51
|
Yoshida N, Amanai M, Fukui T, Kajikawa E, Brahmajosyula M, Iwahori A, Nakano Y, Shoji S, Diebold J, Hessel H, Huss R, Perry ACF. Broad, ectopic expression of the sperm protein PLCZ1 induces parthenogenesis and ovarian tumours in mice. Development 2008; 134:3941-52. [PMID: 17933795 DOI: 10.1242/dev.007930] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian metaphase II (mII) exit and embryogenesis are induced at fertilisation by a signal thought to come from the sperm protein, phospholipase C-zeta (PLCZ1). Meiotic progression can also be triggered without sperm, as in parthenogenesis, although the classic mouse in vivo parthenogenetic model, LT/Sv, fails in meiosis I owing to an unknown molecular etiology. Here, we dissect PLCZ1 specificity and function in vivo and address its ability to interfere with maternal meiotic exit. Wild-type mouse Plcz1 expression was restricted to post-pubertal testes and the brains of both sexes, with region-specifying elements mapping to a 4.1 kb Plcz1 promoter fragment. When broad ectopic PLCZ1 expression was forced in independent transgenic lines, they initially appeared healthy. Their oocytes underwent unperturbed meiotic maturation to mII but subsequently exhibited autonomous intracellular free calcium oscillations, second polar body extrusion, pronucleus formation and parthenogenetic development. Transfer of transgenic cumulus cell nuclei into wild-type oocytes induced activation and development, demonstrating a direct effect of PLCZ1 analogous to fertilisation. Whereas Plcz1 transgenic males remained largely asymptomatic, females developed abdominal swellings caused by benign ovarian teratomas that were under-represented for paternally- and placentally-expressed transcripts. Plcz1 was not overexpressed in the ovaries of LT/Sv or in human germline ovarian tumours. The narrow spectrum of PLCZ1 activity indicates that it is modulated by tissue-restricted accessory factors. This work characterises a novel model in which parthenogenesis and tumourigenesis follow full meiotic maturation and are linked to fertilisation by PLCZ1.
Collapse
Affiliation(s)
- Naoko Yoshida
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Parthenogenetic activation of bovine oocytes using single and combined strontium, ionomycin and 6-dimethylaminopurine treatments. ZYGOTE 2007; 15:295-306. [DOI: 10.1017/s0967199407004285] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryIn vitro-matured (IVM) bovine oocytes were activated with single and combined treatments of strontium (S), ionomycin (I) and 6-DMAP (D). Using oocytes IVM for 26 h, we observed that activation altered cell cycle kinetics (faster progression, MIII arrest, or direct transition from MII to pronuclear stage) when compared toin vitrofertilization. The effect of oocyte age on early parthenogenesis was assessed in oocytes IVM for 22, 26 and 30 h. Better results in pronuclear development were obtained in treatments ISD (81.7%) at 22 h; D (66.7%), IS (63.3%), ID (73.3%) and ISD (76.7%) at 26 h; and D (86.7%), IS (85.0%) and ID (78.3%) at 30 h. Higher cleavage occurred on ISD (80.0%) at 22 h; ID (83.3%) and ISD (91.7%) at 26 h; and I (86.7%), IS (90.0%), ID (85.0%) and ISD (95.0%) at 30 h. More blastocysts were achieved in ID (25.0%) and ISD (18.3%) at 22 h; and in ID at 26 h (45.0%) and 30 h (50.0%). We also observed that IS allowed higher haploid (77.4%) embryonic development, whilst ID was better for diploid (89.1%) development. It was concluded that association of S and D without I was not effective for blastocyst development; treatments using S were less influenced by oocyte age, but when S was associated with D there was a detrimental effect on aged oocytes; treatment ISD promoted higher activation and cleavage rates in young oocytes and ID protocol was the best for producing blastocysts.
Collapse
|
53
|
Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol Endocrinol 2007; 21:2037-55. [PMID: 17536005 DOI: 10.1210/me.2006-0408] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractOocyte meiotic maturation is one of the important physiological requirements for species survival. However, little is known about the detailed events occurring during this process. A number of studies have demonstrated that MAPK plays a pivotal role in the regulation of meiotic cell cycle progression in oocytes, but controversial findings have been reported in both lower vertebrates and mammals. In this review, we summarized the roles of MAPK cascade and related signal pathways in oocyte meiotic reinitiation in both lower vertebrates and mammals. We also tried to reconcile the paradoxical results and highlight the new findings concerning the function of MAPK in both oocytes and the surrounding follicular somatic cells. The unresolved questions and future research directions regarding the role of MAPK in meiotic resumption are addressed.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang Beijing 100101, China
| | | | | | | | | |
Collapse
|
54
|
Matson S, Ducibella T. The MEK inhibitor, U0126, alters fertilization-induced [Ca2+]i oscillation parameters and secretion: differential effects associated with in vivo and in vitro meiotic maturation. Dev Biol 2007; 306:538-48. [PMID: 17451670 DOI: 10.1016/j.ydbio.2007.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/21/2007] [Accepted: 03/22/2007] [Indexed: 01/15/2023]
Abstract
Although mitogen-activated protein kinase (MAPK) is a well-known cell cycle regulator, emerging studies have also implicated its activity in the regulation of intracellular calcium concentration ([Ca2+](i)) and secretion. Those studies raise the hypothesis that MAPK activity during oocyte maturation and early fertilization is required for normal egg Ca2+ oscillations and cortical granule (CG) secretion. We extend the findings of [Lee, B., Vermassen, E., Yoon, S.-Y., Vanderheyden, V., Ito, J., Alfandari, D., De Smedt, H., Parys, J.B., Fissore, R.A., 2006. Phosphorylation of IP(3)R1 and the regulation of [Ca2+](i) responses at fertilization: a role for the MAP kinase pathway. Development 133, 4355-4365] by demonstrating acute effects on Ca2+ oscillation frequency, amplitude, and duration in fertilized mouse eggs matured in vitro with the MAPK inhibitor, U0126. Frequency was increased, whereas amplitude and duration were greatly decreased. These effects were significantly reduced in eggs matured in vivo and fertilized in the presence of the inhibitor. Ionomycin studies indicated that intracellular Ca2+ stores were differentially affected in eggs matured in vitro with U0126. Consistent with these effects on [Ca2+](i) elevation, fertilization-induced CG exocytosis and metaphase II exit were also reduced in in vitro-matured eggs with U0126, but not in those similarly treated after in vivo maturation. These results indicate that MAPK targets Ca2+ regulatory proteins during both maturation and fertilization, as well as provide a new hypothesis for MAPK function, which is to indirectly regulate events of early development by controlling Ca2+ oscillation parameters.
Collapse
Affiliation(s)
- Sara Matson
- Department of OB/GYN, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
55
|
Lee SE, Kim JH, Kim NH. Inactivation of MAPK affects centrosome assembly, but not actin filament assembly, in mouse oocytes maturing in vitro. Mol Reprod Dev 2007; 74:904-11. [PMID: 17219430 DOI: 10.1002/mrd.20695] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitogen-activated protein kinase (MAPK) plays a crucial role in meiotic maturation of mouse oocytes. In order to understand the mechanism by which MAPK regulates meiotic maturation, we examined the effects of the MAPK pathway inhibitor U0126 on microtubule organization, gamma-tubulin and nuclear mitotic apparatus protein (NuMA) distribution, and actin filament assembly in mouse oocytes maturing in vitro. Western blotting with antibodies that detect active, phosphorylated MAPK revealed that MAPK was inactive in fully grown germinal vesicle (GV) oocytes. Phosphorylated MAPK was first detected 3 hr after the initiation of maturation cultures, was fully active at 6 hr, and remained active until metaphase II. Treatment of GV stage oocytes with 20 microM U0126 completely blocked MAPK phosphorylation, but did not affect GV breakdown (GVBD). However, the oocytes did not progress to the Metaphase I stage, which would normally occur after 9 hr in the maturation cultures. The inhibition of MAPK resulted in abnormal spindles and abnormal distributions of gamma-tubulin and NuMA, but did not affect actin filament assembly. In oocytes treated with U0126 after GVBD, polar body extrusion was normal, but the organization of the metaphase plate and chromosome segregation were abnormal. In conclusion, the meiotic abnormalities caused by U0126, a specific inhibitor of MAPK signaling, indicate that MAPK plays an important regulatory role in microtubule and centrosome assembly, but not actin filament assembly.
Collapse
Affiliation(s)
- Seung-Eun Lee
- National Research Laboratory of Molecular Embryology, Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | | | | |
Collapse
|
56
|
Nganvongpanit K, Müller H, Rings F, Hoelker M, Jennen D, Tholen E, Havlicek V, Besenfelder U, Schellander K, Tesfaye D. Selective degradation of maternal and embryonic transcripts in in vitro produced bovine oocytes and embryos using sequence specific double-stranded RNA. Reproduction 2006; 131:861-74. [PMID: 16672351 DOI: 10.1530/rep.1.01040] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
RNA interference (RNAi) has been used for selective degradation of an mRNA transcript or inhibiting its translation to a functional protein in various species. Here, we applied the RNAi approach to suppress the expression of the maternal transcript C-mos and embryonic transcripts Oct-4 in bovine oocytes and embryos respectively, using microinjection of sequence-specific double-stranded RNA (dsRNA). For this, 435 bp C-mos and 341 bp Oct-4 dsRNA were synthesized and microinjected into the cytoplasm of immature oocytes and zygotes respectively. In experiment 1, immature oocytes were categorized into three groups: those injected with C-mos dsRNA, RNase-free water and uninjected controls. In experiment 2, in vitro produced zygotes were categorized into three groups: those injected with Oct-4 dsRNA, RNase-free water and uninjected controls. The developmental phenotypes, the level of mRNA and protein expression were investigated after treatment in both experiments. Microinjection of C-mos dsRNA has resulted in 70% reduction of C-mos transcript after maturation compared to the water-injected and uninjected controls (P<0.01). Microinjection of zygotes with Oct-4 dsRNA has resulted in 72% reduction in transcript abundance at the blastocyst stage compared to the uninjected control zygotes (P<0.01). Moreover, a significant reduction in the number of inner cell mass (ICM) cells was observed in Oct-4 dsRNA-injected embryos compared to the other groups. From oocytes injected with C-mos dsRNA, 60% showed the extrusion of the first polar body compared to 50% in water-injected and 44% in uninjected controls. Moreover, only oocytes injected with C-mos dsRNA showed spontaneous activation. In conclusion, our results demonstrated that sequence-specific dsRNA can be used to knockdown maternal or embryonic transcripts in bovine embryogenesis.
