0.35 (p < 0.02 for all). Logistic regression analysis displayed an association between deep peri-contusional edema and mean PRx above a threshold of +0.25. These results suggest that diffuse injury patterns, consistent with acceleration/deceleration forces, are associated with impaired cerebrovascular reactivity. Diffuse admission intracranial injury patterns appear to be consistently associated with impaired cerebrovascular reactivity, as measured through PRx. This is in keeping with the previous single-center retrospective literature on the topic. This study provides multi-center validation for those results, and provides preliminary data to support potential risk stratification for impaired cerebrovascular reactivity based on injury pattern.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Division of Anesthesia, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, and University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| | - François Mathieu
- Division of Anesthesia, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Miguel Monteiro
- Biomedical Image Analysis Group, Imperial College London, London, United Kingdom
| | - Ben Glocker
- Biomedical Image Analysis Group, Imperial College London, London, United Kingdom
| | - Ari Ercole
- Division of Anesthesia, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Cabeleira
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nino Stocchetti
- Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Milan University, Milan, Italy
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Virginia Newcombe
- Division of Anesthesia, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anesthesia, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
78
|
Hasen M, Gomez A, Froese L, Dian J, Raj R, Thelin EP, Zeiler FA. Alternative continuous intracranial pressure-derived cerebrovascular reactivity metrics in traumatic brain injury: a scoping overview. Acta Neurochir (Wien) 2020; 162:1647-1662. [PMID: 32385635 DOI: 10.1007/s00701-020-04378-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pressure reactivity index (PRx) has emerged as a means to continuously monitor cerebrovascular reactivity in traumatic brain injury (TBI). However, other intracranial pressure (ICP)-based continuous metrics exist, and may have advantages over PRx. The goal of this study was to perform a scoping overview of the literature on non-PRx ICP-based continuous cerebrovascular reactivity metrics in adult TBI. METHODS We searched MEDLINE, BIOSIS, EMBASE, Global Health, SCOPUS, and Cochrane Library from inception to December 2019. Using a two-stage filtering of title/abstract, and then full manuscript, we identified pertinent articles. Data was abstracted to tables and each technique summarized, including pulse amplitude index (PAx), correlation between pulse amplitude of ICP and cerebral perfusion pressure (RAC), PRx55-15, and low-resolution metrics LAx and L-PRx. RESULTS A total of 23 articles met the inclusion criteria, with the vast majority being retrospective in nature and based out of European centers. Sixteen articles focused on high-resolution metrics PAx, RAC, and PRx55-15, with 6 articles focusing on LAx and L-PRx. PAx may have a role in low ICP situations, where it appears to perform superior to PRx. RAC displays similar behavior to PRx, with a trend to stronger associations with favorable/unfavorable outcome at 6 months, and stronger parabolic relationship with CPP. PRx55-15 provides a focused assessment on the vasogenic frequency range associated with cerebral autoregulation, with preliminary data supporting a strong association with outcome in TBI. LAx and L-PRx display varying associations with 6-month outcome in TBI, depending on the window length of calculation, with shorter windows demonstrating stronger correlations with classical PRx. CONCLUSIONS Non-PRx continuous ICP-based cerebrovascular reactivity metrics can be split into high-resolution and low-resolution measures. High-resolution indices include PAx, RAC, and PRx55-15, while low-resolution indices include L-PRx and LAx. The true role for these metrics beyond classic PRx remains unclear. Each displays situations where it may prove superior over PRx, given limitations with this currently widely accepted measure. Much future investigation into each of these alternative metrics is required prior to adoption into the clinical monitoring armamentarium in adult TBI.
Collapse
Affiliation(s)
- Mohammed Hasen
- Section of Neurosurgery, Division of Surgery, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
- Department of Neurosurgery, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Alwyn Gomez
- Section of Neurosurgery, Division of Surgery, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Joshua Dian
- Section of Neurosurgery, Division of Surgery, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Frederick A Zeiler
- Section of Neurosurgery, Division of Surgery, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada.
- Centre on Aging, University of Manitoba, Winnipeg, Canada.
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada.
