51
|
Moreno MG, Chávez E, Aldaba-Muruato LR, Segovia J, Vergara P, Tsutsumi V, Shibayama M, Rivera-Espinoza Y, Muriel P. Coffee prevents CCl(4)-induced liver cirrhosis in the rat. Hepatol Int 2011; 5:857-63. [PMID: 21484136 DOI: 10.1007/s12072-010-9247-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/29/2010] [Indexed: 11/30/2022]
Abstract
PURPOSE Previous clinical observations suggested that coffee may have beneficial effects on the liver. In fact, an inverse relationship between coffee consumption and liver cirrhosis has been reported in humans. However, the causative role of coffee has not been established; therefore, the aim of this work was to study the effect of coffee in an experimental model of liver damage. METHODS In this work, cirrhosis was induced by chronic CCl(4) administration and soluble or grain coffee (SC, GC, respectively) were co-administered for 8 weeks. RESULTS CCl(4) administration elevated serum alkaline phosphatase and alanine aminotranspherase, liver lipid peroxidation, collagen content (fourfold) and TGF-β mRNA, and protein levels; depleted liver glycogen and reduced glutathione (GSH) content. Coffee prevented most of the changes produced by CCl(4). Histopathological analysis was in agreement with biochemical and molecular data. The best effect was produced by GC. It is worth noting that GC preserved the normal collagen content as well as the normal TGF-β mRNA and protein levels. CONCLUSIONS Our results suggest (1) that coffee plays a causative role in preventing cirrhosis (at least experimental cirrhosis); (2) that action mechanisms are probably associated with down regulation of the profibrogenic cytokine TGF-β and to its antioxidant properties and, (3) that GC is more potent than SC. These findings suggest a beneficial effect of coffee on the liver. However, more clinical and basic studies must be performed before reaching a final recommendation.
Collapse
Affiliation(s)
- Mario G Moreno
- Departamento de Farmacología, Cinvestav-IPN, Apdo. Postal 14-740, 07000, México, DF, México
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
This chapter describes the effects of the natural methylxanthines caffeine and theophylline on kidney function. Theophylline in particular was used traditionally to increase urine out put until more potent diuretics became available in the middle of the last century. The mildly diuretic actions of both methylxanthines are mainly the result of inhibition of tubular fluid reabsorption along the renal proximal tubule. Based upon the use of specific adenosine receptor antagonists and the observation of a complete loss of diuresis in mice with targeted deletion of the A1AR gene, transport inhibition by methylxanthines is mediated mainly by antagonism of adenosine A1 receptors (A1AR) in the proximal tubule. Methylxanthines are weak renal vasodilators, and they act as competitive antagonists against adenosine-induced preglomerular vasoconstriction. Caffeine and theophylline stimulate the secretion of renin by inhibition of adenosine receptors and removal of the general inhibitory brake function of endogenous adenosine. Since enhanced intrarenal adenosine levels lead to reduced glomerular filtration rate in several pathological conditions theophylline has been tested for its therapeutic potential in the renal impairment following administration of nephrotoxic substances such as radiocontrast media, cisplatin, calcineurin inhibitors or following ischemia-reperfusion injury. In experimental animals functional improvements have been observed in all of these conditions, but available clinical data in humans are insufficient to affirm a definite therapeutic efficacy of methylxanthines in the prevention of nephrotoxic or postischemic renal injury.
