51
|
Patisaul HB, Mabrey N, Adewale HB, Sullivan AW. Soy but not bisphenol A (BPA) induces hallmarks of polycystic ovary syndrome (PCOS) and related metabolic co-morbidities in rats. Reprod Toxicol 2014; 49:209-18. [PMID: 25242113 DOI: 10.1016/j.reprotox.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/31/2014] [Accepted: 09/10/2014] [Indexed: 01/14/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is the most common female endocrine disorder with a prevalence as high as 8-15% depending on ethnicity and the diagnostic criteria employed. The basic pathophysiology and mode of inheritance remain unclear, but environmental factors such as diet, stress and chemical exposures are thought to be contributory. Developmental exposure to endocrine disrupting compounds (EDCs) have been hypothesized to exacerbate risk, in part because PCOS hallmarks and associated metabolic co-morbidities can be reliably induced in animal models by perinatal androgen exposure. Here we show that lifetime exposure to a soy diet, containing endocrine active phytoestrogens, but not developmental exposure (gestational day 6-lactational day 40) to the endocrine disrupting monomer bisphenol A (BPA), can induce key features of PCOS in the rat; results which support the hypothesis that hormonally active diets may contribute to risk when consumed throughout gestation and post-natal life.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| | - Natalie Mabrey
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather B Adewale
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Alana W Sullivan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
52
|
Cruz G, Foster W, Paredes A, Yi KD, Uzumcu M. Long-term effects of early-life exposure to environmental oestrogens on ovarian function: role of epigenetics. J Neuroendocrinol 2014; 26:613-24. [PMID: 25040227 PMCID: PMC4297924 DOI: 10.1111/jne.12181] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/22/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Oestrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is considered that developmental exposure to environmental oestrogens can disrupt neural and reproductive tract development, potentially resulting in long-term alterations in neurobehaviour and reproductive function. Many chemicals have been shown to have oestrogenic activity, whereas others affect oestrogen production and turnover, resulting in the disruption of oestrogen signalling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on oestrogen-sensitive target tissues. Hence, alternative mechanisms are assumed to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including oestrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying the disruption of ovarian follicular development. In addition, we discuss how exposure to environmental oestrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology.
Collapse
Affiliation(s)
- Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Correspondence to: Gonzalo Cruz, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile. 2360102, Tel. 56 32 2508015,
| | - Warren Foster
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Alfonso Paredes
- Laboratorio de Neurobioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - Kun Don Yi
- Syngenta Crop Protection, LLC. Greensboro, NC
| | - Mehmet Uzumcu
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
53
|
Soy isoflavones administered to rats from weaning until sexual maturity affect ovarian follicle development by inducing apoptosis. Food Chem Toxicol 2014; 72:51-60. [PMID: 25035168 DOI: 10.1016/j.fct.2014.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 01/25/2023]
Abstract
Twenty-one-day-old female Wistar rats were treated daily with orally administered soy isoflavones (SIFs) at concentrations of 50, 100, or 200 mg/kg body weight from weaning until sexual maturity (3 mo.), and ovarian follicle development was evaluated. At the end of the treatment period, the ultrastructure of the ovarian granulosa cells was examined by transmission electron microscopy. The apoptotic cell death of ovarian granulosa cells was detected using TUNEL staining. The mRNA expression levels of caspase-3, caspase-8, caspase-9, Bcl2, Bax, and Fas were determined by real-time quantitative PCR. The protein expression levels of caspase-3, Bcl2, Bax, and Fas were determined by western blotting. Our data showed that exposure to SIFs resulted in morphological changes consistent with ovarian granulosa cell apoptosis. The percentage of TUNEL-positive granulosa cells was increased. The mRNA expression levels of the apoptosis-related genes caspase-3, caspase-8, caspase-9, Bax, and Fas increased significantly. The protein levels of Bax, Fas, and cleaved caspase-3 were also increased. These results indicate that the exposure of rats to modest doses of SIFs from weaning until sexual maturity can affect ovarian follicle development by inducing apoptosis. The mechanism of SIF-induced alterations in ovarian follicle development may involve the activation of Fas-mediated and Bcl2/Bax-mediated apoptotic signaling pathways.
Collapse
|
54
|
Zhang T, Li L, Qin XS, Zhou Y, Zhang XF, Wang LQ, De Felici M, Chen H, Qin GQ, Shen W. Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial follicle assembly in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:343-353. [PMID: 24458533 DOI: 10.1002/em.21847] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Bisphenol-A (BPA) and diethylhexyl phthalate (DEHP) are estrogenic compounds widely used in commercial plastic products. Previous studies have shown that exposure to such compounds have adverse effects on various aspects of mammalian reproduction including folliculogenesis. The objective of this study was to examine the effects of BPA and DEHP exposure on primordial follicle formation. We found that germ cell nest breakdown and primordial follicle assembly were significantly reduced when newborn mouse ovaries were exposed to 10 or 100 μM BPA and DEHP in vitro. Moreover, BPA and DEHP exposure increased the number of TUNEL positive oocytes and the mRNA level of the pro-apoptotic gene Bax in oocytes. These effects were associated with decreased expression of oocyte specific genes such as LIM homeobox 8 (Lhx8), factor in the germline alpha (Figla), spermatogenesis and oogenesis helix-loop-helix (Sohlh2), and newborn ovary homeobox (Nobox). Interestingly, BPA and DEHP exposure also prevented DNA demethylation of CpG sites of the Lhx8 gene in oocytes, a process normally associated with folliculogenesis. Finally, folliculogenesis was severely impaired in BPA and DEHP exposed ovaries after transplantation into the kidney capsules of immunodeficient mice. In conclusion, BPA and DEHP exposures impair mouse primordial follicle assembly in vitro.
Collapse
Affiliation(s)
- Teng Zhang
- Laboratory of Germ Cell Biology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Gaytán F, Morales C, Manfredi-Lozano M, Tena-Sempere M. Generation of multi-oocyte follicles in the peripubertal rat ovary: link to the invasive capacity of granulosa cells? Fertil Steril 2014; 101:1467-76. [PMID: 24581577 DOI: 10.1016/j.fertnstert.2014.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To assess the presence and numbers of multi-oocyte follicles (MOFs) in the rat ovary at different stages of postnatal maturation. DESIGN Animal (rat) study. SETTING Research laboratory. ANIMAL(S) Female Wistar rats. INTERVENTION(S) Histologic/morphometric analyses in ovaries from infantile, juvenile, pubertal, and adult female rats. MAIN OUTCOME MEASURE(S) Numbers and characteristics of MOFs in rat ovaries at different stages of postnatal maturation. RESULT(S) Female rats displayed low numbers (<5/ovary) of MOFs in the infantile period (postnatal day [PND] 15). The occurrence of MOFs increased sharply by PND-21 and remained at high values (>15/ovary) up to PND-60, to decline thereafter by PND-90. The presence of irregularly shaped and connected adjacent follicles, together with the identification of ruptures at the follicle surface and the occasional invasion of the ovarian stroma by granulosa cells, strongly suggests that the majority of MOFs in peripubertal rats are generated by fusion of adjacent growing follicles. CONCLUSION(S) A new mechanism for the generation of MOFs linked to the potential invasive capacity of granulosa cells is proposed. The basis for the upsurge in the generation of MOFs during the peripubertal period and whether, as predictable, this phenomenon is applicable to other mammalian species warrant further investigation.
Collapse
Affiliation(s)
- Francisco Gaytán
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigaciones Biomédicas/Hospital Universitario Reina Sofia, Córdoba, Spain.
| | | | - María Manfredi-Lozano
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigaciones Biomédicas/Hospital Universitario Reina Sofia, Córdoba, Spain.
