51
|
Zhang Y, Li J, Zhang W, Wang R, Qiu Q, Luo F, Hikichi Y, Ohnishi K, Ding W. Ferulic Acid, But Not All Hydroxycinnamic Acids, Is a Novel T3SS Inducer of Ralstonia solanacearum and Promotes Its Infection Process in Host Plants under Hydroponic Condition. FRONTIERS IN PLANT SCIENCE 2017; 8:1595. [PMID: 28955375 PMCID: PMC5601421 DOI: 10.3389/fpls.2017.01595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/30/2017] [Indexed: 05/20/2023]
Abstract
Hydroxycinnamic acids (HCAs) are typical monocyclic phenylpropanoids, including cinnamic acid (Cin), coumaric acid (Cou), caffeic acid (Caf), ferulic acid (FA) and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS) in Ralstonia solanacearum. FA significantly induced the expression of the T3SS and some type III effectors (T3Es) genes in hrp-inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR) in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum, was able to promote its infection process in host plants under hydroponics condition.
Collapse
Affiliation(s)
- Yong Zhang
- College of Resources and Environment, Southwest UniversityChongqing, China
| | - Jing Li
- College of Resources and Environment, Southwest UniversityChongqing, China
- The Ninth Peoples Hospital of ChongqingChongqing, China
| | - Weiqi Zhang
- College of Resources and Environment, Southwest UniversityChongqing, China
| | - Rongsheng Wang
- College of Plant Protection, Southwest UniversityChongqing, China
| | - Qiaoqing Qiu
- College of Resources and Environment, Southwest UniversityChongqing, China
| | - Feng Luo
- College of Resources and Environment, Southwest UniversityChongqing, China
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi UniversityKochi, Japan
- *Correspondence: Kouhei Ohnishi, Wei Ding,
| | - Wei Ding
- College of Plant Protection, Southwest UniversityChongqing, China
- *Correspondence: Kouhei Ohnishi, Wei Ding,
| |
Collapse
|
52
|
López-Gresa MP, Lisón P, Yenush L, Conejero V, Rodrigo I, Bellés JM. Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLoS One 2016; 11:e0166938. [PMID: 27893781 PMCID: PMC5125658 DOI: 10.1371/journal.pone.0166938] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/07/2016] [Indexed: 11/18/2022] Open
Abstract
Tomato plants expressing the NahG transgene, which prevents accumulation of endogenous salicylic acid (SA), were used to study the importance of the SA signalling pathway in basal defence against Citrus Exocortis Viroid (CEVd) or Tomato Spotted Wilt Virus (TSWV). The lack of SA accumulation in the CEVd- or TSWV-infected NahG tomato plants led to an early and dramatic disease phenotype, as compared to that observed in the corresponding parental Money Maker. Addition of acibenzolar-S-methyl, a benzothiadiazole (BTH), which activates the systemic acquired resistance pathway downstream of SA signalling, improves resistance of NahG tomato plants to CEVd and TSWV. CEVd and TSWV inoculation induced the accumulation of the hydroxycinnamic amides p-coumaroyltyramine, feruloyltyramine, caffeoylputrescine, and feruloylputrescine, and the defence related proteins PR1 and P23 in NahG plants earlier and with more intensity than in Money Maker plants, indicating that SA is not essential for the induction of these plant defence metabolites and proteins. In addition, NahG plants produced very high levels of ethylene upon CEVd or TSWV infection when compared with infected Money Maker plants, indicating that the absence of SA produced additional effects on other metabolic pathways. This is the first report to show that SA is an important component of basal resistance of tomato plants to both CEVd and TSWV, indicating that SA-dependent defence mechanisms play a key role in limiting the severity of symptoms in CEVd- and TSWV-infected NahG tomato plants.