- Department of Human Anatomy and Cell Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
- Department of Medicine, Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
79
|
Zeiler FA, Aries M, Cabeleira M, van Essen TA, Stocchetti N, Menon DK, Timofeev I, Czosnyka M, Smielewski P, Hutchinson P, Ercole A. Statistical Cerebrovascular Reactivity Signal Properties after Secondary Decompressive Craniectomy in Traumatic Brain Injury: A CENTER-TBI Pilot Analysis. J Neurotrauma 2020; 37:1306-1314. [PMID: 31950876 PMCID: PMC7249464 DOI: 10.1089/neu.2019.6726] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Decompressive craniectomy (DC) in traumatic brain injury (TBI) has been suggested to influence cerebrovascular reactivity. We aimed to determine if the statistical properties of vascular reactivity metrics and slow-wave relationships were impacted after DC, as such information would allow us to comment on whether vascular reactivity monitoring remains reliable after craniectomy. Using the CENTER-TBI High Resolution Intensive Care Unit (ICU) Sub-Study cohort, we selected those secondary DC patients with high-frequency physiological data for both at least 24 h pre-DC, and more than 48 h post-DC. Data for all physiology measures were separated into the 24 h pre-DC, the first 48 h post-DC, and beyond 48 h post-DC. We produced slow-wave data sheets for intracranial pressure (ICP) and mean arterial pressure (MAP) per patient. We also derived a Pressure Reactivity Index (PRx) as a continuous cerebrovascular reactivity metric updated every minute. The time-series behavior of the PRx was modeled for each time period per patient. Finally, the relationship between ICP and MAP during these three time periods was assessed using time-series vector autoregressive integrative moving average (VARIMA) models, impulse response function (IRF) plots, and Granger causality testing. Ten patients were included in this study. Mean PRx and proportion of time above PRx thresholds were not affected by craniectomy. Similarly, PRx time-series structure was not affected by DC, when assessed in each individual patient. This was confirmed with Granger causality testing, and VARIMA IRF plotting for the MAP/ICP slow-wave relationship. PRx metrics and statistical time-series behavior appear not to be substantially influenced by DC. Similarly, there is little change in the relationship between slow waves of ICP and MAP before and after DC. This may suggest that cerebrovascular reactivity monitoring in the setting of DC may still provide valuable information regarding autoregulation.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, The Netherlands
| | - Manuel Cabeleira
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Thomas A. van Essen
- University Neurosurgical Center Holland, Department of Neurosurgery, Leiden University Medical Center and Haaglanden Medical Center, Leiden and The Hague, The Netherlands
| | - Nino Stocchetti
- Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Milan University, Milan, Italy
| | - David K. Menon
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ivan Timofeev
- Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ari Ercole
- Division of Anesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
80
|
Froese L, Batson C, Gomez A, Dian J, Zeiler FA. The Limited Impact of Current Therapeutic Interventions on Cerebrovascular Reactivity in Traumatic Brain Injury: A Narrative Overview. Neurocrit Care 2020; 34:325-335. [PMID: 32468328 DOI: 10.1007/s12028-020-01003-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Current intensive care unit (ICU) treatment strategies for traumatic brain injury (TBI) care focus on intracranial pressure (ICP)- and cerebral perfusion pressure (CPP)-directed therapeutics, dictated by guidelines. Impaired cerebrovascular reactivity in moderate/severe TBI is emerging as a major associate with poor outcome and appears to dominate the landscape of physiologic derangement over the course of a patient's ICU stay. Within this article, we review the literature on the known drivers of impaired cerebrovascular reactivity in adult TBI, highlight the current knowledge surrounding the impact of guideline treatment strategies on continuously monitored cerebrovascular reactivity, and discuss current treatment paradigms for impaired reactivity. Finally, we touch on the areas of future research, as we strive to develop specific therapeutics for impaired cerebrovascular reactivity in TBI. There exists limited literature to suggest advanced age, intracranial injury patterns of diffuse injury, and sustained ICP elevations may drive impaired cerebrovascular reactivity. To date, the literature suggests there is a limited impact of such ICP/CPP guideline-based therapies on cerebrovascular reactivity, with large portions of a given patients ICU period spent with impaired cerebrovascular reactivity. Emerging treatment paradigms focus on the targeting individualized CPP and ICP thresholds based on cerebrovascular reactivity, without directly targeting the pathways involved in its dysfunction. Further work involved in uncovering the molecular pathways involved in impaired cerebrovascular reactivity is required, so that we can develop therapeutics directed at its prevention and treatment.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Josh Dian
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Centre on Aging, University of Manitoba, Winnipeg, Canada.
