51
|
Theocharis AD, Gialeli C, Bouris P, Giannopoulou E, Skandalis SS, Aletras AJ, Iozzo RV, Karamanos NK. Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS J 2014; 281:5023-42. [PMID: 25333340 PMCID: PMC5036392 DOI: 10.1111/febs.12927] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 01/10/2023]
Abstract
Proteoglycans are major constituents of extracellular matrices, as well as cell surfaces and basement membranes. They play key roles in supporting the dynamic extracellular matrix by generating complex structural networks with other macromolecules and by regulating cellular phenotypes and signaling. It is becoming evident, however, that proteolytic enzymes are required partners for matrix remodeling and for modulating cell signaling via matrix constituents. Proteinases contribute to all stages of diseases, particularly cancer development and progression, and contextually participate in either the removal of damaged products or in the processing of matrix molecules and signaling receptors. The dynamic interplay between proteoglycans and proteolytic enzymes is a crucial biological step that contributes to the pathophysiology of cancer and inflammation. Moreover, proteoglycans are implicated in the expression and secretion of proteolytic enzymes and often modulate their activities. In this review, we describe the emerging biological roles of proteoglycans and proteinases, with a special emphasis on their complex interplay. We critically evaluate this important proteoglycan-proteinase interactome and discuss future challenges with respect to targeting this axis in the treatment of cancer.
Collapse
Affiliation(s)
- Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Panagiotis Bouris
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, Division of Oncology, University Hospital of Patras, Patras Medical School, Patras 26110, Greece
| | - Spyros S. Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Alexios J. Aletras
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| |
Collapse
|
52
|
Yang SR, Peng S, Ko CY, Chu IM. The effects of different molecular weight chondroitin-4-sulfates in chondrocyte pellet culture. Cytotechnology 2014; 68:371-9. [PMID: 25283267 DOI: 10.1007/s10616-014-9788-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 09/18/2014] [Indexed: 12/21/2022] Open
Abstract
For this study, we cultured chondrocyte pellets in Dulbecco's modified Eagle's medium plus a 2 % fetal bovine serum medium, and treated them with 2- to 8-mer oligosaccharides of chondroitin sulfate A to examine the effects of these oligosaccharides on the differentiation and protection of chondrocytes. We found low-molecular-weight CSAs to increase the ratio of the gene expression levels of collagen II/collagen I of chondrocytes from the first day up to 14 days after culture compared with those under a CSA-free medium. Moreover, low-molecular-weight CSAs inhibited the expression of matrix metalloproteinases and peptidases, and stimulated an endogenous tissue inhibitor of metalloproteinases. The dp-8 (8-mer) CSA yielded the most effective response among promoting collagen type II protein secretions compared with other groups.
Collapse
Affiliation(s)
- Shu-Rui Yang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Sydney Peng
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Chao-Yin Ko
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
53
|
Troeberg L, Lazenbatt C, Anower-E-Khuda MF, Freeman C, Federov O, Habuchi H, Habuchi O, Kimata K, Nagase H. Sulfated glycosaminoglycans control the extracellular trafficking and the activity of the metalloprotease inhibitor TIMP-3. ACTA ACUST UNITED AC 2014; 21:1300-1309. [PMID: 25176127 PMCID: PMC4210636 DOI: 10.1016/j.chembiol.2014.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 12/15/2022]
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP-3) is an important regulator of extracellular matrix (ECM) turnover. TIMP-3 binds to sulfated ECM glycosaminoglycans or is endocytosed by cells via low-density lipoprotein receptor-related protein 1 (LRP-1). Here, we report that heparan sulfate (HS) and chondroitin sulfate E (CSE) selectively regulate postsecretory trafficking of TIMP-3 by inhibiting its binding to LRP-1. HS and CSE also increased TIMP-3 affinity for glycan-binding metalloproteinases, such as adamalysin-like metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), by reducing the dissociation rate constants. The sulfation pattern was crucial for these activities because monosulfated or truncated heparin had a reduced ability to bind to TIMP-3 and increase its affinity for ADAMTS-5. Therefore, sulfation of ECM glycans regulates the levels and inhibitory activity of TIMP-3 and modulates ECM turnover, and small mimicries of sulfated glycans may protect the tissue from the excess destruction seen in diseases such as osteoarthritis, cancer, and atherosclerosis. The metalloprotease inhibitor TIMP-3 binds to sulfated extracellular glycans This inhibits cellular uptake of TIMP-3 by the endocytic receptor LRP-1 Glycans also increase TIMP-3 affinity for selected target proteases The sulfation of matrix glycans therefore modulates TIMP-3 activity and ECM turnover
Collapse
Affiliation(s)
- Linda Troeberg
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK.
| | - Christopher Lazenbatt
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Md Ferdous Anower-E-Khuda
- Aichi Medical University Research Complex for Medicine Frontiers, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Craig Freeman
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra ACT 2601, Australia
| | - Oleg Federov
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Hiroko Habuchi
- Advanced Medical Research Centre, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Osami Habuchi
- Advanced Medical Research Centre, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Koji Kimata
- Aichi Medical University Research Complex for Medicine Frontiers, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Hideaki Nagase
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| |
Collapse
|
54
|
Thevenard J, Verzeaux L, Devy J, Etique N, Jeanne A, Schneider C, Hachet C, Ferracci G, David M, Martiny L, Charpentier E, Khrestchatisky M, Rivera S, Dedieu S, Emonard H. Low-density lipoprotein receptor-related protein-1 mediates endocytic clearance of tissue inhibitor of metalloproteinases-1 and promotes its cytokine-like activities. PLoS One 2014; 9:e103839. [PMID: 25075518 PMCID: PMC4116228 DOI: 10.1371/journal.pone.0103839] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) regulates the extracellular matrix turnover by inhibiting the proteolytic activity of matrix metalloproteinases (MMPs). TIMP-1 also displays MMP-independent activities that influence the behavior of various cell types including neuronal plasticity, but the underlying molecular mechanisms remain mostly unknown. The trans-membrane receptor low-density lipoprotein receptor-related protein-1 (LRP-1) consists of a large extracellular chain with distinct ligand-binding domains that interact with numerous ligands including TIMP-2 and TIMP-3 and a short transmembrane chain with intracellular motifs that allow endocytosis and confer signaling properties to LRP-1. We addressed TIMP-1 interaction with recombinant ligand-binding domains of LRP-1 expressed by CHO cells for endocytosis study, or linked onto sensor chips for surface plasmon resonance analysis. Primary cortical neurons bound and internalized endogenous TIMP-1 through a mechanism mediated by LRP-1. This resulted in inhibition of neurite outgrowth and increased growth cone volume. Using a mutated inactive TIMP-1 variant we showed that TIMP-1 effect on neurone morphology was independent of its MMP inhibitory activity. We conclude that TIMP-1 is a new ligand of LRP-1 and we highlight a new example of its MMP-independent, cytokine-like functions.
