51
|
Durão P, Aigner H, Nagy P, Mueller-Cajar O, Hartl FU, Hayer-Hartl M. Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nat Chem Biol 2015; 11:148-55. [PMID: 25558973 DOI: 10.1038/nchembio.1715] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the fixation of CO2 in photosynthesis. Despite its pivotal role, Rubisco is an inefficient enzyme and thus is a key target for directed evolution. Rubisco biogenesis depends on auxiliary factors, including the GroEL/ES-type chaperonin for folding and the chaperone RbcX for assembly. Here we performed directed evolution of cyanobacterial form I Rubisco using a Rubisco-dependent Escherichia coli strain. Overexpression of GroEL/ES enhanced Rubisco solubility and tended to expand the range of permissible mutations. In contrast, the specific assembly chaperone RbcX had a negative effect on evolvability by preventing a subset of mutants from forming holoenzyme. Mutation F140I in the large Rubisco subunit, isolated in the absence of RbcX, increased carboxylation efficiency approximately threefold without reducing CO2 specificity. The F140I mutant resulted in a ∼55% improved photosynthesis rate in Synechocystis PCC6803. The requirement of specific biogenesis factors downstream of chaperonin may have retarded the natural evolution of Rubisco.
Collapse
Affiliation(s)
- Paulo Durão
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Harald Aigner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Péter Nagy
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Oliver Mueller-Cajar
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
52
|
Cai Z, Liu G, Zhang J, Li Y. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein Cell 2014; 5:552-62. [PMID: 24870149 PMCID: PMC4085280 DOI: 10.1007/s13238-014-0072-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022] Open
Abstract
Photosynthetic CO2 fixation is the ultimate source of organic carbon on earth and thus is essential for crop production and carbon sequestration. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the first step of photosynthetic CO2 fixation. However, the extreme low carboxylation efficiency of Rubisco makes it the most attractive target for improving photosynthetic efficiency. Extensive studies have focused on re-engineering a more efficient enzyme, but the effort has been impeded by the limited understanding of its structure-function relationships and the lack of an efficient selection system towards its activity. To address the unsuccessful molecular engineering of Rubisco, we developed an Escherichia coli-based activity-directed selection system which links the growth of host cell solely to the Rubisco activity therein. A Synechococcus sp. PCC7002 Rubisco mutant with E49V and D82G substitutions in the small subunit was selected from a total of 15,000 mutants by one round of evolution. This mutant showed an 85% increase in specific carboxylation activity and a 45% improvement in catalytic efficiency towards CO2. The small-subunit E49V mutation was speculated to influence holoenzyme catalysis through interaction with the large-subunit Q225. This interaction is conserved among various Rubisco from higher plants and Chlamydomonas reinhardtii. Knowledge of these might provide clues for engineering Rubisco from higher plants, with the potential of increasing the crop yield.
Collapse
Affiliation(s)
- Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | |
Collapse
|
53
|
Zhuang ZY, Li SY. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. BIORESOURCE TECHNOLOGY 2013; 150:79-88. [PMID: 24152790 DOI: 10.1016/j.biortech.2013.09.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/21/2013] [Accepted: 09/25/2013] [Indexed: 05/16/2023]
Abstract
In this study, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoribulokinase (PrkA) were overexpressed individually and in combination in Escherichia coli under different fermentation conditions. While wild-type E. coli produced 0.731 mol of CO2 per consumption of one mole of arabinose, engineered E. coli JB, containing both heterologous Rubisco and PrkA, produced only 0.621 mol of CO2 per consumption of one mole of arabinose. This represents a 15% reduction in CO2 emission and achieves 38% of theoretical CO2 reduction. The CO2 fixation rate of Rubisco-based engineered E. coli JB is 67 mg-CO2·mole-arabinose(-1) L(-1) h(-1), which is comparable to the performance of microalgae and cyanobacteria. It has been found that overexpressing Rubisco dramatically elevates the bacteria growth and sugar consumptions in the presence of oxygen and L-arabinose. It has been also found that overexpressing PrkA could demolish the balance of ATP regeneration, yet can be recovered simply by controlling the pH at 7.0±0.1.
