51
|
Aziz N, Paiva NL, May GD, Dixon RA. Transcriptome analysis of alfalfa glandular trichomes. PLANTA 2005; 221:28-38. [PMID: 15578217 DOI: 10.1007/s00425-004-1424-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 10/13/2004] [Indexed: 05/18/2023]
Abstract
Glandular trichomes are a major site of plant natural product synthesis and accumulation for protection against insect predation. However, to date few studies have attempted to obtain a global view of trichome gene expression. Two contrasting approaches have been adopted to investigate genes expressed in glandular trichomes from alfalfa (Medicago sativa L.). In the first approach, 5,674 clones from an alfalfa glandular trichome cDNA library were sequenced. The most highly abundant expressed sequence tag (EST) corresponded to a lipid transfer protein. The presence of ESTs corresponding to enzymes for all steps in the biosynthesis of flavonoids suggests that these are important metabolites in alfalfa trichome biology, as confirmed by histochemistry and metabolite profiling. No ESTs corresponded to enzymes of cyclized terpenoid biosynthesis. In a second approach, microarray analysis was used to compare levels of alfalfa transcripts corresponding to 16,086 Medicago truncatula A17 genes in stems with and without trichomes. This revealed over 1,000 genes with strong preferential expression in the trichome fraction of the stem, 70% of which are of unknown function. These define a class of genes that are not trichome-specific, since M. truncatula A17 does not itself have glandular trichomes, but has potential importance for trichome function within the stem.
Collapse
Affiliation(s)
- Naveed Aziz
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | |
Collapse
|
52
|
Scheidle H, Gross A, Niehaus K. The Lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. THE NEW PHYTOLOGIST 2005; 165:559-65. [PMID: 15720666 DOI: 10.1111/j.1469-8137.2004.01214.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Medicago sativa (alfalfa), Medicago truncatula and Nicotiana tabacum cell suspension cultures, responding to elicitation with the production of reactive oxygen species (ROS), were used to analyse the suppressor (and elicitor) activity of lipopolysaccharides (LPS) of the symbiotic soil bacterium Sinorhizobium meliloti. In order to identify the epitopes of the LPS molecule recognized by the plant, S. meliloti mutants defective in LPS biosynthesis and hydrolytically obtained Lipid A were analysed for biological activity. Lipopolysaccharides isolated from Sinorhizobium meliloti mutants 6963 (altered core region) and L994 (no long-chain fatty acid) showed the same ability to suppress the oxidative burst in host plant cell cultures as the wild-type LPS. Lipid A also displayed the same suppressor activity. By contrast, rhizobial LPS, but not Lipid A, was active as an inducer of the oxidative burst reaction in cell cultures of the nonhost Nicotiana tabacum. In host plants of Sinorhizobium meliloti the Lipid A part is sufficient to suppress the oxidative burst, but in non-host plants at least some sugars of the LPS core region are required to induce defence reactions.
Collapse
Affiliation(s)
- Heiko Scheidle
- University of Bielefeld, Department of Genetics, POB 100131, D-33501 Bielefeld, Germany
| | | | | |
Collapse
|
53
|
Suganuma N, Yamamoto A, Itou A, Hakoyama T, Banba M, Hata S, Kawaguchi M, Kouchi H. cDNA macroarray analysis of gene expression in ineffective nodules induced on the Lotus japonicus sen1 mutant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1223-1233. [PMID: 15553247 DOI: 10.1094/mpmi.2004.17.11.1223] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Lotus japonicus sen1 mutant forms ineffective nodules in which development is arrested at the stage of bacterial differentiation into nitrogen-fixing bacteroids. Here, we used cDNA macroarray systems to compare gene expression in ineffective nodules induced on the sen1 mutant with gene expression in wild-type nodules, in order to identify the host plant genes that are involved in nitrogen fixation. Macroarray analysis coupled with Northern blot analysis revealed that the expression of 18 genes was significantly enhanced in ineffective sen1 nodules, whereas the expression of 30 genes was repressed. Many of the enhanced genes encoded hydrolase enzymes, such as cysteine proteinase and asparaginase, that might function in the early senescence of sen1 nodules. By contrast, the repressed genes encoded nodulins, enzymes that are involved in carbon and nitrogen metabolism, membrane transporters, enzymes involved in phytohormone metabolism and secondary metabolism, and regulatory proteins. These proteins might have a role in the establishment of nitrogen fixation. In addition, we discovered two novel genes that encoded glutamate-rich proteins and were localized in the vascular bundles of the nodules. The expression of these genes was repressed in the ineffective nodules, which had lower levels of nitrogenase activity.