Collapse
Affiliation(s)
- Jessica Thevenard
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Laurie Verzeaux
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Jerôme Devy
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Nicolas Etique
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Albin Jeanne
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Christophe Schneider
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Cathy Hachet
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Géraldine Ferracci
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR 7286, Plate-Forme de Recherche en Neurosciences (PFRN), Marseille, France
| | - Marion David
- VECT-HORUS SAS, Faculté de Médecine Secteur Nord, Marseille, France
| | - Laurent Martiny
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Emmanuelle Charpentier
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Michel Khrestchatisky
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, Aix-Marseille Université, Marseille, France
- NICN, CNRS UMR 7259, Marseille, France
| | - Santiago Rivera
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, Aix-Marseille Université, Marseille, France
- NICN, CNRS UMR 7259, Marseille, France
| | - Stéphane Dedieu
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Hervé Emonard
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
- * E-mail:
| |
Collapse
|
55
|
Oehme D, Ghosh P, Shimmon S, Wu J, McDonald C, Troupis JM, Goldschlager T, Rosenfeld JV, Jenkin G. Mesenchymal progenitor cells combined with pentosan polysulfate mediating disc regeneration at the time of microdiscectomy: a preliminary study in an ovine model. J Neurosurg Spine 2014; 20:657-69. [PMID: 24702507 DOI: 10.3171/2014.2.spine13760] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECT Following microdiscectomy, discs generally fail to undergo spontaneous regeneration and patients may experience chronic low-back pain and recurrent disc prolapse. In published studies, formulations of mesenchymal progenitor cells combined with pentosan polysulfate (MPCs+PPS) have been shown to regenerate disc tissue in animal models, suggesting that this approach may provide a useful adjunct to microdiscectomy. The goal of this preclinical laboratory study was to determine if the transplantation of MPCs+PPS, embedded in a gelatin/fibrin scaffold (SCAF), and transplanted into a defect created by microdiscectomy, could promote disc regeneration. METHODS A standardized microdiscectomy procedure was performed in 18 ovine lumbar discs. The subsequent disc defects were randomized to receive either no treatment (NIL), SCAF only, or the MPC+PPS formulation added to SCAF (MPCs+PPS+SCAF). Necropsies were undertaken 6 months postoperatively and the spines analyzed radiologically (radiography and MRI), biochemically, and histologically. RESULTS No adverse events occurred throughout the duration of the study. The MPC+PPS+SCAF group had significantly less reduction in disc height compared with SCAF-only and NIL groups (p < 0.05 and p < 0.01, respectively). Magnetic resonance imaging Pfirrmann scores in the MPC+PPS+SCAF group were significantly lower than those in the SCAF group (p = 0.0213). The chaotropic solvent extractability of proteoglycans from the nucleus pulposus of MPC+PPS+SCAF-treated discs was significantly higher than that from the SCAF-only discs (p = 0.0312), and using gel exclusion chromatography, extracts from MPC+PPS+SCAF-treated discs also contained a higher percentage of proteoglycan aggregates than the extracts from both other groups. Analysis of the histological sections showed that 66% (p > 0.05) of the MPC+PPS+SCAF-treated discs exhibited less degeneration than the NIL or SCAF discs. CONCLUSIONS These findings demonstrate the capacity of MPCs in combination with PPS, when embedded in a gelatin sponge and sealed with fibrin glue in a microdiscectomy defect, to restore disc height, disc morphology, and nucleus pulposus proteoglycan content.
Collapse
Affiliation(s)
- David Oehme
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Vistnes M, Aronsen JM, Lunde IG, Sjaastad I, Carlson CR, Christensen G. Pentosan polysulfate decreases myocardial expression of the extracellular matrix enzyme ADAMTS4 and improves cardiac function in vivo in rats subjected to pressure overload by aortic banding. PLoS One 2014; 9:e89621. [PMID: 24595230 PMCID: PMC3940660 DOI: 10.1371/journal.pone.0089621] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/21/2014] [Indexed: 01/05/2023] Open
Abstract
Background We hypothesized that cleavage of the extracellular matrix (ECM) proteoglycans versican and aggrecan by ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) proteases, which contributes to stress-induced ECM-reorganization in atherogenesis and osteoarthritis, also play a role in heart failure development. Objectives The primary objective was to identify alterations in expression of ADAMTS versicanases and aggrecanases during development of heart failure, while evaluation of the effects of in vivo modulation of relevant changes in ADAMTS activity constituted the secondary objective. Methods Myocardial levels of versican, aggrecan, and their ADAMTS cleaving proteases were examined in Wistar rats six weeks after aortic banding (AB), and versican and selected ADAMTS versicanases were further analyzed in neonatal cardiomyocytes (NCM) and cardiac fibroblasts (NFB) after stimulation by inflammatory mediators. Based on the initial findings, ADAMTS4 was selected the most promising therapeutic target. Thus, rats with AB were treated with pentosan polysulfate (PPS), a polysaccharide with known ADAMTS4-inhibitory properties, and effects on versican fragmentation, left ventricular function and geometry were evaluated. Results We discovered that myocardial mRNA and protein levels of ADAMTS1 and -4, and mRNA levels of versican, aggrecan, and ADAMTS8 increased after AB, and TNF-α and IL-1β synergistically increased mRNA of versican and ADAMTS4 in NCM and NFB and secretion of ADAMTS4 from NCM. Furthermore, PPS-treatment improved systolic function, demonstrated by an improved fractional shortening (vehicle 48±3% versus PPS 60±1%, p<0.01) after AB. Following PPS-treatment, we observed an ∼80% reduction in myocardial ADAMTS4 mRNA (p = 0.03), and ∼50% reduction in the extracellular amount of the p150 versican fragments (p = 0.05), suggesting reduced versicanase activity. Conclusions Our findings suggest that AB induces an increase in myocardial ADAMTS4 versicanase activity, and that PPS-treatment improved systolic function in the pressure-overloaded heart, holding promise as a novel therapeutic agent in heart failure.
Collapse
Affiliation(s)
- Maria Vistnes
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
- * E-mail:
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Cathrine R. Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
57
|
Yamamoto K, Owen K, Parker AE, Scilabra SD, Dudhia J, Strickland DK, Troeberg L, Nagase H. Low density lipoprotein receptor-related protein 1 (LRP1)-mediated endocytic clearance of a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4): functional differences of non-catalytic domains of ADAMTS-4 and ADAMTS-5 in LRP1 binding. J Biol Chem 2014; 289:6462-6474. [PMID: 24474687 DOI: 10.1074/jbc.m113.545376] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Degradation of the cartilage proteoglycan aggrecan is an early event in the development of osteoarthritis, and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and ADAMTS-5 are considered to be the major aggrecan-degrading enzymes. We have recently found that ADAMTS-5 is rapidly endocytosed via low density lipoprotein receptor-related protein 1 (LRP1) and degraded by chondrocytes. Here we report that this regulatory mechanism also applies to ADAMTS-4, although its rate of endocytosis is slower than that of ADAMTS-5. Domain deletion mutagenesis of ADAMTS-4 identified that the cysteine-rich and spacer domains are responsible for binding to LRP1, whereas the thrombospondin 1 and spacer domains are responsible in ADAMTS-5. The estimated t½ value of ADAMTS-4 endocytosis was about 220 min, whereas that of ADAMTS-5 was 100 min. The difference in half-lives between the two enzymes is explained by the 13-fold lower affinity of ADAMTS-4 for LRP1 compared with that of ADAMTS-5. Studies using soluble ligand binding clusters of LRP1 showed that ADAMTS-4 binds to clusters II and IV with similar KD,app values of 98 and 73 nm, respectively, whereas ADAMTS-5 binds to cluster II, III, and IV with KD,app values of 3.5, 41, and 9 nm, respectively. Thus, ADAMTS-5 competitively inhibits ADAMTS-4 endocytosis but not vice versa. This study highlights that the affinity between a ligand and LRP1 dictates the rate of internalization and suggests that LRP1 is a major traffic controller of the two aggrecanases, especially under inflammatory conditions, where the protein levels of ADAMTS-4 increase, but those of ADAMTS-5 do not.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom.
| | - Kathryn Owen
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, 65 Aspenlea Road, London W6 8LH, United Kingdom
| | - Andrew E Parker
- Respiratory and Inflammation Department, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom
| | - Simone D Scilabra
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom; Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, 65 Aspenlea Road, London W6 8LH, United Kingdom
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, United Kingdom
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland 21201
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom; Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, 65 Aspenlea Road, London W6 8LH, United Kingdom
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom; Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, 65 Aspenlea Road, London W6 8LH, United Kingdom
| |
Collapse
|
58
|
Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 2013; 13:649-65. [PMID: 23969736 DOI: 10.1038/nri3499] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 50 years, steady growth in the field of metalloproteinase biology has shown that the degradation of extracellular matrix components represents only a fraction of the functions performed by these enzymes and has highlighted their fundamental roles in immunity. Metalloproteinases regulate aspects of immune cell development, effector function, migration and ligand-receptor interactions. They carry out ectodomain shedding of cytokines and their cognate receptors. Together with their endogenous inhibitors TIMPs (tissue inhibitor of metalloproteinases), these enzymes regulate signalling downstream of the tumour necrosis factor receptor and the interleukin-6 receptor, as well as that downstream of the epidermal growth factor receptor and Notch, which are all pertinent for inflammatory responses. This Review discusses the metalloproteinase family as a crucial component in immune cell development and function.