Collapse
Affiliation(s)
- Zong-Yu Zhuang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | | |
Collapse
|
54
|
Claassens NJ, Volpers M, dos Santos VAPM, van der Oost J, de Vos WM. Potential of proton-pumping rhodopsins: engineering photosystems into microorganisms. Trends Biotechnol 2013; 31:633-42. [PMID: 24120288 DOI: 10.1016/j.tibtech.2013.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/19/2013] [Accepted: 08/27/2013] [Indexed: 01/04/2023]
Abstract
A wide range of proton-pumping rhodopsins (PPRs) have been discovered in recent years. Using a synthetic biology approach, PPR photosystems with different features can be easily introduced in nonphotosynthetic microbial hosts. PPRs can provide hosts with the ability to harvest light and drive the sustainable production of biochemicals or biofuels. PPRs use light energy to generate an outward proton flux, and the resulting proton motive force can subsequently power cellular processes. Recently, the introduction of PPRs in microbial production hosts has successfully led to light-driven biotechnological conversions. In this review, we discuss relevant features of natural PPRs, evaluate reported biotechnological applications of microbial production hosts equipped with PPRs, and provide an outlook on future developments.
Collapse
Affiliation(s)
- Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
55
|
Schada von Borzyskowski L, Rosenthal RG, Erb TJ. Evolutionary history and biotechnological future of carboxylases. J Biotechnol 2013; 168:243-51. [PMID: 23702164 DOI: 10.1016/j.jbiotec.2013.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
Carbon dioxide (CO2) is a potent greenhouse gas whose presence in the atmosphere is a critical factor for global warming. At the same time atmospheric CO2 is also a cheap and readily available carbon source that can in principle be used to synthesize value-added products. However, as uncatalyzed chemical CO2-fixation reactions usually require quite harsh conditions to functionalize the CO2 molecule, not many processes have been developed that make use of CO2. In contrast to synthetical chemistry, Nature provides a multitude of different carboxylating enzymes whose carboxylating principle(s) might be exploited in biotechnology. This review focuses on the biochemical features of carboxylases, highlights possible evolutionary scenarios for the emergence of their reactivity, and discusses current, as well as potential future applications of carboxylases in organic synthesis, biotechnology and synthetic biology.
Collapse
|
56
|
Towards Engineered Light–Energy Conversion in Nonphotosynthetic Microorganisms. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
57
|
Maurino VG, Weber APM. Engineering photosynthesis in plants and synthetic microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:743-51. [PMID: 23028016 DOI: 10.1093/jxb/ers263] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed.
Collapse
Affiliation(s)
- Veronica G Maurino
- Plant Molecular Physiology and Biotechnology, Institute of Plant Developmental and Molecular Biology, Center of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
58
|
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 2012; 162:134-47. [PMID: 22677697 DOI: 10.1016/j.jbiotec.2012.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
Abstract
Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.
Collapse
|
59
|
|
60
|
Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Curr Opin Biotechnol 2012; 23:290-7. [DOI: 10.1016/j.copbio.2011.11.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/09/2011] [Accepted: 11/21/2011] [Indexed: 12/18/2022]
|
61
|
Abstract
Bacterial microcompartments are proteinaceous complexes that catalyze metabolic pathways in a manner reminiscent of organelles. Although microcompartment structure is well understood, much less is known about their assembly and function in vivo. We show here that carboxysomes, CO(2)-fixing microcompartments encoded by 10 genes, can be heterologously produced in Escherichia coli. Expression of carboxysomes in E. coli resulted in the production of icosahedral complexes similar to those from the native host. In vivo, the complexes were capable of both assembling with carboxysomal proteins and fixing CO(2). Characterization of purified synthetic carboxysomes indicated that they were well formed in structure, contained the expected molecular components, and were capable of fixing CO(2) in vitro. In addition, we verify association of the postulated pore-forming protein CsoS1D with the carboxysome and show how it may modulate function. We have developed a genetic system capable of producing modular carbon-fixing microcompartments in a heterologous host. In doing so, we lay the groundwork for understanding these elaborate protein complexes and for the synthetic biological engineering of self-assembling molecular structures.