Collapse
Affiliation(s)
- Korakot Nganvongpanit
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Lee B, Vermassen E, Yoon SY, Vanderheyden V, Ito J, Alfandari D, De Smedt H, Parys JB, Fissore RA. Phosphorylation of IP3R1 and the regulation of [Ca2+]i responses at fertilization: a role for the MAP kinase pathway. Development 2006; 133:4355-65. [PMID: 17038520 PMCID: PMC2909192 DOI: 10.1242/dev.02624] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effectiveness at the time of fertilization, which, in mammalian eggs, occurs at the metaphase stage of the second meiosis (MII). Consistent with this, the [Ca2+]i oscillations associated with fertilization in these species occur most prominently during the MII stage. In this study, we have examined the molecular underpinnings of IP3R1 function in eggs. Using mouse and Xenopus eggs, we show that IP3R1 is phosphorylated during both maturation and the first cell cycle at a MPM2-detectable epitope(s), which is known to be a target of kinases controlling the cell cycle. In vitro phosphorylation studies reveal that MAPK/ERK2, one of the M-phase kinases, phosphorylates IP3R1 at at least one highly conserved site, and that its mutation abrogates IP3R1 phosphorylation in this domain. Our studies also found that activation of the MAPK/ERK pathway is required for the IP3R1 MPM2 reactivity observed in mouse eggs, and that eggs deprived of the MAPK/ERK pathway during maturation fail to mount normal [Ca2+]i oscillations in response to agonists and show compromised IP3R1 function. These findings identify IP3R1 phosphorylation by M-phase kinases as a regulatory mechanism of IP3R1 function in eggs that serves to optimize [Ca2+]i release at fertilization.
Collapse
Affiliation(s)
- Bora Lee
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Elke Vermassen
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Sook-Young Yoon
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Veerle Vanderheyden
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Junya Ito
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Dominique Alfandari
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Humbert De Smedt
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Jan B. Parys
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Rafael A. Fissore
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| |
Collapse
|
58
|
Li X, Qin Y, Wilsher S, Allen WR. Centrosome changes during meiosis in horse oocytes and first embryonic cell cycle organization following parthenogenesis, fertilization and nuclear transfer. Reproduction 2006; 131:661-7. [PMID: 16595717 DOI: 10.1530/rep.1.00795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Various types of cell cycle organization occur in mammals. In this study, centrosome changes during meiosis in horse oocytes, and first cell cycle organization following fertilization, parthenogenesis and nuclear transfer, were monitored. Cumulus oocyte complexes harvested from horse ovaries obtained from slaughtered mares were cultured in vitro. Meiotic oocytes of germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I and II (MI and MII) stages were selected at various set times during in vitro maturation. Embryos at the first cell cycle stage were generated by subjecting MII stage oocytes to fertilization by intracytoplasmic sperm injection (ICSI), parthenogenetic treatment or nuclear transfer. Centrosome changes during meiosis and the first cell cycle organization were detected by indirect immunofluorescent staining, using a mouse anti-alpha-tubulin antibody for microtubules and a rabbit anti-gamma-tubulin antibody for centrosomes. These examinations showed that the centrosomes of the horse oocyte reorganize themselves from the beginning of GV stage to leave only PCM of gamma-tubulin surrounding both poles of the MI and MII stage spindles. These MII oocytes can organize the separation of metaphase chromosomes during the first embryonic cell cycle by parthenogenetic treatment. When the MII oocytes were subjected to ICSI or nuclear transfer, one or two red-stained centrosomes of gamma-tubulin were introduced by the fertilising spermatozoon or the donor cell which associated with the sperm chromatin in the fertilized embryos and with the donor cell chromatin and microtubules in the cloned embryos. This finding suggests that centrosomes are not an essential component in the formation of the metaphase spindle during meiotic maturation of horse oocytes, but they can be introduced from the spermatozoon or donor cell and are necessary for the organization of normal embryonic development.
Collapse
Affiliation(s)
- Xihe Li
- University of Cambridge, Department of Veterinary Medicine Equine Fertility Unit, Mertoun Paddocks, Woodditton Road, Newmarket, Suffolk CB8 9BH, UK
| | | | | | | |
Collapse
|
59
|
Sugiura K, Naito K, Endo T, Tojo H. Study of germinal vesicle requirement for the normal kinetics of maturation/M-phase-promoting factor activity during porcine oocyte maturation. Biol Reprod 2005; 74:593-600. [PMID: 16319287 DOI: 10.1095/biolreprod.105.046375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian immature oocytes contain large nuclei referred to as germinal vesicles (GVs). The translocation of maturation/M-phase promoting factor (MPF) into GVs just before the activation of MPF has been reported in several species. To examine whether the GV is required for MPF activation in mammalian oocytes, porcine immature oocytes were enucleated and their MPF activity and CCNB (also known as cyclin B) levels were investigated. The activation of MPF at the start of maturation was detected at normal levels in enucleated oocytes, whereas reactivation to induce the second meiosis was not observed. Although protein synthesis was found to be normal both qualitatively and quantitatively, even in the absence of the nucleus, CCNB1 did not sufficiently accumulate in the enucleated oocytes. The defects in the enucleated oocytes were reversed by the injection of GV material into the enucleated oocytes. Furthermore, the inhibition of CCNB1 degradation revealed drastic accumulation of CCNB1, indicating active synthesis of CCNB1 in enucleated oocytes. The mitogen-activated protein kinase cascade remained unaffected by enucleation. These results indicate that GV is not required for the activation of MPF during the first meiosis, but that it is required for the second meiosis because of its promotion of CCNB1 accumulation.
Collapse
Affiliation(s)
- Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
60
|
Bodart JFL, Baert FY, Sellier C, Duesbery NS, Flament S, Vilain JP. Differential roles of p39Mos-Xp42Mpk1 cascade proteins on Raf1 phosphorylation and spindle morphogenesis in Xenopus oocytes. Dev Biol 2005; 283:373-83. [PMID: 15913594 DOI: 10.1016/j.ydbio.2005.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/12/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Fully-grown G2-arrested Xenopus oocytes resume meiosis upon hormonal stimulation. Resumption of meiosis is characterized by germinal vesicle breakdown, chromosome condensation, and organization of a bipolar spindle. These cytological events are accompanied by activation of MPF and the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) pathways. The latter cascade is activated upon p39(Mos) accumulation. Using U0126, a MEK1 inhibitor, and p39(Mos) antisense morpholino and phosphorothioate oligonucleotides, we have investigated the role of the members of the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) in spindle morphogenesis. First, we have observed at a molecular level that prevention of p39(Mos) accumulation always led to MEK1 phosphorylation defects, even when meiosis was stimulated through the insulin Ras-dependent pathway. Moreover, we have observed that Raf1 phosphorylation that occurs during meiosis resumption was dependent upon the activity of MEK1 or Xp42(Mpk1) but not p90(Rsk). Second, inhibition of either p39(Mos) accumulation or MEK1 inhibition led to the formation of a cytoplasmic aster-like structure that was associated with condensed chromosomes. Spindle morphogenesis rescue experiments using constitutively active Rsk and purified murine Mos protein suggested that p39(Mos) or p90(Rsk) alone failed to promote meiotic spindle organization. Our results indicate that activation of the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) pathway is required for bipolar organization of the meiotic spindle at the cortex.
Collapse
Affiliation(s)
- J-F L Bodart
- Laboratoire de Biologie du Développement, UPRES EA 1033, Université des Sciences et Technologies de Lille, SN3, Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
61
|
Takakura I, Naito K, Iwamori N, Yamashita M, Kume S, Tojo H. Inhibition of mitogen activated protein kinase activity induces parthenogenetic activation and increases cyclin B accumulation during porcine oocyte maturation. J Reprod Dev 2005; 51:617-26. [PMID: 16034193 DOI: 10.1262/jrd.17034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibition of mitogen activated protein kinase (MAPK) activation during porcine oocyte maturation leads to decreased maturation promoting factor (MPF) activity and to the induction of parthenogenetic activation. In the present study, in order to analyze the mechanism underlying the suppression of MPF activity in MAPK-inhibited porcine oocytes, we injected mRNA of SASA-MEK, a dominant negative MAPK kinase, or antisense RNA of c-mos, a MAPK kinase kinase, into immature porcine oocyte cytoplasm. The injection of SASA-MEK mRNA or c-mos antisense RNA inhibited the MAPK activity partially or completely, respectively, decreased the MPF activity slightly or significantly, respectively, and induced parthenogenetic activation in 17.1% or 96.6% of mature oocytes, respectively, although no parthenogenetic activation was observed in the control oocytes. Immunoblotting experiments revealed that cyclin B accumulation in these MAPK-suppressed porcine oocytes was increased significantly after 50 h of culture and that a considerable amount of MPF was converted into inactive pre-MPF by hyperphosphorylation. These results indicate that the inhibition of MAPK activity in porcine oocytes did not promote cyclin B degradation but rather suppressed it; also the decrease in MPF activity in MAPK-suppressed porcine oocytes correlated with the conversion of active MPF into inactive pre-MPF.
Collapse
Affiliation(s)
- Ikuko Takakura
- Department of Applied Genetics, Graduate School of Agriculture and Life Science University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
62
|
LaRosa C, Downs SM. MEK inhibitors block AICAR-induced maturation in mouse oocytes by a MAPK-independent mechanism. Mol Reprod Dev 2005; 70:235-45. [PMID: 15570612 DOI: 10.1002/mrd.20200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study was carried out to assess the possible role of mitogen-activated protein kinase (MAPK) in the meiosis-inducing action of the AMP-activated protein kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Cumulus cell-enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured 4 hr in Eagle's minimum essential medium containing dbcAMP plus increasing concentrations of AICAR or okadaic acid (OA). OA is a phosphatase inhibitor known to stimulate both meiotic maturation and MAPK activation and served as a positive control. Both OA and AICAR were potent inducers of meiotic resumption in mouse oocytes and brought about the phosphorylation (and thus, activation) of MAPK, but by different kinetics: MAPK phosphorylation preceded GVB in OA-treated oocytes, while that resulting from AICAR treatment appeared only after GVB. The MEK inhibitors, PD98059 and U0126, blocked the meiotic resumption induced by AICAR but not that induced by OA. Although the MEK inhibitors suppressed MAPK phosphorylation in both OA- and AICAR-treated oocytes, meiotic resumption was not causally linked to MAPK phosphorylation in either group. Furthermore, AICAR-induced meiotic resumption in Mos-null oocytes (which are unable to stimulate MAPK) was also abrogated by PD98059 treatment. A non-specific effect of the MEK inhibitors on AICAR accessibility to the oocyte was discounted by showing that they failed to suppress either nucleoside uptake or AICAR-stimulated phosphorylation of acetyl CoA carboxylase (ACC), a substrate of AMPK. The suppression of AICAR-induced maturation by MEK inhibitors must, therefore, be occurring by actions unrelated to MEK stimulation of MAPK; consequently, it would be prudent to consider this possible non-specific action of the inhibitors when they are used to block MAPK activation in mouse oocytes.