Collapse
|
59
|
Frith JE, Cameron AR, Menzies DJ, Ghosh P, Whitehead DL, Gronthos S, Zannettino AC, Cooper-White JJ. An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration. Biomaterials 2013; 34:9430-40. [DOI: 10.1016/j.biomaterials.2013.08.072] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/22/2013] [Indexed: 11/17/2022]
|
60
|
Rosewell KL, Li F, Puttabyatappa M, Akin JW, Brännström M, Curry TE. Ovarian expression, localization, and function of tissue inhibitor of metalloproteinase 3 (TIMP3) during the periovulatory period of the human menstrual cycle. Biol Reprod 2013; 89:121. [PMID: 24048576 DOI: 10.1095/biolreprod.112.106989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability.
Collapse
Affiliation(s)
- Katherine L Rosewell
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| | | | | | | | | | | |
Collapse
|
61
|
LRP-1: a checkpoint for the extracellular matrix proteolysis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:152163. [PMID: 23936774 PMCID: PMC3723059 DOI: 10.1155/2013/152163] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/20/2013] [Indexed: 11/29/2022]
Abstract
Low-density lipoprotein receptor-related protein-(LRP-1) is a large endocytic receptor that binds more than 35 ligands and exhibits signaling properties. Proteinases capable of degrading extracellular matrix (ECM), called matrix proteinases in this paper, are mainly serine proteinases: the activators of plasminogen into plasmin, tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, and the members of the matrix metalloproteinase (MMP) family. LRP-1 is responsible for clearing matrix proteinases, complexed or not with inhibitors. This paper attempts to summarize some aspects on the cellular and molecular bases of endocytic and signaling functions of LRP-1 that modulate extra- and pericellular levels of matrix proteinases.
Collapse
|
62
|
Keisuke I, Bian BL, Li XD, Takashi S, Akira I. Action mechanisms of complementary and alternative medicine therapies for rheumatoid arthritis. Chin J Integr Med 2013; 17:723-30. [DOI: 10.1007/s11655-011-0871-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
63
|
Schuchman EH, Ge Y, Lai A, Borisov Y, Faillace M, Eliyahu E, He X, Iatridis J, Vlassara H, Striker G, Simonaro CM. Pentosan polysulfate: a novel therapy for the mucopolysaccharidoses. PLoS One 2013; 8:e54459. [PMID: 23365668 PMCID: PMC3554761 DOI: 10.1371/journal.pone.0054459] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/11/2012] [Indexed: 01/07/2023] Open
Abstract
Background Pentosan polysulfate (PPS) is an FDA-approved, oral medication with anti-inflammatory and pro-chondrogenic properties. We have previously shown that animal models of the mucopolysaccharidoses (MPS) exhibit significant inflammatory disease, contributing to cartilage degeneration. Enzyme replacement therapy (ERT) only partly reduced inflammation, and anti-TNF-alpha antibody therapy significantly enhanced clinical and pathological outcomes. Here we describe the use of PPS for the treatment of MPS type VI rats. Methodology/Principal Findings Treatment began during prenatal development and at 1 and 6 months of age. All animals were treated until they were 9 months old. Significant reductions in the serum and tissue levels of several inflammatory markers (e.g., TNF-alpha, MIP-1alpha and RANTES/CCL5) were observed, as was reduced expression of inflammatory markers in cultured articular chondrocytes. ADAMTS-5/aggrecanase-2 levels also were reduced in chondrocytes, consistent with an elevation of serum tissue inhibitor of metalloproteinase 1. Marked improvements in motility and grooming behavior occurred, along with a reduction in eye and nasal secretions and a lessening of the tracheal deformities. MicroCT and radiographic analyses further revealed that the treated MPS skulls were longer and thinner, and that the teeth malocclusions, misalignments and mineral densities were improved. MicroCT analysis of the femurs and vertebrae revealed improvements in trabecular bone mineral densities, number and spacing in a subset of treated MPS animals. Biomechanical assessments of PPS-treated spines showed partially restored torsional behaviors, suggesting increased spinal stability. No improvements were observed in cortical bone or femur length. The positive changes in the PPS-treated MPS VI rats occurred despite glycosaminoglycan accumulation in their tissues. Conclusions Based on these findings we conclude that PPS could be a simple and effective therapy for MPS that might provide significant clinical benefits alone and in combination with other therapies.
Collapse
Affiliation(s)
- Edward H. Schuchman
- Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yi Ge
- Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Alon Lai
- Orthopedics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yury Borisov
- Orthopedics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Meghan Faillace
- Orthopedics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Efrat Eliyahu
- Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Xingxuan He
- Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - James Iatridis
- Orthopedics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Helen Vlassara
- Medicine and Geriatrics and Palliative Care, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Gary Striker
- Medicine and Geriatrics and Palliative Care, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Calogera M. Simonaro
- Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
64
|
Scilabra SD, Troeberg L, Yamamoto K, Emonard H, Thøgersen I, Enghild JJ, Strickland DK, Nagase H. Differential regulation of extracellular tissue inhibitor of metalloproteinases-3 levels by cell membrane-bound and shed low density lipoprotein receptor-related protein 1. J Biol Chem 2013; 288:332-42. [PMID: 23166318 PMCID: PMC3537031 DOI: 10.1074/jbc.m112.393322] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/10/2012] [Indexed: 11/06/2022] Open
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP-3) plays a key role in regulating extracellular matrix turnover by inhibiting matrix metalloproteinases (MMPs), adamalysins (ADAMs), and adamalysins with thrombospondin motifs (ADAMTSs). We demonstrate that levels of this physiologically important inhibitor can be regulated post-translationally by endocytosis. TIMP-3 was endocytosed and degraded by a number of cell types including chondrocytes, fibroblasts, and monocytes, and we found that the endocytic receptor low density lipoprotein receptor-related protein-1 (LRP-1) plays a major role in TIMP-3 internalization. However, the cellular uptake of TIMP-3 significantly slowed down after 10 h due to shedding of LRP-1 from the cell surface and formation of soluble LRP-1 (sLRP-1)-TIMP-3 complexes. Addition of TIMP-3 to HTB94 human chondrosarcoma cells increased the release of sLRP-1 fragments of 500, 215, 160, and 110 kDa into the medium in a concentration-dependent manner, and all of these fragments were able to bind to TIMP-3. TIMP-3 bound to sLRP-1, which was resistant to endocytosis, retained its inhibitory activity against metalloproteinases. Extracellular levels of sLRP-1 can thus increase the half-life of TIMP-3 in the extracellular space, controlling the bioavailability of TIMP-3 to inhibit metalloproteinases.