Collapse
Affiliation(s)
- Hartmut Osswald
- Department of Pharmacology and Toxicology, University of Tübingen, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | | |
Collapse
|
53
|
|
54
|
Breininger E, Cetica P, Beconi M. Capacitation inducers act through diverse intracellular mechanisms in cryopreserved bovine sperm. Theriogenology 2010; 74:1036-49. [DOI: 10.1016/j.theriogenology.2010.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 11/24/2022]
|
55
|
Muriel P, Arauz J. Coffee and liver diseases. Fitoterapia 2010; 81:297-305. [DOI: 10.1016/j.fitote.2009.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/25/2009] [Accepted: 10/05/2009] [Indexed: 02/06/2023]
|
56
|
Harris PC, Rossetti S. Determinants of renal disease variability in ADPKD. Adv Chronic Kidney Dis 2010; 17:131-9. [PMID: 20219616 DOI: 10.1053/j.ackd.2009.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 12/22/2022]
Abstract
In common with other Mendelian diseases, the presentation and progression of autosomal dominant polycystic kidney disease (ADPKD) vary widely in the population. The typical course is of adult-onset disease with ESRD in the 6th decade. However, a small proportion has adequate renal function into the 9th decade, whereas others present with enlarged kidneys as neonates. ADPKD is genetically heterogeneous, and the disease gene is a major determinant of severity; PKD1 on average is associated with ESRD 20 years earlier than PKD2. The majority of PKD1 and PKD2 mutations are likely fully inactivating although recent studies indicate that some alleles retain partial activity (hypomorphic alleles). Homozygotes for such alleles are viable and in combination with an inactivating allele can result in early-onset disease. Hypomorphic alleles and mosaicism may also account for some cases with unusually mild disease. The degree of phenotypic variation detected in families indicates that genetic background influences disease severity. Genome-wide association studies are planned to map common variants associated with severity. Although ADPKD is a simple genetic disease, fully understanding the phenotypic variability requires consideration of influences at the genic, allelic, and genetic background level, and so, ultimately, it is complex.
Collapse
|
57
|
Ayoub S, Melzig MF. Induction of neutral endopeptidase (NEP) activity of SK-N-SH cells by natural compounds from green tea. J Pharm Pharmacol 2010; 58:495-501. [PMID: 16597367 DOI: 10.1211/jpp.58.4.0009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Deposition of amyloid β-peptide as senile plaques in the brain is one of the neuropathological hallmarks of Alzheimer's disease, which is the most prevalent progressive neurodegenerative disease leading to dementia. Neutral endopeptidase is one of the major β-amyloid-degrading enzymes in the brain. To examine the influence of different polyphenols and other natural products from green tea extract (from Camellia sinensis, Theaceae), we used the neuroblastoma cell line SK-N-SH and studied the changes in the specific cellular neutral endopeptidase activity after long-term treatment with these substances. We have shown that caffeine leads to an increase in specific cellular neutral endopeptidase activity more than theophylline, theobromine or theanine. We have also shown that the combination of epicatechin, epigallocatechin and epigallocatechingallate with caffeine, theobromine or theophylline induced cellular neutral endopeptidase activity. It is suggested that the enhancement of cellular neutral endopeptidase activity by green tea extract and its natural products might be correlated with an elevated level of intracellular cyclic adenosine monophosphate.