Collapse
Affiliation(s)
- Cean LaRosa
- Biology Department, Marquette University, 530 N 15th Street, Milwaukee, WI 53233, USA
| | | |
Collapse
|
63
|
Everett CA, Auchincloss CA, Kaufman MH, Abbott CM, West JD. Genetic influences on ovulation of primary oocytes in LT/Sv strain mice. Reproduction 2005; 128:565-71. [PMID: 15509702 DOI: 10.1530/rep.00325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A high proportion of LT/Sv strain oocytes arrest in meiotic metaphase I (MI) and are ovulated as diploid primary oocytes rather than haploid secondary oocytes. (Mus musculus castaneus x LT/SvKau)F1 x LT/SvKau backcross females were analysed for the proportion of oocytes that arrested in MI and typed by PCR for a panel of microsatellite DNA sequences (simple sequence repeat polymorphisms) that differed between strain LT/SvKau and M. m. castaneus. This provided a whole genome scan of 86 genetic markers distributed over all 19 autosomes and the X chromosome, and revealed genetic linkage of the MI arrest phenotype to markers on chromosomes 1 and 9. Identification of these two chromosomal regions should facilitate the identification of genes involved in mammalian oocyte maturation and the control of meiosis.
Collapse
Affiliation(s)
- Clare A Everett
- Medical Genetics, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | |
Collapse
|
64
|
Tan X, Wang YC, Sun QY, Peng A, Chen DY, Tang YZ. Effects of MAP kinase pathway and other factors on meiosis ofUrechis unicinctus eggs. Mol Reprod Dev 2005; 71:67-76. [PMID: 15736126 DOI: 10.1002/mrd.20232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eggs of Urechis unicinctus Von Drasche, an echiuroid, are arrested at P-I stage in meiosis. The meiosis is reinitiated by fertilization. Immunoblotting analysis using anti-ERK2 and anti-phospho-MAPK antibodies revealed a 44 kDa MAP kinase species that was constantly expressed in U. unicinctus eggs, quickly phosphorylated after fertilization, and dephosphorylated slowly before the completion of meiosis I. Phosphorylation of the protein was not depressed by protein synthesis inhibitor Cycloheximide (CHX), but was depressed by the MEK1 inhibitor PD98059. Under PD98059 treatment, polar body extrusion was suppressed and the function of centrosome and spindle was abnormal though GVBD was not affected, indicating that MAP kinase cascade was important for meiotic division of U. unicinctus eggs. Other discovery includes: A23187 and OA could parthenogenetically activate U. unicinctus eggs and phosphorylated 44 kDa MAP kinase species, indicating that the effect of fertilization on reinitiating meiosis and phosphorylation of 44 kDa MAP kinase specie is mediated by raising intracellular free calcium and by phosphorylation of some proteins, and that phosphotase(s) sensitive to OA is responsible for arresting U. unicinctus eggs in prophase I. diC8, an activator of PKC, accelerated the process of U. unicinctus egg meiotic division after fertilization and accelerated the dephosphorylation of 44 kDa MAP kinase specie, which implied that the acceleration effect of PKC on meiotic division was mediated by inactivation of MAP kinase cascade. Elevating cAMP/PKA level in U. unicinctus eggs had no effect on meiotic division of the eggs.
Collapse
Affiliation(s)
- Xin Tan
- College of Life Sciences, Beijing Normal University, Beijing, P.R. China
| | | | | | | | | | | |
Collapse
|
65
|
Sugiura K, Naito K, Tojo H. Cdk2 Activity is Essential for the First to Second Meiosis Transition in Porcine Oocytes. J Reprod Dev 2005; 51:143-9. [PMID: 15750306 DOI: 10.1262/jrd.51.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meiotic progression of Xenopus oocytes has been suggested to depend on the activity of cyclin-dependent kinase 2 (Cdk2). We examined whether Cdk2 is involved in the regulation of mammalian oocyte meiosis by injecting porcine oocytes with anti-Cdk2 antibody. At first, the cross-reactivity of the anti-Cdk2 antibody with Cdc2 kinase was evaluated by immunoprecipitation and immunoblotting experiments using porcine granulosa cell extract, and no cross-reactivity with Cdc2 kinase was observed in the antibody used. In the anti-Cdk2 antibody-injected group, 50.7% of the oocytes were arrested in the second metaphase after 50 h of culture and this rate was significantly lower than those in the non-injected intact oocytes or the oocytes injected with mouse IgG (84.5% and 86.7%, respectively). Most of the other oocytes in the antibody-injected group formed a pronucleus without polar bodies or with only one polar body. The cyclin B1 amount in the antibody-injected and activated oocytes was dramatically decreased compared with that in the intact or mouse IgG-injected oocytes after 50 h of culture. These results suggest that Cdk2 is involved in the meiotic maturation of mammalian oocytes, and that the block of Cdk2 activity results in the failure of cyclin B1 accumulation and second meiosis induction.
Collapse
Affiliation(s)
- Koji Sugiura
- Department of Applied Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
66
|
Pellestor F, Anahory T, Hamamah S. The chromosomal analysis of human oocytes. An overview of established procedures. Hum Reprod Update 2004; 11:15-32. [PMID: 15569701 DOI: 10.1093/humupd/dmh051] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cytogenetic survey of mature human oocytes has been and remains a subject of great interest because of the prevalence of aneuploidy of maternal origin in abnormal human conceptuses, and the lack of understanding about the non-disjunction processes in human meiosis. The first attempts to analyse the chromosomal content of human female gametes were made in the early 1970s, and led to limited data because of the paucity of materials and the inadequacy of the procedure used. The years to follow brought a resurgence of interest in this field, because of the development of human IVF techniques which made oocytes unfertilized in vitro available for cytogenetic analysis. Numerous studies have since been performed. However, the difficulties in obtaining good chromosome preparations and of performing accurate chromosome identification have reduced the viability of these studies, resulting in large variations in the reported incidences of chromosomal abnormalities. The further introduction of new procedures for oocyte fixation and the screening of large oocyte samples have allowed more reliable data to be obtained and to identify premature chromatid separation as a major mechanism in aneuploidy occurrence. The last decade has been privileged to witness the adaptation of molecular cytogenetic techniques to human oocytes, and thus various powerful procedures have been tried not only on female gametes, but also on polar bodies, involving sequential and multicolour fluorescent in situ hybridization (FISH) labelling, comparative genomic hybridization (CGH), spectral karyotyping and alternative methods such as primed in situ labelling (PRINS) and peptide nucleic acid (PNA) techniques. A large body of data has been obtained, but these studies also display a great variability in the frequency of abnormalities, which may be essentially attributable to the technical limitations of these in situ methods when applied to human oocytes. However, molecular cytogenetic approaches have also evidenced the co-existence of both whole chromosome non-disjunction and chromatid separation in maternal aneuploidy. In addition, the extension of these techniques to oocyte polar body materials has provided additional data on the mechanism of meiotic malsegregation. Improvements of some of these techniques have already been reported. The further development of new approaches for the in situ analysis of human meiosis will increase the impact of cytogenetic investigation of human oocytes in the understanding of aneuploidy processes in humans.
Collapse
Affiliation(s)
- F Pellestor
- CNRS UPR 1142, Institute of Human Genetics, 141 rue de la Cardonille, F-34396 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
67
|
Li X, Dai Y, Allen WR. Influence of Insulin-Like Growth Factor-I on Cytoplasmic Maturation of Horse Oocytes In Vitro and Organization of the First Cell Cycle Following Nuclear Transfer and Parthenogenesis1. Biol Reprod 2004; 71:1391-6. [PMID: 15215202 DOI: 10.1095/biolreprod.104.029066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In vitro maturation of horse oocytes cultured with or without IGF-I supplementation and their first cell cycle organization were studied in reconstructed horse oocytes made by somatic cell nuclear transfer versus intact oocytes stimulated parthenogenetically. The rates of metaphase II oocytes (47% and 45%) and of reconstructed oocytes that developed to the two-cell (27% and 25%) and blastocyst stages (11% and 3%) were not different between the media, with or without IGF-I, respectively. However, significantly more parthenogenetic embryos exhibited two-cell development with IGF-I (P < 0.05). The results also demonstrated that the first cell cycle organization in the reconstructed oocytes involved two different ways of nuclear remodeling. The donor nucleus in the Type I embryo showed normal nuclear remodeling that resulted in normal embryonic development. In the Type II embryos, however, the donor nucleus formed a polyploid nucleus or the embryo fragmented. Addition of IGF-I to the maturation medium significantly increased the rate of normal Type I embryonic development from the reconstructed oocytes (45% vs. 28%, P < 0.05). Maturation-promoting factor (MPF; including cdc2 and cyclin B) and mitogen-activated protein kinase (MAPK; including ERK1 and ERK2) were present at the beginning of culture, just after the oocytes had been harvested from the ovaries. The quantities of cyclin B remained stable no matter how long a period of in vitro culture the oocytes underwent, whereas cdc2 showed a tendency to accumulate in the oocytes toward the end of the 30-h culture period. Addition of IGF-I to the medium may induce a bigger accumulation of MAPK in the cytoplasm of the horse oocyte, especially in the ERK2 component, which might, in turn, increase the chance of the reconstructed oocyte undergoing nuclear remodeling to form a Type I embryo following nuclear transfer.
Collapse
Affiliation(s)
- Xihe Li
- Department of Clinical Veterinary Medicine, University of Cambridge, Equine Fertility Unit, Mertoun Paddocks, Newmarket, Suffolk CB8 9BH, United Kingdom
| | | | | |
Collapse
|
68
|
Tong C, Fan HY, Chen DY, Song XF, Schatten H, Sun QY. Effects of MEK inhibitor U0126 on meiotic progression in mouse oocytes: microtuble organization, asymmetric division and metaphase II arrest. Cell Res 2004; 13:375-83. [PMID: 14672561 DOI: 10.1038/sj.cr.7290183] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study we used U0126, a potent and specific inhibitor of MEK, to study the roles of MEK/ERK/p90rsk signaling pathway in the meiotic cell cycle of mouse oocytes. The phosphorylation of MAP kinase and p90rsk in the oocytes treated with 1.5 microM U0126 was the same as that in oocytes cultured in drug-free medium. With 1.5 microM U0126 treatment, the spindles appeared normal as they formed in oocytes, but failed to maintain its structure. Instead, the spindle lost one pole or elongated extraordinarily. After further culture, some oocytes extruded gigantic polar bodies (>30 microm) that later divided into two small ones. Some oocytes underwent symmetric division and produced two equal-size daughter cells in which normal spindles formed. In oocytes with different division patterns, MAP kinase was normally phosphorylated. When the concentration of U0126 was increased to 15 mM, the phosphorylation of both MAPK and p90rsk were inhibited, while symmetric division was decreased. When incubating in medium containing 15 microM U0126 for 14 h, oocytes were activated, but part of them failed to emit polar bodies. MII oocytes were also activated by 15 microM U0126, at the same time the dephosphorylation of MAP kinase and p90rsk was observed. Our results indicate that 1) MEK plays important but not indispensable roles in microtubule organization; 2) MEK keeps normal meiotic spindle morphology, targets peripheral spindle positioning and regulates asymmetric division by activating some unknown substrates other than MAP kinase /p90rsk; and 3) activation of MEK/ERK/p90rsk cascade maintains MII arrest in mouse oocytes.