| |
Collapse
|
56
|
Li R, Zhao F, Diao H, Xiao S, Ye X. Postweaning dietary genistein exposure advances puberty without significantly affecting early pregnancy in C57BL/6J female mice. Reprod Toxicol 2013; 44:85-92. [PMID: 24365114 DOI: 10.1016/j.reprotox.2013.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 01/06/2023]
Abstract
An epidemiological study indicates higher plasma level of genistein in girls with earlier puberty. This study tests the hypothesis in C57BL/6J mice that postweaning (peripubertal) dietary genistein exposure could result in earlier puberty in females assessed by vaginal opening, estrous cyclicity, corpus luteum and mammary gland development. Newly weaned female mice were fed with 0, 5, 100, or 500 ppm genistein diets. Decreased age at vaginal opening, increased length on estrus stage, and accelerated mammary gland development were detected in 100 and 500 ppm genistein-treated groups. Increased presence of corpus luteum was found in 5 ppm genistein-treated group at 6 weeks old only. Increased expression of epithelial-specific genes but not that of ERα or ERβ was detected in 500 ppm genistein-treated mammary glands at 5 weeks old. No significant adverse effect on embryo implantation was observed. These data demonstrate causal effect of dietary genistein on earlier puberty in female mice.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Fei Zhao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
57
|
Richardson M, Guo M, Fauser B, Macklon N. Environmental and developmental origins of ovarian reserve. Hum Reprod Update 2013; 20:353-69. [DOI: 10.1093/humupd/dmt057] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
58
|
Zhen AW, Nguyen NH, Gibert Y, Motola S, Buckett P, Wessling-Resnick M, Fraenkel E, Fraenkel PG. The small molecule, genistein, increases hepcidin expression in human hepatocytes. Hepatology 2013; 58:1315-25. [PMID: 23703590 PMCID: PMC3770762 DOI: 10.1002/hep.26490] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepcidin, a peptide hormone that decreases intestinal iron absorption and macrophage iron release, is a potential drug target for patients with iron overload syndromes because its levels are inappropriately low in these individuals. Endogenous stimulants of Hepcidin transcription include bone morphogenic protein 6 (BMP6) and interleukin-6 (IL-6) by effects on mothers against decapentaplegic homolog (Smad)4 or signal transducer and activator of transcription (Stat)3, respectively. We conducted a small-scale chemical screen in zebrafish embryos to identify small molecules that modulate hepcidin expression. We found that treatment with the isoflavone, genistein, from 28-52 hours postfertilization in zebrafish embryos enhanced Hepcidin transcript levels, as assessed by whole-mount in situ hybridization and quantitative real-time reverse-transcriptase polymerase chain reaction. Genistein's stimulatory effect was conserved in human hepatocytes: Genistein treatment of HepG2 cells increased both Hepcidin transcript levels and promoter activity. We found that genistein's effect on Hepcidin expression did not depend on estrogen receptor signaling or increased cellular iron uptake, but was impaired by mutation of either BMP response elements or the Stat3-binding site in the Hepcidin promoter. RNA sequencing of transcripts from genistein-treated hepatocytes indicated that genistein up-regulated 68% of the transcripts that were up-regulated by BMP6; however, genistein raised levels of several transcripts involved in Stat3 signaling that were not up-regulated by BMP6. Chromatin immunoprecipitation and ELISA experiments revealed that genistein enhanced Stat3 binding to the Hepcidin promoter and increased phosphorylation of Stat3 in HepG2 cells. CONCLUSION Genistein is the first small-molecule experimental drug that stimulates Hepcidin expression in vivo and in vitro. These experiments demonstrate the feasibility of identifying and characterizing small molecules that increase Hepcidin expression. Genistein and other candidate molecules may subsequently be developed into new therapies for iron overload syndromes.
Collapse
Affiliation(s)
- Aileen W Zhen
- Division of Hematology/Oncology Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical SchoolBoston, MA
| | - Nancy H Nguyen
- Division of Hematology/Oncology Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical SchoolBoston, MA
| | - Yann Gibert
- Metabolic Research Unit, Deakin School of MedicineGeelong, Victoria, Australia
| | - Shmulik Motola
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA
| | - Peter Buckett
- Department of Genetics and Complex Diseases and Department of Nutrition, Harvard School of Public HealthBoston, MA
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases and Department of Nutrition, Harvard School of Public HealthBoston, MA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA
| | - Paula G Fraenkel
- Division of Hematology/Oncology Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical SchoolBoston, MA,
Address reprint requests to: Paula Fraenkel, M.D., Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, SLD 423B, 330 Brookline Avenue, Boston, MA 02215. E-mail: ; fax: 866-345-0065
| |
Collapse
|
59
|
Nynca A, Swigonska S, Piasecka J, Kolomycka A, Kaminska B, Radziewicz-Pigiel M, Gut-Nagel M, Ciereszko RE. Biochanin A affects steroidogenesis and estrogen receptor-β expressionin porcine granulosa cells. Theriogenology 2013; 80:821-8. [DOI: 10.1016/j.theriogenology.2013.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
|
60
|
Su W, Guan X, Zhang D, Sun M, Yang L, Yi F, Hao F, Feng X, Ma T. Occurrence of multi-oocyte follicles in aquaporin 8-deficient mice. Reprod Biol Endocrinol 2013; 11:88. [PMID: 24020646 PMCID: PMC3847684 DOI: 10.1186/1477-7827-11-88] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Granulosa cells play a key role in folliculogenesis and female reproduction. Our previous study demonstrated that water channel aquaporin-8 (AQP8) is expressed in mouse follicular granulosa cells and is an important determinant of granulosa cell apoptosis and follicular maturation. More roles of AQP8 in folliculogenesis remain to be determined. FINDINGS The present study reports the increased occurrence of multi-oocyte follicles (MOFs) in ovaries of AQP8 knockout mice. The MOFs in AQP8-deficient ovaries contained two or three oocytes, and distributed at various follicle stages including primary (12.5%), secondary (50%), antral (18.8%) and atretic (18.8%) follicles in 5-week ovaries. The MOF is occasionally seen in wild-type ovary only in primary and secondary follicles. The number of MOFs in AQP8-deficient ovary reduced with age (26.7 +/- 5.2 per ovary at 5 weeks old, 14 +/- 5.5 at 10 weeks old, and 3.3 +/- 5.1 at 20 weeks old). mRNA expression of AQP5, AQP7, AQP8, AQP11 and AQP12 was detected in neonatal mouse ovaries and in granulosa cells in 4 week old mouse ovaries. The expression of AQP7, AQP11 and AQP12 mRNAs are decreased significantly in neonatal AQP8-deficient ovaries, whereas AQP5 mRNA expression remains unchanged. CONCLUSIONS The emergence of MOFs is associated with AQP8 deficiency. The study suggested the involvement of AQP8 in the formation of follicles and provided new insight into the molecular mechanisms of folliculogenesis.
Collapse
Affiliation(s)
- Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P.R. China
| | - Xingang Guan
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P.R. China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Di Zhang
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Meiyan Sun
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Longfei Yang
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Fei Yi
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Feng Hao
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Xuechao Feng
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
61
|
Wang W, Zhang W, Liu J, Sun Y, Li Y, Li H, Xiao S, Shen X. Metabolomic changes in follicular fluid induced by soy isoflavones administered to rats from weaning until sexual maturity. Toxicol Appl Pharmacol 2013; 269:280-9. [PMID: 23454585 DOI: 10.1016/j.taap.2013.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/06/2013] [Accepted: 02/11/2013] [Indexed: 01/29/2023]
Abstract
Female Wistar rats at 21 days of age were treated with one of three concentrations of soy isoflavones (SIF) (50, 100 or 200mg/kg body weight, orally, once per day) from weaning until sexual maturity (3 months) in order to evaluate the influence of SIF on ovarian follicle development. After treatment, the serum sex hormone levels and enumeration of ovarian follicles of the ovary were measured. The metabolic profile of follicular fluid was determined using HPLC-MS. Principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA) was used to identify differences in metabolites and reveal useful toxic biomarkers. The results indicated that modest doses of SIF affect ovarian follicle development, as demonstrated by decreased serum estradiol levels and increases in both ovarian follicle atresia and corpora lutea number in the ovary. SIF treatment-related metabolic alterations in follicular fluid were also found in the PCA and PLS-DA models. The 24 most significantly altered metabolites were identified, including primary sex hormones, amino acids, fatty acids and metabolites involved in energy metabolism. These findings may indicate that soy isoflavones affect ovarian follicle development by inducing metabolomic variations in the follicular fluid.
Collapse
Affiliation(s)
- Wenxiang Wang
- Department of Nutrition and Health Care, School of Public Health, Fujian Medical University, Fuzhou, Fujian, PR China
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Nynca A, Słonina D, Jablońska O, Kamińska B, Ciereszko R. Daidzein affects steroidogenesis and oestrogen receptor expression in medium ovarian follicles of pigs. Acta Vet Hung 2013; 61:85-98. [PMID: 23439294 DOI: 10.1556/avet.2012.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Daidzein, a phytoestrogen present in soybean products used in swine feed, has been demonstrated to affect both reproductive and endocrine functions. The aims of this study were to examine the in vitro effects of daidzein on (1) progesterone (P4) and oestradiol (E2) secretion by porcine luteinised granulosa cells harvested from medium follicles, and (2) the mRNA and protein expression of oestrogen receptors α and β (ERα and ERβ) in these cells. The influence of E2 on P4 secretion and ERα and ERβ expression in the granulosa cells of pigs was also investigated. It was found that daidzein inhibited progesterone secretion by luteinised granulosa cells isolated from medium follicles. In contrast, E2 did not affect progesterone production by these cells. Moreover, daidzein did not alter the granulosal secretion of E2. Both daidzein and E2 decreased mRNA expression of ERα in the cells examined. The expression of ERβ mRNA was not affected by daidzein but was inhibited by E2. ERα protein was not detected while ERβ protein was found in the nuclei of the cells. Daidzein and E2 upregulated the expression of ERβ protein in the cells. In summary, the phytoestrogen daidzein directly affected the porcine ovary by inhibiting progesterone production and increasing ERβ protein expression. Daidzein-induced changes in follicular steroidogenesis and granulosal sensitivity to oestrogens may disturb reproductive processes in pigs.