Collapse
Affiliation(s)
- Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi 448-8542, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1063-77. [PMID: 15497399 DOI: 10.1094/mpmi.2004.17.10.1063] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcriptome profiling based on cDNA array hybridizations and in silico screening was used to identify Medicago truncatula genes induced in both root nodules and arbuscular mycorrhiza (AM). By array hybridizations, we detected several hundred genes that were upregulated in the root nodule and the AM symbiosis, respectively, with a total of 75 genes being induced during both interactions. The second approach based on in silico data mining yielded several hundred additional candidate genes with a predicted symbiosis-enhanced expression. A subset of the genes identified by either expression profiling tool was subjected to quantitative real-time reverse-transcription polymerase chain reaction for a verification of their symbiosis-induced expression. That way, induction in root nodules and AM was confirmed for 26 genes, most of them being reported as symbiosis-induced for the first time. In addition to delivering a number of novel symbiosis-induced genes, our approach identified several genes that were induced in only one of the two root endosymbioses. The spatial expression patterns of two symbiosis-induced genes encoding an annexin and a beta-tubulin were characterized in transgenic roots using promoter-reporter gene fusions.
Collapse
Affiliation(s)
- Katja Manthey
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
55
|
El Yahyaoui F, Küster H, Ben Amor B, Hohnjec N, Pühler A, Becker A, Gouzy J, Vernié T, Gough C, Niebel A, Godiard L, Gamas P. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. PLANT PHYSIOLOGY 2004; 136:3159-76. [PMID: 15466239 PMCID: PMC523376 DOI: 10.1104/pp.104.043612] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 07/01/2004] [Accepted: 07/03/2004] [Indexed: 05/19/2023]
Abstract
In this study, we describe a large-scale expression-profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro- and microarrays containing about 6,000 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic interactions. The experiments performed on wild-type and symbiotic mutant material led us to identify a set of 756 genes either up- or down-regulated at different stages of the nodulation process. Among these, 41 known nodulation marker genes were up-regulated as expected, suggesting that we have identified hundreds of new nodulation marker genes. We discuss the possible involvement of this wide range of genes in various aspects of the symbiotic interaction, such as bacterial infection, nodule formation and functioning, and defense responses. Importantly, we found at least 13 genes that are good candidates to play a role in the regulation of the symbiotic program. This represents substantial progress toward a better understanding of this complex developmental program.
Collapse
Affiliation(s)
- Fikri El Yahyaoui
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, 31326 Castanet Tolosan cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Torregrosa C, Cluzet S, Fournier J, Huguet T, Gamas P, Prospéri JM, Esquerré-Tugayé MT, Dumas B, Jacquet C. Cytological, genetic, and molecular analysis to characterize compatible and incompatible interactions between Medicago truncatula and Colletotrichum trifolii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:909-20. [PMID: 15305612 DOI: 10.1094/mpmi.2004.17.8.909] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this study, a new pathosystem was established using the model plant Medicago truncatula and Colletotrichum trifolii, the causal agent of anthracnose on Medicago sativa. Screening of a few M. truncatula lines identified Jemalong and F83005.5 as resistant and susceptible to Colletotrichum trifolii race 1, respectively. Symptom analysis and cytological studies indicated that resistance of Jemalong was associated with a hypersensitive response of the plant. The two selected lines were crossed, and inoculations with C. trifolii were performed on the resulting F1 and F2 progenies. Examination of the disease phenotypes indicated that resistance was dominant and was probably due to a major resistance gene. Molecular components of the resistance were analyzed through macroarray experiments. Expression profiling of 126 expressed sequence tags corresponding to 92 genes, which were selected for their putative functions in plant defense or signal transduction, were compared in Jemalong and F83005.5 lines. A strong correlation was observed between the number of up-regulated genes and the resistance phenotype. Large differences appeared at 48 h postinoculation; more than 40% of the tested genes were up-regulated in the Jemalong line compared with only 10% in the susceptible line. Interestingly, some nodulin genes were also induced in the resistant line upon inoculation with C. trifolii.
Collapse
Affiliation(s)
- Carine Torregrosa
- UMR 5546 CNRS-UPS, Pô1e de Biotechnologie Végétale, 24 Chemin de Borde Rouge, BP17 Auzeville, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Sanchez L, Weidmann S, Brechenmacher L, Batoux M, Van Tuinen D, Lemanceau P, Gianinazzi S, Gianinazzi-Pearson V. Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. THE NEW PHYTOLOGIST 2004; 161:855-863. [PMID: 33873727 DOI: 10.1046/j.1469-8137.2004.00997.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Beneficial rhizosphere microorganisms may share similar molecular steps during root colonization. To test this hypothesis, we compared Medicago truncatula Gaertn. gene expression in roots colonized, or not colonized, by Glomus mosseae BEG12, Pseudomonas fluorescens C7R12 or Sinorhizobium meliloti 2011. • Pseudomonas fluorescens C7R12 formed colonies on the surface of M. truncatula roots and colonized root tissues intercellularly and intracellularly in a way similar to that previously described for other plants. • Semiquantitative reverse transcriptase polymerase chain reaction of a set of 12 mycorrhiza upregulated M. truncatula genes revealed different expression profiles in roots 3 weeks after inoculation with P. fluorescens or S. meliloti. Pseudomonas fluorescens colonization activated seven of the plant genes while nodulated root systems showed increased expression in only three genes and five appeared to be downregulated. • This first report of similar gene induction by a fluorescent pseudomonad and a mycorrhizal fungus in roots supports the hypothesis that some plant cell programmes may be shared during root colonization by these beneficial microorganisms. Less similarity existed in expression of the gene set with nodulation by S. meliloti.
