51
|
Galzi JL, Hachet-Haas M, Bonnet D, Daubeuf F, Lecat S, Hibert M, Haiech J, Frossard N. Neutralizing endogenous chemokines with small molecules. Principles and potential therapeutic applications. Pharmacol Ther 2010; 126:39-55. [PMID: 20117133 PMCID: PMC7112609 DOI: 10.1016/j.pharmthera.2009.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 02/08/2023]
Abstract
Regulation of cellular responses to external stimuli such as hormones, neurotransmitters, or cytokines is achieved through the control of all steps of the complex cascade starting with synthesis, going through maturation steps, release, distribution, degradation and/or uptake of the signalling molecule interacting with the target protein. One possible way of regulation, referred to as scavenging or neutralization of the ligand, has been increasingly studied, especially for small protein ligands. It shows innovative potential in chemical biology approaches as well as in disease treatment. Neutralization of protein ligands, as for example cytokines or chemokines can lead to the validation of signalling pathways under physiological or pathophysiological conditions, and in certain cases, to the development of therapeutic molecules now used in autoimmune diseases, chronic inflammation and cancer treatment. This review explores the field of ligand neutralization and tries to determine to what extent small chemical molecules could substitute for neutralizing antibodies in therapeutic approaches.
Collapse
Affiliation(s)
- Jean-Luc Galzi
- IREBS, FRE3211, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67412 Illkirch, France.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Historically, traditional screening for ligands has been optimized to detect standard orthosteric agonists and antagonists. However, with increasing emphasis on cellular functional screens, more allosteric ligands are being discovered as potential drugs. In addition, there are theoretical reasons (increased selectivity, better control of physiological systems, separate control of affinity and efficacy) allosteric ligands may be preferred therapeutic chemical targets. These factors may make it desirable to design high-throughput screens to specifically detect functionally allosteric ligands. This article discusses the unique features of allosteric ligands as drugs as well as the special conditions that should be considered to optimize a high-throughput screen toward the detection of allosteric drugs. Finally, the likelihood of detecting allosteric ligands that have direct effects on cells (either conventional agonism or functionally selective effects) is discussed as well as the optimization of detection of such ligands in screening assays.
Collapse
Affiliation(s)
- Terry P Kenakin
- Biological Reagents and Assay Development, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
53
|
Valant C, Maillet E, Bourguignon JJ, Bucher B, Utard V, Galzi JL, Hibert M. Allosteric functional switch of neurokinin A-mediated signaling at the neurokinin NK2 receptor: structural exploration. J Med Chem 2009; 52:5999-6011. [PMID: 19746979 DOI: 10.1021/jm900671k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The neurokinin NK2 receptor is known to pre-exist in equilibrium between at least three states: resting-inactive, calcium-triggering, and cAMP-producing. Its endogeneous ligand, NKA, mainly induces the calcium response. Using a FRET-based assay, we have previously discovered an allosteric modulator of the NK2 receptor that has the unique ability to discriminate among the two signaling pathways: calcium-signaling is not affected while cAMP signaling is significantly decreased. A series of compounds have been prepared and studied in order to better understand the structural determinants of this allosteric functional switch of a GPCR. Most of them display the same allosteric profile, with smooth pharmacomodulation. One compound however exhibits significantly improved modulatory properties of NKA induced signaling when compared to the original modulator.