Collapse
Affiliation(s)
| | - Dominika Słonina
- 3 Polish Academy of Sciences Department of Cattle Reproduction Endocrinology, Institute of Animal Reproduction and Food Research Olsztyn Poland
| | - Olga Jablońska
- 1 University of Warmia and Mazury Department of Animal Physiology Olsztyn Poland
| | - Barbara Kamińska
- 1 University of Warmia and Mazury Department of Animal Physiology Olsztyn Poland
| | | |
Collapse
|
63
|
Xu J, Gridley T. Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles. BMC Biol 2013; 11:13. [PMID: 23406467 PMCID: PMC3606475 DOI: 10.1186/1741-7007-11-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/13/2013] [Indexed: 12/22/2022] Open
Abstract
Background In the mouse ovary, oocytes initially develop in clusters termed germ-cell nests. Shortly after birth, these germ-cell nests break apart, and the oocytes individually become surrounded by somatic granulosa cells to form primordial follicles. Notch signaling plays essential roles during oogenesis in Drosophila, and recent studies have suggested that Notch signaling also plays an essential role during oogenesis and ovary development in mammals. However, no in vivo loss-of-function studies have been performed to establish whether Notch family receptors have an essential physiological role during normal ovarian development in mutant mice. Results Female mice with conditional deletion of the Notch2 gene in somatic granulosa cells of the ovary exhibited reduced fertility, accompanied by the formation of multi-oocyte follicles, which became hemorrhagic by 7 weeks of age. Formation of multi-oocyte follicles resulted from defects in breakdown of the primordial germ-cell nests. The ovaries of the Notch2 conditional mutant mice had increased numbers of oocytes, but decreased numbers of primordial follicles. Oocyte numbers in the Notch2 conditional mutants were increased not by excess or extended cellular proliferation, but as a result of decreased oocyte apoptosis. Conclusions Our work demonstrates that Notch2-mediated signaling in the somatic-cell lineage of the mouse ovary regulates oocyte apoptosis non-cell autonomously, and is essential for regulating breakdown of germ-cell nests and formation of primordial follicles. This model provides a new resource for studying the developmental and physiological roles of Notch signaling during mammalian reproductive biology.
Collapse
Affiliation(s)
- Jingxia Xu
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
64
|
Salleh N, Helmy MM, Fadila KN, Yeong SO. Isoflavone genistein induces fluid secretion and morphological changes in the uteri of post-pubertal rats. Int J Med Sci 2013; 10:665-75. [PMID: 23569430 PMCID: PMC3619115 DOI: 10.7150/ijms.5207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/04/2013] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED A reported increase in the incidence of infertility following high genistein intake could be related to alteration in the normal fluid volume and morphology of the uterus in adult female. In view of this, we investigated the effect of this compound on fluid secretion, fluid volume and morphology of the uterus in post-pubertal rats. METHODS Ovariectomised SD rats were treated with 17-β oestradiol (E) (0.8 X 10(-4) mg/kg/day) and genistein (0.5, 5, 10, 25, 50 and 100 mg/kg/day) for three days. Following drug treatment, in-vivo uterine perfusion was performed and the rate of fluid secretion and the volume of fluid in the uterus were determined via changes in weight (μl/min) and F-dextran concentration of the perfusate respectively. The animals were then sacrificed and the uteri were removed for weight determination, morphological analyses and proliferative cell nuclear antigen (PCNA) expression analyses by Western blotting. RESULTS Subcutaneous genistein treatment resulted in a dose-dependent increase in fluid secretion rate, fluid volume and uterine wet weight. Treatment with 100 mg/kg/day genistein resulted in a remarkable increase in the rate of uterine fluid secretion, the volume of the uterine luminal fluid as well as the circumference of the uterine and uterine glandular lumen suggesting an excessive fluid accumulation. Meanwhile, there were evidence of glandular hyperplasia and an increase in the expression of PCNA following treatment with 50 and 100 mg/kg/day genistein. CONCLUSION High genistein intake could potentially cause adverse effects on the uterus by inducing excessive fluid secretion and accumulation as well as hyperplasia.
Collapse
Affiliation(s)
- Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
65
|
Nynca A, Nynca J, Wąsowska B, Kolesarova A, Kołomycka A, Ciereszko RE. Effects of the phytoestrogen, genistein, and protein tyrosine kinase inhibitor-dependent mechanisms on steroidogenesis and estrogen receptor expression in porcine granulosa cells of medium follicles. Domest Anim Endocrinol 2013; 44:10-8. [PMID: 22920265 DOI: 10.1016/j.domaniend.2012.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/01/2023]
Abstract
The use of soy-based products in pig diets had raised concerns regarding the reproductive toxicity of genistein, the predominant isoflavone in soybeans. Genistein was reported to exhibit weak estrogenic activity but its mechanism of action is not fully recognized. The aim of the study was to examine the in vitro effects of genistein on (1) progesterone (P(4)) and estradiol (E(2)) secretion by porcine granulosa cells harvested from medium follicles, (2) the viability of cultured granulosa cells, and (3) the mRNA and protein expression of estrogen receptors α and β (ERα and ERβ) in these cells. In addition, to verify the role of protein tyrosine kinase (PTK)-dependent mechanisms possibly involved in genistein biological action, we tested the effects of lavendustin C, the nonsteroidal PTK inhibitor, on granulosa cell steroidogenesis. We found that genistein inhibited (P < 0.05) basal P(4) secretion by granulosa cells harvested from medium follicles of pigs. In contrast, lavendustin C did not affect basal P(4) secretion by the cells. Moreover, genistein increased (P < 0.05) basal granulosal secretion of E(2). In contrast, lavendustin C did not alter basal E(2) secretion by porcine granulosa cells. In addition, we demonstrated that genistein increased mRNA and protein expression of ERβ (P < 0.05) in the examined cells. The expression of ERα mRNA was not affected by genistein and ERα protein was not detected in the cultured granulosa cells of pigs. In summary, the genistein action on follicular steroidogenesis in pigs involved changes in the granulosal expression of ERβ. However, the genistein action on P(4) and E(2) production by granulosa cells harvested from medium follicles did not seem to be associated with PTK.
Collapse
Affiliation(s)
- A Nynca
- Department of Animal Physiology, University of Warmia and Mazury, Olsztyn, Poland
| | | | | | | | | | | |
Collapse
|
66
|
Zin SRM, Omar SZ, Khan NLA, Musameh NI, Das S, Kassim NM. Effects of the phytoestrogen genistein on the development of the reproductive system of Sprague Dawley rats. Clinics (Sao Paulo) 2013; 68:253-62. [PMID: 23525324 PMCID: PMC3584289 DOI: 10.6061/clinics/2013(02)oa21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/26/2012] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Genistein is known to influence reproductive system development through its binding affinity for estrogen receptors. The present study aimed to further explore the effect of Genistein on the development of the reproductive system of experimental rats. METHODS Eighteen post-weaning female Sprague Dawley rats were divided into the following groups: (i) a control group that received vehicle (distilled water and Tween 80); (ii) a group treated with 10 mg/kg body weight (BW) of Genistein (Gen 10); and (iii) a group treated with a higher dose of Genistein (Gen 100). The rats were treated daily for three weeks from postnatal day 22 (P22) to P42. After the animals were sacrificed, blood samples were collected, and the uteri and ovaries were harvested and subjected to light microscopy and immunohistochemical study. RESULTS A reduction of the mean weekly BW gain and organ weights (uteri and ovaries) were observed in the Gen 10 group compared to the control group; these findings were reversed in the Gen 100 group. Follicle stimulating hormone and estrogen levels were increased in the Gen 10 group and reduced in the Gen 100 group. Luteinizing hormone was reduced in both groups of Genistein-treated animals, and there was a significant difference between the Gen 10 and control groups (p<0.05). These findings were consistent with increased atretic follicular count, a decreased number of corpus luteum and down-regulation of estrogen receptors-a in the uterine tissues of the Genistein-treated animals compared to the control animals. CONCLUSION Post-weaning exposure to Genistein could affect the development of the reproductive system of ovarian-intact experimental rats because of its action on the hypothalamic-pituitary-gonadal axis by regulating hormones and estrogen receptors.
Collapse
Affiliation(s)
- Siti Rosmani Md Zin
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
The oocyte is at the center of the equation that results in female fertility. Many factors influence oocyte quality, including external factors such as maternal nutrition, stress, and environmental exposures, as well as ovarian factors such as steroids, intercellular communication, antral follicle count, and follicular fluid composition. These influences are interconnected; changes in the external environment of the female translate into ovarian changes that affect the oocyte. The lengthy period during which the oocyte remains arrested in the ovary provides ample time and opportunity for environmental factors to take their toll. An appropriate environment for growth and maturation of the oocyte, in vivo and in vitro, is critical to ensure optimal oocyte quality, which determines the success of fertilization and preimplantation embryo development, and has long-term implications for implantation, fetal growth, and offspring health.