Collapse
Affiliation(s)
- Chao Tong
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
69
|
Inselman A, Handel MA. Mitogen-Activated Protein Kinase Dynamics During the Meiotic G2/MI Transition of Mouse Spermatocytes1. Biol Reprod 2004; 71:570-8. [PMID: 15084480 DOI: 10.1095/biolreprod.104.027938] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cellular and genetic approaches were used to investigate the requirements for activation during spermatogenesis of the extracellular signal-regulated protein kinases (ERKs), more commonly known as the mitogen-activated protein kinases (MAPKs). The MAPKS and their activating kinases, the MEKs, are expressed in specific developmental patterns. The MAPKs and MEK2 are expressed in all premeiotic germ cells and spermatocytes, while MEK1 is not expressed abundantly in pachytene spermatocytes. Phosphorylated (active) variants of these kinases are diminished in pachytene spermatocytes. Treatment of pachytene spermatocytes with okadaic acid (OA), to induce transition from meiotic prophase to metaphase I (G2/MI), resulted in phosphorylation and enzymatic activation of ERK1/2. However, U0126, an inhibitor of the ERK-activating kinases, MEK1/2, did not inhibit OA-induced MAPK activation or chromosome condensation. Analysis of spermatocytes lacking MOS, a mitogen-activated protein kinase kinase kinase responsible for MEK and MAPK activation, revealed that MOS is not required for OA-induced activation of the MAPKs. OA-induced MAPK activation was inhibited by butyrolactone I, an inhibitor of cyclin-dependent kinases 1 and 2 (CDK1, CDK2); thus, these kinases may regulate MAPK activity. Additionally, spermatocytes lacking CDC25C condensed bivalent chromosomes and activated both MPF and MAPKs in response to OA treatment; therefore, there is a CDC25C-independent pathway for MPF and MAPK activation. These studies reveal that spermatocytes do not require either MOS or CDC25C for onset of the meiotic division phase or for activation of MPF and the MAPKs, thus implicating a novel pathway for activation of the ERK1/2 MAPKs in spermatocytes.
Collapse
Affiliation(s)
- Amy Inselman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | | |
Collapse
|
70
|
Ferrara D, Palmiero C, Branno M, Pierantoni R, Minucci S. Testicular Activity of Mos in the Frog, Rana esculenta: A New Role in Spermatogonial Proliferation1. Biol Reprod 2004; 70:1782-9. [PMID: 14960479 DOI: 10.1095/biolreprod.103.026666] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mos is a MAPK kinase kinase with an expression that is highly restricted to the gonads. Its function is mainly associated to the meiotic metaphase II arrest occurring during female gametogenesis, whereas to our knowledge, its role during spermatogenesis has not yet clarified. In the present paper, we report the isolation of c-mos cDNA and the identification of a 60-kDa Mos protein from the testis of the anuran amphibian, Rana esculenta. Both the transcript and the protein are always present at low levels in the testis during the frog annual sexual cycle, with single significant peaks of expression in March and May, respectively. Mos is mainly localized in the cytoplasm of primary and secondary spermatogonia (SPG). Therefore, we have used treatments with ethane-dimethane sulphonate (EDS), which blocks spermatogonial mitosis in frogs. Four days after a single EDS injection, Mos expression in SPG highly increases concomitantly with the temporary arrest of mitosis. From 8 to 28 days after the injection, the normal proliferative activity of SPG is restored, and Mos expression gradually decreases to control levels. These results strongly indicate that the c-mos proto-oncogene exerts a new role associated to the regulation of spermatogonial proliferation.
Collapse
Affiliation(s)
- Diana Ferrara
- Dipartimento di Medicina Sperimentale-sezione F. Bottazzi, Seconda Università degli Studi di Napoli, 80138 Naples, Italy
| | | | | | | | | |
Collapse
|
71
|
Yokoo M, Sato E. Cumulus-oocyte complex interactions during oocyte maturation. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:251-91. [PMID: 15219785 DOI: 10.1016/s0074-7696(04)35006-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In most mammals, the oocyte in the Graafian follicle is surrounded by tightly packed layers of cumulus cells, forming the cumulus-oocyte complex. During the preovulatory period, cumulus cells change from a compact cell mass into a dispersed structure of cells for the synthesis and deposition of a mucoid intercellular matrix, a process referred to as cumulus expansion. Cumulus expansion is thought to influence a variety of fundamental developmental changes during oocyte maturation. Volumetric expansion of the cumulus-oocyte complex correlates, at least in pig, with the outcome of oocyte maturation, fertilization, and embryo development. Therefore, detailed functional studies of cumulus expansion seem to be required to elucidate the mechanism of oocyte maturation. We summarize the current knowledge about (1) morphological changes of cumulus-oocyte complexes during oocyte maturation, (2) follicle factors inducing cumulus expansion, (3) the role of cumulus expansion in oocyte maturation, (4) cytoplasmic regulators of oocyte maturation, and (5) possible roles of cumulus expansion.
Collapse
Affiliation(s)
- Masaki Yokoo
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | |
Collapse
|
72
|
Park CE, Shin MR, Jeon EH, Lee SH, Cha KY, Kim K, Kim NH, Lee KA. Oocyte-selective expression of MT transposon-like element, clone MTi7 and its role in oocyte maturation and embryo development. Mol Reprod Dev 2004; 69:365-74. [PMID: 15457542 DOI: 10.1002/mrd.20179] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previously, we found MT transposon-like element, clone MTi7 (MTi7) is highly expressed in the mouse ovary. Here, we show that the MTi7 is expressed in the oocyte from the primordial to the preovulatory follicles. For RNA interference (RNAi), double stranded RNAs (dsRNAs) were prepared for MTi7 and c-mos, a control gene with known functions. Each dsRNA was microinjected into germinal vesicle (GV) stage oocytes or zygotes with pronuclei (PN), after which developmental changes, mRNA expression, and nuclear and microtubular organization were analyzed. We found a 43.4-53% GV arrest in the microinjected oocytes with a concomitant decrease in targeted mRNA expression. In MTi7 dsRNA-injected early and late PN zygotes, a 92.9% 1-cell arrest and 76.9% 2-cell arrest were observed, respectively. This is the first report of an oocyte-selective expression of MTi7 mRNA, and our results strongly suggest that MTi7 involved in the nuclear membrane breakdown during oocyte maturation and embryo development.
Collapse
Affiliation(s)
- Chang-Eun Park
- Genome Research Center for Reproductive Medicine and Infertility, CHA General Hospital, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Female fertility requires precise regulation of oocyte meiosis. Oocytes are arrested early in the meiotic cycle until just before ovulation, when ovarian factors trigger meiosis, or maturation, to continue. Although much has been learned about the late signaling events that accompany meiosis, until recently less was known about the early actions that initiate maturation. Studies using the well-characterized model of transcription-independent steroid-induced oocyte maturation in Xenopus laevis now show that steroid metabolism, classical steroid receptors, G protein-mediated signaling, and novel G protein-coupled receptors, all may play important roles in regulating meiosis. Furthermore, steroids appear to promote similar events in mammalian oocytes, implying a conserved mechanism of maturation in vertebrates. Interestingly, testosterone is a potent promoter of mammalian oocyte maturation, suggesting that androgen actions in the oocyte might be partially responsible for the polycystic ovarian phenotype and accompanying infertility associated with high androgen states such as polycystic ovarian syndrome or congenital adrenal hyperplasia. A detailed appreciation of the steroid-activated signaling pathways in frog and mammalian oocytes may therefore prove useful in understanding both normal and abnormal ovarian development in humans.
Collapse
Affiliation(s)
- Stephen R Hammes
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8857, USA.
| |
Collapse
|
74
|
Su YQ, Denegre JM, Wigglesworth K, Pendola FL, O'Brien MJ, Eppig JJ. Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte-cumulus cell complex. Dev Biol 2003; 263:126-38. [PMID: 14568551 DOI: 10.1016/s0012-1606(03)00437-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luteinizing hormone (LH) induces maturational processes in oocyte-cumulus cell complexes (OCC) of preovulatory follicles that include both resumption of meiosis in the oocyte and expansion (mucification) of the cumulus oophorus. Both processes require activation of mitogen-activated protein kinase (MAPK) in granulosa cells. Here, it is reported that inhibition of MAPK activation prevented gonadotropin-stimulated resumption of meiosis as well as the rise in expression of two genes whose products are necessary for normal cumulus expansion, Has2 and Ptgs2. However, inhibition of MAPK did not block gonadotropin-induced elevation of granulosa cell cAMP, indicating that the activation of MAPK required for inducing GVB and cumulus expansion is downstream of cAMP. Moreover, activation of MAPK in cumulus cells requires one or more paracrine factors from the oocyte to induce GVB and cumulus expansion; MAPK activation alone is not sufficient to initiate these maturational processes. This study demonstrates a remarkable interaction between the oocyte and cumulus cells that is essential for gonadotropin-induced maturational processes in OCC. By enabling gonadotropin-dependent MAPK activation in granulosa cells, oocytes promote the generation of a return signal from these cells that induces the resumption of meiosis. It also appears that an oocyte-dependent pathway downstream from oocyte-enabled activation of MAPK, and distinct from that promoting the resumption of meiosis, governs cumulus expansion.
