51
|
Madduri KM, Schafer BW, Hasler JM, Lin G, Foster ML, Embrey SK, Sastry-Dent L, Song P, Larrinua IM, Gachotte DJ, Herman RA. Preliminary safety assessment of a membrane-bound delta 9 desaturase candidate protein for transgenic oilseed crops. Food Chem Toxicol 2012; 50:3776-84. [DOI: 10.1016/j.fct.2012.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/06/2012] [Accepted: 07/08/2012] [Indexed: 11/24/2022]
|
52
|
Young GJ, Zhang S, Mirsky HP, Cressman RF, Cong B, Ladics GS, Zhong CX. Assessment of possible allergenicity of hypothetical ORFs in common food crops using current bioinformatic guidelines and its implications for the safety assessment of GM crops. Food Chem Toxicol 2012; 50:3741-51. [PMID: 22867756 DOI: 10.1016/j.fct.2012.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 01/14/2023]
Abstract
Before a genetically modified (GM) crop can be commercialized it must pass through a rigorous regulatory process to verify that it is safe for human and animal consumption, and to the environment. One particular area of focus is the potential introduction of a known or cross-reactive allergen not previously present within the crop. The assessment of possible allergenicity uses the guidelines outlined by the Food and Agriculture Organization (FAO) and World Health Organization's (WHO) Codex Alimentarius Commission (Codex) to evaluate all newly expressed proteins. Some regulatory authorities have broadened the scope of the assessment to include all DNA reading frames between stop codons across the insert and spanning the insert/genomic DNA junctions. To investigate the utility of this bioinformatic assessment, all naturally occurring stop-to-stop frames in the non-transgenic genomes of maize, rice, and soybean, as well as the human genome, were compared against the AllergenOnline (www.allergenonline.org) database using the Codex criteria. We discovered thousands of frames that exceeded the Codex defined threshold for potential cross-reactivity suggesting that evaluating hypothetical ORFs (stop-to-stop frames) has questionable value for making decisions on the safety of GM crops.
Collapse
Affiliation(s)
- Gregory J Young
- Pioneer Hi-Bred International, Inc., DuPont Agricultural Biotechnology, Wilmington, DE 19880, USA.
| | | | | | | | | | | | | |
Collapse
|
53
|
Bragin AO, Demenkov PS, Kolchanov NA, Ivanisenko VA. Accuracy of protein allergenicity prediction can be improved by taking into account data on allergenic protein discontinuous peptides. J Biomol Struct Dyn 2012; 31:59-64. [PMID: 22804354 DOI: 10.1080/07391102.2012.691362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Allergy poses major health problems in industrialized countries, affecting over 20% of the population. Proteins from transgenic foods, cosmetics, animal hair, and other ubiquitous sources can be allergens. For this reason, development of improved methods for the prediction of potential allergenicity of proteins is timely. The currently available approaches to allergenicity prediction are numerous. Some approaches relied heavily on information on protein three-dimensional (3D) structure for allergenicity prediction. They required knowledge about 3D structure of query protein, thereby considerably restricting analysis to only those proteins whose 3D structure was known. As a consequence, many proteins with unknown structure could be overlooked. We developed a new method for allergenicity prediction, using information on protein 3D structure only for training. Three-dimensional structures of known allergenic proteins were used for representing protein surface as patches designated as discontinuous peptides. Allergenicity was predicted through search of such peptides in query protein sequences. It was demonstrated that the information on the discontinuous peptides made feasible better prediction of allergenic proteins. The allergenicity prediction method is available at http://www-bionet.sscc.ru/psd/cgi-bin/programs/Allergen/allergen.cgi .
Collapse
Affiliation(s)
- Anatoly O Bragin
- Institute of Cytology and Genetics, Lavrentiev ave.10, Novosibirsk, 630090, Russia.
| | | | | | | |
Collapse
|
54
|
Ahmad A, Anjum FM, Zahoor T, Nawaz H, Dilshad SMR. Beta glucan: a valuable functional ingredient in foods. Crit Rev Food Sci Nutr 2012; 52:201-12. [PMID: 22214441 DOI: 10.1080/10408398.2010.499806] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
β-Glucan is a valuable functional ingredient and various extraction techniques are available for its extraction. Choice of an appropriate extraction technique is important as it may affect the quality, structure, rheological properties, molecular weight, and other functional properties of the extracted β-glucan. These properties lead to the use of β-glucan into various food systems and have important implications in human health. This review focuses on the extraction, synthesis, structure, molecular weight, and rheology of β-glucan. Furthermore, health implications and utilization of β-glucan in food products is also discussed.
Collapse
Affiliation(s)
- Asif Ahmad
- Department of Food Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
| | | | | | | | | |
Collapse
|
55
|
Pfiffner P, Stadler BM, Rasi C, Scala E, Mari A. Cross-reactions vs co-sensitization evaluated by in silico motifs and in vitro IgE microarray testing. Allergy 2012; 67:210-6. [PMID: 22054025 DOI: 10.1111/j.1398-9995.2011.02743.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Using an in silico allergen clustering method, we have recently shown that allergen extracts are highly cross-reactive. Here we used serological data from a multi-array IgE test based on recombinant or highly purified natural allergens to evaluate whether co-reactions are true cross-reactions or co-sensitizations by allergens with the same motifs. METHODS The serum database consisted of 3142 samples, each tested against 103 highly purified natural or recombinant allergens. Cross-reactivity was predicted by an iterative motif-finding algorithm through sequence motifs identified in 2708 known allergens. RESULTS Allergen proteins containing the same motifs cross-reacted as predicted. However, proteins with identical motifs revealed a hierarchy in the degree of cross-reaction: The more frequent an allergen was positive in the allergic population, the less frequently it was cross-reacting and vice versa. Co-sensitization was analyzed by splitting the dataset into patient groups that were most likely sensitized through geographical occurrence of allergens. Interestingly, most co-reactions are cross-reactions but not co-sensitizations. CONCLUSIONS The observed hierarchy of cross-reactivity may play an important role for the future management of allergic diseases.
Collapse
Affiliation(s)
- P Pfiffner
- University Institute of Immunology, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
56
|
Mondal HA, Chakraborti D, Majumder P, Roy P, Roy A, Bhattacharya SG, Das S. Allergenicity assessment of Allium sativum leaf agglutinin, a potential candidate protein for developing sap sucking insect resistant food crops. PLoS One 2011; 6:e27716. [PMID: 22110739 PMCID: PMC3218009 DOI: 10.1371/journal.pone.0027716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/22/2011] [Indexed: 12/18/2022] Open
Abstract
Background Mannose-binding Allium sativum leaf agglutinin (ASAL) is highly antinutritional and toxic to various phloem-feeding hemipteran insects. ASAL has been expressed in a number of agriculturally important crops to develop resistance against those insects. Awareness of the safety aspect of ASAL is absolutely essential for developing ASAL transgenic plants. Methodology/Principal Findings Following the guidelines framed by the Food and Agriculture Organization/World Health Organization, the source of the gene, its sequence homology with potent allergens, clinical tests on mammalian systems, and the pepsin resistance and thermostability of the protein were considered to address the issue. No significant homology to the ASAL sequence was detected when compared to known allergenic proteins. The ELISA of blood sera collected from known allergy patients also failed to show significant evidence of cross-reactivity. In vitro and in vivo assays both indicated the digestibility of ASAL in the presence of pepsin in a minimum time period. Conclusions/Significance With these experiments, we concluded that ASAL does not possess any apparent features of an allergen. This is the first report regarding the monitoring of the allergenicity of any mannose-binding monocot lectin having insecticidal efficacy against hemipteran insects.