Collapse
Affiliation(s)
- Rebecca L Krisher
- National Foundation for Fertility Research, Lone Tree, Colorado 80124;
| |
Collapse
|
68
|
Induction of abnormal oocyte division under the constant light in the young adult rat. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
69
|
Kim SH, Park MJ. Effects of phytoestrogen on sexual development. KOREAN JOURNAL OF PEDIATRICS 2012; 55:265-71. [PMID: 22977438 PMCID: PMC3433562 DOI: 10.3345/kjp.2012.55.8.265] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/27/2012] [Indexed: 11/27/2022]
Abstract
Phytoestrogen is an estrogenic compound that occurs naturally in plants. The most common sources of phytoestrogen are soybean products, which contain high levels of isoflavones. This compound, which has structural similarity with estrogen, can act as an estrogen receptor agonist or antagonist. Animal studies provide evidence of the significant effects of phytoestrogen on sexual development, including altered pubertal timing, impaired estrous cycling and ovarian function, and altered hypothalamus and pituitary functions. Although human studies examining the effects of phytoestrogen on sexual development are extremely limited, the results of some studies agree with those of the animal studies. In this paper, we review the possible mechanism of phytoestrogen action and the evidence showing the effects of phytoestrogen on sexual development in animal and human studies.
Collapse
Affiliation(s)
- Shin Hye Kim
- Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | | |
Collapse
|
70
|
Karavan JR, Pepling ME. Effects of estrogenic compounds on neonatal oocyte development. Reprod Toxicol 2012; 34:51-6. [DOI: 10.1016/j.reprotox.2012.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/20/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
|
71
|
Transgenerational toxicity of Zearalenone in pigs. Reprod Toxicol 2012; 34:110-9. [DOI: 10.1016/j.reprotox.2012.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 01/13/2023]
|
72
|
Molecular control of oogenesis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1896-912. [PMID: 22634430 DOI: 10.1016/j.bbadis.2012.05.013] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/08/2012] [Accepted: 05/13/2012] [Indexed: 11/20/2022]
Abstract
Oogenesis is a complex process regulated by a vast number of intra- and extra-ovarian factors. Oogonia, which originate from primordial germ cells, proliferate by mitosis and form primary oocytes that arrest at the prophase stage of the first meiotic division until they are fully-grown. Within primary oocytes, synthesis and accumulation of RNAs and proteins throughout oogenesis are essential for oocyte growth and maturation; and moreover, crucial for developing into a viable embryo after fertilization. Oocyte meiotic and developmental competence is gained in a gradual and sequential manner during folliculogenesis and is related to the fact that the oocyte grows in interaction with its companion somatic cells. Communication between oocyte and its surrounding granulosa cells is vital, both for oocyte development and for granulosa cells differentiation. Oocytes depend on differentiated cumulus cells, which provide them with nutrients and regulatory signals needed to promote oocyte nuclear and cytoplasmic maturation and consequently the acquisition of developmental competence.The purpose of this article is to summarize recent knowledge on the molecular aspects of oogenesis and oocyte maturation, and the crucial role of cumulus-cell interactions, highlighting the valuable contribution of experimental evidences obtained in animal models. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.
Collapse
|
73
|
Cederroth CR, Zimmermann C, Nef S. Soy, phytoestrogens and their impact on reproductive health. Mol Cell Endocrinol 2012; 355:192-200. [PMID: 22210487 DOI: 10.1016/j.mce.2011.05.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 11/24/2022]
Abstract
There is growing interest in the potential health threats posed by endocrine-disrupting chemicals (EDCs) to the reproductive system. Soybean is the most important dietary source of isoflavones, an important class of phytoestrogen. While consumption of soy food or phytoestrogen supplements has been frequently associated with beneficial health effects, the potentially adverse effects on development, fertility, and the reproductive and endocrine systems are likely underappreciated. Here we review the available epidemiological, clinical and animal data on the effects of soy and phytoestrogens on the development and function of the male and female reproductive system, and weigh the evidence as to their detrimental impact.
Collapse
Affiliation(s)
- Christopher Robin Cederroth
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
74
|
Spencer TE, Dunlap KA, Filant J. Comparative developmental biology of the uterus: insights into mechanisms and developmental disruption. Mol Cell Endocrinol 2012; 354:34-53. [PMID: 22008458 DOI: 10.1016/j.mce.2011.09.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 01/30/2023]
Abstract
The uterus is an essential organ for reproduction in mammals that derives from the Müllerian duct. Despite the importance of the uterus for the fertility and health of women and their offspring, relatively little is known about the hormonal, cellular and molecular mechanisms that regulate development of the Müllerian duct and uterus. This review aims to summarize the hormonal, cellular and molecular mechanisms and pathways governing development of the Müllerian duct and uterus as well as highlight developmental programming effects of endocrine disruptor compounds. Organogenesis, morphogenesis, and functional differentiation of the uterus are complex, multifactorial processes. Disruption of uterine development in the fetus and neonate by genetic defects and exposure to endocrine disruptor compounds can cause infertility and cancer in the adult and their offspring via developmental programming. Clear conservation of some factors and pathways are observed between species; therefore, comparative biology is useful to identify candidate genes and pathways underlying congenital abnormalities in humans.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Reproductive Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164-6310, USA.
| | | | | |
Collapse
|
75
|
Medigović I, Manojlović-Stojanoski M, Trifunović S, Ristić N, Milošević V, Žikić D, Nestorović N. Effects of genistein on gonadotropic cells in immature female rats. Acta Histochem 2012; 114:270-5. [PMID: 21703666 DOI: 10.1016/j.acthis.2011.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/25/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
The effects of genistein on pituitary gonadotropic cells of immature female rats were examined and compared to actions of the synthetic estrogen, 17α-ethynylestradiol. Immature female rats received 50mg/kg/bw of genistein in dimethylsulfoxide (DMSO) subcutaneously (s.c.) daily for 3 days at 18, 19 and 20 days of age. A second group was injected with 1μg/kg of 17α-ethynylestradiol in olive oil in the same schedule. The genistein control group received DMSO only, while 17α-ethynylestradiol controls were given sterile olive oil only. Changes in cell number per mm(2), cell volume and volume density of follicle-stimulating (FSH) and luteinizing (LH) immunolabeled cells were evaluated by morphometry and stereology. Genistein induced significant increases in the number of FSH cells (by 21%) and LH cells (by 20%) per mm(2) compared to corresponding controls. Volumes of FSH and LH cells were significantly increased by 19.7% and 20% and their volume densities by 20% and 20.2%, respectively. Estradiol markedly affected gonadotropes in the same manner, but to a greater extent. It can be concluded that genistein acted as an estrogenic agonist in the pituitaries of immature female rats, and as such, stimulated gonadotropic cells.
Collapse
|
76
|
Expression of extracellular matrix components is disrupted in the immature and adult estrogen receptor β-null mouse ovary. PLoS One 2012; 7:e29937. [PMID: 22253831 PMCID: PMC3254630 DOI: 10.1371/journal.pone.0029937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/08/2011] [Indexed: 01/01/2023] Open
Abstract
Within the ovary, Estrogen Receptor β (ERβ) is localized to the granulosa cells of growing follicles. 17β-estradiol (E2) acting via ERβ augments the actions of follicle stimulating hormone in granulosa cells, leading to granulosa cell differentiation and formation of a preovulatory follicle. Adult ERβ-null females are subfertile and possess ovaries with reduced numbers of growing follicles and corpora lutea. Because the majority of E2 production by granulosa cells occurs once puberty is reached, a role for ERβ in the ovary prior to puberty has not been well examined. We now provide evidence that lack of ERβ disrupts gene expression as early as post-natal day (PND) 13, and in particular, we identify a number of genes of the extracellular matrix (ECM) that are significantly higher in ERβ-null follicles than in wildtype (WT) follicles. Considerable changes occur to the ECM occur during normal folliculogenesis to allow for the dramatic growth, cellular differentiation, and reorganization of the follicle from the primary to preovulatory stage. Using quantitative PCR and immunofluorescence, we now show that several ECM genes are aberrantly overexpressed in ERβ-null follicles. We find that Collagen11a1, a protein highly expressed in cartilage, is significantly higher in ERβ-null follicles than WT follicles as early as PND 13, and this heightened expression continues through PND 23–29 into adulthood. Similarly, Nidogen 2, a highly conserved basement membrane glycoprotein, is elevated in ERβ-null follicles at PND 13 into adulthood, and is elevated specifically in the ERβ-null focimatrix, a basal lamina-like matrix located between granulosa cells. Focimatrix laminin and Collagen IV expression were also higher in ERβ-null ovaries than in WT ovaries at various ages. Our findings suggest two novel observations: a) that ERβ regulates granulosa cell gene expression ovary prior to puberty, and b) that ERβ regulates expression of ECM components in the mouse ovary.