Collapse
Affiliation(s)
- Shereen Ayoub
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | | |
Collapse
|
58
|
Abstract
Scientists at the National Institutes of Health have reported that increased coffee consumption is associated with a slower progression of fibrogenesis in patients with chronic and particularly alcoholic liver disease and a reduced incidence of heptocellular carcinoma. However, a causal mechanistic explanation was pending. New results indicate that the methylxanthine caffeine--a major component of coffee and the most widely consumed pharmacologically active substance in the world--might be responsible for this phenomenon, because it inhibits the synthesis of connective tissue growth factor (CTGF/CCN2) in liver parenchymal and nonparenchymal cells, primarily by inducing degradation of Smad2 (and to a much lesser extent Smad3) and thus impairment of transforming growth factor beta (TGF-beta) signaling. CTGF and TGF-beta play crucial roles in the fibrotic remodeling of various organs, and, ultimately, carcinogenesis. This article summarizes the clinical-epidemiological observations as well as the pathophysiological background and provides suggestions for the therapeutic use of (methyl)xanthine derivatives in the management of fibro-/carcinogenic (liver) diseases.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, Central Laboratory, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
59
|
Gressner OA. About coffee, cappuccino and connective tissue growth factor-Or how to protect your liver!? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:1-10. [PMID: 21783975 DOI: 10.1016/j.etap.2009.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/05/2009] [Accepted: 02/11/2009] [Indexed: 05/31/2023]
Abstract
Several epidemiological studies suggest that coffee drinking is inversely correlated with the risk of development of liver fibrosis. However, a causal, mechanistic explanation has long been pending. New results indicate that the methylxanthine caffeine, major component of coffee and the most widely consumed pharmacologically active substance in the world, might be responsible for this phenomenon as it, and even more potently its derived primary metabolite paraxanthine, inhibits transforming growth factor (TGF)-β-dependent and -independent synthesis of connective tissue growth factor (CTGF/CCN2) in liver parenchymal cells in vitro and in vivo. CTGF plays a crucial role in the fibrotic remodeling of various organs which has therefore frequently been proposed as therapeutic target in the management of fibrotic disorders. This article summarizes the clinical-epidemiological observations as well as the pathophysiological background of the antifibrotic effects of coffee consumption and provides suggestions for the therapeutic use of caffeine and its derived metabolic methylxanthines as potentially powerful drugs in patients with chronic fibrogenic liver disease by their inhibitory effect on (hepatocellular) CTGF synthesis.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, Central Laboratory, RWTH-University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
60
|
Torres VE, Bankir L, Grantham JJ. A case for water in the treatment of polycystic kidney disease. Clin J Am Soc Nephrol 2009; 4:1140-50. [PMID: 19443627 DOI: 10.2215/cjn.00790209] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Autosomal dominant polycystic disease (ADPKD) is an inherited disorder characterized by the development within renal tubules of innumerable cysts that progressively expand to cause renal insufficiency. Tubule cell proliferation and transepithelial fluid secretion combine to enlarge renal cysts, and 3'-5'-cyclic adenosine monophosphate (cAMP) stimulates that growth. The antidiuretic hormone, arginine vasopressin (AVP), operates continuously in ADPKD patients to stimulate the formation of cAMP, thereby contributing to cyst and kidney enlargement and renal dysfunction. Studies in animal models of ADPKD provide convincing evidence that blocking the action of AVP dramatically ameliorates the disease process. In the current analysis, the authors reason that increasing the amount of solute-free water drunk evenly throughout the day in patients with ADPKD and normal renal function will decrease plasma AVP concentrations and mitigate the action of cAMP on the renal cysts. Potential pitfalls of increasing fluid intake in ADPKD patients are considered, and suggestions for how physicians may prudently implement this therapy are offered.
Collapse
Affiliation(s)
- Vicente E Torres
- Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
61
|
Pharmacological application of caffeine inhibits TGF-beta-stimulated connective tissue growth factor expression in hepatocytes via PPARgamma and SMAD2/3-dependent pathways. J Hepatol 2008; 49:758-67. [PMID: 18486259 DOI: 10.1016/j.jhep.2008.03.029] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 03/29/2008] [Accepted: 03/31/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Epidemiological studies suggest that coffee drinking is inversely correlated with the risk of development of liver fibrosis but the molecular basis is unknown. METHODS We investigated the pharmacological mechanisms involved in caffeine-dependent regulation of CTGF expression, an important modulator protein of fibrogenic TGF-beta, in rat hepatocytes using Western-blot, co-immunoprecipitations, reporter-gene-assays and ELISAs. RESULTS It is demonstrated that caffeine, similar to 8-Br-cAMP, suppresses CTGF expression, decreases SMAD2 protein levels and inhibits SMAD1/3-phosphorylation. The SMAD2 level can be restored by a proteasome inhibitor. Additionally, caffeine leads to an up-regulation of PPARgamma expression, that enhances the inhibitory effect of the natural PPARgamma agonist 15-PGJ(2) on CTGF expression by inducing a dissociation of the SMAD2/3-CBP/p300-transcriptional complex. CONCLUSIONS We show that caffeine strongly down-modulates TGF-beta-induced CTGF expression in hepatocytes by stimulation of degradation of the TGF-beta effector SMAD 2, inhibition of SMAD3 phosphorylation and up-regulation of the PPARgamma-receptor. Long-term caffeinization might be an option for anti-fibrotic trials in chronic liver diseases.