Collapse
Affiliation(s)
- L Sanchez
- UMR INRA 1088/CNRS 5184/U. Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, F-21065 Dijon cedex, France
- L. Sanchez and S. Weidmann contributed equally to this paper
| | - S Weidmann
- UMR INRA 1088/CNRS 5184/U. Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, F-21065 Dijon cedex, France
- L. Sanchez and S. Weidmann contributed equally to this paper
| | - L Brechenmacher
- UMR INRA 1088/CNRS 5184/U. Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, F-21065 Dijon cedex, France
| | - M Batoux
- UMR INRA 1088/CNRS 5184/U. Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, F-21065 Dijon cedex, France
- Present address: Entwicklungsbiologie der Pflanzen WZW, TU Muenchen, Am Hochanger 4, D-85354 Freising/Germany
| | - D Van Tuinen
- UMR INRA 1088/CNRS 5184/U. Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, F-21065 Dijon cedex, France
| | - P Lemanceau
- UMR 1229 INRA-U, Bourgogne Microbiologie et Géochimie du Sol, BP 86510, F-21065 Dijon cedex, France
| | - S Gianinazzi
- UMR INRA 1088/CNRS 5184/U. Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, F-21065 Dijon cedex, France
| | - V Gianinazzi-Pearson
- UMR INRA 1088/CNRS 5184/U. Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, F-21065 Dijon cedex, France
| |
Collapse
|
58
|
Pawlowski K, Swensen S, Guan C, Hadri AE, Berry AM, Bisseling T. Distinct patterns of symbiosis-related gene expression in actinorhizal nodules from different plant families. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:796-807. [PMID: 12971603 DOI: 10.1094/mpmi.2003.16.9.796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phylogenetic analyses suggest that, among the members of the Eurosid I clade, nitrogen-fixing root nodule symbioses developed multiple times independently, four times with rhizobia and four times with the genus Frankia. In order to understand the degree of similarity between symbiotic systems of different phylogenetic subgroups, gene expression patterns were analyzed in root nodules of Datisca glomerata and compared with those in nodules of another actinorhizal plant, Alnus glutinosa, and with the expression patterns of homologous genes in legumes. In parallel, the phylogeny of actinorhizal plants was examined more closely. The results suggest that, although relationships between major groups are difficult to resolve using molecular phylogenetic analysis, the comparison of gene expression patterns can be used to inform evolutionary relationships. In this case, stronger similarities were found between legumes and intracellularly infected actinorhizal plants (Alnus) than between actinorhizal plants of two different phylogenetic subgroups (Alnus/Datisca).
Collapse
Affiliation(s)
- Katharina Pawlowski
- Department of Molecular Biology, Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
59
|
Svistoonoff S, Laplaze L, Auguy F, Runions J, Duponnois R, Haseloff J, Franche C, Bogusz D. cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:600-607. [PMID: 12848425 DOI: 10.1094/mpmi.2003.16.7.600] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
cg12 is an early actinorhizal nodulin gene from Casuarina glauca encoding a subtilisin-like serine protease. Using transgenic Casuarinaceae plants carrying cg12-gus and cg12-gfp fusions, we have studied the expression pattern conferred by the cg12 promoter region after inoculation with Frankia. cg12 was found to be expressed in root hairs and in root and nodule cortical cells containing Frankia infection threads. cg12 expression was also monitored after inoculation with ineffective Frankia strains, during mycorrhizae formation, and after diverse hormonal treatments. None of these treatments was able to induce its expression, therefore suggesting that cg12 expression is linked to plant cell infection by Frankia strains. Possible roles of cg12 in actinorhizal symbiosis are discussed.