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
81
|
Zeiler FA, Ercole A, Beqiri E, Cabeleira M, Thelin EP, Stocchetti N, Steyerberg EW, Maas AI, Menon DK, Czosnyka M, Smielewski P. Association between Cerebrovascular Reactivity Monitoring and Mortality Is Preserved When Adjusting for Baseline Admission Characteristics in Adult Traumatic Brain Injury: A CENTER-TBI Study. J Neurotrauma 2020; 37:1233-1241. [PMID: 31760893 PMCID: PMC7232651 DOI: 10.1089/neu.2019.6808] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cerebral autoregulation, as measured using the pressure reactivity index (PRx), has been related to global patient outcome in adult patients with traumatic brain injury (TBI). To date, this has been documented without accounting for standard baseline admission characteristics and intracranial pressure (ICP). We evaluated this association, adjusting for baseline admission characteristics and ICP, in a multi-center, prospective cohort. We derived PRx as the correlation between ICP and mean arterial pressure in prospectively collected multi-center data from the High-Resolution Intensive Care Unit (ICU) cohort of the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study. Multi-variable logistic regression models were analyzed to assess the association between global outcome (measured as either mortality or dichotomized Glasgow Outcome Score-Extended [GOSE]) and a range of covariates (IMPACT [International Mission for Prognosis and Analysis of Clinical Trials] Core and computed tomography [CT] variables, ICP, and PRx). Performance of these models in outcome association was compared using area under the receiver operating curve (AUC) and Nagelkerke's pseudo-R2. One hundred ninety-three patients had a complete data set for analysis. The addition of percent time above threshold for PRx improved AUC and displayed statistically significant increases in Nagelkerke's pseudo-R2 over the IMPACT Core and IMPACT Core + CT models for mortality. The addition of PRx monitoring to IMPACT Core ± CT + ICP models accounted for additional variance in mortality, when compared to models with IMPACT Core ± CT + ICP alone. The addition of cerebrovascular reactivity monitoring, through PRx, provides a statistically significant increase in association with mortality at 6 months. Our data suggest that cerebrovascular reactivity monitoring may provide complementary information regarding outcomes in TBI.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Division of Anaesthesia, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ari Ercole
- Division of Anaesthesia, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Cabeleira
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Eric P. Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nino Stocchetti
- Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Milan University, Milan, Italy
| | - Ewout W. Steyerberg
- Department of Public Health, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands and Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew I.R. Maas
- Department of Neurosurgery, University Hospital Antwerp, Edegem, Belgium
| | - David K. Menon
- Division of Anaesthesia, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
82
|
Evensen KB, Eide PK. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS 2020; 17:34. [PMID: 32375853 PMCID: PMC7201553 DOI: 10.1186/s12987-020-00195-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022] Open
Abstract
Sixty years have passed since neurosurgeon Nils Lundberg presented his thesis about intracranial pressure (ICP) monitoring, which represents a milestone for its clinical introduction. Monitoring of ICP has since become a clinical routine worldwide, and today represents a cornerstone in surveillance of patients with acute brain injury or disease, and a diagnostic of individuals with chronic neurological disease. There is, however, controversy regarding indications, clinical usefulness and the clinical role of the various ICP scores. In this paper, we critically review limitations and weaknesses with the current ICP measurement approaches for invasive, less invasive and non-invasive ICP monitoring. While risk related to the invasiveness of ICP monitoring is extensively covered in the literature, we highlight other limitations in current ICP measurement technologies, including limited ICP source signal quality control, shifts and drifts in zero pressure reference level, affecting mean ICP scores and mean ICP-derived indices. Control of the quality of the ICP source signal is particularly important for non-invasive and less invasive ICP measurements. We conclude that we need more focus on mitigation of the current limitations of today's ICP modalities if we are to improve the clinical utility of ICP monitoring.