Collapse
Affiliation(s)
- Simone D. Scilabra
- From the Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
- the Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom
| | - Linda Troeberg
- From the Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
- the Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom
| | - Kazuhiro Yamamoto
- the Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom
| | - Hervé Emonard
- the University of Reims Champagne-Ardenne, FRE 3481 CNRS, 51100 Reims, France
| | - Ida Thøgersen
- the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark, and
| | - Jan J. Enghild
- the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark, and
| | | | - Hideaki Nagase
- From the Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
- the Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom
| |
Collapse
|
65
|
Yamamoto K, Troeberg L, Scilabra SD, Pelosi M, Murphy CL, Strickland DK, Nagase H. LRP-1-mediated endocytosis regulates extracellular activity of ADAMTS-5 in articular cartilage. FASEB J 2012; 27:511-21. [PMID: 23064555 DOI: 10.1096/fj.12-216671] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggrecan is a major matrix component of articular cartilage, and its degradation is a crucial event in the development of osteoarthritis (OA). Adamalysin-like metalloproteinase with thrombospondin motifs 5 (ADAMTS-5) is a major aggrecan-degrading enzyme in cartilage, but there is no clear correlation between ADAMTS-5 mRNA levels and OA progression. Here, we report that post-translational endocytosis of ADAMTS-5 by chondrocytes regulates its extracellular activity. We found 2- to 3-fold reduced aggrecanase activity when ADAMTS-5 was incubated with live porcine cartilage, resulting from its rapid endocytic clearance. Studies using receptor-associated protein (RAP), a ligand-binding antagonist for the low-density lipoprotein receptor-related proteins (LRPs), and siRNA-mediated gene silencing revealed that the receptor responsible for ADAMTS-5 clearance is LRP-1. Domain-deletion mutagenesis of ADAMTS-5 identified that the noncatalytic first thrombospondin and spacer domains mediate its endocytosis. The addition of RAP to porcine cartilage explants in culture increased the basal level of aggrecan degradation, as well as ADAMTS-5-induced aggrecan degradation. Notably, LRP-1-mediated endocytosis of ADAMTS-5 is impaired in chondrocytes of OA cartilage, with ∼90% reduction in protein levels of LRP-1 without changes in its mRNA levels. Thus, LRP-1 dictates physiological and pathological catabolism of aggrecan in cartilage as a key modulator of the extracellular activity of ADAMTS-5.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, London, UK
| | | | | | | | | | | | | |
Collapse
|
66
|
Martel-Pelletier J, Wildi LM, Pelletier JP. Future therapeutics for osteoarthritis. Bone 2012; 51:297-311. [PMID: 22037003 DOI: 10.1016/j.bone.2011.10.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/07/2011] [Indexed: 11/26/2022]
Abstract
Osteoarthritis (OA) is a disease of the joints that affects several million individuals worldwide. This disease, which involves mainly the diarthrodial joints, is chronic and develops slowly over decades, making it very difficult to precisely identify the different etiological and risk factors that influence its onset. At present, most therapies for OA are symptomatic. This review will focus on new OA therapeutics in development that are directed toward pain relief as well as others with the potential to reduce or stop the progression of the disease (DMOADs). This article is part of a Special Issue entitled "Osteoarthritis".
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.
| | | | | |
Collapse
|
67
|
Pentosan polysulfate increases affinity between ADAMTS-5 and TIMP-3 through formation of an electrostatically driven trimolecular complex. Biochem J 2012; 443:307-15. [PMID: 22299597 PMCID: PMC3369482 DOI: 10.1042/bj20112159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The semi-synthetic sulfated polysaccharide PPS (pentosan polysulfate) increases affinity between the aggrecan-degrading ADAMTSs (adamalysins with thrombospondin motifs) and their endogenous inhibitor, TIMP (tissue inhibitor of metalloproteinases)-3. In the present study we demonstrate that PPS mediates the formation of a high-affinity trimolecular complex with ADAMTS-5 and TIMP-3. A TIMP-3 mutant that lacks extracellular-matrix-binding ability was insensitive to this affinity increase, and truncated forms of ADAMTS-5 that lack the Sp (spacer) domain had reduced PPS-binding ability and sensitivity to the affinity increase. PPS molecules composed of 11 or more saccharide units were 100-fold more effective than those of eight saccharide units, indicating the involvement of extended or multiple protein-interaction sites. The formation of a high-affinity trimolecular complex was completely abolished in the presence of 0.4 M NaCl. These results suggest that PPS enhances the affinity between ADAMTS-5 and TIMP-3 by forming electrostatically driven trimolecular complexes under physiological conditions.
Collapse
|
68
|
Regulation of Th1/Th2 polarization by tissue inhibitor of metalloproteinase-3 via modulating dendritic cells. Blood 2012; 119:4636-44. [PMID: 22415751 DOI: 10.1182/blood-2011-08-376418] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is one of a family of proteins inhibiting matrix metalloproteinases, which has also been identified as a mediator for checking inflammation. Meanwhile, it is well known that inflammation causes the activation of the immune response. However, it is not clear whether TIMP-3 plays a role in the immune system. In the present study, we demonstrated a novel function of TIMP-3 in Th1/Th2 polarization through its influence on the antigen-presenting cells. First, TIMP-3 was found strikingly up-regulated by IL-4 during the differentiation of human dendritic cells via the p38MAPK pathway. Second, the expression of costimulatory molecule-CD86 was repressed by TIMP-3. Besides, the induction of IL-12 in matured dendritic cells was significantly inhibited in a PI3K-dependent manner. Furthermore, dendritic cells matured in the presence of TIMP-3 could stimulate allogeneic naive T helper (Th) cells to display a prominent Th2 polarization. Importantly, in an autoimmune disorder-primary immune thrombocytopenia, TIMP-3 showed a statistically positive correlation with IL-4 and platelet count, but a negative correlation with IFN-γ in patient blood samples. Collectively, these in vitro and in vivo data clearly suggested a novel role of TIMP-3 in Th1/Th2 balance in humans.
Collapse
|
69
|
Microvesicles shed by oligodendroglioma cells and rheumatoid synovial fibroblasts contain aggrecanase activity. Matrix Biol 2012; 31:229-33. [PMID: 22406378 PMCID: PMC3391679 DOI: 10.1016/j.matbio.2012.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/22/2012] [Accepted: 02/22/2012] [Indexed: 11/21/2022]
Abstract
Membrane microvesicle shedding is an active process and occurs in viable cells with no signs of apoptosis or necrosis. We report here that microvesicles shed by oligodendroglioma cells contain an 'aggrecanase' activity, cleaving aggrecan at sites previously identified as targets for adamalysin metalloproteinases with disintegrin and thrombospondin domains (ADAMTSs). Degradation was inhibited by EDTA, the metalloproteinase inhibitor GM6001 and by tissue inhibitor of metalloproteinases (TIMP)-3, but not by TIMP-1 or TIMP-2. This inhibitor profile indicates that the shed microvesicles contain aggrecanolytic ADAMTS(s) or related TIMP-3-sensitive metalloproteinase(s). The oligodendroglioma cells were shown to express the three most active aggrecanases, namely Adamts1, Adamts4 and Adamts5, suggesting that one or more of these enzymes may be responsible for the microvesicle activity. Microvesicles shed by rheumatoid synovial fibroblasts similarly degraded aggrecan in a TIMP-3-sensitive manner. Our findings raise the novel possibility that microvesicles may assist oligodendroglioma and rheumatoid synovial fibroblasts to invade through aggrecan-rich extracellular matrices.