Collapse
Affiliation(s)
- You-Qiang Su
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | |
Collapse
|
75
|
Fan HY, Sun QY. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol Reprod 2003; 70:535-47. [PMID: 14613897 DOI: 10.1095/biolreprod.103.022830] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases that are widely distributed in eukaryotic cells. Studies in the last decade revealed that MAPK cascade plays pivotal roles in regulating the meiotic cell cycle progression of oocytes. In mammalian species, activation of MAPK in cumulus cells is necessary for gonadotropin-induced meiotic resumption of oocytes, while MAPK activation is not required for spontaneous meiotic resumption. After germinal vesicle breakdown (GVBD), MAPK is involved in the regulation of microtubule organization and meiotic spindle assembly. The activation of this kinase is essential for the maintenance of metaphase II arrest, while its inactivation is a prerequisite for pronuclear formation after fertilization or parthenogenetic activation. MAPK cascade interacts extensively with other protein kinases such as maturation-promoting factor, protein kinase A, protein kinase C, and calmodulin-dependent protein kinase II, as well as with protein phosphatases in oocyte meiotic cell cycle regulation. The cross talk between MAPK cascade and other protein kinases is discussed. The review also addresses unsolved problems and discusses future directions.
Collapse
Affiliation(s)
- Heng-Yu Fan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | | |
Collapse
|
76
|
Cheng Y, Fan HY, Wen DC, Tong C, Zhu ZY, Lei L, Sun QY, Chen DY. Asynchronous cytoplast and karyoplast transplantation reveals that the cytoplasm determines the developmental fate of the nucleus in mouse oocytes. Mol Reprod Dev 2003; 65:278-82. [PMID: 12784249 DOI: 10.1002/mrd.10285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The relationship between nucleus and cytoplasm can be well revealed by nuclear transplantation. Here, we have investigated the behavior changes of the reconstructed oocytes after transferring the karyoplasts from mouse GV, MI, and MII oocytes into the cytoplasts at the different developmental stages. When the GV cytoplast was used as recipient and MI or MII karyoplast was used as donor (MI-GV pair and MII-GV pair), the reconstructed pairs extruded a polar body after electrofusion and culture. Both the cytoplasm and the polar body had a metaphase spindle in the MI-GV pair, while only a clutch of condensed chromatin was observed in the cytoplasm and polar body of the MII-GV pair. When the MI cytoplast was used as recipient and GV or MII karyoplast was used as donor (GV-MI pair and MII-MI pair), the reconstructed pairs also extruded a polar body. Each had one spindle and a group of metaphase chromosomes in the cytoplasm and polar body, respectively. When the MII cytoplast was used as recipient and GV or MI karyoplast was used as donor (GV-MII pair and MI-MII pair), the reconstructed pairs were activated, became parthenogenetic embryos and even developed to hatching blastocysts after electrofusion. The result from immunoblotting showed that MAP kinase activity was high in the MI and MII cytoplasts, while not detected in GV cytoplast. The results demonstrate that the cytoplasmic environment determines the behavior of asynchronous donors.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Josefsberg LBY, Galiani D, Lazar S, Kaufman O, Seger R, Dekel N. Maturation-promoting factor governs mitogen-activated protein kinase activation and interphase suppression during meiosis of rat oocytes. Biol Reprod 2003; 68:1282-90. [PMID: 12606439 DOI: 10.1095/biolreprod.102.006882] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Meiosis is a particular example of a cell cycle, characterized by two successive divisions without an intervening interphase. Resumption of meiosis in oocytes is associated with activation of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). The activity of MPF declines during the transition between the two meiotic divisions, whereas the activity of MAPK is sustained. Attempts to disclose the interplay between these key regulators of meiosis in both amphibian and mammalian oocytes generated contradictory results. Furthermore, the enzyme that governs the suppression of interphase in mammals is still unidentified. To our knowledge, we provide herein the first demonstration in a mammalian system that inhibition of MPF at reinitiation of meiosis abrogated Mos expression and MAPK activation. We also show that oocytes, in which reactivation of MPF at completion of the first telophase was prevented, exhibited an interphase nucleus with decondensed chromosomes. Inhibition of MAPK did not interfere with the progression to the second meiotic metaphase but, rather, resulted in parthenogenic activation. We conclude that in rat oocytes, MPF regulates MAPK activation and its timely reactivation prevents the oocytes from entering interphase.
Collapse
|
78
|
Ohashi S, Naito K, Sugiura K, Iwamori N, Goto S, Naruoka H, Tojo H. Analyses of mitogen-activated protein kinase function in the maturation of porcine oocytes. Biol Reprod 2003; 68:604-9. [PMID: 12533425 DOI: 10.1095/biolreprod.102.008334] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The function of mitogen-activated protein kinase (MAPK) during porcine oocyte maturation was examined by injecting oocytes with either mRNA or antisense RNA of porcine c-mos protein, an upstream kinase of MAPK. The RNAs were injected into the cytoplasm of porcine immature oocytes immediately after collection from ovaries, then the oocytes were cultured for maturation up to 48 h. The phosphorylation and activation of MAPK were observed at 6 h after injection of the c-mos mRNA injected-oocytes, whereas in control oocytes, MAPK activation was detected at 24 h of culture. The germinal vesicle breakdown (GVBD) rate at 24 h of culture was significantly higher in c-mos mRNA-injected oocytes than in control oocytes. In contrast, although injection of c-mos antisense RNA completely inhibited phosphorylation and activation of MAPK throughout the maturation period, the GVBD rate and its time course were the same in noninjected oocytes. The degree of maturation-promoting factor (MPF) activation was, however, very low in oocytes in the absence of MAPK activation. Most of those oocytes had both abnormal morphology and decondensed chromosomes at 48 h of culture. These results suggest that MAPK activation is not required for GVBD induction in porcine oocytes and that the major roles of MAPK during porcine oocyte maturation are to promote GVBD by increasing MPF activity and to arrest oocytes at the second metaphase.
Collapse
Affiliation(s)
- Satoshi Ohashi
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
The c-mos protooncogene, which is expressed predominantly in male and female germ cells, is crucial for normal oocyte meiosis and female fertility in mice. Inactivation of c-mos results in abnormal oocyte development and leads to ovarian cysts and tumors in vivo. In contrast to the severe effects of c-mos ablation in females, targeted inactivation of c-mos has not been reported to affect spermatogenesis in male mice. However, previously reported studies of male c-mos(-/-) mice have been limited to histological analyses of testes and in vivo matings, both of which are relatively insensitive indicators of sperm production and function. Therefore, we assayed sperm function of c-mos(-/-) males under in vitro conditions to determine whether the absence of Mos during development affected sperm production or fertilizing ability. We found no significant differences between the number of sperm collected from c-mos(-/-) and wild type mice. Additionally, sperm from c-mos(-/-) and c-mos(+/+) males performed equally well in assays of in vitro fertilization (IVF) and fertilization-associated events including zona pellucida (ZP) penetration, sperm/egg plasma membrane fusion, and sperm chromatin remodeling. Therefore, we suggest that the function of Mos in spermatogenesis is either not related to the ultimate fertilizing potential of the sperm, or else the absence of Mos is masked by a redundant kinase.
Collapse
Affiliation(s)
- Vera S Gross
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
80
|
Lu Q, Smith GD, Chen DY, Han ZM, Sun QY. Activation of protein kinase C induces mitogen-activated protein kinase dephosphorylation and pronucleus formation in rat oocytes. Biol Reprod 2002; 67:64-9. [PMID: 12080000 DOI: 10.1095/biolreprod67.1.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian oocytes are arrested at metaphase of the second meiotic division (MII) before fertilization. When oocytes are stimulated by spermatozoa, they exit MII stage and complete meiosis. It has been suggested that an immediate increase in intracellular free calcium concentration and inactivation of maturation promoting factor (MPF) are required for oocyte activation. However, the underlying mechanism is still unclear. In the present study, we investigated the role of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase, and their interplay in rat oocyte activation. We found that MAP kinase became dephosphorylated in correlation with pronucleus formation after fertilization. Protein kinase C activators, phorbol 12-myriatate 13-acetate (PMA) and 1,2-dioctanoyl-rac-glycerol (diC8), triggered dephosphorylation of MAP kinase and pronucleus formation in a dose-dependent and time-dependent manner. Dephosphorylation of MAP kinase was also correlated with pronucleus formation when oocytes were treated with PKC activators. Effects of PKC activators were abolished by the PKC inhibitors, calphostin C and staurosporine, as well as a protein phosphatase blocker, okadaic acid (OA). These results suggest that PKC activation may cause rat oocyte pronucleus formation via MAP kinase dephosphorylation, which is probably mediated by OA-sensitive protein phosphatases. We also provide evidence supporting the involvement of such a process in fertilization.
Collapse
Affiliation(s)
- Qing Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | | | |
Collapse
|
81
|
Josefsberg LBY, Dekel N. Translational and post-translational modifications in meiosis of the mammalian oocyte. Mol Cell Endocrinol 2002; 187:161-71. [PMID: 11988324 DOI: 10.1016/s0303-7207(01)00688-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fully-grown oocyte is transcriptionally inactive. Therefore, translational and post-translational modifications furnish the control mechanism of key components governing meiosis. Regulation by protein synthesis provides an irreversible unidirectional mechanism for an extended period that can be restricted by a complementary degradation of the same protein. Both processes utilize tight measures to ensure precise expression at the right time in the right place. Rapid modifications such as phosphorylation and dephosphorylation supply reversible means to regulate protein action. Information regarding these extremely exciting issues is being accumulated recently in an exponential rate. However, the vast majority of these data is generated from studies conducted on Xenopus oocytes. We fully agree with Andrew Murray's statement that "The modern trend of promoting research on a small number of 'model' organisms will eventually deprive us of the opportunity to study interesting biology" [Cell 92 (1992) 157]. Thus, despite of the enormous technical difficulties resulting from the limited availability of biological material we extended our interest to mammalian model systems. Our review will attend to certain examples of such modifications in the regulatory pathway of meiosis in mammalian oocytes.
Collapse
|
82
|
Lu Q, Dunn RL, Angeles R, Smith GD. Regulation of spindle formation by active mitogen-activated protein kinase and protein phosphatase 2A during mouse oocyte meiosis. Biol Reprod 2002; 66:29-37. [PMID: 11751260 DOI: 10.1095/biolreprod66.1.29] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) and protein phosphatase 2A (PP2A) regulate oocyte meiosis, yet little is known regarding their mechanisms of action. This study addressed the functional importance of active MAPK and PP2A in regulating oocyte meiosis. Experiments were conducted to identify MAPK activation, PP2A activity, intracellular enzyme trafficking, and ultrastructural associations during meiosis. Questions of requisite kinase and/or phosphatase activity and chromatin condensation, microtubule polymerization, and spindle formation were addressed. At the protein level, MAPK and PP2A were present in constant amounts throughout the first meiotic division. Both MAPK and PP2A were activated following germinal vesicle breakdown (GVBD) in conjunction with metaphase I development. Immunocytochemical studies confirmed the absence of active MAPK in germinal vesicle-intact (GVI) and GVBD oocytes. At metaphase I and during the metaphase I/metaphase II transition, activated MAPK colocalized with microtubules, poles, and plates of meiotic spindles. Protein phosphatase 2A was dispersed evenly throughout the GVI oocyte cytoplasm. Throughout the metaphase I/metaphase II transition, PP2A colocalized with microtubules of meiotic spindles. Both active MAPK and PP2A associated with in vitro-polymerized microtubules, suggesting that active MAPK and PP2A locally regulate spindle formation. Inhibition of MAPK activation resulted in compromised microtubule polymerization, no spindle formation, and loosely condensed chromosomes. Treatment with okadaic acid (OA) or calyculin-A (CL-A), which inhibits oocyte cytoplasmic PP2A, caused an absence of microtubule polymerization and spindles, even though MAPK activity was increased under these treatment conditions. Thus, active MAPK is required, but is not sufficient, for normal meiotic spindle formation and chromosome condensation. In addition, the oocyte OA/CL-A-sensitive PP, presumably PP2A, is essential for microtubule polymerization and meiotic spindle formation.