Collapse
|
62
|
Affiliation(s)
- Jared J Grantham
- Kidney Institute and the Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
63
|
Bhaskara S, Chandrasekharan MB, Ganguly R. Caffeine induction of Cyp6a2 and Cyp6a8 genes of Drosophila melanogaster is modulated by cAMP and D-JUN protein levels. Gene 2008; 415:49-59. [PMID: 18395996 DOI: 10.1016/j.gene.2008.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/06/2008] [Accepted: 02/17/2008] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 monooxygenases or CYPs, a family of endobiotics and xenobiotics metabolizing enzymes, are found in all organisms. We reported earlier that the promoters of Drosophila Cyp6a2 and Cyp6a8 genes are induced by caffeine. Since caffeine antagonizes adenosine receptor (AdoR) and inhibits cAMP phosphodiesterase (PDE), we used luciferase reporter gene to examine whether in SL-2 cells and adult Drosophila, induction of the two Cyp6 genes is mediated via AdoR and/or PDE pathway. Results showed that AdoR is not involved because AdoR agonists or antagonists do not affect the Cyp6 promoter activities. However, inhibition of PDE by specific inhibitors including caffeine causes induction of both Cyp6 gene promoters. We also found that flies mutant for dunce gene coding for cAMP-PDE, have higher Cyp6a8 promoter activity than the wild-type flies. We demonstrate that caffeine treatment increases intracellular cAMP levels, and cAMP treatment induces the Cyp6 gene promoters. Since both Cyp6 genes have multiple sites for JUN transcription factors, which generally play a positive role in cAMP pathway, effect of Drosophila jun (D-jun) on the Cyp6a8 promoter activity was examined. Results showed that the expression of D-jun sense plasmid causes downregulation rather than activation of the Cyp6a8 promoter. Conversely, expression of antisense plasmid increased the promoter activity. Interestingly, caffeine treatment decreased the D-JUN protein level in SL-2 cells as well as in adult flies. These results suggest that D-jun acts as a negative regulator, and caffeine induction of Cyp6a8 and Cyp6a2 genes is mediated by the upregulation of cAMP pathway and downregulation of the D-JUN protein level.
Collapse
Affiliation(s)
- Srividya Bhaskara
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, United States
| | | | | |
Collapse
|
64
|
Masoumi A, Reed-Gitomer B, Kelleher C, Schrier RW. Potential pharmacological interventions in polycystic kidney disease. Drugs 2008; 67:2495-510. [PMID: 18034588 DOI: 10.2165/00003495-200767170-00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polycystic kidney diseases (autosomal dominant and autosomal recessive) are progressive renal tubular cystic diseases, which are characterised by cyst expansion and loss of normal kidney structure and function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common life- threatening, hereditary disease. ADPKD is more prevalent than Huntington's disease, haemophilia, sickle cell disease, cystic fibrosis, myotonic dystrophy and Down's syndrome combined. Early diagnosis and treatment of hypertension with inhibitors of the renin-angiotensin-aldosterone system (RAAS) and its potential protective effect on left ventricular hypertrophy has been one of the major therapeutic goals to decrease cardiac complications and contribute to improved prognosis of the disease. Advances in the understanding of the genetics, molecular biology and pathophysiology of the disease are likely to facilitate the improvement of treatments for these diseases. Developments in describing the role of intracellular calcium ([Ca(2+)](i)) and its correlation with cellular signalling systems, Ras/Raf/mitogen extracellular kinase (MEK)/extracellular signal-regulated protein kinase (ERK), and interaction of these pathways with cyclic adenosine monophosphate (cAMP) levels, provide new insights on treatment strategies. Blocking the vasopressin V(2) receptor, a major adenylyl cyclase agonist, demonstrated significant improvements in inhibiting cytogenesis in animal models. Because of activation of the mammalian target of rapamycin (mTOR) pathway, the use of sirolimus (rapamycin) an mTOR inhibitor, markedly reduced cyst formation and decreased polycystic kidney size in several animal models. Caspase inhibitors have been shown to decrease cytogenesis and renal failure in rats with cystic disease. Cystic fluid secretion results in cyst enlargement and somatostatin analogues have been shown to decrease renal cyst progression in patients with ADPKD. The safety and efficacy of these classes of drugs provide potential interventions for experimental and clinical trials.
