51
|
Rizal G, Karki S, Thakur V, Wanchana S, Alonso-Cantabrana H, Dionora J, Sheehy JE, Furbank R, von Caemmerer S, Quick WP. A sorghum (Sorghum bicolor) mutant with altered carbon isotope ratio. PLoS One 2017. [PMID: 28640841 PMCID: PMC5480886 DOI: 10.1371/journal.pone.0179567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium’s efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C) of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor) mutant with a low δ13C characteristic. A mutant (named Mut33) with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT). The back-cross (BC1F1) progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air) and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs) between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used in the transformation of C3 to C4 plants.
Collapse
Affiliation(s)
- Govinda Rizal
- C4 Rice Center, IRRI, Los Banos, Laguna, the Philippines
| | - Shanta Karki
- C4 Rice Center, IRRI, Los Banos, Laguna, the Philippines
- Government of Nepal, Ministry of Agricultural Development, Kathmandu, Nepal
| | - Vivek Thakur
- C4 Rice Center, IRRI, Los Banos, Laguna, the Philippines
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Hugo Alonso-Cantabrana
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Jacque Dionora
- C4 Rice Center, IRRI, Los Banos, Laguna, the Philippines
| | - John E. Sheehy
- C4 Rice Center, IRRI, Los Banos, Laguna, the Philippines
- University of Sheffield, Sheffield, United Kingdom
| | - Robert Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - William Paul Quick
- C4 Rice Center, IRRI, Los Banos, Laguna, the Philippines
- University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Pelagio-Flores R, Esparza-Reynoso S, Garnica-Vergara A, López-Bucio J, Herrera-Estrella A. Trichoderma-Induced Acidification Is an Early Trigger for Changes in Arabidopsis Root Growth and Determines Fungal Phytostimulation. FRONTIERS IN PLANT SCIENCE 2017; 8:822. [PMID: 28567051 PMCID: PMC5434454 DOI: 10.3389/fpls.2017.00822] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/02/2017] [Indexed: 05/03/2023]
Abstract
Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma-Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant-fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants.
Collapse
Affiliation(s)
- Ramón Pelagio-Flores
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPNIrapuato, México
| | - Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de HidalgoMorelia, México
| | - Amira Garnica-Vergara
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de HidalgoMorelia, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de HidalgoMorelia, México
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPNIrapuato, México
| |
Collapse
|
53
|
Liu X, Lin Y, Liu D, Wang C, Zhao Z, Cui X, Liu Y, Yang Y. MAPK-mediated auxin signal transduction pathways regulate the malic acid secretion under aluminum stress in wheat (Triticum aestivum L.). Sci Rep 2017; 7:1620. [PMID: 28487539 PMCID: PMC5431644 DOI: 10.1038/s41598-017-01803-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/05/2017] [Indexed: 01/17/2023] Open
Abstract
An isobaric tags for relative and absolute quantitative (iTRAQ)-based quantitative proteomic approach was used to screen the differentially expressed proteins during control treatment (CK), aluminum (Al) and Al+ indole-3-acetic acid (IAA) treatment of wheat lines ET8 (Al-tolerant). Further, the the expression levels of auxin response factor (ARF), Aux/IAA, Mitogen activated protein kinase (MAPK) 2c, and MAPK1a were analyzed. Results showed that 16 proteins were determined to be differentially expressed in response to Al and IAA co-treatment compared with Al alone. Among them, MAPK2c and MAPK1a proteins displayed markedly differential expression during the processes. The expression of ARF2 was upregulated and Aux/IAA was downregulated by Al, while both in concentration- and time-dependent manners. Western-blot detection of MAPK2c and MAPK1a indicated that Al upregulated MAPK2c and downregulated MAPK1a in both concentration- and time-dependent manners. Exogenous IAA could promote the expression of MAPK2c, but inhibit the expression of MAPK1a in the presence/absence of Al. These findings indicated that IAA acted as one of the key signaling molecule controls the response mechanism of wheat malic acid efflux to Al stress through the suppression/activation of Aux/IAA and ARFs, and the activity of MAPK2c and MAPK1a were positively or negatively regulated.
Collapse
Affiliation(s)
- Xinwei Liu
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.,Centre for Microelement Research of Huazhong Agricultural University, Wuhan, 430070, China
| | - Yameng Lin
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.,Centre for Microelement Research of Huazhong Agricultural University, Wuhan, 430070, China
| | - Diqiu Liu
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chengxiao Wang
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhuqing Zhao
- Centre for Microelement Research of Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuming Cui
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Liu
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ye Yang
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
54
|
Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Jimenez-Bremont JF, Ohkura M, Stewart A, Mendoza-Mendoza A. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion. FRONTIERS IN PLANT SCIENCE 2017; 8:102. [PMID: 28232840 PMCID: PMC5299017 DOI: 10.3389/fpls.2017.00102] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/18/2017] [Indexed: 05/04/2023]
Abstract
Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.