Collapse
Affiliation(s)
- Sergio Svistoonoff
- Equipe Rhizogenèse, UMR 1098, Institut de Recherche pour le Développement, BP 64501, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Wretblad S, Bohman S, Dixelius C. Overexpression of a Brassica nigra cDNA gives enhanced resistance to Leptosphaeria maculans in B. napus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:477-484. [PMID: 12795374 DOI: 10.1094/mpmi.2003.16.6.477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using a polymerase chain reaction-based strategy, we have isolated a cDNA sequence from Brassica nigra, denoted Lm1, which significantly improves blackleg resistance when expressed in transgenic oilseed rape, B. napus. Lm1 was shown to map to locations on linkage groups 3 and 8 in the Brassica B-genome previously linked to both cotyledon, adult leaf, and stem resistance. B. napus plants transformed with Lm1 under the control of a constitutive promoter exhibited broad spectrum resistance to all L. maculans isolates tested, but enhanced resistance to Alternaria brassicae and Verticillium longisporum was not observed. A transcript corresponding to the cDNA size was induced in B. nigra 12 h after fungal challenge from a level of weak constitutive expression previous to inoculation. The Lm1 sequence bears no resemblance to previously characterized plant resistance genes but has two predicted transmembrane motifs. Several sequences with high homology to Lm1 were found in the databases. Lm1 appears to be a member of a larger group of related genes present in a variety of plant species. Most of them have unknown functions, but homology between Lm1 and the nodule inception gene of Lotus japonicus suggests an intriguing link between defense-related and symbiotic pathways.
Collapse
Affiliation(s)
- Sofia Wretblad
- Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, S-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
61
|
Dey M, Datta SK. Promiscuity of hosting nitrogen fixation in rice: an overview from the legume perspective. Crit Rev Biotechnol 2003; 22:281-314. [PMID: 12405559 DOI: 10.1080/07388550290789522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The subject area of this review provides extraordinary challenges and opportunities. The challenges relate to the fact that the integration of various fields such as microbiology, biochemistry, plant physiology, eukaryotic as well as bacterial genetics, and applied plant sciences are required to assess the disposition of rice, an alien host, for establishing such a unique phenomenon as biological nitrogen fixation. The opportunities signify that, if successful, the breakthrough will have a significant impact on the global economy and will help improve the environment. This review highlights the literature related to the area of legume-rhizobia interactions, particularly those aspects whose understanding is of particular interest in the perspective of rice. This review also discusses the progress achieved so far in this area of rice research and the possibility of built-in nitrogen fixation in rice in the future. However, it is to be borne in mind that such research does not ensure any success at this point. It provides a unique opportunity to broaden our knowledge and understanding about many aspects of plant growth regulation in general.
Collapse
Affiliation(s)
- Moul Dey
- Plant Breeding, Genetics and Biochemistry Division, International Rice Research Institute, Metro Manila, Philippines
| | | |
Collapse
|
62
|
Wienkoop S, Saalbach G. Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. PLANT PHYSIOLOGY 2003; 131:1080-90. [PMID: 12644660 PMCID: PMC166873 DOI: 10.1104/pp.102.015362] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2002] [Revised: 11/21/2002] [Accepted: 12/29/2002] [Indexed: 05/18/2023]
Abstract
The peribacteroid membrane (PBM) forms the structural and functional interface between the legume plant and the rhizobia. The model legume Lotus japonicus was chosen to study the proteins present at the PBM by proteome analysis. PBM was purified from root nodules by an aqueous polymer two-phase system. Extracted proteins were subjected to a global trypsin digest. The peptides were separated by nanoscale liquid chromatography and analyzed by tandem mass spectrometry. Searching the nonredundant protein database and the green plant expressed sequence tag database using the tandem mass spectrometry data identified approximately 94 proteins, a number far exceeding the number of proteins reported for the PBM hitherto. In particular, a number of membrane proteins like transporters for sugars and sulfate; endomembrane-associated proteins such as GTP-binding proteins and vesicle receptors; and proteins involved in signaling, for example, receptor kinases, calmodulin, 14-3-3 proteins, and pathogen response-related proteins, including a so-called HIR protein, were detected. Several ATPases and aquaporins were present, indicating a more complex situation than previously thought. In addition, the unexpected presence of a number of proteins known to be located in other compartments was observed. Two characteristic protein complexes obtained from native gel electrophoresis of total PBM proteins were also analyzed. Together, the results identified specific proteins at the PBM involved in important physiological processes and localized proteins known from nodule-specific expressed sequence tag databases to the PBM.
Collapse
Affiliation(s)
- Stefanie Wienkoop
- Department of Plant Research, Risø National Laboratory, Roskilde, Denmark
| | | |
Collapse
|
63
|
Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res 2002; 30:5579-92. [PMID: 12490726 PMCID: PMC140066 DOI: 10.1093/nar/gkf685] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 10/18/2002] [Accepted: 10/18/2002] [Indexed: 11/13/2022] Open
Abstract
We report on a large-scale expressed sequence tag (EST) sequencing and analysis program aimed at characterizing the sets of genes expressed in roots of the model legume Medicago truncatula during interactions with either of two microsymbionts, the nitrogen-fixing bacterium Sinorhizobium meliloti or the arbuscular mycorrhizal fungus Glomus intraradices. We have designed specific tools for in silico analysis of EST data, in relation to chimeric cDNA detection, EST clustering, encoded protein prediction, and detection of differential expression. Our 21 473 5'- and 3'-ESTs could be grouped into 6359 EST clusters, corresponding to distinct virtual genes, along with 52 498 other M.truncatula ESTs available in the dbEST (NCBI) database that were recruited in the process. These clusters were manually annotated, using a specifically developed annotation interface. Analysis of EST cluster distribution in various M.truncatula cDNA libraries, supported by a refined R test to evaluate statistical significance and by 'electronic northern' representation, enabled us to identify a large number of novel genes predicted to be up- or down-regulated during either symbiotic root interaction. These in silico analyses provide a first global view of the genetic programs for root symbioses in M.truncatula. A searchable database has been built and can be accessed through a public interface.