Collapse
Affiliation(s)
- M. Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Vicente Conejero
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José María Bellés
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
53
|
Tanabe K, Hojo Y, Shinya T, Galis I. Molecular evidence for biochemical diversification of phenolamide biosynthesis in rice plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:903-913. [PMID: 27015846 DOI: 10.1111/jipb.12480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/24/2016] [Indexed: 05/29/2023]
Abstract
Two phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine strongly accumulate in rice (Oryza sativa cv. Nipponbare) leaves subjected to attack of chewing and sucking herbivores. Here we identified and characterized in vitro three novel rice genes that mediated coumaroyl-CoA/feruloyl-CoA conjugation to polyamines, putrescine and agmatine. Interestingly, two genes were highly specific for their polyamine substrates, encoding putrescine N-hydroxycinnamoyltransferase and agmatine N-hydroxycinnamoyltransferase, while the third enzyme could use both polyamines and it was therefore annotated as putrescine/agmatine N-hydroxycinnamoyltransferase. All genes were preferentially expressed in rice roots and developing flowers, and in addition, the putrescine/agmatine N-hydroxycinnamoyltransferase transcripts were strongly induced by wounding in the young rice leaves. Because the wound response of this gene was only partially suppressed in the jasmonoyl-L-isoleucine deficient plants (Osjar1), it suggests that its upregulation (as well as inducible PAs in rice) may be largely independent of jasmonoyl-L-isoleucine signaling pathway. The finding of three closely related genes with a similar and/or overlapping activity in PA biosynthesis provides another striking example of rapid diversification of plant metabolism in response to environmental stresses in nature.
Collapse
Affiliation(s)
- Kimiaki Tanabe
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| |
Collapse
|
54
|
Dhokane D, Karre S, Kushalappa AC, McCartney C. Integrated Metabolo-Transcriptomics Reveals Fusarium Head Blight Candidate Resistance Genes in Wheat QTL-Fhb2. PLoS One 2016; 11:e0155851. [PMID: 27232496 PMCID: PMC4883744 DOI: 10.1371/journal.pone.0155851] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/05/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Fusarium head blight (FHB) caused by Fusarium graminearum not only causes severe losses in yield, but also reduces quality of wheat grain by accumulating mycotoxins. Breeding for host plant resistance is considered as the best strategy to manage FHB. Resistance in wheat to FHB is quantitative in nature, involving cumulative effects of many genes governing resistance. The poor understanding of genetics and lack of precise phenotyping has hindered the development of FHB resistant cultivars. Though more than 100 QTLs imparting FHB resistance have been reported, none discovered the specific genes localized within the QTL region, nor the underlying mechanisms of resistance. FINDINGS In our study recombinant inbred lines (RILs) carrying resistant (R-RIL) and susceptible (S-RIL) alleles of QTL-Fhb2 were subjected to metabolome and transcriptome profiling to discover the candidate genes. Metabolome profiling detected a higher abundance of metabolites belonging to phenylpropanoid, lignin, glycerophospholipid, flavonoid, fatty acid, and terpenoid biosynthetic pathways in R-RIL than in S-RIL. Transcriptome analysis revealed up-regulation of several receptor kinases, transcription factors, signaling, mycotoxin detoxification and resistance related genes. The dissection of QTL-Fhb2 using flanking marker sequences, integrating metabolomic and transcriptomic datasets, identified 4-Coumarate: CoA ligase (4CL), callose synthase (CS), basic Helix Loop Helix (bHLH041) transcription factor, glutathione S-transferase (GST), ABC transporter-4 (ABC4) and cinnamyl alcohol dehydrogenase (CAD) as putative resistance genes localized within the QTL-Fhb2 region. CONCLUSION Some of the identified genes within the QTL region are associated with structural resistance through cell wall reinforcement, reducing the spread of pathogen through rachis within a spike and few other genes that detoxify DON, the virulence factor, thus eventually reducing disease severity. In conclusion, we report that the wheat resistance QTL-Fhb2 is associated with high rachis resistance through additive resistance effects of genes, based on cell wall enforcement and detoxification of DON. Following further functional characterization and validation, these resistance genes can be used to replace the genes in susceptible commercial cultivars, if nonfunctional, based on genome editing to improve FHB resistance.