Collapse
Affiliation(s)
- Karen Brastad Evensen
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
83
|
Donnelly J, Smielewski P, Adams H, Zeiler FA, Cardim D, Liu X, Fedriga M, Hutchinson P, Menon DK, Czosnyka M. Observations on the Cerebral Effects of Refractory Intracranial Hypertension After Severe Traumatic Brain Injury. Neurocrit Care 2020; 32:437-447. [PMID: 31240622 PMCID: PMC7082389 DOI: 10.1007/s12028-019-00748-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Raised intracranial pressure (ICP) is a prominent cause of morbidity and mortality after severe traumatic brain injury (TBI). However, in the clinical setting, little is known about the cerebral physiological response to severe and prolonged increases in ICP. METHODS Thirty-three severe TBI patients from a single center who developed severe refractory intracranial hypertension (ICP > 40 mm Hg for longer than 1 h) with ICP, arterial blood pressure, and brain tissue oxygenation (PBTO2) monitoring (subcohort, n = 9) were selected for retrospective review. Secondary parameters reflecting autoregulation (including pressure reactivity index-PRx, which was available in 24 cases), cerebrospinal compensatory reserve (RAP), and ICP pulse amplitude were calculated. RESULTS PRx deteriorated from 0.06 ± 0.26 a.u. at baseline levels of ICP to 0.57 ± 0.24 a.u. (p < 0.0001) at high levels of ICP (> 50 mm Hg). In 4 cases, PRx was impaired (> 0.25 a.u.) before ICP was raised above 25 mm Hg. Concurrently, PBTO2 decreased from 27.3 ± 7.32 mm Hg at baseline ICP to 12.68 ± 7.09 mm Hg at high levels of ICP (p < 0.001). The pulse amplitude of the ICP waveform increased with increasing ICP but showed an 'upper breakpoint'-whereby further increases in ICP lead to decreases in pulse amplitude-in 6 out of the 33 patients. DISCUSSION Severe intracranial hypertension after TBI leads to decreased brain oxygenation, impaired pressure reactivity, and changes in the pulse amplitude of ICP. Impaired pressure reactivity may denote increased risk of developing refractory intracranial hypertension in some patients.
Collapse
Affiliation(s)
- Joseph Donnelly
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Anaesthesiology, Level 12 Auckland Support Building, Auckland City Hospital, University of Auckland, 2 Park Road, Grafton, Auckland, New Zealand.
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Hadie Adams
- Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Frederick A Zeiler
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Danilo Cardim
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Xiuyun Liu
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Marta Fedriga
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Peter Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
84
|
Zeiler FA, Ercole A, Czosnyka M, Smielewski P, Hawryluk G, Hutchinson PJA, Menon DK, Aries M. Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: a narrative review of advances in neurocritical care. Br J Anaesth 2020; 124:440-453. [PMID: 31983411 DOI: 10.1016/j.bja.2019.11.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Impaired cerebrovascular reactivity in adult moderate and severe traumatic brain injury (TBI) is known to be associated with worse global outcome at 6-12 months. As technology has improved over the past decades, monitoring of cerebrovascular reactivity has shifted from intermittent measures, to experimentally validated continuously updating indices at the bedside. Such advances have led to the exploration of individualised physiologic targets in adult TBI management, such as optimal cerebral perfusion pressure (CPP) values, or CPP limits in which vascular reactivity is relatively intact. These targets have been shown to have a stronger association with outcome compared with existing consensus-based guideline thresholds in severe TBI care. This has sparked ongoing prospective trials of such personalised medicine approaches in adult TBI. In this narrative review paper, we focus on the concept of cerebral autoregulation, proposed mechanisms of control and methods of continuous monitoring used in TBI. We highlight multimodal cranial monitoring approaches for continuous cerebrovascular reactivity assessment, physiologic and neuroimaging correlates, and associations with outcome. Finally, we explore the recent 'state-of-the-art' advances in personalised physiologic targets based on continuous cerebrovascular reactivity monitoring, their benefits, and implications for future avenues of research in TBI.