Collapse
Affiliation(s)
| | - Dipankar Chakraborti
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
- Post Graduate Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India
| | - Pralay Majumder
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - Pampa Roy
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - Amit Roy
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | | | - Sampa Das
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
57
|
Torio MAO, Adachi M, Garcia RN, Prak K, Maruyama N, Utsumi S, Tecson-Mendoza EM. Effects of engineered methionine in the 8Sα globulin of mungbean on its physicochemical and functional properties and potential nutritional quality. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
58
|
Zheng LN, Lin H, Pawar R, Li ZX, Li MH. Mapping IgE binding epitopes of major shrimp (Penaeus monodon) allergen with immunoinformatics tools. Food Chem Toxicol 2011; 49:2954-60. [DOI: 10.1016/j.fct.2011.07.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 07/09/2011] [Accepted: 07/14/2011] [Indexed: 11/30/2022]
|
59
|
Crameri R. Immunoglobulin E-binding autoantigens: biochemical characterization and clinical relevance. Clin Exp Allergy 2011; 42:343-51. [PMID: 22092496 DOI: 10.1111/j.1365-2222.2011.03878.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/20/2011] [Accepted: 09/02/2011] [Indexed: 01/14/2023]
Abstract
Although immediate-Type I skin reactions to human dander have been described six decades ago, only the recent application of molecular biology to allergology research allowed fast and detailed characterization of IgE-binding autoantigens. These can be functionally subdivided into three classes: (1) self-antigens with sequence homology to environmental allergens belonging to the class of phylogenetically conserved proteins, (2) self-antigens without sequence homology to known environmental allergens, and (3) chemically modified self-antigens deriving from workplace exposure. As environmental allergens, also IgE-binding autoantigens belong to different protein families without common structural features that would explain their IgE-binding capability. Many of the self-antigens showing sequence homology to environmental allergens, are phylogenetically conserved proteins like manganese dependent superoxide dismutase, thioredoxin or cyclopilin. Their IgE-binding capability can be explained by molecular mimicry resulting from shared B-cell epitopes. A common factor of IgE-binding self-antigens without sequence homology to known environmental allergens is that they elicit IgE responses only in individuals suffering from long-lasting atopic diseases. In contrast, IgE-mediated reactions to modified self-antigens might be explained with the generation of novel B-cell epitopes. Chemically modified self-antigens are likely to be recognized as non-self by the immune system. The clinical relevance of IgE responses to self-antigens remains largely unclear. Well documented is their ability to induce immediate Type I skin reactions in vivo, and to induce mediator release from effector cells of sensitized individuals in vitro. Based on these observations it is reasonable to assume that IgE-mediated cross-linking of FcRIε receptors on effector cells can elicit the same symptoms as those induced by environmental allergens, and this could explain exacerbations of chronic allergic diseases in the absence of external exposure. However, because most of the described IgE-binding self-antigens are intracellular proteins normally not accessible for antigen-antibody interactions, local release of the antigens is required to explain the induction of symptoms.
Collapse
Affiliation(s)
- R Crameri
- Department Molecular Allergology, Swiss Institute of Allergy and Asthma Research, Obere Strasse 22, CH-7270 Davos, Switzerland.
| |
Collapse
|
60
|
Fermín G, Keith RC, Suzuki JY, Ferreira SA, Gaskill DA, Pitz KY, Manshardt RM, Gonsalves D, Tripathi S. Allergenicity assessment of the papaya ringspot virus coat protein expressed in transgenic rainbow papaya. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10006-12. [PMID: 21819140 DOI: 10.1021/jf201194r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The virus-resistant, transgenic commercial papaya Rainbow and SunUp (Carica papaya L.) have been consumed locally in Hawaii and elsewhere in the mainland United States and Canada since their release to planters in Hawaii in 1998. These papaya are derived from transgenic papaya line 55-1 and carry the coat protein (CP) gene of papaya ringspot virus (PRSV). The PRSV CP was evaluated for potential allergenicity, an important component in assessing the safety of food derived from transgenic plants. The transgene PRSV CP sequence of Rainbow papaya did not exhibit greater than 35% amino acid sequence homology to known allergens, nor did it have a stretch of eight amino acids found in known allergens which are known common bioinformatic methods used for assessing similarity to allergen proteins. PRSV CP was also tested for stability in simulated gastric fluid and simulated intestinal fluid and under various heat treatments. The results showed that PRSV CP was degraded under conditions for which allergenic proteins relative to nonallergens are purported to be stable. The potential human intake of transgene-derived PRSV CP was assessed by measuring CP levels in Rainbow and SunUp along with estimating the fruit consumption rates and was compared to potential intake estimates of PRSV CP from naturally infected nontransgenic papaya. Following accepted allergenicity assessment criteria, our results show that the transgene-derived PRSV CP does not pose a risk of food allergy.
Collapse
Affiliation(s)
- Gustavo Fermín
- USDA-ARS-Pacific Basin Agricultural Research Center, Hilo, Hawaii 96720, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Xue B, Soeria-Atmadja D, Gustafsson MG, Hammerling U, Dunker AK, Uversky VN. Abundance and functional roles of intrinsic disorder in allergenic proteins and allergen representative peptides. Proteins 2011; 79:2595-606. [DOI: 10.1002/prot.23077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/14/2011] [Accepted: 05/04/2011] [Indexed: 01/23/2023]
|
62
|
|
63
|
Teshima R, Nakamura R. [The method of the prediction for food-protein allergenicity]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2011; 52:1-9. [PMID: 21383527 DOI: 10.3358/shokueishi.52.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Reiko Teshima
- Division of Novel Foods and Immunochemistry, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | | |
Collapse
|
64
|
Ladics GS, Cressman RF, Herouet-Guicheney C, Herman RA, Privalle L, Song P, Ward JM, McClain S. Bioinformatics and the allergy assessment of agricultural biotechnology products: industry practices and recommendations. Regul Toxicol Pharmacol 2011; 60:46-53. [PMID: 21320564 DOI: 10.1016/j.yrtph.2011.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 11/26/2022]
Abstract
Bioinformatic tools are being increasingly utilized to evaluate the degree of similarity between a novel protein and known allergens within the context of a larger allergy safety assessment process. Importantly, bioinformatics is not a predictive analysis that can determine if a novel protein will ''become" an allergen, but rather a tool to assess whether the protein is a known allergen or is potentially cross-reactive with an existing allergen. Bioinformatic tools are key components of the 2009 CodexAlimentarius Commission's weight-of-evidence approach, which encompasses a variety of experimental approaches for an overall assessment of the allergenic potential of a novel protein. Bioinformatic search comparisons between novel protein sequences, as well as potential novel fusion sequences derived from the genome and transgene, and known allergens are required by all regulatory agencies that assess the safety of genetically modified (GM) products. The objective of this paper is to identify opportunities for consensus in the methods of applying bioinformatics and to outline differences that impact a consistent and reliable allergy safety assessment. The bioinformatic comparison process has some critical features, which are outlined in this paper. One of them is a curated, publicly available and well-managed database with known allergenic sequences. In this paper, the best practices, scientific value, and food safety implications of bioinformatic analyses, as they are applied to GM food crops are discussed. Recommendations for conducting bioinformatic analysis on novel food proteins for potential cross-reactivity to known allergens are also put forth.
Collapse
Affiliation(s)
- Gregory S Ladics
- Pioneer Hi-Bred International Inc., DuPont Agricultural Biotechnology, P.O. Box 80353, Wilmington, DE 19880, USA.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Mari A, Ciardiello MA, Tamburrini M, Rasi C, Palazzo P. Proteomic analysis in the identification of allergenic molecules. Expert Rev Proteomics 2011; 7:723-34. [PMID: 20973644 DOI: 10.1586/epr.10.44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional and innovative strategies can be exploited to identify and characterize new allergenic proteins. With the aim of obtaining suggestions for future improvements, this article describes our attempt to understand and describe some of the advantages and pitfalls of the methodologies and procedures often used in this field. The analysis includes the protein extract preparation, starting from the allergenic source, the separation of the proteins contained in a mixture and the detection, identification and characterization of IgE-binding molecules. Classic and emerging proteomic technologies, including mass spectrometry-based methodologies, Edman degradation procedure, microarray-based techniques and bioinformatics search strategies, have been explored. A comparative analysis of biochemistry-based proteomics and molecular biology strategies has also been given.