Collapse
Affiliation(s)
- Céline Valant
- UMR UdS/CNRS 7200, Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
54
|
Hudson BD, Hébert TE, M. Kelly ME. Ligand- and Heterodimer-Directed Signaling of the CB1 Cannabinoid Receptor. Mol Pharmacol 2009; 77:1-9. [DOI: 10.1124/mol.109.060251] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
55
|
del Sol A, Tsai CJ, Ma B, Nussinov R. The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 2009; 17:1042-50. [PMID: 19679084 PMCID: PMC2749652 DOI: 10.1016/j.str.2009.06.008] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/18/2009] [Accepted: 06/22/2009] [Indexed: 11/16/2022]
Abstract
Although allostery draws increasing attention, not much is known about allosteric mechanisms. Here we argue that in all proteins, allosteric signals transmit through multiple, pre-existing pathways; which pathways dominate depend on protein topologies, specific binding events, covalent modifications, and cellular (environmental) conditions. Further, perturbation events at any site on the protein surface (or in the interior) will not create new pathways but only shift the pre-existing ensemble of pathways. Drugs binding at different sites or mutational events in disease shift the ensemble toward the same conformations; however, the relative populations of the different states will change. Consequently the observed functional, conformational, and dynamic effects will be different. This is the origin of allosteric functional modulation in dynamic proteins: allostery does not necessarily need to invoke conformational rearrangements to control protein activity and pre-existing pathways are always defaulted to during allostery regardless of the stimulant and perturbation site in the protein.
Collapse
Affiliation(s)
- Antonio del Sol
- Bioinformatics Research Unit, Research and Development Division, Fujirebio Inc., 51 Komiya-cho, Hachioji-shi, Tokyo 192-0031, Japan
| | - Chung-Jung Tsai
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
| | - Buyong Ma
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
56
|
Kenakin T. Interrogating 7TM receptors: Does texture in the question yield greater texture in the answer? J Recept Signal Transduct Res 2009; 29:132-9. [DOI: 10.1080/10799890903050829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
57
|
Hibert MF. French/European academic compound library initiative. Drug Discov Today 2009; 14:723-5. [PMID: 19520184 DOI: 10.1016/j.drudis.2009.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/20/2009] [Indexed: 12/01/2022]
|
58
|
KENAKIN TERRY. Functional Assays as Prismatic Views of Drug Activity: Relevance to New Drug Discovery. J Recept Signal Transduct Res 2008; 28:109-25. [DOI: 10.1080/10799890801946318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
59
|
Quiniou C, Sapieha P, Lahaie I, Hou X, Brault S, Beauchamp M, Leduc M, Rihakova L, Joyal JS, Nadeau S, Heveker N, Lubell W, Sennlaub F, Gobeil F, Miller G, Pshezhetsky AV, Chemtob S. Development of a novel noncompetitive antagonist of IL-1 receptor. THE JOURNAL OF IMMUNOLOGY 2008; 180:6977-87. [PMID: 18453620 DOI: 10.4049/jimmunol.180.10.6977] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1 is a major proinflammatory cytokine which interacts with the IL-1 receptor I (IL-1RI) complex, composed of IL-1RI and IL-1R accessory protein subunits. Currently available strategies to counter pathological IL-1 signaling rely on a recombinant IL-1 receptor antagonist, which directly competes with IL-1 for its binding site. Presently, there are no small antagonists of the IL-1RI complex. Given this void, we derived 15 peptides from loops of IL-1R accessory protein, which are putative interactive sites with the IL-1RI subunit. In this study, we substantiate the merits of one of these peptides, rytvela (we termed "101.10"), as an inhibitor of IL-1R and describe its properties consistent with those of an allosteric negative modulator. 101.10 (IC(50) approximately 1 nM) blocked human thymocyte proliferation in vitro, and demonstrated robust in vivo effects in models of hyperthermia and inflammatory bowel disease as well as topically in contact dermatitis, superior to corticosteroids and IL-1ra; 101.10 did not bind to IL-1RI deficient cells and was ineffective in vivo in IL-1RI knockout mice. Importantly, characterization of 101.10, revealed noncompetitive antagonist actions and functional selectivity by blocking certain IL-1R pathways while not affecting others. Findings describe the discovery of a potent and specific small (peptide) antagonist of IL-1RI, with properties in line with an allosteric negative modulator.