Collapse
Affiliation(s)
- Amirali Masoumi
- Department of Medicine, Health Sciences Center, University of Colorado School of Medicine, Denver, Colorado, USA
| | | | | | | |
Collapse
|
65
|
Elberg G, Elberg D, Lewis TV, Guruswamy S, Chen L, Logan CJ, Chan MD, Turman MA. EP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells. Am J Physiol Renal Physiol 2007; 293:F1622-32. [PMID: 17728378 DOI: 10.1152/ajprenal.00036.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by formation of cysts from tubular epithelial cells. Previous studies indicate that secretion of prostaglandin E2 (PGE2) into cyst fluid and production of cAMP underlie cyst expansion. However, the mechanism by which PGE2 directly stimulates cAMP formation and modulates cystogenesis is still unclear, because the particular E-prostanoid (EP) receptor mediating the PGE2 effect has not been characterized. Our goal is to define the PGE2 receptor subtype involved in ADPKD. We used a three-dimensional cell-culture system of human epithelial cells from normal and ADPKD kidneys in primary cultures to demonstrate that PGE2 induces cyst formation. Biochemical evidence gathered by using real-time RT-PCR mRNA analysis and immunodetection indicate the presence of EP2 receptor in cystic epithelial cells in ADPKD kidney. Pharmacological evidence obtained by using PGE2-selective analogs further demonstrates that EP2 mediates cAMP formation and cystogenesis. Functional evidence for a role of EP2 receptor in mediating cAMP signaling was also provided by inhibiting EP2 receptor expression with transfection of small interfering RNA in cystic epithelial cells. Our results indicate that PGE2 produced in cyst fluid binds to adjacent EP2 receptors located on the apical side of cysts and stimulates EP2 receptor expression. PGE2 binding to EP2 receptor leads to cAMP signaling and cystogenesis by a mechanism that involves protection of cystic epithelial cells from apoptosis. The role of EP2 receptor in mediating the PGE2 effect on stimulating cyst formation may have direct pharmacological implications for the treatment of polycystic kidney disease.