Collapse
Affiliation(s)
- Etienne-Pascal Journet
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, Laboratoire de Biométrie et Intelligence Artificielle, INRA, 31326 Castanet-Tolosan Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
The symbiosis between rhizobia and legumes is characterized by the formation of dinitrogen-fixing root nodules. Although rhizobia colonize roots in a way that is reminiscent of pathogenic microorganisms, no host plant defence reactions are triggered during successful symbioses. Nevertheless, the plants obviously control the invading bacteria; failure in effective nodule formation or infections with rhizobia defective in surface polysaccharides often result in pathogenic responses. This article focuses on whether and how defence responses in effective symbiosis might be suppressed. Recent results suggest a central role for rhizobial polysaccharides acting as antagonists in the negative regulation of defence induction.
Collapse
Affiliation(s)
- Axel Mithöfer
- Dept Biologie I der Ludwig-Maximilians-Universität München, Botanik, Menzinger Str. 67, D-80638, München, Germany
| |
Collapse
|
65
|
Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP. Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. PLANT PHYSIOLOGY 2002; 130:519-37. [PMID: 12376622 PMCID: PMC166584 DOI: 10.1104/pp.006833] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Medicago truncatula expressed sequence tag (EST) database (Gene Index) contains over 140,000 sequences from 30 cDNA libraries. This resource offers the possibility of identifying previously uncharacterized genes and assessing the frequency and tissue specificity of their expression in silico. Because M. truncatula forms symbiotic root nodules, unlike Arabidopsis, this is a particularly important approach in investigating genes specific to nodule development and function in legumes. Our analyses have revealed 340 putative gene products, or tentative consensus sequences (TCs), expressed solely in root nodules. These TCs were represented by two to 379 ESTs. Of these TCs, 3% appear to encode novel proteins, 57% encode proteins with a weak similarity to the GenBank accessions, and 40% encode proteins with strong similarity to the known proteins. Nodule-specific TCs were grouped into nine categories based on the predicted function of their protein products. Besides previously characterized nodulins, other examples of highly abundant nodule-specific transcripts include plantacyanin, agglutinin, embryo-specific protein, and purine permease. Six nodule-specific TCs encode calmodulin-like proteins that possess a unique cleavable transit sequence potentially targeting the protein into the peribacteroid space. Surprisingly, 114 nodule-specific TCs encode small Cys cluster proteins with a cleavable transit peptide. To determine the validity of the in silico analysis, expression of 91 putative nodule-specific TCs was analyzed by macroarray and RNA-blot hybridizations. Nodule-enhanced expression was confirmed experimentally for the TCs composed of five or more ESTs, whereas the results for those TCs containing fewer ESTs were variable.
Collapse
Affiliation(s)
- Maria Fedorova
- Department of Agronomy and Plant Genetics, 1991 Upper Bedford Circle, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Biesiadka J, Bujacz G, Sikorski MM, Jaskolski M. Crystal structures of two homologous pathogenesis-related proteins from yellow lupine. J Mol Biol 2002; 319:1223-34. [PMID: 12079359 DOI: 10.1016/s0022-2836(02)00385-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pathogenesis-related class 10 (PR10) proteins are restricted to the plant kingdom where they are coded by multigene families and occur at high levels. In spite of their abundance, their physiological role is obscure although members of a distantly related subclass (cytokinin-specific binding proteins) are known to bind plant hormones. PR10 proteins are of special significance in legume plants where their expression patterns are related to infection by the symbiotic, nitrogen-fixing bacteria. Here we present the first crystal structures of classic PR10 proteins representing two homologues from one subclass in yellow lupine. The general fold is similar and, as in a birch pollen allergen, consists of a seven-stranded beta-sheet wrapped around a long C-terminal helix. The mouth of a large pocket formed between the beta-sheet and the helix seems a likely site for ligand binding. The shape of the pocket varies because, in variance with the rigid beta-sheet, the helix shows unusual conformational variability consisting in bending, disorder, and axial shifting. A surface loop, proximal to the entrance to the internal cavity, shows an unusual structural conservation and rigidity in contrast to the high glycine content in its sequence. The loop is different from the so-called glycine-rich P-loops that bind phosphate groups of nucleotides, but it is very likely that it does play a role in ligand binding in PR10 proteins.