Collapse
|
62
|
O'Neill BM, Mikkelson KL, Gutierrez NM, Cunningham JL, Wolff KL, Szyjka SJ, Yohn CB, Redding KE, Mendez MJ. An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res 2011; 40:2782-92. [PMID: 22116061 PMCID: PMC3315318 DOI: 10.1093/nar/gkr1008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We demonstrate a system for cloning and modifying the chloroplast genome from the green alga, Chlamydomonas reinhardtii. Through extensive use of sequence stabilization strategies, the ex vivo genome is assembled in yeast from a collection of overlapping fragments. The assembled genome is then moved into bacteria for large-scale preparations and transformed into C. reinhardtii cells. This system also allows for the generation of simultaneous, systematic and complex genetic modifications at multiple loci in vivo. We use this system to substitute genes encoding core subunits of the photosynthetic apparatus with orthologs from a related alga, Scenedesmus obliquus. Once transformed into algae, the substituted genome recombines with the endogenous genome, resulting in a hybrid plastome comprising modifications in disparate loci. The in vivo function of the genomes described herein demonstrates that simultaneous engineering of multiple sites within the chloroplast genome is now possible. This work represents the first steps toward a novel approach for creating genetic diversity in any or all regions of a chloroplast genome.
Collapse
|
63
|
Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R. The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters. Biochemistry 2011; 50:4402-10. [DOI: 10.1021/bi2002289] [Citation(s) in RCA: 649] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Arren Bar-Even
- Department of Plant Sciences, ‡Department of Physics of Complex Systems, and §Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad Noor
- Department of Plant Sciences, ‡Department of Physics of Complex Systems, and §Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yonatan Savir
- Department of Plant Sciences, ‡Department of Physics of Complex Systems, and §Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Wolfram Liebermeister
- Department of Plant Sciences, ‡Department of Physics of Complex Systems, and §Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Davidi
- Department of Plant Sciences, ‡Department of Physics of Complex Systems, and §Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S. Tawfik
- Department of Plant Sciences, ‡Department of Physics of Complex Systems, and §Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ron Milo
- Department of Plant Sciences, ‡Department of Physics of Complex Systems, and §Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
64
|
Walter JM, Greenfield D, Liphardt J. Potential of light-harvesting proton pumps for bioenergy applications. Curr Opin Biotechnol 2010; 21:265-70. [DOI: 10.1016/j.copbio.2010.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
|
65
|
Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc Natl Acad Sci U S A 2010; 107:3475-80. [PMID: 20142476 DOI: 10.1073/pnas.0911663107] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO(2) affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO(2) concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.
Collapse
|
66
|
Chapter 20 Engineering Photosynthetic Enzymes Involved in CO2–Assimilation by Gene Shuffling. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
67
|
Satagopan S, Scott SS, Smith TG, Tabita FR. A Rubisco mutant that confers growth under a normally "inhibitory" oxygen concentration. Biochemistry 2009; 48:9076-83. [PMID: 19705820 DOI: 10.1021/bi9006385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) is a globally significant biocatalyst that facilitates the removal and sequestration of CO2 from the biosphere. Rubisco-catalyzed CO2 reduction thus provides virtually all of the organic carbon utilized by living organisms. Despite catalyzing the rate-limiting step of photosynthetic and chemoautotrophic CO2 assimilation, Rubisco is markedly inefficient as the competition between O2 and CO2 for the same substrate limits the ability of aerobic organisms to obtain maximum amounts of organic carbon for CO2-dependent growth. Random and site-directed mutagenesis procedures were coupled with genetic selection to identify an "oxygen-insensitive" mutant cyanobacterial (Synechococcus sp. strain PCC 6301) Rubisco that allowed for CO2-dependent growth of a host bacterium at an oxygen concentration that inhibited growth of the host containing wild-type Synechococcus Rubisco. The mutant substitution, A375V, was identified as an intragenic suppressor of D103V, a negative mutant enzyme incapable of supporting autotrophic growth. Ala-375 (Ala-378 of spinach Rubisco) is a conserved residue in all form I (plant-like) Rubiscos. Structure-function analyses indicate that the A375V substitution decreased the enzyme's oxygen sensitivity (and not CO2/O2 specificity), possibly by rearranging a network of interactions in a fairly conserved hydrophobic pocket near the active site. These studies point to the potential of engineering plants and other significant aerobic organisms to fix CO2 unfettered by the presence of O2.