Collapse
|
70
|
A Review and Update on the Molecular Basis of Pathogenesis of Sorsby Fundus Dystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:261-7. [DOI: 10.1007/978-1-4614-0631-0_34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
71
|
Sunaga T, Oh N, Hosoya K, Takagi S, Okumura M. Inhibitory effects of pentosan polysulfate sodium on MAP-kinase pathway and NF-κB nuclear translocation in canine chondrocytes in vitro. J Vet Med Sci 2011; 74:707-11. [PMID: 22214865 DOI: 10.1292/jvms.11-0511] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pentosan polysulfate sodium (PPS) has a heparin-like structure and is purificated from the plant of European beech wood. PPS has been used for the treatment of interstitial cystitis for human patients. Recent years, it was newly recognised that PPS reduce pain and inflammation of OA. The molecular biological mechanism of PPS to express its clinical effects is not fully understood. The purpose of the present study is to investigate a mechanism of action of PPS on inflammatory reaction of chondrocytes in vitro. It was evaluated that effects of PPS on interleukin (IL)-1β-induced phosphorylation of mitogen-actiated protein kinases (MAPKs), such as p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), nuclear translocation of nuclear factor-kappa B (NF-κB), and matrix metalloproteinase (MMP)-3 production in cultured articular chondrocytes. As a result, in the presence of PPS existence, IL-1β-induced phosphorylation of p38 and ERK were certainly inhibited, while JNK phosphorylation was not affected. Nuclear translocation of NF-κB and MMP-3 production were suppressed by PPS pretreatment prior to IL-1β stimulation. In conclusion, it is strongly suggested that PPS treatment prevents inflammatory intracellular responses induced by IL-1 β through inhibition of phosphorylation of certain MAPKs, p38 and ERK and then nuclear translocation of NF-κB in cultured chondrocytes. These PPS properties may contribute to suppressive consequence of catabolic MMP-3 synthesis. These data might translate the clinical efficacy as PPS treatment could inhibit the cartilage catabolism and related clinical symptoms of OA in dogs.
Collapse
Affiliation(s)
- Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | |
Collapse
|
72
|
Abstract
Orchestration of the growth and remodeling of tissues and responses of cells to their extracellular environment is mediated by metalloproteinases of the Metzincin clan. This group of proteins comprises several families of endopeptidases in which a zinc atom is liganded at the catalytic site to three histidine residues and an invariant methionine residue. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous protein regulators of the matrix metalloproteinase (MMPs) family, and also of families such as the disintegrin metalloproteinases (ADAM and ADAMTS). TIMPs therefore have a pivotal role in determining the influence of the extracellular matrix, of cell adhesion molecules, and of many cytokines, chemokines and growth factors on cell phenotype. The TIMP family is an ancient one, with a single representative in lower eukaryotes and four members in mammals. Although much is known about their mechanism of action in proteinase regulation in mammalian cells, less is known about their functions in lower organisms. Recently, non-inhibitory functions of TIMPs have been identified in mammalian cells, including signaling roles downstream of specific receptors. There are clearly still questions to be answered with regard to their overall roles in biology.
Collapse
Affiliation(s)
- Gillian Murphy
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK.
| |
Collapse
|
73
|
Zhang Y, Chertov O, Zhang J, Hassan R, Pastan I. Cytotoxic activity of immunotoxin SS1P is modulated by TACE-dependent mesothelin shedding. Cancer Res 2011; 71:5915-22. [PMID: 21775520 PMCID: PMC3165076 DOI: 10.1158/0008-5472.can-11-0466] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mesothelin is a cell-surface tumor-associated antigen expressed in several human cancers. The limited expression of mesothelin on normal tissues and its high expression in many cancers make it an attractive candidate for targeted therapies using monoclonal antibodies, immunoconjugates, and immunotoxins. Mesothelin is actively shed from the cell surface and is present in the serum of patients with malignant mesothelioma, which could negatively affect the response to these therapies. We have found that mesothelin sheddase activity is mediated by a TNF-α converting enzyme (TACE), a member of the matrix metalloproteinase/a disintegrin and metalloprotease family. We showed that EGF and TIMP-3 act through TACE as endogenous regulators of mesothelin shedding. We also found that reducing shedding significantly improved the in vitro cytotoxicity of immunotoxin SS1P, which targets mesothelin and is currently in clinical trials for the treatment of patients with mesothelioma and lung cancer. Our findings provide a mechanistic understanding of mesothelin shedding and could help improve mesothelin-based targeted therapies.
Collapse
Affiliation(s)
- Yujian Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Oleg Chertov
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland
| | - Jingli Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Raffit Hassan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
74
|
Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:133-45. [PMID: 21777704 DOI: 10.1016/j.bbapap.2011.06.020] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 12/21/2022]
Abstract
Osteoarthritis is a common joint disease for which there are currently no disease-modifying drugs available. Degradation of the cartilage extracellular matrix is a central feature of the disease and is widely thought to be mediated by proteinases that degrade structural components of the matrix, primarily aggrecan and collagen. Studies on transgenic mice have confirmed the central role of Adamalysin with Thrombospondin Motifs 5 (ADAMTS-5) in aggrecan degradation, and the collagenolytic matrix metalloproteinase MMP-13 in collagen degradation. This review discusses recent advances in current understanding of the mechanisms regulating expression of these key enzymes, as well as reviewing the roles of other proteinases in cartilage destruction. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Linda Troeberg
- The Kennedy Institute of Rheumatology Division, Imperial College London, London, UK.
| | | |
Collapse
|
75
|
The nutraceutical flavonoid luteolin inhibits ADAMTS-4 and ADAMTS-5 aggrecanase activities. J Mol Med (Berl) 2011; 89:611-9. [PMID: 21365186 DOI: 10.1007/s00109-011-0741-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 01/24/2023]
Abstract
A disintegrin and metalloprotease with thrombospondin domains (ADAMTS)-4 (aggrecanase-1) and ADAMTS-5 (aggrecanase-2) are metalloproteases involved in articular cartilage degradation and represent potential therapeutic targets in arthritis treatment. We explore herein the ability of different natural compounds to specifically block the destructive action of these enzymes. Following a preliminary screening using carboxymethylated transferrin as substrate, we focused our interest on luteolin due to its inhibitory effect on ADAMTS-4 and ADAMTS-5 activities using aggrecan and fluorogenic peptides as substrates. However, matrix metalloproteinases (MMPs) activities on these substrates result less affected by this flavonoid. Moreover, incubation of mouse chondrogenic ATDC5 cells in the presence of luteolin clearly decreases the release of aggrecan fragments mediated by aggrecanases under the same conditions in which aggrecanolysis mediated by MMPs is detected. Additionally, glycosaminoglycan levels in culture medium of murine cartilage explants stimulated with interleukin-1-alpha plus retinoic acid are reduced by the presence of the flavonoid. This inhibition takes place through blockade of ADAMTS-mediated aggrecanolysis, while MMPs activity is not or poorly affected. These results suggest that luteolin could be employed as a prototypic modifying disease-agent to create new chondroprotective compounds aimed to specifically block the unwanted aggrecanase activities in arthritic diseases.