Collapse
Affiliation(s)
- Jacek Biesiadka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | | | | | | |
Collapse
|
67
|
Nuc K, Nuc P, Słomski R. Yellow lupine cyclophilin transcripts are highly accumulated in the nodule meristem zone. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:1384-1394. [PMID: 11768533 DOI: 10.1094/mpmi.2001.14.12.1384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cyclophilin (CyP) is one of the enzymes that act as peptidylprolyl cis-trans isomerases (EC 5.2.1.8). The cDNA and an intronless gene coding for cytosolic CyP have been isolated from yellow lupine. The deduced amino acid sequence of the characterized open reading frame shows approximately 80% homology with cytosolic CyP from other organisms. Southern blots of genomic DNA indicate that there is a small family of genes for CyP-related genes in the yellow lupine genome. RNA blot analyses demonstrate that CyP genes are expressed in all plant organs. The amount of CyP transcripts is dramatically increased in root nodules. In situ hybridization experiments indicate that CyP transcripts are localized mainly in meristematic tissues, with the highest level observed in the nodule meristem zone. The promoter of the sequenced gene contains 5' AAAGAT 3' and AT-rich motifs that are characteristic for some nodulin promoters.
Collapse
Affiliation(s)
- K Nuc
- August Cieszkowski University of Agriculture, Department of Biochemistry and Biotechnology, Poznań, Poland.
| | | | | |
Collapse
|
68
|
Jwa NS, Kumar Agrawal G, Rakwal R, Park CH, Prasad Agrawal V. Molecular cloning and characterization of a novel Jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem Biophys Res Commun 2001; 286:973-83. [PMID: 11527396 DOI: 10.1006/bbrc.2001.5507] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel rice (Oryza sativa L.) gene, homologous to a sorghum pathogenesis-related class 10 protein gene, was cloned from a cDNA library prepared from 2-week-old jasmonic acid-treated rice seedling leaves, and named as JIOsPR10 (jasmonate inducible). JIOsPR10 encoded a 160-amino-acid polypeptide with a predicted molecular mass of 17,173.23 Da and a pI of 5.84. JIOsPR10 was highly similar (77%) to the sorghum PR10 protein, but showed less than 55% similarity with other identified PR10s at the amino acid level. Genomic Southern analyses indicated the presence of related genes in the rice genome. The JIOsPR10 transcript was not detected in the healthy leaves, and was not induced after cut. Further expression analysis revealed that the signaling components of defense/stress pathways, jasmonate, salicylate, and H(2)O(2) significantly up-regulated the JIOsPR10 mRNA over the cut control, whereas two other stress regulators, ethylene and abscisic acid, failed to induce its expression. Interestingly the protein phosphatase (PP) inhibitors, cantharidin, endothall, and okadaic acid, rapidly and potently up-regulated the JIOsPR10 expression, suggesting involvement of the phosphorylation/dephosphorylation events. Additionally, the inducible expression of the JIOsPR10 gene was influenced by light signal(s). Finally, the blast pathogen (Magnaporthe grisea) also specifically elicited the accumulation of JIOsPR10 mRNA in leaves. Induction of the JIOsPR10 gene expression by signaling molecules, PP inhibitors and pathogen attack, strongly indicate a role for this novel gene in rice self-defense/stress response(s).
Collapse
Affiliation(s)
- N S Jwa
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Korea
| | | | | | | | | |
Collapse
|
69
|
Lievens S, Goormachtig S, Holsters M. A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward. Nucleic Acids Res 2001; 29:3459-68. [PMID: 11522814 PMCID: PMC55879 DOI: 10.1093/nar/29.17.3459] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2001] [Revised: 07/11/2001] [Accepted: 07/11/2001] [Indexed: 11/13/2022] Open
Abstract
Screening for differentially expressed genes is a straightforward approach to study the molecular basis of a biological system. In the last 10 years, differential screening technology has evolved rapidly and currently high-throughput tools for genome-wide transcript profiling, such as expressed sequence tags and microarray analysis, are becoming widely available. Here, an overview of this (r)evolution is given with emphasis on the differential display method, which for many years has been the preferred technique of scientists in diverse fields of research. Differential display has also been the method of choice for the identification of genes involved in the symbiotic interaction between Azorhizobium caulinodans and Sesbania rostrata. The advantages with respect to tissue specificity of this particular model system for legume nodulation and the results of a screening for early nodulation-related genes have been considered in the context of transcriptome analyses in other rhizobium-legume interactions.