Collapse
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
| | | | | | | |
Collapse
|
68
|
Peterhansel C, Niessen M, Kebeish RM. Metabolic Engineering Towards the Enhancement of Photosynthesis†. Photochem Photobiol 2008; 84:1317-23. [DOI: 10.1111/j.1751-1097.2008.00427.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
69
|
Johnson ET, Schmidt-Dannert C. Light-energy conversion in engineered microorganisms. Trends Biotechnol 2008; 26:682-9. [PMID: 18951642 DOI: 10.1016/j.tibtech.2008.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/05/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022]
Abstract
Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.
Collapse
Affiliation(s)
- Ethan T Johnson
- Department of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Avenue, 140 Gortner Laboratory, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
70
|
Mueller-Cajar O, Whitney SM. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. PHOTOSYNTHESIS RESEARCH 2008; 98:667-75. [PMID: 18626786 PMCID: PMC2758363 DOI: 10.1007/s11120-008-9324-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/26/2008] [Indexed: 05/18/2023]
Abstract
During the last decade the practice of laboratory-directed protein evolution has become firmly established as a versatile tool in biochemical research by enabling molecular evolution toward desirable phenotypes or detection of novel structure-function interactions. Applications of this technique in the field of photosynthesis research are still in their infancy, but recently first steps have been reported in the directed evolution of the CO(2)-fixing enzyme Rubisco and its helper protein Rubisco activase. Here we summarize directed protein evolution strategies and review the progressive advances that have been made to develop and apply suitable selection systems for screening mutant forms of these enzymes that improve the fitness of the host organism. The goal of increasing photosynthetic efficiency of plants by improving the kinetics of Rubisco has been a long-term goal scoring modest successes. We discuss how directed evolution methodologies may one day be able to circumvent the problems encountered during this venture.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, Australian Capital Territory 2601 Australia
- Department of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Spencer M. Whitney
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, Australian Capital Territory 2601 Australia
| |
Collapse
|
71
|
Evolving improved Synechococcus Rubisco functional expression in Escherichia coli. Biochem J 2008; 414:205-14. [DOI: 10.1042/bj20080668] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The photosynthetic CO2-fixing enzyme Rubisco [ribulose-P2 (D-ribulose-1,5-bisphosphate) carboxylase/oxygenase] has long been a target for engineering kinetic improvements. Towards this goal we used an RDE (Rubisco-dependent Escherichia coli) selection system to evolve Synechococcus PCC6301 Form I Rubisco under different selection pressures. In the fastest growing colonies, the Rubisco L (large) subunit substitutions I174V, Q212L, M262T, F345L or F345I were repeatedly selected and shown to increase functional Rubisco expression 4- to 7-fold in the RDE and 5- to 17-fold when expressed in XL1-Blue E. coli. Introducing the F345I L-subunit substitution into Synechococcus PCC7002 Rubisco improved its functional expression 11-fold in XL1-Blue cells but could not elicit functional Arabidopsis Rubisco expression in the bacterium. The L subunit substitutions L161M and M169L were complementary in improving Rubisco yield 11-fold, whereas individually they improved yield ∼5-fold. In XL1-Blue cells, additional GroE chaperonin enhanced expression of the I174V, Q212L and M262T mutant Rubiscos but engendered little change in the yield of the more assembly-competent F345I or F345L mutants. In contrast, the Rubisco chaperone RbcX stimulated functional assembly of wild-type and mutant Rubiscos. The kinetic properties of the mutated Rubiscos varied with noticeable reductions in carboxylation and oxygenation efficiency accompanying the Q212L mutation and a 2-fold increase in Kribulose-P2 (KM for the substrate ribulose-P2) for the F345L mutant, which was contrary to the ∼30% reductions in Kribulose-P2 for the other mutants. These results confirm the RDE systems versatility for identifying mutations that improve functional Rubisco expression in E. coli and provide an impetus for developing the system to screen for kinetic improvements.