Collapse
Affiliation(s)
- Adriano Mari
- Center for Molecular Allergology, IDI-IRCCS, Via dei Monti di Creta 104, I-00167 Roma, Italy
| | | | | | | | | |
Collapse
|
66
|
Bioinformatic analysis for allergenicity assessment of Bacillus thuringiensis Cry proteins expressed in insect-resistant food crops. Food Chem Toxicol 2011; 49:356-62. [DOI: 10.1016/j.fct.2010.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/02/2010] [Accepted: 11/05/2010] [Indexed: 01/17/2023]
|
67
|
Pfiffner P, Truffer R, Matsson P, Rasi C, Mari A, Stadler BM. Allergen cross reactions: a problem greater than ever thought? Allergy 2010; 65:1536-44. [PMID: 20584004 DOI: 10.1111/j.1398-9995.2010.02420.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cross reactions are an often observed phenomenon in patients with allergy. Sensitization against some allergens may cause reactions against other seemingly unrelated allergens. Today, cross reactions are being investigated on a per-case basis, analyzing blood serum specific IgE (sIgE) levels and clinical features of patients suffering from cross reactions. In this study, we evaluated the level of sIgE compared to patients' total IgE assuming epitope specificity is a consequence of sequence similarity. METHODS Our objective was to evaluate our recently published model of molecular sequence similarities underlying cross reactivity using serum-derived data from IgE determinations of standard laboratory tests. We calculated the probabilities of protein cross reactivity based on conserved sequence motifs and compared these in silico predictions to a database consisting of 5362 sera with sIgE determinations. RESULTS Cumulating sIgE values of a patient resulted in a median of 25-30% total IgE. Comparing motif cross reactivity predictions to sIgE levels showed that on average three times fewer motifs than extracts were recognized in a given serum (correlation coefficient: 0.967). Extracts belonging to the same motif group co-reacted in a high percentage of sera (up to 80% for some motifs). CONCLUSIONS Cumulated sIgE levels are exaggerated because of a high level of observed cross reactions. Thus, not only bioinformatic prediction of allergenic motifs, but also serological routine testing of allergic patients implies that the immune system may recognize only a small number of allergenic structures.
Collapse
Affiliation(s)
- P Pfiffner
- University Institute of Immunology, Bern, Switzerland Phadia AB, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
68
|
Verma AK, Misra A, Subash S, Das M, Dwivedi PD. Computational allergenicity prediction of transgenic proteins expressed in genetically modified crops. Immunopharmacol Immunotoxicol 2010; 33:410-22. [PMID: 20964517 DOI: 10.3109/08923973.2010.523704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Development of genetically modified (GM) crops is on increase to improve food quality, increase harvest yields, and reduce the dependency on chemical pesticides. Before their release in marketplace, they should be scrutinized for their safety. Several guidelines of different regulatory agencies like ILSI, WHO Codex, OECD, and so on for allergenicity evaluation of transgenics are available and sequence homology analysis is the first test to determine the allergenic potential of inserted proteins. Therefore, to test and validate, 312 allergenic, 100 non-allergenic, and 48 inserted proteins were assessed for sequence similarity using 8-mer, 80-mer, and full FASTA search. On performing sequence homology studies, ~94% the allergenic proteins gave exact matches for 8-mer and 80-mer homology. However, 20 allergenic proteins showed non-allergenic behavior. Out of 100 non-allergenic proteins, seven qualified as allergens. None of the inserted proteins demonstrated allergenic behavior. In order to improve the predictability, proteins showing anomalous behavior were tested by Algpred and ADFS separately. Use of Algpred and ADFS softwares reduced the tendency of false prediction to a great extent (74-78%). In conclusion, routine sequence homology needs to be coupled with some other bioinformatic method like ADFS/Algpred to reduce false allergenicity prediction of novel proteins.
Collapse
Affiliation(s)
- Alok Kumar Verma
- Food Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
69
|
Schein CH, Ivanciuc O, Midoro-Horiuti T, Goldblum RM, Braun W. An Allergen Portrait Gallery: Representative Structures and an Overview of IgE Binding Surfaces. Bioinform Biol Insights 2010; 4:113-25. [PMID: 20981266 PMCID: PMC2964044 DOI: 10.4137/bbi.s5737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent progress in the biochemical classification and structural determination of allergens and allergen-antibody complexes has enhanced our understanding of the molecular determinants of allergenicity. Databases of allergens and their epitopes have facilitated the clustering of allergens according to their sequences and, more recently, their structures. Groups of similar sequences are identified for allergenic proteins from diverse sources, and all allergens are classified into a limited number of protein structural families. A gallery of experimental structures selected from the protein classes with the largest number of allergens demonstrate the structural diversity of the allergen universe. Further comparison of these structures and identification of areas that are different from innocuous proteins within the same protein family can be used to identify features specific to known allergens. Experimental and computational results related to the determination of IgE binding surfaces and methods to define allergen-specific motifs are highlighted.
Collapse
Affiliation(s)
- Catherine H. Schein
- Sealy Center for Structural Biology and Molecular Biophysics
- Department of Biochemistry and Molecular Biology
- Sealy Center for Vaccine Development
- Department of Microbiology and Immunology
| | - Ovidiu Ivanciuc
- Sealy Center for Structural Biology and Molecular Biophysics
- Department of Biochemistry and Molecular Biology
| | - Terumi Midoro-Horiuti
- Department of Biochemistry and Molecular Biology
- Sealy Center for Vaccine Development
- Child Health Research Center, Department of Pediatrics, University of Texas Medical Branch, 310 University Boulevard, Galveston, Texas 77555-0364, USA
| | - Randall M. Goldblum
- Sealy Center for Structural Biology and Molecular Biophysics
- Department of Biochemistry and Molecular Biology
- Sealy Center for Vaccine Development
- Child Health Research Center, Department of Pediatrics, University of Texas Medical Branch, 310 University Boulevard, Galveston, Texas 77555-0364, USA
| | - Werner Braun
- Sealy Center for Structural Biology and Molecular Biophysics
- Department of Biochemistry and Molecular Biology
- Sealy Center for Vaccine Development
| |
Collapse
|
70
|
Tomar N, De RK. Immunoinformatics: an integrated scenario. Immunology 2010; 131:153-68. [PMID: 20722763 PMCID: PMC2967261 DOI: 10.1111/j.1365-2567.2010.03330.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 06/12/2010] [Accepted: 06/21/2010] [Indexed: 12/11/2022] Open
Abstract
Genome sequencing of humans and other organisms has led to the accumulation of huge amounts of data, which include immunologically relevant data. A large volume of clinical data has been deposited in several immunological databases and as a result immunoinformatics has emerged as an important field which acts as an intersection between experimental immunology and computational approaches. It not only helps in dealing with the huge amount of data but also plays a role in defining new hypotheses related to immune responses. This article reviews classical immunology, different databases and prediction tools. It also describes applications of immunoinformatics in designing in silico vaccination and immune system modelling. All these efforts save time and reduce cost.
Collapse
Affiliation(s)
- Namrata Tomar
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
71
|
Razzera G, Gadermaier G, de Paula V, Almeida MS, Egger M, Jahn-Schmid B, Almeida FC, Ferreira F, Valente AP. Mapping the Interactions between a Major Pollen Allergen and Human IgE Antibodies. Structure 2010; 18:1011-21. [DOI: 10.1016/j.str.2010.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 11/15/2022]
|
72
|
Scientific Opinion on the assessment of allergenicity of GM plants and microorganisms and derived food and feed. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1700] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
73
|
Harrer A, Egger M, Gadermaier G, Erler A, Hauser M, Ferreira F, Himly M. Characterization of plant food allergens: An overview on physicochemical and immunological techniques. Mol Nutr Food Res 2009; 54:93-112. [DOI: 10.1002/mnfr.200900096] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
74
|
Herman RA, Song P, Thirumalaiswamysekhar A. Value of eight-amino-acid matches in predicting the allergenicity status of proteins: an empirical bioinformatic investigation. Clin Mol Allergy 2009; 7:9. [PMID: 19874602 PMCID: PMC2773230 DOI: 10.1186/1476-7961-7-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/29/2009] [Indexed: 11/22/2022] Open
Abstract
The use of biotechnological techniques to introduce novel proteins into food crops (transgenic or GM crops) has motivated investigation into the properties of proteins that favor their potential to elicit allergic reactions. As part of the allergenicity assessment, bioinformatic approaches are used to compare the amino-acid sequence of candidate proteins with sequences in a database of known allergens to predict potential cross reactivity between novel food proteins and proteins to which people have become sensitized. Two criteria commonly used for these queries are searches over 80-amino-acid stretches for >35% identity, and searches for 8-amino-acid contiguous matches. We investigated the added value provided by the 8-amino-acid criterion over that provided by the >35%-identity-over-80-amino-acid criterion, by identifying allergens pairs that only met the former criterion, but not the latter criterion. We found that the allergen-sequence pairs only sharing 8-amino-acid identity, but not >35% identity over 80 amino acids, were unlikely to be cross reactive allergens. Thus, the common search for 8-amino-acid identity between novel proteins and known allergens appears to be of little additional value in assessing the potential allergenicity of novel proteins.