Collapse
Affiliation(s)
- Dhananjay Dhokane
- Department of Plant Science, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Shailesh Karre
- Department of Plant Science, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Ajjamada C. Kushalappa
- Department of Plant Science, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Curt McCartney
- Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada
| |
Collapse
|
55
|
Kim SH, Wang Y, Khomutov M, Khomutov A, Fuqua C, Michael AJ. The Essential Role of Spermidine in Growth of Agrobacterium tumefaciens Is Determined by the 1,3-Diaminopropane Moiety. ACS Chem Biol 2016; 11:491-9. [PMID: 26682642 DOI: 10.1021/acschembio.5b00893] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ubiquitous polyamine spermidine is indispensable for eukaryotic growth and cell proliferation. A conserved vital function of spermidine across eukaryotes is conferred by its aminobutyl group that is transferred to a single lysine in translation factor eIF5A to form the essential hypusine post-translational modification required for cellular translation. In direct contrast, although spermidine is absolutely essential for growth of α-proteobacterial plant pathogen Agrobacterium tumefaciens, we have found, by employing a suite of natural polyamines and synthetic methylated spermidine analogues together with spermidine biosynthetic mutants, that it is solely the 1,3-diaminopropane moiety of spermidine that is required for growth. Indeed, any polyamine containing an intact terminal 1,3-diaminopropane moiety can replace spermidine for growth, including the simple diamine 1,3-diaminopropane itself, a paradigm shift in understanding polyamine function in bacteria. We have identified for the first time a spermidine retroconversion activity in bacteria, producing diamine putrescine from triamine spermidine; however, exogenously supplied tetraamine spermine is resistant to retroconversion. When spermidine levels are pharmacologically decreased, synthesis of spermine from spermidine is induced via the same biosynthetic enzymes, carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase that produce spermidine from putrescine, the first identification of a spermine biosynthetic pathway in bacteria. This also suggests that spermidine represses spermine biosynthesis, but when spermidine levels decrease, it is then converted by carboxyspermidine dehydrogenase and decarboxylase enzymes to spermine, which is resistant to retroconversion and constitutes a sequestered pool of protected 1,3-diaminopropane modules required for growth. We also identify an efficient N-acetylspermidine deacetylase activity, indicative of a sophisticated bacterial polyamine homeostasis system.
Collapse
Affiliation(s)
- Sok Ho Kim
- Department
of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Yi Wang
- Department
of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Maxim Khomutov
- Engelhardt
Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Alexey Khomutov
- Engelhardt
Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Clay Fuqua
- Department
of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Anthony J. Michael
- Department
of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
56
|
Alamgir KM, Hojo Y, Christeller JT, Fukumoto K, Isshiki R, Shinya T, Baldwin IT, Galis I. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory. PLANT, CELL & ENVIRONMENT 2016; 39:453-66. [PMID: 26386366 DOI: 10.1111/pce.12640] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 05/26/2023]
Abstract
Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.