Collapse
Affiliation(s)
- Qing Lu
- Departments of Obstetrics and Gynecology, Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109-0617, USA
| | | | | | | |
Collapse
|
83
|
Faerge I, Terry B, Kalous J, Wahl P, Lessl M, Ottesen JL, Hyttel P, Grøndahl C. Resumption of meiosis induced by meiosis-activating sterol has a different signal transduction pathway than spontaneous resumption of meiosis in denuded mouse oocytes cultured in vitro. Biol Reprod 2001; 65:1751-8. [PMID: 11717137 DOI: 10.1095/biolreprod65.6.1751] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The sterol 4,4-dimethyl-5-cholesta-8,14,24-trien-3-ol (follicular fluid meiosis-activating sterol [FF-MAS]) isolated from human follicular fluid induces resumption of meiosis in mouse oocytes cultured in vitro. The purpose of this study was to examine the hypothesis that differential signal transduction mechanisms exist for FF-MAS-induced and spontaneous in vitro resumption of meiosis in mouse oocytes. Mouse oocytes were dissected from ovaries originating from mice primed with FSH 48 h before oocyte collection. Mechanically denuded germinal vesicle (GV) oocytes were in vitro matured in medium supplemented with hypoxanthine and FF-MAS or allowed to mature spontaneously; both groups were exposed to individual compounds known to inhibit specific targets in the cell. After 20-22 h of in vitro maturation, resumption of meiosis was assessed as the frequency of oocytes in GV breakdown (GVBD) stage. Pertussis toxin (2.5 microg/ml) did not influence resumption of meiosis in either group. Dibutyryl cyclic GMP (320 microM) inhibited FF-MAS-induced GVBD, but not spontaneous GVBD, whereas the subtype 5 phosphodiesterase-inhibitor zaprinast (50 microM) inhibited GVBD in both groups. Microinjection of the catalytic subunit of cAMP-dependent protein kinase into oocytes inhibited spontaneous GVBD, but not FF-MAS-induced GVBD. An inhibitor of cytoplasmic polyadenylation, cordycepin (80 microM), inhibited or retarded spontaneous GVBD to a further extent than it did FF-MAS-induced GVBD. Spontaneous GVBD was more sensitive to the histone H1 kinase-inhibitor olomoucine (250 microM) than was FF-MAS-induced GVBD. Addition of the mitogen-activated protein kinase (MAPK)-inhibitor PD 98059 (50 microM), phospholipase C-inhibitor U-73122 (10 microM), p21(ras)-inhibitor lovastatine (250 microM), and the src-like kinase inhibitor PP2 (20 microg/ml) inhibited FF-MAS-induced GVBD, but not spontaneous GVBD. Both MAPKs, extracellular regulated kinase (ERK) 1 and ERK2, were phosphorylated under FF-MAS-induced meiotic resumption, in contrast to spontaneous meiotic resumption, in which ERK1 and ERK2 phosphorylation occurred 2 h after GVBD. In the present study, we show that FF-MAS acts through an MAPK-dependent pathway, and we suggest that src-like kinase, p21(ras), and phosphoinositide signaling lie upstream of MAPK in the FF-MAS-activated signaling pathway. Clearly, striking pathway differences are present between spontaneous versus FF-MAS-induced meiotic resumption.
Collapse
Affiliation(s)
- I Faerge
- Fertility Team, SAC 2.02, Novo Nordisk A/S, 2820 Gentofte, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Su YQ, Rubinstein S, Luria A, Lax Y, Breitbart H. Involvement of MEK-mitogen-activated protein kinase pathway in follicle-stimulating hormone-induced but not spontaneous meiotic resumption of mouse oocytes. Biol Reprod 2001; 65:358-65. [PMID: 11466201 DOI: 10.1095/biolreprod65.2.358] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase has been reported to be activated during oocyte meiotic maturation in a variety of mammalian species. However, the mechanism(s) responsible for MAP kinase activation and the consequence of its premature activation during gonadotropin-induced oocyte meiotic resumption have not been examined. The present experiments were conducted to investigate the possible role of MAP kinase in FSH-induced and spontaneous oocyte meiotic resumption in the mouse. MAP kinase kinase (MAPKK, MEK) inhibitor, PD98059 or U0126, produced a dose-dependent inhibitory effect on both FSH-induced oocyte meiotic resumption and MAP kinase activation in the oocytes. However, the same inhibitor did not block spontaneous meiotic resumption of either denuded or cumulus cell-enclosed mouse oocytes, despite the activity of MAP kinase being totally inhibited. Immunoblotting the oocytes and the cumulus cells with the anti-active MAP kinase antibody showed that MAP kinase activity in the oocytes was detected at 8 h of FSH treatment, prior to germinal vesicle breakdown and increased as maturation progressed in the following culture period. In the cumulus cells, MAP kinase was activated even faster, its activity was detected at 1 h of FSH stimulation and increased gradually until 8 h of FSH treatment, then decreased and diminished after 12 h of FSH action. These data demonstrated that the MEK-MAP kinase pathway is implicated in FSH-induced but not spontaneous oocyte meiotic resumption.
Collapse
Affiliation(s)
- Y Q Su
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
85
|
Shimada M, Zeng WX, Terada T. Inhibition of phosphatidylinositol 3-kinase or mitogen-activated protein kinase kinase leads to suppression of p34(cdc2) kinase activity and meiotic progression beyond the meiosis I stage in porcine oocytes surrounded with cumulus cells. Biol Reprod 2001; 65:442-8. [PMID: 11466212 DOI: 10.1095/biolreprod65.2.442] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In this study, the effects of U0126 that inhibits the activity of mitogen-activated protein (MAP) kinase kinase (MEK), and LY294002, which is a phosphatidylinositol (PI) 3-kinase inhibitor, on meiotic progression beyond the metaphase I (MI) stage in porcine oocytes were examined. Cumulus-oocyte complexes (COCs) were cultured for 22 h with 50 microM LY294002 or 10 microM U0126 following cultivation for the initial 22 h. MAP kinase activity in oocytes cultured with LY294002 or U0126 was significantly lower than that in control oocytes cultured for up to 44 h. U0126 and LY294002 significantly decreased p34(cdc2) kinase activity and the proportion of oocytes reaching the MII stage compared to those in control oocytes. Oocytes denuded after COCs had been cultured for 22 h were cultured further for 22 h with U0126 or LY294002. In the denuded oocytes, U0126 suppressed MAP kinase activity, p34(cdc2) kinase activity, and meiotic progression to the MII stage; however, LY294002 did not significantly affect the activity of these kinases and meiotic progression. These results suggest that increasing MAP kinase activity in oocytes via the PI 3-kinase signaling pathway in cumulus cells is involved in the stimulation of maturation promoting factor, leading to meiotic progression beyond the MI to MII stage in porcine oocytes.
Collapse
Affiliation(s)
- M Shimada
- Faculty of Applied Biological Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | | | | |
Collapse
|
86
|
Sugiura K, Naito K, Iwamori N, Kagii H, Goto S, Ohashi S, Yamanouchi K, Tojo H. Germinal vesicle materials are not required for the activation of MAP kinase in porcine oocyte maturation. Mol Reprod Dev 2001; 59:215-20. [PMID: 11389557 DOI: 10.1002/mrd.1025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The requirement of the germinal vesicle (GV) for the normal kinetics of mitogen-activated protein (MAP) kinase activity during porcine oocyte maturation was investigated. Porcine follicular oocytes were enucleated, and the locations of their extracellular signal-regulated kinases 1 and 2 (ERK1/2), major MAP kinases in maturating porcine oocytes, were detected by indirect immunofluorescent microscopy. The MAP kinase activity was assayed as myelin basic protein (MBP) kinase activity, and the phosphorylation states of ERK1/2 were detected by immunoblotting analyses. Translocation of MAP kinase into the GV and association with the spindle were observed in intact oocytes, while MAP kinase in enucleated oocytes was distributed almost uniformly in cytoplasm throughout the culturing period. The phosphorylation and the activation of MAP kinase were induced, and the activity was comparable with that of control denuded oocytes. The high level of activity was maintained through maturation, even in the absence of spindle formation. These results indicate that the presence of nuclear material and translocation into the GV are dispensable for the activation of MAP kinase and that associating with the spindle is not required for maintenance of its activity though porcine oocyte maturation.
Collapse
Affiliation(s)
- K Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural Sciences, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Gordo AC, He CL, Smith S, Fissore RA. Mitogen activated protein kinase plays a significant role in metaphase II arrest, spindle morphology, and maintenance of maturation promoting factor activity in bovine oocytes. Mol Reprod Dev 2001; 59:106-14. [PMID: 11335952 DOI: 10.1002/mrd.1012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mammalian oocytes are arrested at the G2/M transition of the first meiotic division from which, after reaching full size and subsequent to an LH surge, they undergo final maturation. Oocyte maturation, which involves germinal vesicle breakdown, progression through metaphase I (MI), and arrest at MII, is triggered and regulated by the coordinated action of two kinases, maturation promoting factor (MPF) and mitogen activated protein kinase (MAPK). The importance of the role of MPF in mammalian oocyte maturation is well established, while the role of MAPK, although well understood in mouse oocytes, has not been fully elucidated in oocytes of large domestic species, especially bovine oocytes. Here we show that injection of MKP-1 mRNA, which encodes a dual specificity MAPK phosphatase, into germinal vesicle stage bovine oocytes prevents the activation of MAPK during maturation. Despite the lack of MAPK activity, MKP-1-injected oocytes resume and progress through meiosis, although they are unable to arrest at MII stage and, by 22-26-hour post-maturation, exhibit decondensed pronucleus-like chromatin, a clear sign of parthenogenetic activation. MKP-1-injected bovine oocytes exhibit normal activation of MPF activity; however, by 18-hour post-maturation, MPF activity starts to decline and by 22-26 hr MPF activity is absent. MKP-1-injected oocytes also show disorganized MII spindles with poorly aligned chromosomes. In summary, our results demonstrate that in bovine oocytes MAPK activity is required for MII arrest, maintenance of MPF activity, and spindle organization.