Collapse
Affiliation(s)
- S Lievens
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
70
|
Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V. Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:737-48. [PMID: 11386369 DOI: 10.1094/mpmi.2001.14.6.737] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Leguminous plants establish endosymbiotic associations with both rhizobia (nitrogen fixation) and arbuscular mycorrhizal fungi (phosphate uptake). These associations involve controlled entry of the soil microsymbiont into the root and the coordinated differentiation of the respective partners to generate the appropriate exchange interfaces. As part of a study to evaluate analogies at the molecular level between these two plant-microbe interactions, we focused on genes from Medicago truncatula encoding putative cell wall repetitive proline-rich proteins (RPRPs) expressed during the early stages of root nodulation. Here we report that a novel RPRP-encoding gene, MtENOD11, is transcribed during preinfection and infection stages of nodulation in root and nodule tissues. By means of reverse transcription-polymerase chain reaction and a promoter-reporter gene strategy, we demonstrate that this gene is also expressed during root colonization by endomycorrhizal fungi in inner cortical cells containing recently formed arbuscules. In contrast, no activation of MtENOD11 is observed during root colonization by a nonsymbiotic, biotrophic Rhizoctonia fungal species. Analysis of transgenic Medicago spp. plants expressing pMtENOD11-gusA also revealed that this gene is transcribed in a variety of nonsymbiotic specialized cell types in the root, shoot, and developing seed, either sharing high secretion/metabolite exchange activity or subject to regulated modifications in cell shape. The potential role of early nodulins with atypical RPRP structures such as ENOD11 and ENOD12 in symbiotic and nonsymbiotic cellular contexts is discussed.
Collapse
Affiliation(s)
- E P Journet
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
With a protein structure comparison, an iterative database search with sequence profiles, and a multiple-alignment analysis, we show that two domains with the helix-grip fold, the star-related lipid-transfer (START) domain of the MLN64 protein and the birch allergen, are homologous. They define a large, previously underappreciated superfamily that we call the START superfamily. In addition to the classical START domains that are primarily involved in eukaryotic signaling mediated by lipid binding and the birch antigen family that consists of plant proteins implicated in stress/pathogen response, the START superfamily includes bacterial polyketide cyclases/aromatases (e.g., TcmN and WhiE VI) and two families of previously uncharacterized proteins. The identification of this domain provides a structural prediction of an important class of enzymes involved in polyketide antibiotic synthesis and allows the prediction of their active site. It is predicted that all START domains contain a similar ligand-binding pocket. Modifications of this pocket determine the ligand-binding specificity and may also be the basis for at least two distinct enzymatic activities, those of a cyclase/aromatase and an RNase. Thus, the START domain superfamily is a rare case of the adaptation of a protein fold with a conserved ligand-binding mode for both a broad variety of catalytic activities and noncatalytic regulatory functions. Proteins 2001;43:134-144.
Collapse
Affiliation(s)
- L M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
72
|
Abstract
With a protein structure comparison, an iterative database search with sequence profiles, and a multiple-alignment analysis, we show that two domains with the helix-grip fold, the star-related lipid-transfer (START) domain of the MLN64 protein and the birch allergen, are homologous. They define a large, previously underappreciated superfamily that we call the START superfamily. In addition to the classical START domains that are primarily involved in eukaryotic signaling mediated by lipid binding and the birch antigen family that consists of plant proteins implicated in stress/pathogen response, the START superfamily includes bacterial polyketide cyclases/aromatases (e.g., TcmN and WhiE VI) and two families of previously uncharacterized proteins. The identification of this domain provides a structural prediction of an important class of enzymes involved in polyketide antibiotic synthesis and allows the prediction of their active site. It is predicted that all START domains contain a similar ligand-binding pocket. Modifications of this pocket determine the ligand-binding specificity and may also be the basis for at least two distinct enzymatic activities, those of a cyclase/aromatase and an RNase. Thus, the START domain superfamily is a rare case of the adaptation of a protein fold with a conserved ligand-binding mode for both a broad variety of catalytic activities and noncatalytic regulatory functions. Proteins 2001;43:134-144.
Collapse
Affiliation(s)
- L M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
73
|
de Billy F, Grosjean C, May S, Bennett M, Cullimore JV. Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:267-277. [PMID: 11277424 DOI: 10.1094/mpmi.2001.14.3.267] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Medicago truncatula contains a family of at least five genes related to AUX1 of Arabidopsis thaliana (termed MtLAX genes for Medicago truncatula-like AUX1 genes). The high sequence similarity between the encoded proteins and AUX1 implies that the MtLAX genes encode auxin import carriers. The MtLAX genes are expressed in roots and other organs, suggesting that they play pleiotropic roles related to auxin uptake. In primary roots, the MtLAX genes are expressed preferentially in the root tips, particularly in the provascular bundles and root caps. During lateral root and nodule development, the genes are expressed in the primordia, particularly in cells that were probably derived from the pericycle. At slightly later stages, the genes are expressed in the regions of the developing organs where the vasculature arises (central position for lateral roots and peripheral region for nodules). These results are consistent with MtLAX being involved in local auxin transport and suggest that auxin is required at two common stages of lateral root and nodule development: development of the primordia and differentiation of the vasculature.