Collapse
Affiliation(s)
- Rod A Herman
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | | | | |
Collapse
|
75
|
Mari A, Rasi C, Palazzo P, Scala E. Allergen databases: current status and perspectives. Curr Allergy Asthma Rep 2009; 9:376-83. [PMID: 19671381 DOI: 10.1007/s11882-009-0055-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An increasing number of studies on allergenic molecules have been published during the past 20 years, and the number of proteins reported as allergens is close to 1500 (http://www.allergome.org). Collecting, organizing, and displaying data reported in the scientific literature is becoming the major commitment of Web-based databases that organize this knowledge in heterogeneous ways. This heterogeneity prevents the databases from being connected to each other, something that has been done in several other biomedical fields. This review reports on the current status of allergen databases and available tools to study the allergenicity of new compounds. An analysis of what has been done by applying bioinformatics in other medical fields is presented. Suggestions on how to create a common platform in which experimental, clinical, and epidemiologic data could be merged are offered. The model of the Allergome platform and its modules and tools (eg, InterAll, ReTiME, RefArray, and AllergomeBlaster) are used to exemplify interconnectivity and data integration.
Collapse
Affiliation(s)
- Adriano Mari
- Center for Clinical and Experimental Allergology, IDI-IRCCS, Rome, Italy.
| | | | | | | |
Collapse
|
76
|
Cressman RF, Ladics G. Further evaluation of the utility of “Sliding Window” FASTA in predicting cross-reactivity with allergenic proteins. Regul Toxicol Pharmacol 2009; 54:S20-5. [DOI: 10.1016/j.yrtph.2008.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/15/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
|
77
|
Food allergen protein families and their structural characteristics and application in component-resolved diagnosis: new data from the EuroPrevall project. Anal Bioanal Chem 2009; 395:25-35. [DOI: 10.1007/s00216-009-2953-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022]
|
78
|
Hammerling U, Tallsjö A, Grafström R, Ilbäck NG. Comparative Hazard Characterization in Food Toxicology. Crit Rev Food Sci Nutr 2009; 49:626-69. [DOI: 10.1080/10408390802145617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
79
|
Thomas K, MacIntosh S, Bannon G, Herouet-Guicheney C, Holsapple M, Ladics G, McClain S, Vieths S, Woolhiser M, Privalle L. Scientific advancement of novel protein allergenicity evaluation: an overview of work from the HESI Protein Allergenicity Technical Committee (2000-2008). Food Chem Toxicol 2009; 47:1041-50. [PMID: 19425225 DOI: 10.1016/j.fct.2009.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The safety assessment of genetically modified crops includes the evaluation for potential allergenicity. The current 'state-of-the-science' utilizes a weight of evidence approach, as outlined by the Codex Alimentarius commission (Alinorm 03/34 A), recognizing no single endpoint is predictive of the allergenic potential of a novel protein. This approach evaluates: whether the gene source is allergenic, sequence similarity to known allergens, and protein resistance to pepsin in vitro. If concerns are identified, serological studies may be necessary to determine if a protein has IgE binding similar to known allergens. Since there was a lack of standardized/validated methods to conduct the allergenicity assessment, a committee was assembled under the International Life Sciences Institute Health and Environmental Sciences Institute to address this issue. Over the last eight years, the Protein Allergenicity Technical Committee has convened workshops and symposia with allergy experts and government authorities to refine methods that underpin the assessment for potential protein allergenicity. This publication outlines this ongoing effort, summarizing workshops and formal meetings, referencing publications, and highlighting outreach activities. The purpose is to (1) outline 'the state-of-the-science' in predicting protein allergenicity in the context of current international recommendations for novel protein safety assessment, and (2) identify approaches that can be improved and future research needs.
Collapse
Affiliation(s)
- Karluss Thomas
- International Life Sciences Institute, Health and Environmental Sciences Institute, 1156 Fifteenth Street, NW, Second Floor, Washington, DC 20005, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Herouet-Guicheney C, Rouquié D, Freyssinet M, Currier T, Martone A, Zhou J, Bates EEM, Ferullo JM, Hendrickx K, Rouan D. Safety evaluation of the double mutant 5-enol pyruvylshikimate-3-phosphate synthase (2mEPSPS) from maize that confers tolerance to glyphosate herbicide in transgenic plants. Regul Toxicol Pharmacol 2009; 54:143-53. [PMID: 19303906 DOI: 10.1016/j.yrtph.2009.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 10/21/2022]
Abstract
Glyphosate tolerance can be conferred by decreasing the herbicide's ability to inhibit the enzyme 5-enol pyruvylshikimate-3-phosphate synthase, which is essential for the biosynthesis of aromatic amino acids in all plants, fungi, and bacteria. Glyphosate tolerance is based upon the expression of the double mutant 5-enol pyruvylshikimate-3-phosphate synthase (2mEPSPS) protein. The 2mEPSPS protein, with a lower binding affinity for glyphosate, is highly resistant to the inhibition by glyphosate and thus allows sufficient enzyme activity for the plants to grow in the presence of herbicides that contain glyphosate. Based on both a review of published literature and experimental studies, the potential safety concerns related to the transgenic 2mEPSPS protein were assessed. The safety evaluation supports that the expressed protein is innocuous. The 2mEPSPS enzyme does not possess any of the properties associated with known toxins or allergens, including a lack of amino acid sequence similarity to known toxins and allergens, a rapid degradation in simulated gastric and intestinal fluids, and no adverse effects in mice after intravenous or oral administration (at 10 or 2000 mg/kg body weight, respectively). In conclusion, there is a reasonable certainty of no harm resulting from the inclusion of the 2mEPSPS protein in human food or in animal feed.
Collapse
|
81
|
Muh HC, Tong JC, Tammi MT. AllerHunter: a SVM-pairwise system for assessment of allergenicity and allergic cross-reactivity in proteins. PLoS One 2009; 4:e5861. [PMID: 19516900 PMCID: PMC2689655 DOI: 10.1371/journal.pone.0005861] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 05/06/2009] [Indexed: 11/19/2022] Open
Abstract
Allergy is a major health problem in industrialized countries. The number of transgenic food crops is growing rapidly creating the need for allergenicity assessment before they are introduced into human food chain. While existing bioinformatic methods have achieved good accuracies for highly conserved sequences, the discrimination of allergens and non-allergens from allergen-like non-allergen sequences remains difficult. We describe AllerHunter, a web-based computational system for the assessment of potential allergenicity and allergic cross-reactivity in proteins. It combines an iterative pairwise sequence similarity encoding scheme with SVM as the discriminating engine. The pairwise vectorization framework allows the system to model essential features in allergens that are involved in cross-reactivity, but not limited to distinct sets of physicochemical properties. The system was rigorously trained and tested using 1,356 known allergen and 13,449 putative non-allergen sequences. Extensive testing was performed for validation of the prediction models. The system is effective for distinguishing allergens and non-allergens from allergen-like non-allergen sequences. Testing results showed that AllerHunter, with a sensitivity of 83.4% and specificity of 96.4% (accuracy = 95.3%, area under the receiver operating characteristic curve AROC = 0.928+/-0.004 and Matthew's correlation coefficient MCC = 0.738), performs significantly better than a number of existing methods using an independent dataset of 1443 protein sequences. AllerHunter is available at (http://tiger.dbs.nus.edu.sg/AllerHunter).