Collapse
Affiliation(s)
- A C Gordo
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
88
|
Wehrend A, Meinecke B. Kinetics of meiotic progression, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the length of the meiotic stages. Anim Reprod Sci 2001; 66:175-84. [PMID: 11348780 DOI: 10.1016/s0378-4320(01)00094-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The kinetics of nuclear maturation, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes were examined. A further objective was to determine the duration of the meiotic stages during the maturation process. Porcine and bovine cumulus-oocyte complexes (COCs) were incubated in TCM 199 supplemented with 20% (v/v) heat inactivated fetal calf serum (FCS), 0.05microg/ml gentamycin, 0.02mg/ml insulin, 2.5microg/ml FSH and 5microg/ml LH. COCs were removed from the culture media in hourly intervals starting immediately after recovery from the follicle until 24 (bovine) or 48h (porcine) of culture. Oocytes were either fixed to evaluate the maturation status or the activity of MPF, assessed by its histone H1 kinase activity, and MAP kinase were determined by a radioactive assay simultaneously. In oocytes of both species, the MPF activity oscillated during the culture period with two maxima corresponding with the two metaphases: between 27-32 and after 46h (porcine) and between 6-9 and after 22h (bovine). There was a temporary decline in activity after 33-38 (porcine) and after 19h (bovine), which corresponded with anaphase I and telophase I. MAP kinase activity increased during the whole culture period and reached maximum levels after 47 (porcine) and after 22h (bovine). In porcine oocytes, the MAP kinase was activated before GVBD and MPF activation. In bovine oocytes, MPF and MAP kinase were activated at approximately the same time as the GVBD (8-9h of incubation). In average porcine, oocytes remain 23.4h in the germinal vesicle (GV) stage (13h in GV I, 5.7h in GV II, 3.2h in GV III and 1.5h in GV IV), 0.9h in diakinese, 9.6h in the metaphase I, 2.8h in anaphase I and 1.9h in telophase I of the first meiotic division. In bovine oocytes, the temporal distribution of the meiotic stages were 8.5h for the GV stage, 1.2h for diakinese, 8.3h for metaphase I, 1.6h for anaphase I and 1.9h for telophase I. These results indicate that the duration of the meiotic stages differs between the species and that MAP kinase is activated before MPF and GVBD in porcine oocytes.
Collapse
Affiliation(s)
- A Wehrend
- Clinic for Obstetrics, Gynaecology and Andrology of Large and Small Animals, Justus-Liebig-University, Frankfurter Str. 106, D-35392, Giessen, Germany
| | | |
Collapse
|
89
|
Lu Q, Smith GD, Chen DY, Yang Z, Han ZM, Schatten H, Sun QY. Phosphorylation of mitogen-activated protein kinase is regulated by protein kinase C, cyclic 3',5'-adenosine monophosphate, and protein phosphatase modulators during meiosis resumption in rat oocytes. Biol Reprod 2001; 64:1444-50. [PMID: 11319150 DOI: 10.1095/biolreprod64.5.1444] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase, protein kinase C (PKC), cAMP, and okadaic acid (OA)-sensitive protein phosphatases (PPs) have been suggested to be involved in oocyte meiotic resumption. However, whether these protein kinases and phosphatases act by independent pathways or interact with each other in regulating meiosis resumption is unknown. In the present study, we aimed to determine the regulation of meiosis resumption and MAP kinase phosphorylation by PKC, cAMP, and OA-sensitive PPs in rat oocytes using an in vitro oocyte maturation system and Western blot analysis. We found that ERK1 and ERK2 isoforms of MAP kinases existed in a dephosphorylated (inactive) form in germinal vesicle breakdown (GVBD)-incompetent and GVBD-competent germinal vesicle intact (GVI) oocytes as well as GVBD oocytes at equivalent levels. These results indicate that MAP kinases are not responsible for the initiation of normal meiotic resumption in rat oocytes. However, when GVBD-incompetent and GVBD-competent oocytes were incubated in vitro for 5 h, MAP kinases were phosphorylated (activated) in GVBD-competent oocytes, but not in meiotic-incompetent oocytes, suggesting that oocytes acquire the ability to phosphorylate MAP kinase during acquisition of meiotic competence. We also found that both meiosis resumption and MAP kinase phosphorylation were inhibited by PKC activation or cAMP elevation. Moreover, these inhibitory effects were overcome by OA, which inhibited PP1/PP2A activities. These results suggest that both cAMP elevation and PKC activation inhibit meiosis resumption and MAP kinase phosphorylation at a step prior to OA-sensitive protein phosphatases. In addition, inhibitory effects of cAMP elevation on meiotic resumption and MAP kinase phosphorylation were not reversed by calphostin C-induced PKC inactivation, indicating that cAMP inhibits both meiotic resumption and MAP kinase activation in a PKC-independent manner.
Collapse
Affiliation(s)
- Q Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing 100080, P.R. China
| | | | | | | | | | | | | |
Collapse
|
90
|
Shimada M, Terada T. Phosphatidylinositol 3-kinase in cumulus cells and oocytes is responsible for activation of oocyte mitogen-activated protein kinase during meiotic progression beyond the meiosis I stage in pigs. Biol Reprod 2001; 64:1106-14. [PMID: 11259256 DOI: 10.1095/biolreprod64.4.1106] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The roles of phosphatidylinositol 3-kinase (PI 3-kinase) during meiotic progression beyond the meiosis I (MI) stage in porcine oocytes were investigated. PI 3-kinase exists in cumulus cells and oocytes, and the PI 3-kinase inhibitor, LY294002, suppressed the activation of mitogen-activated protein (MAP) kinase in denuded oocytes during the beginning of the treatment. However, in denuded oocytes cultured with LY294002, the MAP kinase activity steadily increased, and at 48 h of cultivation MAP kinase activity, p34(cdc2) kinase activity, and proportion of oocytes that had reached the meiosis II (MII) stage were at a similar level to those of oocytes cultured without LY294002. In contrast, LY294002 almost completely inhibited the activation of MAP kinase, p34(cdc2) kinase activity, and meiotic progression to the MII stage in oocytes surrounded with cumulus cells throughout the treatment. Treating cumulus oocyte complexes (COCs) with LY294002 produced a significant decrease in the phosphorylation of connexin-43, a gap junctional protein, in cumulus cells compared with that in COCs cultured without LY294002. These results indicate that PI 3-kinase activity in cumulus cells contributes to the activation of MAP kinase and p34(cdc2) kinase, and to meiotic progression beyond the MI stage. Moreover, gap junctional communications between cumulus cells and oocytes may be closed by phosphorylation of connexin-43 through PI 3-kinase activation in cumulus cells, leading to the activation of MAP kinase in porcine oocytes.
Collapse
Affiliation(s)
- M Shimada
- Faculty of Applied Biological Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | |
Collapse
|
91
|
Sun QY, Lai L, Park KW, Kühholzer B, Prather RS, Schatten H. Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro. Biol Reprod 2001; 64:879-89. [PMID: 11207204 DOI: 10.1095/biolreprod64.3.879] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The role of microfilaments, microtubules, and mitogen-activated protein (MAP) kinase in regulation of several important dynamic events of porcine oocyte maturation and fertilization is described. Fluorescently labeled microfilaments, microtubules, and cortical granules were visualized using either epifluorescence microscopy or laser scanning confocal microscopy. Mitogen-activated protein kinase phosphorylation was revealed by Western immunoblotting. We showed that 1) microfilament disruption did not affect meiosis resumption and metaphase I meiotic apparatus formation but inhibited further cell cycle progression (chromosome separation) even though MAP kinase was phosphorylated; 2) cortical granule (CG) migration was driven by microfilaments (but not microtubules), and once the chromosomes and CGs were localized beneath the oolemma their anchorage to the cortex was independent of either microfilaments or microtubules; 3) neither microfilaments nor microtubules were involved in CG exocytosis during oocyte activation; 4) sperm incorporation was mediated by microfilaments, while pronuclear (PN) syngamy was controlled by microtubules rather than microfilaments; 5) spindle microtubule organization was temporally correlated with MAP kinase phosphorylation, while the extensive microtubule organization in the sperm aster that is required for PN apposition and syngamy occurred in the absence of MAP kinase activation; and 6) MAP kinase phosphorylation did not change either when microtubules were disrupted by nocodazole or when cytoplasmic microtubule asters were induced by taxol. The present study suggests that the role of the cytoskeleton during porcine oocyte maturation is similar to that of rodents, while the mechanisms of fertilization in pig resemble those of lower vertebrates.
Collapse
Affiliation(s)
- Q Y Sun
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
92
|
Azuma T, Ikeda S, Kondo T, Imai H, Yamada M. Ethylenediamine-N,N,N',N'-tetraacetic acid induces parthenogenetic activation of porcine oocytes at the germinal vesicle stage, leading to formation of blastocysts. Biol Reprod 2001; 64:647-53. [PMID: 11159369 DOI: 10.1095/biolreprod64.2.647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The present study showed that treatment with a cell membrane-impermeable metal ion chelator, EDTA, of porcine oocytes at the germinal vesicle (GV) stage collected from follicles 2-6 mm in diameter induced artificial activation followed by formation of a pronucleus (PN). When the oocytes were cultured for 48 h in medium containing 0.1 to 2 mM EDTA disodium salt (Na-EDTA), they were activated to form PN, and the maximum PN formation rate (63%, n = 68) was achieved in oocytes cultured with 1 mM Na-EDTA. More than 90% of oocytes activated by 1 mM Na-EDTA treatment formed 1 PN without emission of the first and the second polar bodies (PB). This result suggests that EDTA at 1 mM may force the maturing (meiosis I) oocytes to form a PN without chromosome segregation. When oocytes at the GV stage that had been cultured with 1 mM Na-EDTA for 48 h were further cultured in 0.4% BSA-containing NCSU23 medium for 144 h, blastocysts that appeared to be morphologically normal were formed at the rate of 10%, whereas no blastocysts were formed from oocytes that had not been cultured with Na-EDTA. Next we examined the effects of Ca2+, Zn2+, Fe3+, or Cu2+-saturated EDTA (Ca-EDTA, Zn-EDTA, Fe-EDTA, and Cu-EDTA, respectively), and a Ca2+-specific chelator, EGTA, at a concentration of 1 mM. The Ca-EDTA, Fe-EDTA, and Cu-EDTA, but not Zn-EDTA or EGTA, had the ability to activate the oocytes. From these results, it is suggested that extracellular chelation of Zn2+ with EDTA of maturing (meiosis I) porcine oocytes results in parthenogenetic activation of the oocytes, which induces PN formation followed by development to blastocysts.