Collapse
Affiliation(s)
- Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, Winnipeg, Canada; Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK; Biomedical Engineering, Faculty of Engineering, Winnipeg, Canada; Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Section of Brain Physics, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Section of Brain Physics, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Gregory Hawryluk
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, Winnipeg, Canada
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, the Netherlands
| |
Collapse
|
85
|
Lalou AD, Levrini V, Czosnyka M, Gergelé L, Garnett M, Kolias A, Hutchinson PJ, Czosnyka Z. Cerebrospinal fluid dynamics in non-acute post-traumatic ventriculomegaly. Fluids Barriers CNS 2020; 17:24. [PMID: 32228689 PMCID: PMC7106631 DOI: 10.1186/s12987-020-00184-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Post-traumatic hydrocephalus (PTH) is potentially under-diagnosed and under-treated, generating the need for a more efficient diagnostic tool. We aim to report CSF dynamics of patients with post-traumatic ventriculomegaly. MATERIALS AND METHODS We retrospectively analysed post-traumatic brain injury (TBI) patients with ventriculomegaly who had undergone a CSF infusion test. We calculated the resistance to CSF outflow (Rout), AMP (pulse amplitude of intracranial pressure, ICP), dAMP (AMPplateau-AMPbaseline) and compensatory reserve index correlation coefficient between ICP and AMP (RAP). To avoid confounding factors, included patients had to be non-decompressed or with cranioplasty > 1 month previously and Rout > 6 mmHg/min/ml. Compliance was assessed using the elasticity coefficient. We also compared infusion-tested TBI patients selected for shunting versus those not selected for shunting (consultant decision based on clinical and radiological assessment and the infusion results). Finally, we used data from a group of shunted idiopathic Normal Pressure Hydrocephalus (iNPH) patients for comparison. RESULTS Group A consisted of 36 patients with post-traumatic ventriculomegaly and Group B of 45 iNPH shunt responders. AMP and dAMP were significantly lower in Group A than B (0.55 ± 0.39 vs 1.02 ± 0.72; p < 0.01 and 1.58 ± 1.21 vs 2.76 ± 1.5; p < 0.01. RAP baseline was not significantly different between the two. Elasticity was higher than the normal limit in all groups (average 0.18 1/ml). Significantly higher Rout was present in those with probable PTH selected for shunting compared with unshunted. Mild/moderate hydrocephalus, ex-vacuo ventriculomegaly/encephalomalacia were inconsistently reported in PTH patients. CONCLUSIONS Rout and AMP were significantly lower in PTH compared to iNPH and did not always reflect the degree of hydrocephalus or atrophy reported on CT/MRI. Compliance appears reduced in PTH.
Collapse
Affiliation(s)
- Afroditi D Lalou
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospital NHS Foundation Trust, Cambridge, UK.
| | - Virginia Levrini
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Laurent Gergelé
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Intensive Care, Hôpital privé de la Loire, Saint Etienne, France
| | - Matthew Garnett
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Angelos Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Zofia Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
86
|
The CAnadian High-Resolution Traumatic Brain Injury (CAHR-TBI) Research Collaborative. Can J Neurol Sci 2020; 47:551-556. [PMID: 32174295 DOI: 10.1017/cjn.2020.54] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In traumatic brain injury (TBI), future integration of multimodal monitoring of cerebral physiology and high-frequency signal processing techniques, with advanced neuroimaging, proteomic and genomic analysis, provides an opportunity to explore the molecular pathways involved in various aspects of cerebral physiologic dysfunction in vivo. The main issue with early and rapid discovery in this field of personalized medicine is the expertise and complexity of data involved. This brief communication highlights the CAnadian High-Resolution Traumatic Brain Injury (CAHR-TBI) Research Collaborative, which has been formed from centers with specific expertise in the area of high-frequency physiologic monitoring/processing, and outlines its objectives.