Collapse
Affiliation(s)
- Hon Cheng Muh
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Joo Chuan Tong
- Data Mining Department, Institute for Infocomm Research, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Martti T. Tammi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
82
|
Kim C, Kwon S, Lee G, Lee H, Choi J, Kim Y, Hahn J. A database for allergenic proteins and tools for allergenicity prediction. Bioinformation 2009; 3:344-5. [PMID: 19707297 PMCID: PMC2720674 DOI: 10.6026/97320630003344] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 03/12/2009] [Accepted: 03/24/2009] [Indexed: 11/23/2022] Open
Abstract
The AllergenPro database has developed a web-based system that will provide information about allergen in microbes, animals and plants. The database has three major parts and
functions:(i) database list; (ii) allergen search; and (iii) allergenicity prediction. The database contains 2,434 allergens related information readily available in the database
such as on allergens in rice microbes (712 records), animals (617 records) and plants (1,105 records). Furthermore, this database provides bioinformatics tools for allergenicity
prediction. Users can search for specific allergens by various methods and can run tools for allergenicity prediction using three different methods.
Collapse
Affiliation(s)
- ChangKug Kim
- Genomics Division, National Academy of Agricultural Science (NAAS), Suwon 441-707, Korea
| | - SooJin Kwon
- Genomics Division, National Academy of Agricultural Science (NAAS), Suwon 441-707, Korea
| | - GangSeob Lee
- Genomics Division, National Academy of Agricultural Science (NAAS), Suwon 441-707, Korea
| | - HwanKi Lee
- Technology Information Division, Rural Development Administration (RDA), Korea
| | - JiWeon Choi
- Vegetable Research Division, National Institute of Horticultural & Herbal Science (NIHHS), Korea
| | - YongHwan Kim
- Genomics Division, National Academy of Agricultural Science (NAAS), Suwon 441-707, Korea
| | - JangHo Hahn
- Genomics Division, National Academy of Agricultural Science (NAAS), Suwon 441-707, Korea
- ChangKug Kim:
| |
Collapse
|
83
|
Selgrade MK, Bowman CC, Ladics GS, Privalle L, Laessig SA. Safety assessment of biotechnology products for potential risk of food allergy: implications of new research. Toxicol Sci 2009; 110:31-9. [PMID: 19363142 DOI: 10.1093/toxsci/kfp075] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food allergy is a potential risk associated with use of transgenic proteins in crops. Currently, safety assessment involves consideration of the source of the introduced protein, in silico amino acid sequence homology comparisons to known allergens, physicochemical properties, protein abundance in the crop, and, when appropriate, specific immunoglobulin E binding studies. Recently conducted research presented at an International Life Sciences Institute/Health and Environmental Sciences Institute-hosted workshop adds to the scientific foundation for safety assessment of transgenic proteins in five areas: structure/activity, serum screening, animal models, quantitative proteomics, and basic mechanisms. A web-based tool is now available that integrates a database of allergenic proteins with a variety of computational tools which could be used to improve our ability to predict allergenicity based on structural analysis. A comprehensive strategy and model protocols have been developed for conducting meaningful serum screening, an extremely challenging process. Several animal models using oral sensitization with adjuvant and one dermal sensitization model have been developed and appear to distinguish allergenic from non-allergenic food extracts. Data presented using a mouse model suggest that pepsin resistance is indicative of allergenicity. Certain questions remain to be addressed before considering animal model validation. Gel-free mass spectrometry is a viable alternative to more labor-intensive approaches to quantitative proteomics. Proteomic data presented on four nontransgenic varieties of soy suggested that if known allergen expression in genetically modified crops falls within the range of natural variability among commercial varieties, there appears to be no need to test further. Finally, basic research continues to elucidate the etiology of food allergy.
Collapse
Affiliation(s)
- MaryJane K Selgrade
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | |
Collapse
|
84
|
Dearman RJ, Kimber I. Animal models of protein allergenicity: potential benefits, pitfalls and challenges. Clin Exp Allergy 2009; 39:458-68. [DOI: 10.1111/j.1365-2222.2008.03194.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
85
|
Ivanciuc O, Schein CH, Garcia T, Oezguen N, Negi SS, Braun W. Structural analysis of linear and conformational epitopes of allergens. Regul Toxicol Pharmacol 2008; 54:S11-9. [PMID: 19121639 DOI: 10.1016/j.yrtph.2008.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/06/2008] [Accepted: 11/06/2008] [Indexed: 11/17/2022]
Abstract
In many countries regulatory agencies have adopted safety guidelines, based on bioinformatics rules from the WHO/FAO and EFSA recommendations, to prevent potentially allergenic novel foods or agricultural products from reaching consumers. We created the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to combine data that had previously been available only as flat files on Web pages or in the literature. SDAP was designed to be user friendly, to be of maximum use to regulatory agencies, clinicians, as well as to scientists interested in assessing the potential allergenic risk of a protein. We developed methods, unique to SDAP, to compare the physicochemical properties of discrete areas of allergenic proteins to known IgE epitopes. We developed a new similarity measure, the property distance (PD) value that can be used to detect related segments in allergens with clinical observed cross-reactivity. We have now expanded this work to obtain experimental validation of the PD index as a quantitative predictor of IgE cross-reactivity, by designing peptide variants with predetermined PD scores relative to known IgE epitopes. In complementary work we show how sequence motifs characteristic of allergenic proteins in protein families can be used as fingerprints for allergenicity.
Collapse
Affiliation(s)
- Ovidiu Ivanciuc
- Sealy Center for Structural Biology and Molecular Biophysics, Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0857, USA
| | | | | | | | | | | |
Collapse
|
86
|
Lim SJ, Tong JC, Chew FT, Tammi MT. The value of position-specific scoring matrices for assessment of protein allegenicity. BMC Bioinformatics 2008; 9 Suppl 12:S21. [PMID: 19091021 PMCID: PMC2638161 DOI: 10.1186/1471-2105-9-s12-s21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bioinformatics tools are commonly used for assessing potential protein allergenicity. While these methods have achieved good accuracies for highly conserved sequences, they are less effective when the overall similarity is low. In this study, we assessed the feasibility of using position-specific scoring matrices as a basis for predicting potential allergenicity in proteins. RESULTS Two simple methods for predicting potential allergenicity in proteins, based on general and group-specific allergen profiles, are presented. Testing results indicate that the performances of both methods are comparable to the best results of other methods. The group-specific profile approach, with a sensitivity of 84.04% and specificity of 96.52%, gives similar results as those obtained using the general profile approach (sensitivity = 82.45%, specificity = 96.92%). CONCLUSION We show that position-specific scoring matrices are highly promising for constructing computational models suitable for allergenicity assessment. These data suggest it may be possible to apply a targeted approach for allergenicity assessment based on the profiles of allergens of interest.