Collapse
|
77
|
Preliminary investigation of the influence of long-term dietary isoflavone intake on reproductive tract histology and sex steroid receptor expression in female domestic cats ( Felis catus). JOURNAL OF APPLIED ANIMAL NUTRITION 2012. [DOI: 10.1017/jan.2013.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryGenistein and daidzein are isoflavones which are reported to influence the reproductive system in a variety of mammalian species. This pilot study aimed to determine if dietary isoflavones could potentially influence reproductive tract histology or morphology in domestic cats, when consumed during the postnatal development period. Cats were maintained on either treatment (150 µg/g DM genistein and 150 µg/g DM daidzein, n = 4) or control (isoflavone free, n = 8) diets from weaning, up to 414 (±17.2) days post-weaning. Reproductive tissues were collected during routine ovario-hysterectomy and examined for histology and sex steroid receptor expression. Findings indicate that these dietary isoflavones influenced the expression of oestrogen receptor α (ERα) and oestrogen receptor β (ERβ), and progesterone receptor in feline reproductive tissues. One cat in the treatment group developed suppurative endometritis, but no evidence of uterotrophic or histological changes were found in any other cats. The potential to alter expression of hormone receptors in the reproductive tract of domestic cats exposed to genistein and daidzein warrants further investigation.
Collapse
|
78
|
Kaludjerovic J, Chen J, Ward WE. Early life exposure to genistein and daidzein disrupts structural development of reproductive organs in female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:649-660. [PMID: 22712850 DOI: 10.1080/15287394.2012.688482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In mice, exposure to isoflavones (ISO), abundant in soy infant formula, during the first 5 d of life alters structural and functional development of reproductive organs. Effects of longer exposures are unknown. The study objective was to evaluate whether exposure to a combination of daidzein and genistein in the first 10 compared to 5 d of life results in greater adverse effects on ovarian and uterine structure in adult mice. Thirteen litters of 8-12 pups were cross-fostered and randomized to corn oil or ISO (2 mg daidzein + 5 mg genistein/kg body weight/d) for the first 5 or 10 d of life. The 10-d protocol mimicked the period when infants are fed soy protein formula (SPF) but avoids the time when suckling pups can consume mother's diet. Body and organ weights, and histology of ovaries and uteri were analyzed. There were no differences in the ovary or uterus weight, number of ovarian follicles, number of multiple oocyte follicles, or percent of ovarian cysts with 5 or 10 d ISO intervention compared to respective controls. The 10-d ISO group had higher body weights from 6 d to 4 mo of age and a higher percent of hyperplasia in the oviduct than the respective control. Lower number of ovarian corpus lutea and a higher incidence of abnormal changes were reported in the uteri of both ISO groups compared to their respective controls. Five and 10-d exposure to ISO had similar long-lasting adverse effects on the structure of ovaries and uterus in adult mice. Only the 10-d ISO exposure resulted in greater body weight gain at adulthood.
Collapse
Affiliation(s)
- Jovana Kaludjerovic
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
79
|
|
80
|
Abstract
The differentiation of primordial germ cells (PGCs) into functional oocytes is important for the continuation of species. In mammals, PGCs begin to differentiate into oocytes during embryonic development. Oocytes develop in clusters called germ line cysts. During fetal or neonatal development, germ cell cysts break apart into single oocytes that become surrounded by pregranulosa cells to form primordial follicles. During the process of cyst breakdown, a subset of cells in each cyst undergoes cell death with only one-third of the initial number of oocytes surviving to form primordial follicles. The mechanisms that control cyst breakdown, oocyte survival, and follicle assembly are currently under investigation. This review describes the mechanisms that have been implicated in the control of primordial follicle formation, which include programmed cell death regulation, growth factor and other signaling pathways, regulation by transcription factors and hormones, meiotic progression, and changes in cell adhesion. Elucidation of mechanisms leading to formation of the primordial follicle pool will help research efforts in ovarian biology and improve treatments of female infertility, premature ovarian failure, and reproductive cancers.
Collapse
Affiliation(s)
- Melissa E Pepling
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA.
| |
Collapse
|
81
|
Craig ZR, Wang W, Flaws JA. Endocrine-disrupting chemicals in ovarian function: effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction 2011; 142:633-46. [PMID: 21862696 DOI: 10.1530/rep-11-0136] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous agents with the ability to interfere with processes regulated by endogenous hormones. One such process is female reproductive function. The major reproductive organ in the female is the ovary. Disruptions in ovarian processes by EDCs can lead to adverse outcomes such as anovulation, infertility, estrogen deficiency, and premature ovarian failure among others. This review summarizes the effects of EDCs on ovarian function by describing how they interfere with hormone signaling via two mechanisms: altering the availability of ovarian hormones, and altering binding and activity of the hormone at the receptor level. Among the chemicals covered are pesticides (e.g. dichlorodiphenyltrichloroethane and methoxychlor), plasticizers (e.g. bisphenol A and phthalates), dioxins, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons (e.g. benzo[a]pyrene).
Collapse
Affiliation(s)
- Zelieann R Craig
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Avenue, Urbana, Illinois 61802, USA
| | | | | |
Collapse
|
82
|
Dinsdale EC, Chen J, Ward WE. Early life exposure to isoflavones adversely affects reproductive health in first but not second generation female CD-1 mice. J Nutr 2011; 141:1996-2002. [PMID: 21940509 DOI: 10.3945/jn.111.142281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Soy-based infant formula (SBIF) can be a substantial source of soy isoflavones during early life. Because soy isoflavones have the capacity to mimic endogenous estrogen and thereby exert hormone-like effects, there is concern regarding reproductive health. The objectives were to determine if neonatal exposure to soy isoflavones altered reproductive health in females and, if so, whether such effects are transferred to subsequent generations. CD-1 mice were bred and F1 mouse offspring were cross-fostered at birth and randomized to 1 of 4 treatments: 7 mg soy isoflavones · kg body weight(-1) · d(-1) or corn oil from postnatal d (PND) 1 to 10 or from PND 1 to 21 (n = 8-13 females/group). Mice were subsequently bred to control males on PND 56 to obtain F2 females (n = 10-15/group). F1 mice that received isoflavones had ~15% greater body weight during wk 4-8 and markedly reduced fertility with a 55-60% success rate. Reduced fertility was associated with abnormal estrus cycles, fewer corpora lutea in ovaries, and increased incidence of hyperplasia and atypia in the uteri. Offspring (F2 mice) of isoflavone-treated F1 mice had ~15% higher body weight by wk 8 through 16 of age than controls and fertility was normal. In summary, early exposure to soy isoflavones resulting in serum isoflavone concentrations similar to human infants fed SBIF reduced fertility in F1 but not F2 mice and increased body weight in both generations of female offspring. Extrapolation of these findings to the human scenario are complex but can provide guidance for more fully understanding the implications for infants consuming SBIF.
Collapse
Affiliation(s)
- Elsa C Dinsdale
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
83
|
Mark-Kappeler CJ, Hoyer PB, Devine PJ. Xenobiotic effects on ovarian preantral follicles. Biol Reprod 2011; 85:871-83. [PMID: 21697514 PMCID: PMC3197911 DOI: 10.1095/biolreprod.111.091173] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 02/16/2011] [Accepted: 05/17/2011] [Indexed: 01/30/2023] Open
Abstract
Women are born with a finite population of ovarian follicles, which are slowly depleted during their reproductive years until reproductive failure (menopause) occurs. The rate of loss of primordial follicles is determined by genetic and environmental influences, but certain toxic exposures can accelerate this process. Ionizing radiation reduces preantral follicle numbers in rodents and humans in a dose-dependent manner. Cigarette smoking is linked to menopause occurring 1-4 yr earlier than with nonsmokers, and components of smoke, polycyclic aromatic hydrocarbons, can cause follicle depletion in rodents or in ovaries in vitro. Chemotherapeutic agents, such as alkylating drugs and cisplatin, also cause loss of preantral ovarian follicles. Effects depend on dose, type, and reactivity of the drug, and the age of the individual. Evidence suggests DNA damage may underlie follicle loss induced by one common alkylating drug, cyclophosphamide. Occupational exposures have also been linked to ovarian damage. In an industrial setting, 2-bromopropane caused infertility in men and women, and it can induce ovarian follicle depletion in rats. Solvents, such as butadiene, 4-vinylcyclohexene, and their diepoxides, can also cause specific preantral follicle depletion. The mechanism(s) underlying effects of the latter compound may involve alterations in apoptosis, survival factors such as KIT/Kit Ligand, and/or the cellular signaling that maintains primordial follicle dormancy. Estrogenic endocrine disruptors may alter follicle formation/development and impair fertility or normal development of offspring. Thus, specific exposures are known or suspected of detrimentally impacting preantral ovarian follicles, leading to early ovarian failure.