Collapse
Affiliation(s)
| | | | - Fatima B. Salazar-Badillo
- Bio-Protection Research Centre, Lincoln UniversityLincoln, New Zealand
- Institute for Scientific and Technological Research of San Luis PotosiSan Luis Potosí, Mexico
| | - Dianne Vi Nguyen
- Bio-Protection Research Centre, Lincoln UniversityLincoln, New Zealand
| | - Michael Rostás
- Bio-Protection Research Centre, Lincoln UniversityLincoln, New Zealand
| | - Mark Braithwaite
- Bio-Protection Research Centre, Lincoln UniversityLincoln, New Zealand
| | - Jorge T. De Souza
- Bio-Protection Research Centre, Lincoln UniversityLincoln, New Zealand
- Department of Phytopathology, Federal University of LavrasLavras, Brazil
| | - Juan F. Jimenez-Bremont
- Institute for Scientific and Technological Research of San Luis PotosiSan Luis Potosí, Mexico
| | - Mana Ohkura
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | | | | |
Collapse
|
55
|
Yu D, Bu F, Hou J, Kang Y, Yu Z. A morel improved growth and suppressed Fusarium infection in sweet corn. World J Microbiol Biotechnol 2016; 32:192. [PMID: 27718147 DOI: 10.1007/s11274-016-2151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022]
Abstract
A post-fire morel collected from Populus simonii stands in Mt. Qingling was identified as Morchella crassipes Mes-20 by using nuclear ribosomal DNA internal transcribed spacer phylogeny. It was inoculated into sweet corn to observe colonized roots in purified culture and in greenhouse experiments. The elongation and maturation zones of sweet corn were remarkably colonized at the cortex intercellular and intracellular cells, vessel cells, and around the Casparian strip, forming ectendomycorrhiza-like structures. Colonization was also observed in the zone of cell division proximal to the root cap. Greenhouse assays with sweet corn showed that this morel stimulated the development of the root system and significantly increased the dry root biomass. M. crassipes also significantly reduced the incidence of Fusarium verticillioides in the kernels of mature ears when inoculated into young ears before Fusarium inoculation and prevented Fusarium infection in corn ears compared with that of the control in the greenhouse. When grown under axenic conditions, M. crassipes produced the phytohormones abscisic acid, indole-3-acetic acid, and salicylic acid. The benefits to plants elicited by M. crassipes may result from these phytohormones which may improve the drought resistance, biomass growth and resistance to Fusarium.
Collapse
Affiliation(s)
- Dan Yu
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangfang Bu
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiaojiao Hou
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yongxiang Kang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhongdong Yu
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
56
|
Verbon EH, Liberman LM. Beneficial Microbes Affect Endogenous Mechanisms Controlling Root Development. TRENDS IN PLANT SCIENCE 2016; 21:218-229. [PMID: 26875056 PMCID: PMC4772406 DOI: 10.1016/j.tplants.2016.01.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
Plants have incredible developmental plasticity, enabling them to respond to a wide range of environmental conditions. Among these conditions is the presence of plant growth-promoting rhizobacteria (PGPR) in the soil. Recent studies show that PGPR affect Arabidopsis thaliana root growth and development by modulating cell division and differentiation in the primary root and influencing lateral root development. These effects lead to dramatic changes in root system architecture that significantly impact aboveground plant growth. Thus, PGPR may promote shoot growth via their effect on root developmental programs. This review focuses on contextualizing root developmental changes elicited by PGPR in light of our understanding of plant-microbe interactions and root developmental biology.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | |
Collapse
|
57
|
Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, Ruiz-Herrera LF, López-Bucio J. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. THE NEW PHYTOLOGIST 2016; 209:1496-512. [PMID: 26568541 DOI: 10.1111/nph.13725] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/23/2015] [Indexed: 05/18/2023]
Abstract
Plants interact with root microbes via chemical signaling, which modulates competence or symbiosis. Although several volatile organic compounds (VOCs) from fungi may affect plant growth and development, the signal transduction pathways mediating VOC sensing are not fully understood. 6-pentyl-2H-pyran-2-one (6-PP) is a major VOC biosynthesized by Trichoderma spp. which is probably involved in plant-fungus cross-kingdom signaling. Using microscopy and confocal imaging, the effects of 6-PP on root morphogenesis were found to be correlated with DR5:GFP, DR5:VENUS, H2B::GFP, PIN1::PIN1::GFP, PIN2::PIN2::GFP, PIN3::PIN3::GFP and PIN7::PIN7::GFP gene expression. A genetic screen for primary root growth resistance to 6-PP in wild-type seedlings and auxin- and ethylene-related mutants allowed identification of genes controlling root architectural responses to this metabolite. Trichoderma atroviride produced 6-PP, which promoted plant growth and regulated root architecture, inhibiting primary root growth and inducing lateral root formation. 6-PP modulated expression of PIN auxin-transport proteins in a specific and dose-dependent manner in primary roots. TIR1, AFB2 and AFB3 auxin receptors and ARF7 and ARF19 transcription factors influenced the lateral root response to 6-PP, whereas EIN2 modulated 6-PP sensing in primary roots. These results indicate that root responses to 6-PP involve components of auxin transport and signaling and the ethylene-response modulator EIN2.
Collapse
Affiliation(s)
- Amira Garnica-Vergara
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. CP 58030, Morelia, Michoacán, México
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. CP 58030, Morelia, Michoacán, México
| | - Edith Muñoz-Parra
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. CP 58030, Morelia, Michoacán, México
| | - Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. CP 58030, Morelia, Michoacán, México
| | - Alejandro Méndez-Bravo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. CP 58030, Morelia, Michoacán, México
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. CP 58030, Morelia, Michoacán, México
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. CP 58030, Morelia, Michoacán, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. CP 58030, Morelia, Michoacán, México
| |
Collapse
|
58
|
Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J. Ecological functions ofTrichodermaspp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 2016; 92:fiw036. [DOI: 10.1093/femsec/fiw036] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
|