Collapse
Affiliation(s)
- Shen Jean Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597.
| | | | | | | |
Collapse
|
87
|
Identifying food proteins with allergenic potential: evolution of approaches to safety assessment and research to provide additional tools. Regul Toxicol Pharmacol 2008; 54:S2-6. [PMID: 19028539 DOI: 10.1016/j.yrtph.2008.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
Abstract
A safety assessment process exists for genetically engineered crops that includes the evaluation of the expressed protein for allergenic potential. The objectives of this evaluation are twofold: (1) to protect allergic consumers from exposure to known allergenic or cross-reactive proteins, and (2) protect the general population from risks associated with the introduction of genes encoding proteins that are likely to become food allergens. The first systematic approach to address these concerns was formulated by Metcalfe et al. [Metcalfe, D.D., Astwood, J.D., Townsend, R., Sampson, H.A., Taylor, S.L., and Fuchs, R.L. 1996. Assessment of the allergenic potential of foods from genetically engineered crop plants. Crit. Rev. Food Sci. Nutr. 36(5), 165-186.] and subsequently Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO) [FAO/WHO, 2001. Evaluation of allergenicity of genetically modified foods. Report of a Joint FAO/WHO Expert Consultation on Allergenicity of Foods Derived from Biotechnology. January 22-25, 2001. Rome, Italy]. More recently, Codex [Codex Alimentarius Commission, 2003. Alinorm 03/34: Joint FAO/WHO Food Standard Programme, Codex Alimentarius Commission, Twenty-Fifth Session, Rome, Italy, 30 June-5 July, 2003. Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants, and Appendix IV, Annex on the assessment of possible allergenicity. pp. 47-60], noting that no single factor is recognized as an identifier for protein allergenicity, suggested a weight of evidence approach be conducted that takes into account a variety of factors and approaches for an overall assessment of allergenic potential. These various recommendations are based on what is known about allergens, including the history of exposure and safety of the gene(s) source; amino acid sequence identity to human allergens; stability to pepsin digestion in vitro; protein abundance in the crop and processing effects; and when appropriate, specific IgE binding studies or skin-prick testing. Similarities and differences between these various suggested recommendations, as well as data gaps, are discussed. The US Environmental Protection Agency (EPA)'s Office of Research and Development (ORD) has initiated a targeted research effort to address data gaps and improve the various recommended methods/endpoints for assessing the allergenic risks associated with plant incorporated pesticides (PIPs) through both intramural and extramural (grant supported) research. The areas of primary focus for EPA include: (1) development and evaluation of animal models; (2) targeted or specific serological assays; and (3) structure-activity relationships. Details on the current as well as proposed EPA funded research are discussed. More recently US EPA has partnered with the National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health to support research in areas of mutual interest with respect to food allergy.
Collapse
|
88
|
Characteristic motifs for families of allergenic proteins. Mol Immunol 2008; 46:559-68. [PMID: 18951633 DOI: 10.1016/j.molimm.2008.07.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 12/16/2022]
Abstract
The identification of potential allergenic proteins is usually done by scanning a database of allergenic proteins and locating known allergens with a high sequence similarity. However, there is no universally accepted cut-off value for sequence similarity to indicate potential IgE cross-reactivity. Further, overall sequence similarity may be less important than discrete areas of similarity in proteins with homologous structure. To identify such areas, we first classified all allergens and their subdomains in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to their closest protein families as defined in Pfam, and identified conserved physicochemical property motifs characteristic of each group of sequences. Allergens populate only a small subset of all known Pfam families, as all allergenic proteins in SDAP could be grouped to only 130 (of 9318 total) Pfams, and 31 families contain more than four allergens. Conserved physicochemical property motifs for the aligned sequences of the most populated Pfam families were identified with the PCPMer program suite and catalogued in the webserver MotifMate (http://born.utmb.edu/motifmate/summary.php). We also determined specific motifs for allergenic members of a family that could distinguish them from non-allergenic ones. These allergen specific motifs should be most useful in database searches for potential allergens. We found that sequence motifs unique to the allergens in three families (seed storage proteins, Bet v 1, and tropomyosin) overlap with known IgE epitopes, thus providing evidence that our motif based approach can be used to assess the potential allergenicity of novel proteins.
Collapse
|
89
|
Shakib F, Ghaemmaghami AM, Sewell HF. The molecular basis of allergenicity. Trends Immunol 2008; 29:633-42. [PMID: 18951844 DOI: 10.1016/j.it.2008.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 08/20/2008] [Accepted: 08/20/2008] [Indexed: 01/01/2023]
Abstract
Allergens are mostly innocuous antigens that elicit powerful T helper cell type 2 (Th2) responses leading to hyper-immunoglobulin E (IgE) production and allergy. Research carried out over several years has highlighted the possible role of the inherent protease activity, surface features and glycosylation patterns of allergens in the engagement of a Th2 signalling pathway. It is thought that allergens possess common features and patterns that enable them to be recognized by innate immune defences as Th2-inducing antigens. These events are further amplified by proteolytically active allergens through digestion of cell surface molecules involved in regulating innate and adaptive immune functions, favouring Th2 responses. A greater understanding of the molecular features that make proteins allergenic will help define new therapeutic targets aimed at blocking allergen recognition and protease activity.
Collapse
Affiliation(s)
- Farouk Shakib
- Division of Immunology, School of Molecular Medical Sciences, Institute of Infection, Immunity and Inflammation, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | | | | |
Collapse
|
90
|
Ivanciuc O, Midoro-Horiuti T, Schein CH, Xie L, Hillman GR, Goldblum RM, Braun W. The property distance index PD predicts peptides that cross-react with IgE antibodies. Mol Immunol 2008; 46:873-83. [PMID: 18950868 DOI: 10.1016/j.molimm.2008.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 09/08/2008] [Indexed: 11/15/2022]
Abstract
Similarities in the sequence and structure of allergens can explain clinically observed cross-reactivities. Distinguishing sequences that bind IgE in patient sera can be used to identify potentially allergenic protein sequences and aid in the design of hypo-allergenic proteins. The property distance index PD, incorporated in our Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/), may identify potentially cross-reactive segments of proteins, based on their similarity to known IgE epitopes. We sought to obtain experimental validation of the PD index as a quantitative predictor of IgE cross-reactivity, by designing peptide variants with predetermined PD scores relative to three linear IgE epitopes of Jun a 1, the dominant allergen from mountain cedar pollen. For each of the three epitopes, 60 peptides were designed with increasing PD values (decreasing physicochemical similarity) to the starting sequence. The peptides synthesized on a derivatized cellulose membrane were probed with sera from patients who were allergic to Jun a 1, and the experimental data were interpreted with a PD classification method. Peptides with low PD values relative to a given epitope were more likely to bind IgE from the sera than were those with PD values larger than 6. Control sequences, with PD values between 18 and 20 to all the three epitopes, did not bind patient IgE, thus validating our procedure for identifying negative control peptides. The PD index is a statistically validated method to detect discrete regions of proteins that have a high probability of cross-reacting with IgE from allergic patients.
Collapse
Affiliation(s)
- Ovidiu Ivanciuc
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0857, United States
| | | | | | | | | | | | | |
Collapse
|
91
|
Ladics G. Current codex guidelines for assessment of potential protein allergenicity. Food Chem Toxicol 2008; 46 Suppl 10:S20-3. [DOI: 10.1016/j.fct.2008.07.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
92
|
Goodman RE. Performing IgE serum testing due to bioinformatics matches in the allergenicity assessment of GM crops. Food Chem Toxicol 2008; 46 Suppl 10:S24-34. [PMID: 18715545 DOI: 10.1016/j.fct.2008.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proteins introduced into genetically modified (GM) organisms through genetic engineering must be evaluated for their potential to cause allergic disease under various national laws and regulations. The Codex Alimentarius Commission guidance document (2003) calls for testing of serum IgE binding to the introduced protein if the gene was from an allergenic source, or the sequence of the transferred protein has >35% identity in any segment of 80 or more amino acids to a known allergen or shares significant short amino acid identities. The Codex guidance recognized that the assessment will evolve based on new scientific knowledge. Arguably, the current criteria are too conservative as discussed in this paper and they do not provide practical guidance on serum testing. The goals of this paper are: (1) to summarize evidence supporting the level of identity that indicates potential risk of cross-reactivity for those with existing allergies; (2) to provide example bioinformatics results and discuss their interpretation using published examples of proteins expressed in transgenic crops; and (3) to discuss key factors of experimental design and methodology for serum IgE tests to minimize the rate of false negative and false positive identification of potential allergens and cross-reactive proteins.