Collapse
|
87
|
Intracranial Pressure Threshold Heuristics in Traumatic Brain Injury: One, None, Many! Neurocrit Care 2020; 32:672-676. [DOI: 10.1007/s12028-020-00940-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
88
|
Bennis FC, Teeuwen B, Zeiler FA, Elting JW, van der Naalt J, Bonizzi P, Delhaas T, Aries MJ. Improving Prediction of Favourable Outcome After 6 Months in Patients with Severe Traumatic Brain Injury Using Physiological Cerebral Parameters in a Multivariable Logistic Regression Model. Neurocrit Care 2020; 33:542-551. [PMID: 32056131 PMCID: PMC7505885 DOI: 10.1007/s12028-020-00930-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background/Objective Current severe traumatic brain injury (TBI) outcome prediction models calculate the chance of unfavourable outcome after 6 months based on parameters measured at admission. We aimed to improve current models with the addition of continuously measured neuromonitoring data within the first 24 h after intensive care unit neuromonitoring. Methods Forty-five severe TBI patients with intracranial pressure/cerebral perfusion pressure monitoring from two teaching hospitals covering the period May 2012 to January 2019 were analysed. Fourteen high-frequency physiological parameters were selected over multiple time periods after the start of neuromonitoring (0–6 h, 0–12 h, 0–18 h, 0–24 h). Besides systemic physiological parameters and extended Corticosteroid Randomisation after Significant Head Injury (CRASH) score, we added estimates of (dynamic) cerebral volume, cerebral compliance and cerebrovascular pressure reactivity indices to the model. A logistic regression model was trained for each time period on selected parameters to predict outcome after 6 months. The parameters were selected using forward feature selection. Each model was validated by leave-one-out cross-validation. Results A logistic regression model using CRASH as the sole parameter resulted in an area under the curve (AUC) of 0.76. For each time period, an increased AUC was found using up to 5 additional parameters. The highest AUC (0.90) was found for the 0–6 h period using 5 parameters that describe mean arterial blood pressure and physiological cerebral indices. Conclusions Current TBI outcome prediction models can be improved by the addition of neuromonitoring bedside parameters measured continuously within the first 24 h after the start of neuromonitoring. As these factors might be modifiable by treatment during the admission, testing in a larger (multicenter) data set is warranted. Electronic supplementary material The online version of this article (10.1007/s12028-020-00930-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frank C Bennis
- Department of Biomedical Engineering, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands. .,MHeNS School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands. .,CARIM School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Bibi Teeuwen
- Department of Biomedical Engineering, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Jan Willem Elting
- Department of Clinical Neurophysiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pietro Bonizzi
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Marcel J Aries
- MHeNS School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.,Department of Intensive Care, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
89
|
Zeiler FA, Ercole A, Beqiri E, Cabeleira M, Aries M, Zoerle T, Carbonara M, Stocchetti N, Smielewski P, Czosnyka M, Menon DK. Cerebrovascular reactivity is not associated with therapeutic intensity in adult traumatic brain injury: a CENTER-TBI analysis. Acta Neurochir (Wien) 2019; 161:1955-1964. [PMID: 31240583 PMCID: PMC6704258 DOI: 10.1007/s00701-019-03980-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Impaired cerebrovascular reactivity in adult traumatic brain injury (TBI) is known to be associated with poor outcome. However, there has yet to be an analysis of the association between the comprehensively assessed intracranial hypertension therapeutic intensity level (TIL) and cerebrovascular reactivity. METHODS Using the Collaborative European Neuro Trauma Effectiveness Research in TBI (CENTER-TBI) high-resolution intensive care unit (ICU) cohort, we derived pressure reactivity index (PRx) as the moving correlation coefficient between slow-wave in ICP and mean arterial pressure, updated every minute. Mean daily PRx, and daily % time above PRx of 0 were calculated for the first 7 days of injury and ICU stay. This data was linked with the daily TIL-Intermediate scores, including total and individual treatment sub-scores. Daily mean PRx variable values were compared for each TIL treatment score via mean, standard deviation, and the Mann U test (Bonferroni correction for multiple comparisons). General fixed effects and mixed effects models for total TIL versus PRx were created to display the relation between TIL and cerebrovascular