Collapse
|
76
|
Calcium pentosan polysulfate and sodium pentosan polysulfate may be used to treat intervertebral disc degeneration. Med Hypotheses 2011; 76:610-3. [PMID: 21296506 DOI: 10.1016/j.mehy.2011.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 01/09/2011] [Indexed: 11/21/2022]
Abstract
Intervertebral disc degeneration (IDD) is a major health problem world-wide, and several spinal disorders are closely associated with it. Although people have invested a great deal of time and effort, how to prevent and reverse the IDD for the researchers is still a difficult and hot issue. Intervertebral disc belongs to cartilage tissue, and IDD also is the cartilage degeneration disease. A large quantity of studies have shown that Calcium pentosan polysulfate (CaPPS) and sodium pentosan polysulfate (NaPPS) possess chondroprotective activities and play an important role in maintaining cartilage integrity. We reasonably hypothesize that NaPPS and CaPPS may be used to treat IDD. The possible mechanism may include that: (1) the significant effects of NaPPS and CaPPS in improving capillary blood flow could maintain nutritional supply to intervertebral disc, and preserve intervertebral disc tissue against degeneration; (2) CaPPS and NaPPS preserve cartilage integrity, proteoglycan synthesis, and improve cartilage biomechanical properties; (3) as the multifaceted exosite inhibitors of proteinases NaPPS and CaPPS strongly impede the activity and production of proteinases; (4) promotion of the balance between proteinases and TIMPs also may be involved in treating IDD; (5) NaPPS and CaPPS exhibit potent anti-inflammatory effects, and then reduce inflammation-induced IDD. If the hypothesis were conformed, the symptoms caused by IDD and its related diseases would be a corresponding alleviation or even disappearance, which could greatly alleviate the suffering of patients from disc degeneration diseases. Certainly, many roles of CaPPS and NaPPS, such as effectiveness, safety and side effects, need to be tested, and further works such as animal model and clinical trial, need to be done to prove this hypothesis.
Collapse
|
77
|
Abstract
Matrix metalloproteinases (MMPs) are a group of structurally related proteolytic enzymes containing a zinc ion in the active site. They are secreted from cells or bound to the plasma membrane and hydrolyze extracellular matrix (ECM) and cell surface-bound molecules. They therefore play key roles in morphogenesis, wound healing, tissue repair and remodeling in diseases such as cancer and arthritis. Although the cell anchored membrane-type MMPs (MT-MMPs) function pericellularly, the secreted MMPs have been considered to act within the ECM, away from the cells from which they are synthesized. However, recent studies have shown that secreted MMPs bind to specific cell surface receptors, membrane-anchored proteins or cell-associated ECM molecules and function pericellularly at focussed locations. This minireview describes examples of cell surface and pericellular partners of MMPs, as well as how they alter enzyme function and cellular behaviour.
Collapse
Affiliation(s)
- Gillian Murphy
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | | |
Collapse
|
78
|
Fosang AJ, Rogerson FM. Identifying the human aggrecanase. Osteoarthritis Cartilage 2010; 18:1109-16. [PMID: 20633677 DOI: 10.1016/j.joca.2010.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 02/02/2023]
Abstract
It is clear that A Disintegrin And Metalloproteinase with ThromboSpondin motif (ADAMTS)-5 is the major aggrecanase in mouse cartilage, however it is not at all clear which enzyme is the major aggrecanase in human cartilage. Identifying the human aggrecanase is difficult because multiple, independent, molecular processes determine the final level of enzyme activity. As investigators, we have good methods for measuring changes in the expression of ADAMTS mRNA, and good methods for detecting aggrecanase activity, but no methods that distinguish the source of the activity. In between gene expression and enzyme action there are many processes that can potentially enhance or inhibit the final level of activity. In this editorial we discuss how each of these processes affects ADAMTS activity and argue that measuring any one process in isolation has little value in predicting overall ADAMTS activity in vivo.
Collapse
Affiliation(s)
- A J Fosang
- University of Melbourne, Department of Paediatrics, Royal Children's Hospital, Parkville, Australia.
| | | |
Collapse
|
79
|
Goldschlager T, Ghosh P, Zannettino A, Gronthos S, Rosenfeld JV, Itescu S, Jenkin G. Cervical motion preservation using mesenchymal progenitor cells and pentosan polysulfate, a novel chondrogenic agent: preliminary study in an ovine model. Neurosurg Focus 2010; 28:E4. [DOI: 10.3171/2010.3.focus1050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Object
There is an unmet need for a procedure that could generate a biological disc substitute while at the same time preserving the normal surgical practice of achieving anterior cervical decompression. The objective of the present study was to test the hypothesis that adult allogeneic mesenchymal progenitor cells (MPCs) formulated with a chondrogenic agent could synthesize a cartilaginous matrix when implanted into a biodegradable carrier and cage, and over time, might serve as a dynamic interbody spacer following anterior cervical discectomy (ACD).
Methods
Eighteen ewes were divided randomly into 3 groups of 6 animals. Each animal was subjected to C3–4 and C4–5 ACD followed by implantation of bioresorbable interbody cages and graft containment plates. The cage was packed with 1 of 3 implants. In Group A, the implant was Gelfoam sponge only. In Group B, the implant consisted of Gelfoam sponge with 1 million MPCs only. In Group C, the implant was Gelfoam sponge with 1 million MPCs formulated with the chondrogenic agent pentosan polysulfate (PPS). In each animal the cartilaginous endplates were retained intact at 1 level, and perforated in a standardized manner at the other level. Allogeneic ovine MPCs were derived from a single batch of immunoselected and culture-expanded MPCs isolated from bone marrow of outbred sheep (mixed stock). Radiological and histological measures were used to assess cartilage formation and the presence or absence of new bone formation.
Results
The MPCs with or without PPS were safe and well-tolerated in the ovine cervical spine. There was no significant difference between groups in the radiographic or histological outcome measures, regardless of whether endplates were perforated or retained intact. According to CT scans obtained at 3 months after the operation, new bone formation within the interbody space was observed in the Gelfoam only group (Group A) in 9 (75%) of 12 interbody spaces, and 11 (92%) of 12 animals in the MPC cohort (Group B) had new bone formation within the interbody space. Significantly, in the MPC & PPS group (Group C), there were only 1 (8%) of 12 levels with new bone formation (p = 0.0009 vs Group A; p = 0.0001 vs Group B). According to histological results, there was significantly more cartilaginous tissue within the interbody cages of Group C (MPC & PPS) compared with both the control group (Group A; p = 0.003) and the MPC Group (p = 0.017).
Conclusions
This study demonstrated the feasibility of using MPCs in combination with PPS to produce cartilaginous tissue to replace the intervertebral disc following ACD. This biological approach may offer a means preserving spinal motion and offers an alternative to fusion to artificial prostheses.
Collapse
Affiliation(s)
- Tony Goldschlager
- 1Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria
- 2Departments of Surgery and
- 5Department of Neurosurgery, Monash Medical Centre, Clayton, Victoria
- 8The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Peter Ghosh
- 4Mesoblast Ltd., Melbourne, Victoria
- 7Institute of Bone and Joint Research, Royal North Shore Hospital, St. Leonards, New South Wales; and
- 8The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Andrew Zannettino
- 6Centre for Stem Cell Research, University of Adelaide, South Australia
| | - Stan Gronthos
- 6Centre for Stem Cell Research, University of Adelaide, South Australia
| | - Jeffrey V. Rosenfeld
- 2Departments of Surgery and
- 3Neurosurgery, The Alfred Hospital, Prahran, Victoria
| | | | - Graham Jenkin
- 8The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
80
|
Kumagai K, Shirabe S, Miyata N, Murata M, Yamauchi A, Kataoka Y, Niwa M. Sodium pentosan polysulfate resulted in cartilage improvement in knee osteoarthritis--an open clinical trial. BMC CLINICAL PHARMACOLOGY 2010; 10:7. [PMID: 20346179 PMCID: PMC2873929 DOI: 10.1186/1472-6904-10-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 03/28/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pentosan polysulfate sodium (pentosan) is a semi-synthetic drug manufactured from beech-wood hemicellulose by sulfate esterification of the xylopyranose hydroxyl groups. From in vitro and animal model studies, pentosan has been proposed as a disease modifying osteoarthritis drug (DMOAD). The objective of this study was to assess the efficacy, safety, and patient satisfaction in patients with mild radiographic knee osteoarthritis (OA) findings and OA-associated symptoms and signs. METHODS Twenty patients were assessed clinically at Nagasaki University Hospital. The radiographic indications of OA were grade 1 to 3 using the Kellgren-Lawrence Grading System (K/L grade). Pentosan used in this study was manufactured and supplied in sterile injectable vials (100 mg/ml) by bene GmbH, Munich, Germany. The study was a single-center, open-label trial. Treatment consisted of 6 weekly subcutaneous injections (sc) of pentosan (2 mg/kg). Patients were clinically assessed at entry and 1 to 8, 11, 15, 24 & 52 weeks post treatment. The results were analyzed using one way ANOVA and Dunnett's method. RESULTS Hydrarthroses were reduced quickly in all cases. The clinical assessments, i.e., knee flexion, pain while walking, pain after climbing up and down stairs, etc, were improved significantly and these clinical improvements continued for almost one year. The dose used in this study affected the blood coagulation test, but was within safe levels. Slightly abnormal findings were noted in serum triglycerides. CONCLUSIONS Pentosan treatment in twenty patients with mild knee OA seemed to provide improvements in clinical assessments and C2C level of cartilage metabolism.