Collapse
Affiliation(s)
- T Azuma
- Laboratory of Reproductive Physiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
93
|
Capco DG. Molecular and biochemical regulation of early mammalian development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 207:195-235. [PMID: 11352267 DOI: 10.1016/s0074-7696(01)07006-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fertilization initiates a rapid series of changes that restructures the egg into the zygote and initiates the program of early development. These changes in the cell occur while the genetic complement of the egg and sperm are in a highly condensed state and unable to participate in transcription. The egg cytoplasm, formed by the maternal genome, contains the necessary components that mediate the early restructuring of egg into zygote. These changes are mediated by a series of cytoplasmic signal transduction events initiated by the rise in [Ca2+]i caused when the sperm penetrates the egg. The structural changes that the egg undergoes are rapid and result in the extensive remodeling of this specialized cell. Protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaM KII) are two pivotal signaling agents that mediate several of these rapid modifications in cell structure. Studies indicate the meiotic spindle serves as an architectural element in the egg that acts to colocalize elements from several of the key signaling pathways and may provide a means for these pathways to interact. In mammals, transcription begins earlier than in zygotes from other classes of organisms, starting several hours after fertilization in the male and female pronuclei and continuing in the embryonic nuclei. Studies indicate that nuclei undergo an initial state that is permissive for transcription, and then in Gap 2 of the two-cell embryo, enter a transcriptionally repressive state. These changes have been linked to the times during the cell cycle when the DNA is replicated, and also have been proposed as a requirement for proper initiation of the program of early development.
Collapse
Affiliation(s)
- D G Capco
- Department of Biology, Molecular and Cellular Biology Program, Arizona State University, Tempe 85287, USA
| |
Collapse
|
94
|
Tachibana K, Tanaka D, Isobe T, Kishimoto T. c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes. Proc Natl Acad Sci U S A 2000; 97:14301-6. [PMID: 11121036 PMCID: PMC18913 DOI: 10.1073/pnas.97.26.14301] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The meiotic cycle reduces ploidy through two consecutive M phases, meiosis I and meiosis II, without an intervening S phase. To maintain ploidy through successive generations, meiosis must be followed by mitosis after the recovery of diploidy by fertilization. However, the coordination from meiotic to mitotic cycle is still unclear. Mos, the c-mos protooncogene product, is a key regulator of meiosis in vertebrates. In contrast to the previous observation that Mos functions only in vertebrate oocytes that arrest at meiotic metaphase II, here we isolate the first invertebrate mos from starfish and show that Mos functions also in starfish oocytes that arrest after the completion of meiosis II but not at metaphase II. In the absence of Mos, meiosis I is followed directly by repeated embryonic mitotic cycles, and its reinstatement restores meiosis II and subsequent cell cycle arrest. These observations imply that after meiosis I, oocytes have a competence to progress through the embryonic mitotic cycle, but that Mos diverts the cell cycle to execute meiosis II and remains to restrain the return to the mitotic cycle. We propose that a role of Mos that is conserved in invertebrate and vertebrate oocytes is not to support metaphase II arrest but to prevent the meiotic/mitotic conversion after meiosis I until fertilization, directing meiosis II to ensure the reduction of ploidy.
Collapse
Affiliation(s)
- K Tachibana
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Japan
| | | | | | | |
Collapse
|
95
|
Liu H, Zhang J, Krey LC, Grifo JA. In-vitro development of mouse zygotes following reconstruction by sequential transfer of germinal vesicles and haploid pronuclei. Hum Reprod 2000; 15:1997-2002. [PMID: 10967003 DOI: 10.1093/humrep/15.9.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We evaluated whether mouse oocytes reconstructed by germinal vesicle (GV) transfer can develop to blastocyst stage. The oocytes were artificially activated with sequential treatment of A23187 and anisomycin; fertilization was then established by transfer or exchange of pronuclei with those of zygotes fertilized in vivo. Type 1 zygotes were constructed by placing the male haploid pronucleus from a zygote into the cytoplasm of an oocyte that underwent GV transfer, in-vitro maturation and activation; for type 2 zygotes, the female pronucleus was removed from a zygote and replaced with the female pronucleus of an oocyte subjected to GV transfer, in-vitro maturation and activation. Karyotypes of activated oocytes and type 2 zygotes were also subjected to analysis. When cultured in human tubal fluid (HTF) medium, reconstructed oocytes matured and, following artificial activation, consistently developed a pronucleus with a haploid karyotype; the activation rate for this medium was two- to three-fold higher than that of oocytes cultured in M199 (87% versus 30% respectively). Following transfer of a male pronucleus, only 47% of the type 1 zygotes developed to morula or blastocyst stage and embryo morphology was poor. In contrast, 73% of the type 2 zygotes developed to morula or blastocyst stage, many even hatching, with few morphological anomalies. Normal karyotypes were observed in 88% of the type 2 zygotes analysed. These observations demonstrate that the nucleus of a mouse oocyte subjected to sequential nuclear transfer at GV and pronucleus stages is, nonetheless, capable of maturing meiotically, activating normally and supporting embryonic development to hatching blastocyst stage. In contrast, the developmental potential of the cytoplasm of such oocytes appears to be compromised by these procedures.
Collapse
Affiliation(s)
- H Liu
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York 10016, USA
| | | | | | | |
Collapse
|
96
|
Galat VV. Investigation of assisted fertilization and biology of reproduction by sperm microinjection. Russ J Dev Biol 2000. [DOI: 10.1007/bf02758748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
97
|
KAGII H, NAITO K, SUGIURA K, IWAMORI N, OHASHI S, GOTO S, YAMANOUCHI K, TOJO H. Requirement of Mitogen-Activated Protein Kinase Activation for the Meiotic Resumption of Porcine Oocytes. J Reprod Dev 2000. [DOI: 10.1262/jrd.46.249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hideyuki KAGII
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kunihiko NAITO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji SUGIURA
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoki IWAMORI
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi OHASHI
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seitaro GOTO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keitaro YAMANOUCHI
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki TOJO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
98
|
Hirao Y, Eppig JJ. Analysis of the mechanism(s) of metaphase I-arrest in strain LT mouse oocytes: delay in the acquisition of competence to undergo the metaphase I/anaphase transition. Mol Reprod Dev 1999; 54:311-8. [PMID: 10497353 DOI: 10.1002/(sici)1098-2795(199911)54:3<311::aid-mrd12>3.0.co;2-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fully grown oocytes of most laboratory mice progress without interruption from the germinal vesicle (GV) stage to metaphase II, where meiosis is arrested until fertilization. In contrast, many oocytes of strain LT mice arrest precociously at metaphase I and often undergo subsequent spontaneous parthenogenetic activation. Cytostatic factor (CSF), which prevents the degradation of cyclin B and maintains high maturation-promoting factor (MPF) activity, is required for maintenance of metaphase I-arrest in LT oocytes, similar to its requirement for maintaining metaphase II-arrest in normal oocytes. However, CSF does not instigate metaphase I-arrest since a temporary metaphase I-arrest occurs in MOS-null LT oocytes. This paper addresses the mechanism(s) that may instigate metaphase I-arrest and tests the hypothesis that there may be one or more defects in LT oocytes that delay their acquisition of competence to trigger the cascade of processes that normally drive entry into and progression through anaphase I. To test this hypothesis, MPF activity was artificially abrogated by treating oocytes with a general protein kinase inhibitor, 6-DMAP, at various times during the progression of meiosis I. This allowed a comparison of the time at which LT and normal oocytes become competent to undergo the metaphase I/anaphase transition even if oocytes were arrested at metaphase I when 6-DMAP-treatment was begun. There were no differences between LT and control oocytes in the kinetics of MPF suppression by 6-DMAP. However, it was found that LT oocytes do not acquire competence to undergo the metaphase I/anaphase transition in response to 6-DMAP until 50-60 min after normal oocytes. A similar delay was observed in strain CX8-4 oocytes, which also have a high incidence of metaphase I-arrest, but not in strain CX8-11 oocytes, which exhibit a low incidence of metaphase I-arrest. MOS-null LT oocytes also exhibit a delay in acquisition of competence to undergo the metaphase I/anaphase transition. Thus, a delay in competence to undergo the metaphase I/anaphase transition in response to 6-DMAP-treatment correlates with metaphase I-arrest. It is therefore hypothesized that the observed delay in acquisition of competence to enter anaphase I may instigate the sustained metaphase I-arrest in LT oocytes by allowing CSF activity to rise to a level that prevents cyclin B degradation and maintains high MPF activity before anaphase can be initiated by normal triggering mechanisms.
Collapse
Affiliation(s)
- Y Hirao
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | |
Collapse
|
99
|
Mowat MR, Stewart N. Mechanisms of cell cycle blocks at the G2/M transition and their role in differentiation and development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:73-100. [PMID: 9928527 DOI: 10.1007/978-3-642-72149-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- M R Mowat
- Manitoba Institute of Cell Biology, Manitoba Cancer Treatment and Research Foundation, Winnipeg, Canada
| | | |
Collapse
|
100
|
Abstract
OBJECTIVES Correlations between parental age, aneuploidy in germ cells and recent findings on aetiological factors in mammalian trisomy formation are reviewed. METHODS Data from observations in human oocytes, molecular studies on the origin of extra chromosomes in trisomies, experiments in a mouse model system, and transgenic approaches are shown. RESULTS Errors in chromosome segregation are most frequent in meiosis I of oogenesis in mammals and predominantly predispose specific chromosomes and susceptible chiasmate configurations to maternal age-related nondisjunction. Studies on spindle structure, cell cycle and chromosome behaviour in oocytes of the CBA/Ca mouse used as a model for the maternal age-effect suggest that hormonal homeostasis and size of the follicle pool influence the quality, maturation competence and spindle size of the mammalian oocyte. Predisposition to errors in chromosome segregation are critically dependent on altered cell cycles. Compromised protein synthesis and mitochondrial function affect maturation kinetics and spindle formation, and cause untimely segregation of chromosomes (predivision), mimicking an aged phenotype. CONCLUSIONS Altered cell cycles and untimely resolution of chiasmata but also nondisjunction of late segregating homologues caused by asynchrony in cytoplasmic and nuclear maturation appear to be causal to errors in chromosome segregation with advanced maternal age. Oocytes appear to lack checkpoints guarding against untimely chromosome segregation. Genes and exposures affecting pool size, hormonal homeostasis and interactions between oocytes and their somatic compartment and thus quality of follicles and oocytes have the potential to critically influence chromosome distribution in female meiosis and affect fertility in humans and other mammals.
Collapse
|