Collapse
Affiliation(s)
- Richard E Goodman
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska, 143 Food Industry Complex, Lincoln, USA.
| |
Collapse
|
93
|
Müller L, Vogel M, Stadler M, Truffer R, Rohner E, Stadler BM. Sensitization to wasp venom does not induce autoantibodies leading to infertility. Mol Immunol 2008; 45:3775-85. [PMID: 18632155 DOI: 10.1016/j.molimm.2008.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 11/28/2022]
Abstract
Antigenic cross-reactivity has been described between the venom allergen (antigen 5) and mammalian testis proteins. Based on an allergen database we have previously shown that allergens can be represented by allergen motifs. A motif group was found containing venom antigen 5 sequences from different vespids. Using an optimized amino acid profile based on antigen 5 sequences for searching cross-reactive proteins, three human semen proteins belonging to the family of cysteine-rich secretory proteins (hCRISP) were found in the Swiss Protein database. To analyze antigenic cross-reactivity between antigen 5 and hCRISPs, antigen 5 from yellow jacket venom (Ves v 5) and two hCRISPs (CRISP-2 and -3) were chosen and produced as recombinant proteins in E. coli. A correlation was found between antibodies reacting with rVes v 5 and rhCRISP-2, -3 in a small human sera population indicating the presence of cross-reactive antibodies in human serum. Using intravenous immunoglobulin (IVIg), a therapeutic multidonor IgG preparation, cross-reactive antibodies were isolated that recognize rVes v 5, hCRISP-2 and -3 suggesting the presence of common epitopes between Ves v 5 and hCRISPs. However this cross-reactivity seems not to be linked to allergy to wasp venom as we could show no correlation between increasing CAP-class IgE level to wasp venom and IgG to sperm extract and hCRISPs. These data suggest that higher sensitization to wasp venom does not induce more antibodies against autoantigens and might not represent a higher risk to develop autoantibodies leading to infertility.
Collapse
Affiliation(s)
- Lorenz Müller
- Institute of Immunology, University of Bern, Inselspital, Sahlihaus 2, Bern 3010, Switzerland
| | | | | | | | | | | |
Collapse
|
94
|
Thomas K, Herouet-Guicheney C, Ladics G, McClain S, MacIntosh S, Privalle L, Woolhiser M. Current and future methods for evaluating the allergenic potential of proteins: international workshop report 23-25 October 2007. Food Chem Toxicol 2008; 46:3219-25. [PMID: 18656521 DOI: 10.1016/j.fct.2008.06.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/25/2008] [Indexed: 11/15/2022]
Abstract
The International Life Science Institute's Health and Environmental Sciences Institute's Protein Allergenicity Technical Committee hosted an international workshop October 23-25, 2007, in Nice, France, to review and discuss existing and emerging methods and techniques for improving the current weight-of-evidence approach for evaluating the potential allergenicity of novel proteins. The workshop included over 40 international experts from government, industry, and academia. Their expertise represented a range of disciplines including immunology, chemistry, molecular biology, bioinformatics, and toxicology. Among participants, there was consensus that (1) current bioinformatic approaches are highly conservative; (2) advances in bioinformatics using structural comparisons of proteins may be helpful as the availability of structural data increases; (3) proteomics may prove useful for monitoring the natural variability in a plant's proteome and assessing the impact of biotechnology transformations on endogenous levels of allergens, but only when analytical techniques have been standardized and additional data are available on the natural variation of protein expression in non-transgenic bred plants; (4) basophil response assays are promising techniques, but need additional evaluation around specificity, sensitivity, and reproducibility; (5) additional research is required to develop and validate an animal model for the purpose of predicting protein allergenicity.
Collapse
Affiliation(s)
- Karluss Thomas
- International Life Sciences Institute Health and Environmental Sciences Institute, Washington, DC 20005, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol 2008; 121:847-52.e7. [PMID: 18395549 DOI: 10.1016/j.jaci.2008.01.025] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 11/18/2022]
Abstract
BACKGROUND Existing allergen databases classify their entries by source and route of exposure, thus lacking an evolutionary, structural, and functional classification of allergens. OBJECTIVE We sought to build AllFam, a database of allergen families, and use it to extract common structural and functional properties of allergens. METHODS Allergen data from the Allergome database and protein family definitions from the Pfam database were merged into AllFam, a database that is freely accessible on the Internet at http://www.meduniwien.ac.at/allergens/allfam/. A structural classification of allergens was established by matching Pfam families with families from the Structural Classification of Proteins database. Biochemical functions of allergens were extracted from the Gene Ontology Annotation database. RESULTS Seven hundred seven allergens were classified by sequence into 134 AllFam families containing 184 Pfam domains (2% of 9318 Pfam families). A random set of 707 sequences with the same taxonomic distribution contained a significantly higher number of different Pfam domains (479 +/- 17). Classifying allergens by structure revealed that 5% of 3012 Structural Classification of Proteins families contained allergens. The biochemical functions of allergens most frequently found were limited to hydrolysis of proteins, polysaccharides, and lipids; binding of metal ions and lipids; storage; and cytoskeleton association. CONCLUSION The small number of protein families that contain allergens and the narrow functional distribution of most allergens confirm the existence of yet unknown factors that render proteins allergenic.
Collapse
Affiliation(s)
- Christian Radauer
- Department of Pathophysiology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
96
|
Safety and Nutritional Assessment of GM Plants and derived food and feed: The role of animal feeding trials. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.1057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
97
|
Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol 2008; 46 Suppl 1:S2-70. [PMID: 18328408 DOI: 10.1016/j.fct.2008.02.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this report the various elements of the safety and nutritional assessment procedure for genetically modified (GM) plant derived food and feed are discussed, in particular the potential and limitations of animal feeding trials for the safety and nutritional testing of whole GM food and feed. The general principles for the risk assessment of GM plants and derived food and feed are followed, as described in the EFSA guidance document of the EFSA Scientific Panel on Genetically Modified Organisms. In Section 1 the mandate, scope and general principles for risk assessment of GM plant derived food and feed are discussed. Products under consideration are food and feed derived from GM plants, such as maize, soybeans, oilseed rape and cotton, modified through the introduction of one or more genes coding for agronomic input traits like herbicide tolerance and/or insect resistance. Furthermore GM plant derived food and feed, which have been obtained through extensive genetic modifications targeted at specific alterations of metabolic pathways leading to improved nutritional and/or health characteristics, such as rice containing beta-carotene, soybeans with enhanced oleic acid content, or tomato with increased concentration of flavonoids, are considered. The safety assessment of GM plants and derived food and feed follows a comparative approach, i.e. the food and feed are compared with their non-GM counterparts in order to identify intended and unintended (unexpected) differences which subsequently are assessed with respect to their potential impact on the environment, safety for humans and animals, and nutritional quality. Key elements of the assessment procedure are the molecular, compositional, phenotypic and agronomic analysis in order to identify similarities and differences between the GM plant and its near isogenic counterpart. The safety assessment is focussed on (i) the presence and characteristics of newly expressed proteins and other new constituents and possible changes in the level of natural constituents beyond normal variation, and on the characteristics of the GM food and feed, and (ii) the possible occurrence of unintended (unexpected) effects in GM plants due to genetic modification. In order to identify these effects a comparative phenotypic and molecular analysis of the GM plant and its near isogenic counterpart is carried out, in parallel with a targeted analysis of single specific compounds, which represent important metabolic pathways in the plant like macro and micro nutrients, known anti-nutrients and toxins. Significant differences may be indicative of the occurrence of unintended effects, which require further investigation. Section 2 provides an overview of studies performed for the safety and nutritional assessment of whole food and feed. Extensive experience has been built up in recent decades from the safety and nutritional testing in animals of irradiated foods, novel foods and fruit and vegetables. These approaches are also relevant for the safety and nutritional testing of whole GM food and feed. Many feeding trials have been reported in which GM foods like maize, potatoes, rice, soybeans and tomatoes have been fed to rats or mice for prolonged periods, and parameters such as body weight, feed consumption, blood chemistry, organ weights, histopathology etc have been measured. The food and feed under investigation were derived from GM plants with improved agronomic characteristics like herbicide tolerance and/or insect resistance. The majority of these experiments did not indicate clinical effects or histopathological abnormalities in organs or tissues of exposed