Collapse
|
84
|
Jefferson WN, Padilla-Banks E, Phelps JY, Gerrish KE, Williams CJ. Permanent oviduct posteriorization after neonatal exposure to the phytoestrogen genistein. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1575-1582. [PMID: 21810550 PMCID: PMC3226509 DOI: 10.1289/ehp.1104018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Preimplantation embryo loss during oviduct transit has been observed in adult mice after a 5-day neonatal exposure to the phytoestrogen genistein (Gen; 50 mg/kg/day). OBJECTIVE We investigated the mechanisms underlying the contribution of the oviduct to infertility. METHODS Female mice were treated on postnatal days 1-5 with corn oil or Gen (50 mg/kg/day). We compared morphology, gene expression, and protein expression in different regions of the reproductive tracts of Gen-treated mice with those of control littermates at several time points. RESULTS Neonatal Gen treatment resulted in substantial changes in expression of genes that modulate neonatal oviduct morphogenesis, including Hoxa (homeobox A cluster), Wnt (wingless-related MMTV integration site), and hedgehog signaling genes. An estrogen receptor antagonist blocked these effects, indicating that they were induced by the estrogenic activity of Gen. Oviducts of adults treated neonatally with Gen had abnormal morphology and were stably "posteriorized," as indicated by altered Hoxa gene patterning during the time of treatment and dramatic, permanent up-regulation of homeobox genes (e.g., Pitx1, Six1) normally expressed only in the cervix and vagina. CONCLUSIONS Neonatal exposure to estrogenic environmental chemicals permanently disrupts oviduct morphogenesis and adult gene expression patterns, and these changes likely contribute to the infertility phenotype.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
85
|
Rivera OE, Varayoud J, Rodríguez HA, Muñoz-de-Toro M, Luque EH. Neonatal exposure to bisphenol A or diethylstilbestrol alters the ovarian follicular dynamics in the lamb. Reprod Toxicol 2011; 32:304-12. [DOI: 10.1016/j.reprotox.2011.06.118] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 05/10/2011] [Accepted: 06/14/2011] [Indexed: 11/30/2022]
|
86
|
McCarver G, Bhatia J, Chambers C, Clarke R, Etzel R, Foster W, Hoyer P, Leeder JS, Peters JM, Rissman E, Rybak M, Sherman C, Toppari J, Turner K. NTP-CERHR expert panel report on the developmental toxicity of soy infant formula. ACTA ACUST UNITED AC 2011; 92:421-68. [PMID: 21948615 DOI: 10.1002/bdrb.20314] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
Abstract
Soy infant formula contains soy protein isolates and is fed to infants as a supplement to or replacement for human milk or cow milk. Soy protein isolates contains estrogenic isoflavones (phytoestrogens) that occur naturally in some legumes, especially soybeans. Phytoestrogens are nonsteroidal, estrogenic compounds. In plants, nearly all phytoestrogens are bound to sugar molecules and these phytoestrogen-sugar complexes are not generally considered hormonally active. Phytoestrogens are found in many food products in addition to soy infant formula, especially soy-based foods such as tofu, soy milk, and in some over-the-counter dietary supplements. Soy infant formula was selected for National Toxicology Program (NTP) evaluation because of (1) the availability of large number of developmental toxicity studies in laboratory animals exposed to the isoflavones found in soy infant formula (namely, genistein) or other soy products, as well as few studies on human infants fed soy infant formula, (2) the availability of information on exposures in infants fed soy infant formula, and (3) public concern for effects on infant or child development. On October 2, 2008 (73 FR 57360), the NTP Center for the Evaluation of Risks to Human Reproduction (CERHR) announced its intention to conduct an updated review of soy infant formula to complete a previous evaluation that was initiated in 2005. Both the current and previous evaluations relied on expert panels to assist the NTP in developing its conclusions on the potential developmental effects associated with the use of soy infant formula, presented in the NTP Brief on Soy Infant Formula. The initial expert panel met on March 15 to 17, 2006, to reach conclusions on the potential developmental and reproductive toxicities of soy infant formula and its predominant isoflavone constituent genistein. The expert panel reports were released for public comment on May 5, 2006 (71 FR 28368). On November 8, 2006 (71 FR 65537), CERHR staff released draft NTP Briefs on Genistein and Soy Formula that provided the NTP's interpretation of the potential for genistein and soy infant formula to cause adverse reproductive and/or developmental effects in exposed humans. However, CERHR did not complete these evaluations, finalize the briefs, or issue NTP Monographs on these substances based on this initial evaluation. Between 2006 and 2009, a substantial number of new publications related to human exposure or reproductive and/or developmental toxicity were published for these substances. Thus, CERHR determined that updated evaluations of genistein and soy infant formula were needed. However, the current evaluation focuses only on soy infant formula and the potential developmental toxicity of its major isoflavone components, e.g. genistein, daidzein (and estrogenic metabolite, equol), and glycitein. This updated evaluation does not include an assessment on the potential reproductive toxicity of genistein following exposures during adulthood as was carried out in the 2006 evaluation. CERHR narrowed the scope of the evaluation because the assessment of reproductive effects of genistein following exposure to adults was not considered relevant to the consideration of soy infant formula use in infants during the 2006 evaluation. To obtain updated information about soy infant formula for the CERHR evaluation, the PubMed (Medline) database was searched from February 2006 to August 2009 with genistein/genistin, daidzein/daidzin, glycitein/glycitin, equol, soy, and other relevant keywords. References were also identified from the bibliographies of published literature. The updated expert panel report represents the efforts of a 14-member panel of government and nongovernment scientists, and was prepared with assistance from NTP staff. The finalized report, released on January 15, 2010 (75 FR 2545), reflects consideration of public comments received on a draft report that was released on October 19, 2009, for public comment and discussions that occurred at a public meeting of the expert panel held December 16 to 18, 2009 (74 FR 53509). The finalized report presents conclusions on (1) the strength of scientific evidence that soy infant formula or its isoflavone constituents are developmental toxicants based on data from in vitro, animal, or human studies; (2) the extent of exposures in infants fed soy infant formula; (3) the assessment of the scientific evidence that adverse developmental health effects may be associated with such exposures; and (4) knowledge gaps that will help establish research and testing priorities to reduce uncertainties and increase confidence in future evaluations. The Expert Panel expressed minimal concern for adverse developmental effects in infants fed soy infant formula. This level of concern represents a "2" on the five-level scale of concern used by the NTP that ranges from negligible concern ("1") to serious concern ("5"). The Expert Panel Report on Soy Infant Formula was considered extensively by NTP staff in preparing the 2010 NTP Brief on Soy Infant Formula, which represents the NTP's opinion on the potential for exposure to soy infant formula to cause adverse developmental effects in humans. The NTP concurred with the expert panel that there is minimal concern for adverse effects on development in infants who consume soy infant formula. This conclusion was based on information about soy infant formula provided in the expert panel report, public comments received during the course of the expert panel evaluation, additional scientific information made available since the expert panel meeting, and peer reviewer critiques of the draft NTP Brief by the NTP Board of Scientific Counselors (BSC) on May 10, 2010 (Meeting materials are available at http://ntp.niehs.nih.gov/go/9741.). The BSC voted in favor of the minimal concern conclusion with 7 yes votes, 3 no votes, and 0 abstentions. One member thought that the conclusion should be negligible concern and two members thought that the level of concern should be higher than minimal concern. The NTP's response to the May 10, 2010 review ("peer-review report") is available on the NTP website at http://ntp.niehs.nih.gov/go/9741. The monograph includes the NTP Brief on Soy Infant Formula as well as the entire final Expert Panel Report on Soy Infant Formula. Public comments received as part of the NTP's evaluation of soy infant formula and other background materials are available at http://cerhr.niehs.nih.gov/evals/index.html.
Collapse
Affiliation(s)
- Gail McCarver
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Coughlin JL, Winnik B, Buckley B. Measurement of bisphenol A, bisphenol A ß-D-glucuronide, genistein, and genistein 4'-ß-D-glucuronide via SPE and HPLC-MS/MS. Anal Bioanal Chem 2011; 401:995-1002. [PMID: 21667348 PMCID: PMC4376255 DOI: 10.1007/s00216-011-5151-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/26/2011] [Accepted: 05/29/2011] [Indexed: 10/18/2022]
Abstract
Bisphenol A (BPA) is a synthetic industrial reactant used in the production of polycarbonate plastics, and genistein is a natural phytoestrogen abundant in the soybean. Current studies investigating the endocrine-disrupting effects of concomitant exposures to BPA and genistein have warranted the development of an analytical method for the simultaneous measurement of BPA and genistein, as well as their primary metabolites, bisphenol A ß-D-glucuronide (BPA gluc) and genistein 4'-ß-D-glucuronide (genistein gluc), respectively. All four analytes were extracted from rat plasma via solid phase extraction (SPE). Three SPE cartridges and four elution schemes were tested. Plasma extraction using Bond Elut Plexa cartridges with sequential addition of ethyl acetate, methanol, and acetonitrile yielded optimal average recoveries of 98.1 ± 1.8% BPA, 94.9 ± 8.0% genistein, 91.4 ± 6.1% BPA gluc, and 103 ± 6.1% genistein gluc. Identification and quantification of the four analytes were performed by a validated HPLC-MS/MS method using electrospray ionization and selective reaction monitoring. This novel analytical method should be applicable to the measurement of BPA, genistein, BPA gluc, and genistein gluc in urine, cultures, and tissue following in vivo exposures. While reports of the determination of BPA and genistein independently exist, the simultaneous optimized extraction and detection of BPA, genistein, BPA gluc, and genistein gluc have not previously been reported.