Collapse
Affiliation(s)
- Kenji Kumagai
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki city, Nagasaki prefecture, 852-8501, Japan
| | - Susumu Shirabe
- Regent and Vice President, Center for Health and Community Medicine, Nagasaki University, 1-14 Bunkyou, Nagasaki city, Nagasaki prefecture, 852-8521, Japan
| | - Noriaki Miyata
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki city, Nagasaki prefecture, 852-8501, Japan
| | - Masakazu Murata
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki city, Nagasaki prefecture, 852-8501, Japan
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka city, 814-0180, Fukuoka prefecture, JAPAN
| | - Yasuhumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka city, 814-0180, Fukuoka prefecture, JAPAN
| | - Masami Niwa
- Department of Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki city, Nagasaki prefecture, 852-8523, Japan
| |
Collapse
|
81
|
Bekhouche M, Kronenberg D, Vadon-Le Goff S, Bijakowski C, Lim NH, Font B, Kessler E, Colige A, Nagase H, Murphy G, Hulmes DJS, Moali C. Role of the netrin-like domain of procollagen C-proteinase enhancer-1 in the control of metalloproteinase activity. J Biol Chem 2010; 285:15950-9. [PMID: 20207734 PMCID: PMC2871463 DOI: 10.1074/jbc.m109.086447] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The netrin-like (NTR) domain is a feature of several extracellular proteins, most notably the N-terminal domain of tissue inhibitors of metalloproteinases (TIMPs), where it functions as a strong inhibitor of matrix metalloproteinases and some other members of the metzincin superfamily. The presence of a C-terminal NTR domain in procollagen C-proteinase enhancers (PCPEs), proteins that stimulate the activity of astacin-like tolloid proteinases, raises the possibility that this might also have inhibitory activity. Here we show that both long and short forms of the PCPE-1 NTR domain, the latter beginning at the N-terminal cysteine known to be critical for TIMP activity, show no inhibition, at micromolar concentrations, of several members of the metzincin superfamily, including matrix metalloproteinase-2, bone morphogenetic protein-1 (a tolloid proteinase), and different ADAMTS (a disintegrin and a metalloproteinase with thrombospondin motifs) proteinases from the adamalysin family. In contrast, we report that the NTR domain within PCPE-1 leads to superstimulation of bone morphogenetic protein-1 activity in the presence of heparin and heparan sulfate. These observations point to a new mechanism whereby binding to cell surface-associated or extracellular heparin-like sulfated glycosaminoglycans might provide a means to accelerate procollagen processing in specific cellular and extracellular microenvironments.
Collapse
Affiliation(s)
- Mourad Bekhouche
- From the Institut de Biologie et Chimie des Protéines, CNRS/Université de Lyon UMR 5086, IFR128, 69367 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Alcaraz MJ, Megías J, García-Arnandis I, Clérigues V, Guillén MI. New molecular targets for the treatment of osteoarthritis. Biochem Pharmacol 2010; 80:13-21. [PMID: 20206140 DOI: 10.1016/j.bcp.2010.02.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/19/2010] [Accepted: 02/24/2010] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder characterized by destruction of the articular cartilage, subchondral bone alterations and synovitis. Current treatments are focused on symptomatic relief but they lack efficacy to control the progression of this disease which is a leading cause of disability. Therefore, the development of effective disease-modifying drugs is urgently needed. Different initiatives are in progress to define the molecular mechanisms involved in the initiation and progression of OA. These studies support the therapeutic potential of pathways relevant in joint metabolism such as Wnt/beta-catenin, discoidin domain receptor 2 or proteinase-activated receptor 2. The dysregulation in cartilage catabolism and subchondral bone remodeling could be improved by selective inhibitors of matrix metalloproteinases, aggrecanases and other proteases. Another approach would favor the activity of anabolic processes by using growth factors or regulatory molecules. Recent studies have also revealed the role of oxidative stress and synovitis in the progression of this disease, supporting the development of a number of inhibitory strategies. Novel targets in OA are represented by genes involved in OA pathophysiology discovered using gene network, epigenetic and microRNA approaches. Further insights into the molecular mechanisms involved in OA initiation and progression may lead to the development of new therapies able to control joint destruction and repair.
Collapse
Affiliation(s)
- Maria José Alcaraz
- Department of Pharmacology, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain.
| | | | | | | | | |
Collapse
|
83
|
Ghosh P, Wu J, Shimmon S, Zannettino AC, Gronthos S, Itescu S. Pentosan polysulfate promotes proliferation and chondrogenic differentiation of adult human bone marrow-derived mesenchymal precursor cells. Arthritis Res Ther 2010; 12:R28. [PMID: 20167057 PMCID: PMC2875662 DOI: 10.1186/ar2935] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 12/11/2009] [Accepted: 02/18/2010] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION This study was undertaken to determine whether the anti-osteoarthritis drug pentosan polysulfate (PPS) influenced mesenchymal precursor cell (MPC) proliferation and differentiation. METHODS Human MPCs were maintained in monolayer, pellet or micromass cultures (MMC) for up to 10 days with PPS at concentrations of 0 to 20 microg/ml. MPC viability and proliferation was assessed using the WST-1 assay and 3H-thymidine incorporation into DNA, while apoptosis was monitored by flow cytometry. Proteoglycan (PG) biosynthesis was determined by 35SO42- incorporation and staining with Alcian blue. Proteoglycan and collagen type I and collagen type II deposition in pellet cultures was also examined by Toluidine blue and immunohistochemical staining, respectively. The production of hyaluronan (HA) by MPCs in MMC was assessed by ELISA. The relative outcome of PPS, HA, heparin or dextran sulfate (DS) on PG synthesis was compared in 5-day MMC. Gene expression of MPCs in 7-day and 10-day MMC was examined using real-time PCR. MPC differentiation was investigated by co-culturing with PPS in osteogenic or adipogenic inductive culture media for 28 days. RESULTS Significant MPC proliferation was evident by day 3 at PPS concentrations of 1 to 5 microg/ml (P < 0.01). In the presence of 1 to 10 microg/ml PPS, a 38% reduction in IL-4/IFNgamma-induced MPC apoptosis was observed. In 5-day MMC, 130% stimulation of PG synthesis occurred at 2.5 microg/ml PPS (P < 0.0001), while 5.0 microg/ml PPS achieved maximal stimulation in the 7-day and 10-day cultures (P < 0.05). HA and DS at > or = 5 microg/ml inhibited PG synthesis (P < 0.05) in 5-day MMC. Collagen type II deposition by MMC was significant at > or = 0.5 microg/ml PPS (P < 0.001 to 0.05). In MPC-PPS pellet cultures, more PG, collagen type II but less collagen type I was deposited than in controls. Real-time PCR results were consistent with the protein data. At 5 and 10 microg/ml PPS, MPC osteogenic differentiation was suppressed (P < 0.01). CONCLUSIONS This is the first study to demonstrate that PPS promotes MPC proliferation and chondrogenesis, offering new strategies for cartilage regeneration and repair in osteoarthritic joints.