Collapse
|
60
|
Abstract
This commentary discusses a paper in this issue by Dr Jillian Baker on the antagonism of histamine H(2) receptors. It is an excellent example of the use of pharmacological principles to determine what systems can and can't do from the point of view of agonist-dependent antagonism. The most common model of antagonism, namely orthosteric, cannot discern agonist type; i.e. all agonists are blocked equally by a given orthosteric antagonist. Therefore, if quantitative assessment of antagonism unveils agonist dependence, then this is something an orthosteric mechanism cannot do and another mechanism must be considered. A simple alternative is a permissive allosteric model whereby the agonist and antagonist interact through conformational changes in the receptor protein. Under these circumstances, an agonist-antagonist dialogue can ensue whereby the nature of the agonist determines the magnitude of antagonist effect. Jillian Baker contrasts antagonist systems with historical data obtained for beta-adrenoceptors and the present data for histamine H(2) receptors where the simpler model of orthosteric antagonism suffices and thus shows how quantitative receptor pharmacology can be used to determine the molecular mechanism of antagonism.
Collapse
Affiliation(s)
- T Kenakin
- GlaxoSmithKline Research and Development, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
61
|
Kenakin T. Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 2007; 72:1393-401. [PMID: 17901198 DOI: 10.1124/mol.107.040352] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This article describes functional selectivity of agonists and antagonists and distinguishes conventional cell-based functional selectivity, where the strength of signal produces selective signaling in various organs, from true receptor active-state based selectivity, also alternatively referred to in the literature as "stimulus trafficking," "biased agonism," and "collateral efficacy." This latter mechanism of selectivity depends on the ligand-related conformation of the receptor and is not compatible with the parsimonious view that agonists produce a single receptor active state. In addition, protean agonism is described, whereby a ligand produces positive agonism in quiescent systems and inverse agonism in constitutively active systems. This is a special case of active state-based selectivity in which the ligand produces an active state that is of lower efficacy than the natural constitutively active state. It is postulated that receptor active-state based selectivity, unlike cell-based functional selectivity, is controllable through the chemical structure of the ligand and is therefore more likely to be a viable avenue for therapeutic selectivity in the clinic. Reasons are given for differentiating receptor active-state based selectivity from conventional functional organ selectivity.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Biological Reagents and Assay Development, GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
62
|
Abstract
In contrast to earlier concepts, it seems that distinct ligands acting on the same receptor may elicit qualitative different response patterns, a phenomenon given many names, including "functional selectivity," "agonist-directed trafficking," "biased agonism," "protean agonism," or "ligand-directed signaling." In this issue of Molecular Pharmacology, Sato et al. (p. 1359) extend this concept to beta(3)-adrenergic receptors and report that distinct ligands can activate a single distal response via different signaling pathways. Moreover, they demonstrate that expression density can affect how distinct ligands acting on the same receptor differentially induce cellular responses. We discuss the underlying concepts for such findings and their implications for drug discovery.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology and Pharmacotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands.
| | | |
Collapse
|
63
|
Bosier B, Hermans E. Versatility of GPCR recognition by drugs: from biological implications to therapeutic relevance. Trends Pharmacol Sci 2007; 28:438-46. [PMID: 17629964 DOI: 10.1016/j.tips.2007.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/22/2007] [Accepted: 06/26/2007] [Indexed: 01/13/2023]
Abstract
Most drugs acting on G-protein-coupled receptors (GPCRs) are classically defined as agonists, partial agonists or antagonists. This simplified classification seems sufficient to explain most of their therapeutic properties. The more recent description of inverse agonism has helped to revise theoretical models of GPCR function, but the therapeutic implications of the new concepts remain clearly restricted. Further complexity has arisen with demonstrations that a given receptor can adopt various conformations that support coupling with distinct G proteins. Because the related signaling pathways seem to be differentially affected by some ligands, the concept of 'functional selectivity' has been proposed, calling for a revision of the definitions of agonism and intrinsic efficacy. Evidence of complexity in G-protein coupling and examples of functional selectivity are accumulating, opening perspectives for drug development. Although such complexity should be regarded as an opportunity to gain pharmacological specificity, unraveling the physiological implications of these concepts is essential before their therapeutic relevance can be defined.
Collapse
Affiliation(s)
- Barbara Bosier
- Unité de Chimie Pharmaceutique et de Radiopharmacie (UCL 7340), Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | |
Collapse
|