animals. In some cases adverse effects were noted, which were difficult to interpret due to shortcomings in the studies. Many studies have also been carried out with feed derived from GM plants with agronomic input traits in target animal species to assess the nutritive value of the feed and their performance potential. Studies in sheep, pigs, broilers, lactating dairy cows, and fish, comparing the in vivo bioavailability of nutrients from a range of GM plants with their near isogenic counterpart and commercial varieties, showed that they were comparable with those for near isogenic non-GM lines and commercial varieties. In Section 3 toxicological in vivo, in silico, and in vitro test methods are discussed which may be applied for the safety and nutritional assessment of specific compounds present in food and feed or of whole food and feed derived from GM plants. Moreover the purpose, potential and limitations of the 90-day rodent feeding trial for the safety and nutritional testing of whole food and feed have been examined. Methods for single and repeated dose toxicity testing, reproductive and developmental toxicity testing and immunotoxicity testing, as described in OECD guideline tests for single well-defined chemicals are discussed and considered to be adequate for the safety testing of single substances including new products in GM food and feed. Various in silico and in vitro methods may contribute to the safety assessment of GM plant derived food and feed and components thereof, like (i) in silico searches for sequence homology and/or structural similarity of novel proteins or their degradation products to known toxic or allergenic proteins, (ii) simulated gastric and intestinal fluids in order to study the digestive stability of newly expressed proteins and in vitro systems for analysis of the stability of the novel protein under heat or other processing conditions, and (iii) in vitro genotoxicity test methods that screen for point mutations, chromosomal aberrations and DNA damage/repair. The current performance of the safety assessment of whole foods is mainly based on the protocols for low-molecular-weight chemicals such as pharmaceuticals, industrial chemicals, pesticides, food additives and contaminants. However without adaptation, these protocols have limitations for testing of whole food and feed. This primarily results from the fact that defined single substances can be dosed to laboratory animals at very large multiples of the expected human exposure, thus giving a large margin of safety. In contrast foodstuffs are bulky, lead to satiation and can only be included in the diet at much lower multiples of expected human intakes. When testing whole foods, the possible highest concentration of the GM food and feed in the laboratory animal diet may be limited because of nutritional imbalance of the diet, or by the presence of compounds with a known toxicological profile. The aim of the 90-days rodent feeding study with the whole GM food and feed is to assess potential unintended effects of toxicological and/or nutritional relevance and to establish whether the GM food and feed is as safe and nutritious as its traditional comparator rather than determining qualitative and quantitative intrinsic toxicity of defined food constituents. The design of the study should be adapted from the OECD 90-day rodent toxicity study. The precise study design has to take into account the nature of the food and feed and the characteristics of the new trait(s) and their intended role in the GM food and feed. A 90-day animal feeding trial has a large capacity (sensitivity and specificity) to detect potential toxicological effects of single well defined compounds. This can be concluded from data reported on the toxicology of a wide range of industrial chemicals, pharmaceuticals, food substances, environmental, and agricultural chemicals. It is possible to model the sensitivity of the rat subchronic feeding study for the detection of hypothetically increased amount of compounds such as anti-nutrients, toxicants or secondary metabolites. With respect to the detection of potential unintended effects in whole GM food and feed, it is unlikely that substances present in small amounts and with a low toxic potential will result in any observable (unintended) effects in a 90-day rodent feeding study, as they would be below the no-observed-effect-level and thus of unlikely impact to human health at normal intake levels. Laboratory animal feeding studies of 90-days duration appear to be sufficient to pick up adverse effects of diverse compounds that would also give adverse effects after chronic exposure. This conclusion is based on literature data from studies investigating whether toxicological effects are adequately identified in 3-month subchronic studies in rodents, by comparing findings at 3 and 24 months for a range of different chemicals. The 90-day rodent feeding study is not designed to detect effects on reproduction or development other than effects on adult reproductive organ weights and histopathology. Analyses of available data indicate that, for a wide range of substances, reproductive and developmental effects are not potentially more sensitive endpoints than those examined in subchronic toxicity tests. Should there be structural alerts for reproductive/developmental effects or other indications from data available on a GM food and feed, then these tests should be considered. By relating the estimated daily intake, or theoretical maximum daily intake per capita for a given whole food (or the sum of its individual commercial constituents) to that consumed on average per rat per day in the subchronic 90-day feeding study, it is possible to establish the margin of exposure (safety margin) for consumers. Results obtained from testing GM food and feed in rodents indicate that large (at least 100-fold) 'safety' margins exist between animal exposure levels without observed adverse effects and estimated human daily intake. Results of feeding studies with feed derived from GM plants with improved agronomic properties, carried out in a wide range of livestock species, are discussed. The studies did not show any biologically relevant differences in the parameters tested between control and test animals. (ABSTRACT TRUNCATED)
Collapse
|
98
|
Kumar KK, Shelokar PS. An SVM method using evolutionary information for the identification of allergenic proteins. Bioinformation 2008; 2:253-6. [PMID: 18317576 PMCID: PMC2258428 DOI: 10.6026/97320630002253] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 01/17/2008] [Accepted: 01/19/2008] [Indexed: 12/27/2022] Open
Abstract
This study presents an allergenic protein prediction system that appears to be capable of producing high sensitivity and specificity. The proposed system is based on support vector machine (SVM) using evolutionary information in the form of an amino acid position specific scoring matrix (PSSM). The performance of this system is assessed by a 10-fold cross-validation experiment using a dataset consisting of 693 allergens and 1041 non-allergens obtained from Swiss-Prot and Structural Database of Allergenic Proteins (SDAP). The PSSM method produced an accuracy of 90.1% in comparison to the methods based on SVM using amino acid, dipeptide composition, pseudo (5-tier) amino acid composition that achieved an accuracy of 86.3, 86.5 and 82.1% respectively. The results show that evolutionary information can be useful to build more effective and efficient allergen prediction systems.
Collapse
Affiliation(s)
- Kandaswamy Krishna Kumar
- Insilico Consulting, 402, Citi Centre, 39/2 Erandwane, Karve Road, Pune-411004, Maharashtra, India.
| | | |
Collapse
|
99
|
Goodman RE, Vieths S, Sampson HA, Hill D, Ebisawa M, Taylor SL, van Ree R. Allergenicity assessment of genetically modified crops—what makes sense? Nat Biotechnol 2008; 26:73-81. [DOI: 10.1038/nbt1343] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
100
|
Soeria-Atmadja D, Onell A, Kober A, Matsson P, Gustafsson MG, Hammerling U. Multivariate statistical analysis of large-scale IgE antibody measurements reveals allergen extract relationships in sensitized individuals. J Allergy Clin Immunol 2007; 120:1433-40. [PMID: 17825892 DOI: 10.1016/j.jaci.2007.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/28/2007] [Accepted: 07/16/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Many allergenic sources are reportedly cross-reactive because of protein structural similarities. Although several aggregations are well characterized, no holistic mapping of IgE reactivity has hitherto been reported. OBJECTIVE The aim of this study was to disclose relevant associations within a large set of allergen preparations, as revealed by specific IgE antibody levels in blood sera of multireactive human donors. METHODS A dataset of recorded IgE antibody serum concentrations of 1011 nonidentifiable multireactive individuals (devoid of clinical records) to 89 allergen extracts was compiled for in silico analysis. Various algorithms were used to identify specific multivariate dependencies between the IgE antibody levels. RESULTS Exhaustive cluster analysis demonstrates that IgE antibody responses to the 89 extracts can be aggregated into 12 stable formations. These clusters hold both well-known relationships, unexpected patterns, and unknown patterns, the latter categories being exemplified by the coclustering of wasp and certain seafood and a clear differentiation among pollen allergens. CONCLUSION Identified relationships within several well-known groups of cross-reactive allergen extracts confirm the applicability of dedicated multivariate data analysis within the allergology field. Moreover, some of the unexpected IgE reactivity associations in sensitized human subjects might help in identifying new relationships with potential importance to allergy. CLINICAL IMPLICATIONS Although clinical implications from this study should be validated in subsequent investigations with documentation on symptoms included, we believe this seminal approach is a key step toward the development of new analysis tools for interpretation of allergy data generated by using high-throughput recording systems.
Collapse
|