Collapse
Affiliation(s)
- Kabir Md Alamgir
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - John T Christeller
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Kaori Fukumoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Ryutaro Isshiki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| |
Collapse
|
57
|
Affiliation(s)
- Yoshihiro TAKAHASHI
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University
| |
Collapse
|
58
|
Peng H, Yang T, Whitaker BD, Trouth F, Shangguan L, Dong W, Jurick WM. Characterization of spermidine hydroxycinnamoyl transferases from eggplant ( Solanum melongena L.) and its wild relative Solanum richardii Dunal. HORTICULTURE RESEARCH 2016; 3:16062. [PMID: 28018606 PMCID: PMC5142293 DOI: 10.1038/hortres.2016.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/30/2016] [Accepted: 10/30/2016] [Indexed: 05/19/2023]
Abstract
Eggplant produces a variety of hydroxycinnamic acid amides (HCAAs) that have an important role in plant development and adaptation to environmental changes. In this study, we identified and characterized a spermidine hydroxycinnamoyl transferase (SHT) from eggplant (Solanum melongena) and its wild relative S. richardii, designated as SmSHT and SrSHT, respectively. SmSHT was abundant in flowers and fruits, whereas the level of SrSHT was remarkably low in all tissues. Heat-shock/drought treatment stimulated the expression of SmSHT in both leaves and fruits, indicating its involvement in plant stress response. Both SHT polypeptides had extremely high identity with just five amino-acid substitutions. Recombinant SmSHT catalyzed the synthesis of mono-, bi- and tri- acylated polyamines. Using caffeoyl-CoA as the acyl donor, SmSHT preferred spermidine as the acyl acceptor. When spermidine was the acyl acceptor, the donor preference order for SmSHT was caffeoyl-CoA>feruloyl-CoA>ρ-coumaroyl-CoA. SrSHT exhibited the same substrate specificity as SmSHT, yet exhibited significantly higher catalytic activity than SmSHT. For example, under caffeoyl-CoA and spermidine, Kcat of SrSHT was 37.3% higher than SmSHT. Molecular modeling suggests that five amino-acid substitutions in SrSHT result in four alterations in their predicted 3D structures. In particular, the conserved Lys402 adjacent to the DFGWG motif, and Cys200 in the crossover loop in SmSHT were replaced by Glu and Ser in SrSHT. These substitutions may contribute to the enhanced activity in SrSHT. Our study provides a platform to generate HCAA rich fruits for eggplant and other solanaceous crops.
Collapse
Affiliation(s)
- Hui Peng
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Horticulture & Landscape College, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Tianbao Yang
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705, USA
- ()
| | - Bruce D Whitaker
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705, USA
- ()
| | - Frances Trouth
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Lingfei Shangguan
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705, USA
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wen Dong
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Plant Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Wayne M Jurick
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
59
|
Elejalde-Palmett C, de Bernonville TD, Glevarec G, Pichon O, Papon N, Courdavault V, St-Pierre B, Giglioli-Guivarc'h N, Lanoue A, Besseau S. Characterization of a spermidine hydroxycinnamoyltransferase in Malus domestica highlights the evolutionary conservation of trihydroxycinnamoyl spermidines in pollen coat of core Eudicotyledons. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7271-85. [PMID: 26363642 DOI: 10.1093/jxb/erv423] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phenolamides, so called hydroxycinnamic acid amides, are specialized metabolites produced in higher plants, involved in development, reproduction and serve as defence compounds in biotic interactions. Among them, trihydroxycinnamoyl spermidine derivatives were initially found to be synthetized by a spermidine hydroxycinnamoyltransferase (AtSHT) in Arabidopsis thaliana and to accumulate in the pollen coat. This study reports the identification, in Malus domestica, of an acyltransferase able to complement the sht mutant of Arabidopsis. The quantitative RT-PCR expression profile of MdSHT reveals a specific expression in flowers coordinated with anther development and tapetum cell activities. Three phenolamides including N (1),N (5),N (10)-tricoumaroyl spermidine and N (1),N (5)-dicoumaroyl-N (10)-caffeoyl spermidine identified by LC/MS, were shown to accumulate specifically in pollen grain coat of apple tree. Moreover, in vitro biochemical characterization confirmed MdSHT capacity to synthesize tri-substituted spermidine derivatives with a substrate specificity restricted to p-coumaroyl-CoA and caffeoyl-CoA as an acyl donor. Further investigations of the presence of tri-substituted hydroxycinnamoyl spermidine conjugates in higher plants were performed by targeted metabolic analyses in pollens coupled with bioinformatic analyses of putative SHT orthologues in a wide range of available plant genomes. This work highlights a probable early evolutionary appearance in the common ancestral core Eudicotyledons of a novel enzyme from the BAHD acyltransferase superfamily, dedicated to the synthesis of trihydroxycinnamoyl spermidines in pollen coat. This pathway was maintained in most species; however, recent evolutionary divergences have appeared among Eudicotyledons, such as an organ reallocation of SHT gene expression in Fabales and a loss of SHT in Malvales and Cucurbitales.