Collapse
Affiliation(s)
- F de Billy
- Laboratoire de Biologie Moléculaire des Relations Plantes MIcroorganismes, INRA-CNRS, Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
74
|
Santos R, Hérouart D, Sigaud S, Touati D, Puppo A. Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:86-9. [PMID: 11194876 DOI: 10.1094/mpmi.2001.14.1.86] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species are produced as an early event in plant defense response against avirulent pathogens. We show here that alfalfa responds to infection with Sinorhizobium meliloti by production of superoxide and hydrogen peroxide. This similarity in the early response to infection by pathogenic and symbiotic bacteria addresses the question of which mechanism rhizobia use to counteract the plant defense response.
Collapse
Affiliation(s)
- R Santos
- Laboratoire de Génétique Moléculaire des Réponses Adaptatives, Institut Jacques Monod, CNRS-Université Paris 6, France
| | | | | | | | | |
Collapse
|
75
|
Two Subclasses of Yellow Lupin Pr10 Proteins and Their Possible Function During the Symbiosis Development. NITROGEN FIXATION: FROM MOLECULES TO CROP PRODUCTIVITY 2000. [DOI: 10.1007/0-306-47615-0_171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
76
|
Mathis R, Grosjean C, de Billy F, Huguet T, Gamas P. The early nodulin gene MtN6 is a novel marker for events preceding infection of Medicago truncatula roots by Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:544-55. [PMID: 10356802 DOI: 10.1094/mpmi.1999.12.6.544] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
MtN6 belongs to a series of cDNA clones representing Medicago truncatula genes transcriptionally activated during nodulation by Sinorhizobium meliloti (P. Gamas, F. de Carvalho Niebel, N. Lescure, and J. V. Cullimore, Mol. Plant-Microbe Interact. 9:233-242, 1996). We show here by in situ hybridization that MtN6 transcripts specifically accumulate first at very localized regions in the outer root cell layers, corresponding to outer cortical cells containing preinfection threads. At later stages, MtN6 expression is observed ahead of growing infection threads, including in the infection zone of mature root nodules. Interestingly, regulation of MtN6 is clearly distinct from that of other early nodulins expressed in the same region of the nodule, in terms of response to bacterial symbiotic mutants and to purified Nod factors. We thus suggest that MtN6 represents the first specific marker of a pathway involved in preparation to infection, which is at least partly controlled by Nod factors. Finally, we discuss the intriguing sequence homology shown by MtN6 to a protein from Emericella (Aspergillus) nidulans, FluG, that plays a key role in controlling the organogenesis of conidiophores (B. N. Lee and T. H. Adams, Genes Dev. 8:641-651, 1994).
Collapse
Affiliation(s)
- R Mathis
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
77
|
Abstract
Symbiosis between rhizobia and leguminous plants leads to the formation of N2-fixing root nodules. The interaction of rhizobia and plants shows a high degree of host specificity based on the exchange of chemical signals between the symbiotic partners. The plant signals, flavonoids exuded by the roots, activate the expression of nodulation genes, resulting in the production of the rhizobial lipochitooligosaccharide signals (Nod factors). Nod factors act as morphogens that, under conditions of nitrogen limitation, induce cells within the root cortex to divide and to develop into nodule primordia. This review focuses on how the production of Nod factors is regulated, how these signals are perceived and transduced by the plant root, and the physiological conditions and plant factors that control the early events leading to root nodule development.
Collapse
Affiliation(s)
- M Schultze
- Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
| | | |
Collapse
|
78
|
Niebel FDC, Lescure N, Cullimore JV, Gamas P. The Medicago truncatula MtAnn1 gene encoding an annexin is induced by Nod factors and during the symbiotic interaction with Rhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:504-13. [PMID: 9612949 DOI: 10.1094/mpmi.1998.11.6.504] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here we report the characterization of a new Nod factor-induced gene from Medicago truncatula identified by mRNA differential display. This gene, designated MtAnn1, encodes a protein homologous to the annexin family of calcium- and phospholipid-binding proteins. We further show that the MtAnn1 gene is also induced during symbiotic associations with Rhizobium meliloti, both at early stages in bacterial-inoculated roots and in nodule structures. By in situ hybridization, we demonstrate that MtAnn1 expression in nodules is mainly associated with the distal region of invasion zone II not containing infection threads, revealing MtAnn1 as a new marker gene of the pre-infection zone. Moreover, analyses of MtAnn1 expression in response to bacterial symbiotic mutants suggest that the expression of MtAnn1 during nodulation requires biologically active Nod factors and is independent of the infection process.
Collapse
Affiliation(s)
- F de C Niebel
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, INRA-CNRS, Castanet-Tolosan, France.
| | | | | | | |
Collapse
|