reactivity. RESULTS A total of 249 patients with 1230 ICU days of high frequency physiology matched with daily TIL, were assessed. Total TIL was unrelated to daily PRx. Most TIL sub-scores failed to display a significant relationship with the PRx variables. Mild hyperventilation (p < 0.0001), mild hypothermia (p = 0.0001), high levels of sedation for ICP control (p = 0.0001), and use vasopressors for CPP management (p < 0.0001) were found to be associated with only a modest decrease in mean daily PRx or % time with PRx above 0. CONCLUSIONS Cerebrovascular reactivity remains relatively independent of intracranial hypertension therapeutic intensity, suggesting inadequacy of current TBI therapies in modulating impaired autoregulation. These findings support the need for investigation into the molecular mechanisms involved, or individualized physiologic targets (ICP, CPP, or Co2) in order to treat dysautoregulation actively.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9 Canada
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Ari Ercole
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Manuel Cabeleira
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, Netherlands
| | - Tommaso Zoerle
- Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Carbonara
- Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nino Stocchetti
- Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Milan University, Milan, Italy
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - David K. Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
90
|
Campos-Pires R, Hirnet T, Valeo F, Ong BE, Radyushkin K, Aldhoun J, Saville J, Edge CJ, Franks NP, Thal SC, Dickinson R. Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice. Br J Anaesth 2019; 123:60-73. [PMID: 31122738 PMCID: PMC6676773 DOI: 10.1016/j.bja.2019.02.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/07/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Xenon is a noble gas with neuroprotective properties that can improve short and long-term outcomes in young adult mice after controlled cortical impact. This follow-up study investigates the effects of xenon on very long-term outcomes and survival. Methods C57BL/6N young adult male mice (n=72) received single controlled cortical impact or sham surgery and were treated with either xenon (75% Xe:25% O2) or control gas (75% N2:25% O2). Outcomes measured were: (i) 24 h lesion volume and neurological outcome score; (ii) contextual fear conditioning at 2 weeks and 20 months; (iii) corpus callosum white matter quantification; (iv) immunohistological assessment of neuroinflammation and neuronal loss; and (v) long-term survival. Results Xenon treatment significantly reduced secondary injury (P<0.05), improved short-term vestibulomotor function (P<0.01), and prevented development of very late-onset traumatic brain injury (TBI)-related memory deficits. Xenon treatment reduced white matter loss in the contralateral corpus callosum and neuronal loss in the contralateral hippocampal CA1 and dentate gyrus areas at 20 months. Xenon's long-term neuroprotective effects were associated with a significant (P<0.05) reduction in neuroinflammation in multiple brain areas involved in associative memory, including reduction in reactive astrogliosis and microglial cell proliferation. Survival was improved significantly (P<0.05) in xenon-treated animals compared with untreated animals up to 12 months after injury. Conclusions Xenon treatment after TBI results in very long-term improvements in clinically relevant outcomes and survival. Our findings support the idea that xenon treatment shortly after TBI may have long-term benefits in the treatment of brain trauma patients.
Collapse
Affiliation(s)
- Rita Campos-Pires
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK; Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, UK; Charing Cross Hospital Intensive Care Unit, Critical Care Directorate, Imperial College Healthcare NHS Trust, London, UK
| | - Tobias Hirnet
- Department of Anaesthesiology, Medical Centre of Johannes Gutenberg University, Mainz, Germany
| | - Flavia Valeo
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Bee Eng Ong
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Konstantin Radyushkin
- Mouse Behavioural Outcome Unit, Focus Program Translational Neurosciences, Johannes Gutenberg University, Mainz, Germany
| | - Jitka Aldhoun
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Joanna Saville
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Christopher J Edge
- Department of Life Sciences, Imperial College London, UK; Department of Anaesthetics, Royal Berkshire Hospital NHS Foundation Trust, Reading, UK
| | | | - Serge C Thal
- Department of Anaesthesiology, Medical Centre of Johannes Gutenberg University, Mainz, Germany.
| | - Robert Dickinson
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK; Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, UK.
| |
Collapse
|