Collapse
Affiliation(s)
- Carolina Elejalde-Palmett
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Gaëlle Glevarec
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Olivier Pichon
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Nicolas Papon
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Nathalie Giglioli-Guivarc'h
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| |
Collapse
|
60
|
Sim GY, Yang SM, Kim BG, Ahn JH. Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines. Microb Cell Fact 2015; 14:162. [PMID: 26463041 PMCID: PMC4603808 DOI: 10.1186/s12934-015-0353-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022] Open
Abstract
Background Hydroxycinnamic acids (HCAs) including cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid, are C6–C3 phenolic compounds that are synthesized via the phenylpropanoid pathway. HCAs serve as precursors for the synthesis of lignins, flavonoids, anthocyanins, stilbenes and other phenolic compounds. HCAs can also be conjugated with diverse compounds including quinic acid, hydroxyl acids, and amines. Hydroxycinnamoyl (HC) amine conjugates such as N-HC tyramines and N-HC phenethylamines have been considered as potential starting materials to develop antiviral and anticancer drugs. Results We synthesized N-HC tyramines and N-HC phenethylamines using three different approaches in Escherichia coli. Five N-HC phenethylamines and eight N-HC tyramines were synthesized by feeding HCAs and phenethylamine or tyramine to E. coli harboring 4CL (encoding 4-coumarate CoA:ligase) and either SHT (encoding phenethylamine N-HC transferase) or THT (encoding tyramine N-HC transferase). Also, N-(p-coumaroyl) phenethylamine and N-(p-coumaroyl) tyramine were synthesized from p-coumaric acid using E. coli harboring an additional gene, PDC (encoding phenylalanine decarboxylase) or TDC (encoding tyrosine decarboxylase). Finally, we synthesized N-(p-coumaroyl) phenethylamine and N-(p-coumaroyl) tyramine from glucose by reconstructing the metabolic pathways for their synthesis in E. coli. Productivity was maximized by optimizing the cell concentration and incubation temperature. Conclusions We reconstructed the metabolic pathways for synthesis of N-HC tyramines and N-HC phenethylamines by expressing several genes including 4CL, TST or SHT, PDC or TDC, and TAL (encoding tyrosine ammonia lyase) and engineering the shikimate metabolic pathway to increase endogenous tyrosine concentration in E. coli. Approximately 101.9 mg/L N-(p-coumaroyl) phenethylamine and 495.4 mg/L N-(p-coumaroyl) tyramine were synthesized from p-coumaric acid. Furthermore, 152.5 mg/L N-(p-coumaroyl) phenethylamine and 94.7 mg/L N-(p-coumaroyl) tyramine were synthesized from glucose.
Collapse
Affiliation(s)
- Geun Young Sim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea.
| | - So-Mi Yang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea.
| | - Bong Gyu Kim
- Department of Forest Resources, Gyeongnam National University of Science and Technology, 33 Dongjin-ro, Jinju-si, Gyeongsangman-do, 660-758, Republic of Korea.
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
61
|
Lowe TM, Ailloud F, Allen C. Hydroxycinnamic Acid Degradation, a Broadly Conserved Trait, Protects Ralstonia solanacearum from Chemical Plant Defenses and Contributes to Root Colonization and Virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:286-97. [PMID: 25423265 PMCID: PMC4329107 DOI: 10.1094/mpmi-09-14-0292-fi] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants produce hydroxycinnamic acid (HCA) defense compounds to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a feruloyl-CoA synthetase (Δfcs) mutant that cannot degrade HCA was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen i) grow, as a carbon source; ii) spread, by reducing HCA-derived physical barriers; and iii) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCA in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCA are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCA, namely, caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCA contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity.
Collapse
Affiliation(s)
- Tiffany M. Lowe
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Florent Ailloud
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT), INRA-CIRAD, Saint Pierre, La Réunion, France
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
- Corresponding Author: Caitilyn Allen; ; 608-262-9578
| |
Collapse
|