Collapse
Affiliation(s)
- Peter Ghosh
- Proteobioactives Pty Ltd, 27/9 Powells Road, Brookvale, New South Wales 2100, Australia.
| | | | | | | | | | | |
Collapse
|
84
|
Lin EA, Liu CJ. The role of ADAMTSs in arthritis. Protein Cell 2010; 1:33-47. [PMID: 21203996 DOI: 10.1007/s13238-010-0002-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/21/2009] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family consists of 19 proteases. These enzymes are known to play important roles in development, angiogenesis and coagulation; dysregulation and mutation of these enzymes have been implicated in many disease processes, such as inflammation, cancer, arthritis and atherosclerosis. This review briefly summarizes the structural organization and functional roles of ADAMTSs in normal and pathological conditions, focusing on members that are known to be involved in the degradation of extracellular matrix and loss of cartilage in arthritis, including the aggrecanases (ADAMTS-4 and ADAMTS-5), ADAMTS-7 and ADAMTS-12, the latter two are associated with cartilage oligomeric matrix protein (COMP), a component of the cartilage extracellular matrix (ECM). We will discuss the expression pattern and the regulation of these metalloproteinases at multiple levels, including their interaction with substrates, induction by pro-inflammatory cytokines, protein processing, inhibition (e.g., TIMP-3, alpha-2-macroglobulin, GEP), and activation (e.g., syndecan-4, PACE-4).
Collapse
Affiliation(s)
- Edward A Lin
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | | |
Collapse
|
85
|
Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:55-71. [PMID: 20080133 DOI: 10.1016/j.bbamcr.2010.01.003] [Citation(s) in RCA: 919] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 12/14/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are widely distributed in the animal kingdom and the human genome contains four paralogous genes encoding TIMPs 1 to 4. TIMPs were originally characterized as inhibitors of matrix metalloproteinases (MMPs), but their range of activities has now been found to be broader as it includes the inhibition of several of the disintegrin-metalloproteinases, ADAMs and ADAMTSs. TIMPs are therefore key regulators of the metalloproteinases that degrade the extracellular matrix and shed cell surface molecules. Structural studies of TIMP-MMP complexes have elucidated the inhibition mechanism of TIMPs and the multiple sites through which they interact with target enzymes, allowing the generation of TIMP variants that selectively inhibit different groups of metalloproteinases. Engineering such variants is complicated by the fact that TIMPs can undergo changes in molecular dynamics induced by their interactions with proteases. TIMPs also have biological activities that are independent of metalloproteinases; these include effects on cell growth and differentiation, cell migration, anti-angiogenesis, anti- and pro-apoptosis, and synaptic plasticity. Receptors responsible for some of these activities have been identified and their signaling pathways have been investigated. A series of studies using mice with specific TIMP gene deletions has illuminated the importance of these molecules in biology and pathology.
Collapse
Affiliation(s)
- Keith Brew
- Department of Basic Science, College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | |
Collapse
|
86
|
Troeberg L, Fushimi K, Scilabra SD, Nakamura H, Dive V, Thøgersen IB, Enghild JJ, Nagase H. The C-terminal domains of ADAMTS-4 and ADAMTS-5 promote association with N-TIMP-3. Matrix Biol 2009; 28:463-9. [PMID: 19643179 PMCID: PMC2835468 DOI: 10.1016/j.matbio.2009.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
We investigated whether the affinity of tissue inhibitor of metalloproteinases (TIMP)-3 for adamalysins with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 is affected by the non-catalytic ancillary domains of the enzymes. For this purpose, we first established a novel method of purifying recombinant FLAG-tagged TIMP-3 and its inhibitory N-terminal domain (N-TIMP-3) by treating transfected HEK293 cells with sodium chlorate to prevent heparan sulfate proteoglycan-mediated TIMP-3 internalization. TIMP-3 and N-TIMP-3 affinity for selected matrix metalloproteinases and forms of ADAMTS-4 and -5 lacking sequential C-terminal domains was determined. TIMP-3 and N-TIMP-3 displayed similar affinity for various matrix metalloproteinases as has been previously reported for E. coli-expressed N-TIMP-3. ADAMTS-4 and -5 were inhibited more strongly by N-TIMP-3 than by full-length TIMP-3. The C-terminal domains of the enzymes enhanced interaction with N-TIMP-3 and to a lesser extent with the full-length inhibitor. For example, N-TIMP-3 had 7.5-fold better K(i) value for full-length ADAMTS-5 than for the catalytic and disintegrin domain alone. We propose that the C-terminal domains of the enzymes affect the structure around the active site, favouring interaction with TIMP-3.
Collapse
Affiliation(s)
- Linda Troeberg
- Kennedy Institute of Rheumatology, Imperial College London, 65 Aspenlea Road, London, W6 8LH, UK
| | - Kazunari Fushimi
- Kennedy Institute of Rheumatology, Imperial College London, 65 Aspenlea Road, London, W6 8LH, UK
| | - Simone D. Scilabra
- Kennedy Institute of Rheumatology, Imperial College London, 65 Aspenlea Road, London, W6 8LH, UK
| | - Hiroyuki Nakamura
- Kennedy Institute of Rheumatology, Imperial College London, 65 Aspenlea Road, London, W6 8LH, UK
| | - Vincent Dive
- CEA, iBiTecS, Service d'Ingéníerie Moleculaires des Protéines, Gif Sur Yvette, F-91191, France
| | - Ida B. Thøgersen
- Department of Molecular Biology and Interdisciplinary Nanoscience Centre (iNANO), University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Interdisciplinary Nanoscience Centre (iNANO), University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, Imperial College London, 65 Aspenlea Road, London, W6 8LH, UK
| |
Collapse
|
87
|
Fosang AJ, Last K, Poon CJ, Plaas AH. Keratan sulphate in the interglobular domain has a microstructure that is distinct from keratan sulphate elsewhere on pig aggrecan. Matrix Biol 2008; 28:53-61. [PMID: 19041721 DOI: 10.1016/j.matbio.2008.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/07/2008] [Accepted: 11/03/2008] [Indexed: 11/24/2022]
Abstract
The microstructure of keratan sulphate purified from the interglobular domain, the keratan sulphate-rich region and total aggrecan was compared using fluorophore-assisted-carbohydrate-electrophoresis. Keratan sulphate in the interglobular domain was substantially less sulphated than keratan sulphate elsewhere on aggrecan, based on the ratio of unsulphated: monosulphated disaccharides generated by endo-beta-galactosidase digestion, and the ratio of monosulphated: disulphated disaccharides generated by keratanase II digestion. The ratio of unsulphated: monosulphated: disulphated disaccharides was 1:4:5 for keratan sulphate from total aggrecan and the keratan sulphate-rich region, but only 1:0.9:0.8 for the interglobular domain. These results show that keratan sulphate in the interglobular domain of pig aggrecan has a microstructure that is distinct from keratan sulphate in the keratan sulphate-rich region.
Collapse
Affiliation(s)
- A J Fosang
- University of Melbourne Department of Paediatrics and Murdoch Children's Research Institute, Arthritis Research Group, Royal Children's Hospital, Parkville, 3052, Australia.
| | | | | | | |
Collapse
|