Collapse
Affiliation(s)
- Janis L. Coughlin
- Environmental and Occupational Health Sciences Institute, A Joint Institute of Rutgers University and the University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, NJ 08854, USA; Joint Graduate Program of Toxicology, Rutgers University, Piscataway, NJ 008854-8075, USA; University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854-5635, USA
| | - Bozena Winnik
- Environmental and Occupational Health Sciences Institute, A Joint Institute of Rutgers University and the University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, NJ 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, A Joint Institute of Rutgers University and the University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, NJ 08854, USA; Joint Graduate Program of Toxicology, Rutgers University, Piscataway, NJ 008854-8075, USA; University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854-5635, USA
| |
Collapse
|
88
|
Circulating isoflavonoid levels in CD-1 mice: effect of oral versus subcutaneous delivery and frequency of administration. J Nutr Biochem 2011; 23:437-42. [PMID: 21658927 DOI: 10.1016/j.jnutbio.2011.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/13/2011] [Accepted: 01/21/2011] [Indexed: 11/22/2022]
Abstract
The CD-1 mouse is a commonly used animal model to understand the biological effects of early-life exposure to soy isoflavones in infants. Most studies using CD-1 mice have administered isoflavones by daily subcutaneous injection, while infants receive oral feeds every few hours. The study objectives were to compare the total serum levels of genistein (GEN), daidzein (DAI) and the DAI metabolites equol and O-desmethyl-angolensin (O-DMA), after subcutaneous injection and oral dosing and to determine if frequency of oral administration results in different circulating levels of isoflavones using the CD-1 mouse model. From postnatal days 1 to 5, pups randomly received corn oil or soy isoflavones (total daily dose, 0.010 mg DAI+0.025 mg GEN) by subcutaneous injection once a day, orally once a day or orally every 4 hours. On postnatal day 5, 1 h posttreatment, mice were killed and serum was collected. Mice treated with soy isoflavones had higher (P<.05) serum GEN (female: 1895-3391 ng/ml and male: 483-578 ng/ml) and DAI (female: 850-1580 ng/ml and male: 248-322 ng/ml) concentrations versus control (5-20 ng/ml) mice, regardless of route or frequency of administration, and were similar among dosing strategies. Total serum concentrations of GEN and DAI were higher (P<.05) among females (GEN: 2714 ± 393 ng/ml and DAI: 1205 ± 164 ng/ml) than males (GEN: 521 ± 439 ng/ml and DAI: 288 ± 184 ng/ml) across treatment groups. Serum equol and O-DMA concentrations were negligible (<3 ng/ml) across groups. In conclusion, different routes of delivery and frequency of administration resulted in similar total serum levels of GEN, DAI¸ equol or O-DMA.
Collapse
|
89
|
Losa SM, Todd KL, Sullivan AW, Cao J, Mickens JA, Patisaul HB. Neonatal exposure to genistein adversely impacts the ontogeny of hypothalamic kisspeptin signaling pathways and ovarian development in the peripubertal female rat. Reprod Toxicol 2011; 31:280-9. [PMID: 20951797 PMCID: PMC3034101 DOI: 10.1016/j.reprotox.2010.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/15/2010] [Accepted: 10/04/2010] [Indexed: 01/27/2023]
Abstract
Neonatal exposure to estrogenic endocrine disrupting compounds (EDCs) can advance pubertal onset and induce premature anestrous in female rats. It was recently discovered that hypothalamic kisspeptin (KISS) signaling pathways are sexually dimorphic and regulate both the timing of pubertal onset and estrous cyclicity. Thus we hypothesized that disrupted sex specific ontogeny of KISS signaling pathways might be a mechanism underlying these EDC effects. We first established the sex specific development of KISS gene expression, cell number and neural fiber density across peripuberty in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC), hypothesizing that the sexually dimorphic aspects of KISS signaling would be most vulnerable to EDCs. We next exposed female rats to the phytoestrogen genistein (GEN, 1 or 10 mg/kg bw), estradiol benzoate (EB, 10 μg), or vehicle from post natal day (P) 0-3 via subcutaneous (sc) injection. Animals were sacrificed on either P21, 24, 28, or 33 (n=5-14 per group at each age). Vaginal opening was significantly advanced by EB and the higher dose of GEN compared to control animals and was accompanied by lower numbers of KISS immunoreactive fibers in the AVPV and ARC. Ovarian morphology was also assessed in all age groups for the presence of multiple oocyte follicles (MOFs). The number of MOFs decreased over time in each group, and none were observed in control animals by P24. MOFs were still present, however, in the EB and 10 mg/kg GEN groups beyond P24 indicating a disruption in the timing of ovarian development.
Collapse
Affiliation(s)
- Sandra M Losa
- North Carolina State University, Department of Biology, Raleigh, NC 27695, United States
| | | | | | | | | | | |
Collapse
|
90
|
Jefferson WN, Williams CJ. Circulating levels of genistein in the neonate, apart from dose and route, predict future adverse female reproductive outcomes. Reprod Toxicol 2011; 31:272-9. [PMID: 20955782 PMCID: PMC3192433 DOI: 10.1016/j.reprotox.2010.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/08/2010] [Accepted: 10/04/2010] [Indexed: 11/16/2022]
Abstract
Developmental exposure to estrogenic compounds can disrupt sexual differentiation and adult reproductive function in many animals including humans. Phytoestrogens (plant estrogens) in the diet comprise a significant source of estrogenic exposure to humans, particularly in infants who are fed soy-based infant formula. Animal models have been developed to test the effects of phytoestrogen exposure on the developing fetus and neonate. Here we review studies quantifying the amount of phytoestrogen exposure in human adults and infants and discuss the few available epidemiological studies that have addressed long-term consequences of developmental phytoestrogen exposure. We then describe in detail rodent models of developmental exposure to the most prevalent phytoestrogen in soy products, genistein, and the effects of this exposure on female reproductive function. These models have used various dosing strategies to mimic the phytoestrogen levels in human populations. Serum circulating levels of genistein following each of the models and their correlation to reproductive outcomes are also discussed. Taken together, the studies clearly demonstrate that environmentally relevant doses of genistein have significant negative impacts on ovarian differentiation, estrous cyclicity, and fertility in the rodent model. Additional studies of reproductive function in human populations exposed to high levels of phytoestrogens during development are warranted.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States.
| | | |
Collapse
|
91
|
Dinsdale EC, Ward WE. Early exposure to soy isoflavones and effects on reproductive health: a review of human and animal studies. Nutrients 2010; 2:1156-87. [PMID: 22254003 PMCID: PMC3257624 DOI: 10.3390/nu2111156] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/11/2010] [Accepted: 11/19/2010] [Indexed: 11/22/2022] Open
Abstract
Soy isoflavones are phytoestrogens with potential hormonal activity due to their similar chemical structure to 17-β-estradiol. The increasing availability of soy isoflavones throughout the food supply and through use of supplements has prompted extensive research on biological benefits to humans in chronic disease prevention and health maintenance. While much of this research has focused on adult populations, infants fed soy protein based infant formulas are exposed to substantial levels of soy isoflavones, even when compared to adult populations that consume a higher quantity of soy-based foods. Infant exposure, through soy formula, primarily occurs from birth to one year of life, a stage of development that is particularly sensitive to dietary and environmental compounds. This has led investigators to study the potential hormonal effects of soy isoflavones on later reproductive health outcomes. Such studies have included minimal human data with the large majority of studies using animal models. This review discusses key aspects of the current human and animal studies and identifies critical areas to be investigated as there is no clear consensus in this research field.
Collapse
Affiliation(s)
- Elsa C Dinsdale
- Department of Nutritional Science, Faculty of Medicine, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
92
|
Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol 2010; 31:400-19. [PMID: 20347861 PMCID: PMC3074428 DOI: 10.1016/j.yfrne.2010.03.003] [Citation(s) in RCA: 435] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 02/07/2023]
Abstract
Phytoestrogens are plant derived compounds found in a wide variety of foods, most notably soy. A litany of health benefits including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms, are frequently attributed to phytoestrogens but many are also considered endocrine disruptors, indicating that they have the potential to cause adverse health effects as well. Consequently, the question of whether or not phytoestrogens are beneficial or harmful to human health remains unresolved. The answer is likely complex and may depend on age, health status, and even the presence or absence of specific gut microflora. Clarity on this issue is needed because global consumption is rapidly increasing. Phytoestrogens are present in numerous dietary supplements and widely marketed as a natural alternative to estrogen replacement therapy. Soy infant formula now constitutes up to a third of the US market, and soy protein is now added to many processed foods. As weak estrogen agonists/antagonists with molecular and cellular properties similar to synthetic endocrine disruptors such as Bisphenol A (BPA), the phytoestrogens provide a useful model to comprehensively investigate the biological impact of endocrine disruptors in general. This review weighs the evidence for and against the purported health benefits and adverse effects of phytoestrogens.