Collapse
|
72
|
Portis AR, Parry MAJ. Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. PHOTOSYNTHESIS RESEARCH 2007; 94:121-43. [PMID: 17665149 DOI: 10.1007/s11120-007-9225-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/04/2007] [Indexed: 05/16/2023]
Abstract
Historic discoveries and key observations related to Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase), from 1947 to 2006, are presented. Currently, around 200 papers describing Rubisco research are published each year and the literature contains more than 5000 manuscripts on the subject. While trying to ensure that all the major events over this period are recorded, this analysis will inevitably be incomplete and will reflect the areas of particular interest to the authors.
Collapse
Affiliation(s)
- Archie R Portis
- Photosynthesis Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA.
| | | |
Collapse
|
73
|
Greene D, Whitney S, Matsumura I. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem J 2007; 404:517-24. [PMID: 17391103 PMCID: PMC1896282 DOI: 10.1042/bj20070071] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The photosynthetic CO2-fixing enzyme, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), is responsible for most of the world's biomass, but is a slow non-specific catalyst. We seek to identify and overcome the chemical and biological constraints that limit the evolutionary potential of Rubisco in Nature. Recently, the horizontal transfer of Calvin cycle genes (rbcL, rbcS and prkA) from cyanobacteria (Synechococcus PCC6301) to gamma-proteobacteria (Escherichia coli) was emulated in the laboratory. Three unique Rubisco variants containing single (M259T) and double (M259T/A8S, M259T/F342S) amino acid substitutions in the L (large) subunit were identified after three rounds of random mutagenesis and selection in E. coli. Here we show that the M259T mutation did not increase steady-state levels of rbcL mRNA or L protein. It instead improved the yield of properly folded L subunit in E. coli 4-9-fold by decreasing its natural propensity to misfold in vivo and/or by enhancing its interaction with the GroES-GroEL chaperonins. The addition of osmolites to the growth media enhanced productive folding of the M259T L subunit relative to the wild-type L subunit, while overexpression of the trigger factor and DnaK/DnaJ/GrpE chaperones impeded Rubisco assembly. The evolved enzymes showed improvement in their kinetic properties with the M259T variant showing a 12% increase in carboxylation turnover rate (k(c)cat), a 15% improvement in its K(M) for CO2 and no change in its K(M) for ribulose-1,5-bisphosphate or its CO2/O2 selectivity. The results of the present study show that the directed evolution of the Synechococcus Rubisco in E. coli can elicit improvements in folding and catalytic efficiency.
Collapse
Affiliation(s)
- Dina N. Greene
- *Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, U.S.A
| | - Spencer M. Whitney
- †Molecular Plant Physiology, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia
| | - Ichiro Matsumura
- *Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
74
|
Abstract
Enzymes have become an attractive alternative to conventional catalysts in numerous industrial processes. However, their properties do not always meet the criteria of the application of interest. Directed evolution is a powerful tool for adopting the characteristics of an enzyme. However, selection of the evolved variants is a critical step, and therefore new strategies to enable selection of the desired enzymatic activity have been developed. This review focuses on these novel strategies for selecting enzymes from large libraries, in particular those that are used in the synthesis of pharmaceutical intermediates and pharmaceuticals.
Collapse
Affiliation(s)
- Ykelien L Boersma
- Department of Pharmaceutical Biology, Groningen University Institute for Drug Exploration, the Netherlands
| | | | | |
Collapse
|
75
|
Boersma YL, Dröge MJ, Quax WJ. Selection strategies for improved biocatalysts. FEBS J 2007. [DOI: 10.1111/j.0014-2956.2007.05782.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
76
|
Abstract
Directed evolution is being used increasingly in industrial and academic laboratories to modify and improve commercially important enzymes. Laboratory evolution is thought to make its biggest contribution in explorations of non-natural functions, by allowing us to distinguish the properties nurtured by evolution. In this review we report the significant advances achieved with respect to the methods of biocatalyst improvement and some critical properties and applications of the modified enzymes. The application of directed evolution has been elaborately demonstrated for protein solubility, stability and catalytic efficiency. Modification of certain enzymes for their application in enantioselective catalysis has also been elucidated. By providing a simple and reliable route to enzyme improvement, directed evolution has emerged as a key technology for enzyme engineering and biocatalysis.
Collapse
Affiliation(s)
- Jasjeet Kaur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | | |
Collapse
|
77
|
|