Collapse
|
93
|
Zama AM, Uzumcu M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an ovarian perspective. Front Neuroendocrinol 2010; 31:420-39. [PMID: 20609371 PMCID: PMC3009556 DOI: 10.1016/j.yfrne.2010.06.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/16/2010] [Accepted: 06/25/2010] [Indexed: 01/16/2023]
Abstract
The link between in utero and neonatal exposure to environmental toxicants, such as endocrine-disrupting chemicals (EDCs) and adult female reproductive disorders is well established in both epidemiological and animal studies. Recent studies examining the epigenetic mechanisms involved in mediating the effects of EDCs on female reproduction are gathering momentum. In this review, we describe the developmental processes that are susceptible to EDC exposures in female reproductive system, with a special emphasis on the ovary. We discuss studies with select EDCs that have been shown to have physiological and correlated epigenetic effects in the ovary, neuroendocrine system, and uterus. Importantly, EDCs that can directly target the ovary can alter epigenetic mechanisms in the oocyte, leading to transgenerational epigenetic effects. The potential mechanisms involved in such effects are also discussed.
Collapse
Affiliation(s)
- Aparna Mahakali Zama
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA
| | | |
Collapse
|
94
|
Henley DV, Korach KS. Physiological effects and mechanisms of action of endocrine disrupting chemicals that alter estrogen signaling. Hormones (Athens) 2010; 9:191-205. [PMID: 20688617 PMCID: PMC4782146 DOI: 10.14310/horm.2002.1270] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/20/2010] [Accepted: 06/10/2010] [Indexed: 12/31/2022]
Affiliation(s)
- Derek V Henley
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
95
|
Abstract
The classical view of ovarian follicle development is that it is regulated by the hypothalamic-pituitary-ovarian axis, in which gonadotropin-releasing hormone (GnRH) controls the release of the gonadotropic hormones follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and that ovarian steroids exert both negative and positive regulatory effects on GnRH secretion. More recent studies in mice and humans indicate that many other intra-ovarian signaling cascades affect follicular development and gonadotropin action in a stage- and context-specific manner. As we discuss here, mutant mouse models and clinical evidence indicate that some of the most powerful intra-ovarian regulators of follicular development include the TGF-beta/SMAD, WNT/FZD/beta-catenin, and RAS/ERK1/2 signaling pathways and the FOXO/FOXL2 transcription factors.
Collapse
Affiliation(s)
- JoAnne S. Richards
- Department of Molecular and Cellular Biology and
Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Stephanie A. Pangas
- Department of Molecular and Cellular Biology and
Department of Pathology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
96
|
Roshangar L, Rad JS, Afsordeh K. Maternal tamoxifen treatment alters oocyte differentiation in the neonatal mice: Inhibition of oocyte development and decreased folliculogenesis. J Obstet Gynaecol Res 2010; 36:224-31. [DOI: 10.1111/j.1447-0756.2009.01129.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
97
|
Kirigaya A, Kim H, Hayashi S, Chambon P, Watanabe H, Lguchi T, Sato T. Involvement of estrogen receptor beta in the induction of polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol. Zoolog Sci 2010; 26:704-12. [PMID: 19832683 DOI: 10.2108/zsj.26.704] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural and synthetic estrogens, Including diethylstilbestrol (DES), given during the critical period of newborn life Induce abnormalities in ovaries of mice. Induction of polyovular follicles (PFs) containing two or more oocytes in a follicle is one example. In this study, the involvement of estrogen receptor subtypes ERalpha and ERbeta in induction of PFs by neonatal treatment with DES was analyzed by using ERalpha knockout (alphaERKO) and ERbeta knockout (betaERKO) mice. Ovaries of mice injected with 3 microg DES for 5 days from the day of birth were examined histologically from 10 to 60 days of age, and the expression of genes involved in folliculogenesis was analyzed by real-time quantitative PCR. The PF Incidence (percent of PFs per 100 follicles greater than 50 microm in diameter) in the ovary of alphaERKO mice treated with DES was not different from that in the DES-treated wild-type mice. However, neonatal DES treatment did not increase the PF incidence in betaERKO mice, suggesting that PFs were induced by DES through ERbeta but not ERalpha. The expression of bone morphogenetic protein 15, growth differentiation factor 9, inhibin-alpha, Müllerian inhibiting substance, and other genes in the ovaries of DES-treated betaERKO mice was not different from that in the ovaries of DES-treated wild-type mice. These results indicate that ERbeta but not ERalpha is essential for DES to Induce PFs in mice.
Collapse
Affiliation(s)
- Akiko Kirigaya
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
98
|
Pepling ME, Sundman EA, Patterson NL, Gephardt GW, Medico L, Wilson KI. Differences in oocyte development and estradiol sensitivity among mouse strains. Reproduction 2010; 139:349-57. [DOI: 10.1530/rep-09-0392] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mouse oocytes develop in clusters of interconnected cells called germline cysts. Shortly after birth, the majority of cysts break apart and primordial follicles form, consisting of one oocyte surrounded by granulosa cells. Concurrently, oocyte number is reduced by two-thirds. Exposure of neonatal females to estrogenic compounds causes multiple oocyte follicles that are likely germline cysts that did not break down. Supporting this idea, estrogen disrupts cyst breakdown and may regulate normal oocyte development. Previously, the CD-1 strain was used to study cyst breakdown and oocyte survival, but it is unknown if there are differences in these processes in other mouse strains. It is also unknown if there are variations in estrogen sensitivity during oocyte development. Here, we examined neonatal oocyte development in FVB, C57BL/6, and F2 hybrid (Oct4-GFP) strains, and compared them with the CD-1 strain. We found variability in oocyte development among the four strains. We also investigated estrogen sensitivity differences, and found that C57BL/6 ovaries are more sensitive to estradiol than CD-1, FVB, or Oct4-GFP ovaries. Insight into differences in oocyte development will facilitate comparison of mice generated on different genetic backgrounds. Understanding variations in estrogen sensitivity will lead to better understanding of the risks of environmental estrogen exposure in humans.
Collapse
|
99
|
ALM H, KUHLMANN S, LANGHAMMER M, TUCHSCHERER A, TORNER H, REINSCH N. Occurrence of Polyovular Follicles in Mouse Lines Selected for High Fecundity. J Reprod Dev 2010; 56:449-53. [DOI: 10.1262/jrd.09-224h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hannelore ALM
- Research Unit Reproductive Biology, FBN Research Institute for the Biology of Farm Animals
| | - Simone KUHLMANN
- Research Unit Reproductive Biology, FBN Research Institute for the Biology of Farm Animals
| | - Martina LANGHAMMER
- Research Unit Genetics and Biometry, FBN Research Institute for the Biology of Farm Animals
| | - Armin TUCHSCHERER
- Research Unit Genetics and Biometry, FBN Research Institute for the Biology of Farm Animals
| | - Helmut TORNER
- Research Unit Reproductive Biology, FBN Research Institute for the Biology of Farm Animals
| | - Norbert REINSCH
- Research Unit Genetics and Biometry, FBN Research Institute for the Biology of Farm Animals
| |
Collapse
|
100
|
Jefferson WN, Doerge D, Padilla-Banks E, Woodling KA, Kissling GE, Newbold R. Oral exposure to genistin, the glycosylated form of genistein, during neonatal life adversely affects the female reproductive system. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1883-1889. [PMID: 20049207 PMCID: PMC2799462 DOI: 10.1289/ehp.0900923] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/27/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND Developmental exposure to environmental estrogens is associated with adverse consequences later in life. Exposure to genistin (GIN), the glycosylated form of the phytoestrogen genistein (GEN) found in soy products, is of concern because approximately 20% of U.S. infants are fed soy formula. High circulating levels of GEN have been measured in the serum of these infants, indicating that GIN is readily absorbed, hydrolyzed, and circulated. OBJECTIVES We investigated whether orally administered GIN is estrogenic in neonatal mice and whether it causes adverse effects on the developing female reproductive tract. METHODS Female CD-1 mice were treated on postnatal days 1-5 with oral GIN (6.25, 12.5, 25, or 37.5 mg/kg/day; GEN-equivalent doses), oral GEN (25, 37.5, or 75 mg/kg/day), or subcutaneous GEN (12.5, 20, or 25 mg/kg/day). Estrogenic activity was measured on day 5 by determining uterine wet weight gain and induction of the estrogen-responsive gene lactoferrin. Vaginal opening, estrous cyclicity, fertility, and morphologic alterations in the ovary/reproductive tract were examined. RESULTS Oral GIN elicited an estrogenic response in the neonatal uterus, whereas the response to oral GEN was much weaker. Oral GIN altered ovarian differentiation (i.e., multioocyte follicles), delayed vaginal opening, caused abnormal estrous cycles, decreased fertility, and delayed parturition. CONCLUSIONS Our results support the idea that the dose of the physiologically active compound reaching the target tissue, rather than the administered dose or route, is most important in modeling chemical exposures. This is particularly true with young animals in which phase II metabolism capacity is underdeveloped relative to adults.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|