Collapse
MESH Headings
- Apoptosis
- Cyclic AMP/biosynthesis
- Cyclic AMP/metabolism
- Dinoprostone/metabolism
- Epithelial Cells/metabolism
- Humans
- Kidney/metabolism
- Polycystic Kidney, Autosomal Dominant/etiology
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/pathology
- Polycystic Kidney, Autosomal Dominant/physiopathology
- Protein Isoforms/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Signal Transduction
- Spheroids, Cellular
- Transfection
Collapse
Affiliation(s)
- Gerard Elberg
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, 940 N. E. 13th St., 2B2309, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Bolignano D, Coppolino G, Barillà A, Campo S, Criseo M, Tripodo D, Buemi M. Caffeine and the Kidney: What Evidence Right Now? J Ren Nutr 2007; 17:225-34. [PMID: 17586420 DOI: 10.1053/j.jrn.2007.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Indexed: 11/11/2022] Open
Abstract
Caffeine, or 1, 3, 7-trimethylxanthine, is one of the most frequently consumed active drugs worldwide. Its main mechanisms of action include inhibiting the phosphodiesteratic enzyme and adenosine receptors and activating the ryanodine receptors with several actions on all organs. What effect does caffeine have on the kidney? Is caffeine beneficial or dangerous? A review of the current literature reveals conflicting opinions regarding the prolithiasic effect of this substance, whereas its diuretic action is least disputed and more easily observed. Caffeine may have a toxic or preventive effect in some physiologic or pathologic conditions. Some of these incongruences may depend on several factors, such as dosage, prior chronic exposure, genetic-enzymatic axes, and concomitant drug consumption. While awaiting further insight from forthcoming studies on the issue, we may reach a preliminary conclusion that, as yet, there is no evidence contraindicating the consumption of the equivalent of 3 to 4 cups of coffee per day in healthy or nephropathic subjects. However, particular attention should be paid to the elderly, children, and patients on concomitant treatment with analgesics or diuretics, whereas in subjects with a family or clinical history of calcium lithiasis a moderate caffeine consumption should be associated with an adequate fluid intake. Further in-depth studies are required to investigate whether this beverage is beneficial to patients on hemodialysis.
Collapse
Affiliation(s)
- Davide Bolignano
- Department of Internal Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
67
|
Rossetti S, Harris PC. Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol 2007; 18:1374-80. [PMID: 17429049 DOI: 10.1681/asn.2007010125] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phenotypes that are associated with the common forms of polycystic kidney disease (PKD)--autosomal dominant (ADPKD) and autosomal recessive (ARPKD)--are highly variable in penetrance. This is in terms of severity of renal disease, which can range from neonatal death to adequate function into old age, characteristics of the liver disease, and other extrarenal manifestations in ADPKD. Influences of the germline mutation are at the genic and allelic levels, but intrafamilial variability indicates that genetic background and environmental factors are also key. In ADPKD, the gene involved, PKD1 or PKD2, is a major factor, with ESRD occurring 20 yr later in PKD2. Mutation position may also be significant, especially in terms of the likelihood of vascular events, with 5' mutations most detrimental. Variance component analysis in ADPKD populations indicates that genetic modifiers are important, but few such factors (beyond co-inheritance of a TSC2 mutation) have been identified. Hormonal influences, especially associated with more severe liver disease in female individuals, indicate a role for nongenetic factors. In ARPKD, the combination of mutations is critical to the phenotypic outcome. Patients with two truncating mutations have a lethal phenotype, whereas the presence of at least one missense change can be compatible with life, indicating that many missense changes are hypomorphic alleles that generate partially functional protein. Clues from animal models and other forms of PKD highlight potential modifiers. The information that is now available on both genes is of considerable prognostic value with the prospects from the ongoing genetic revolution that additional risk factors will be revealed.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
68
|
Tugba Durlu-Kandilci N, Brading AF. Intracellular calcium stores in beta-escin skinned rat and guinea-pig bladders. Eur J Pharmacol 2007; 566:172-80. [PMID: 17475242 DOI: 10.1016/j.ejphar.2007.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 03/12/2007] [Accepted: 03/14/2007] [Indexed: 11/30/2022]
Abstract
Intracellular Ca2+ stores in rat and guinea-pig bladders and taenia caecum were studied in beta-escin skinned smooth muscle strips. 30 min of skinning with 40 microM and 80 microM beta-escin were the best parameters found to obtain good calcium response curves (10(-7)-10(-4) M) in rat and guinea pig, respectively. Calmodulin (1 microM) increased the calcium contractions significantly. pCa 6 was used to load intracellular stores and application of carbachol (50 microM) in all tissues then only contracted the tissues in the presence of guanosine-5'-triphosphate (GTP; 100 microM). Inositol triphosphate (IP3; 50 microM), applied after pCa 6, contracted all tissues. Carbachol added after IP3 or heparin (1 mg/ml) no longer caused a contraction in any of them. In bladders, caffeine (30 mM) but not ryanodine (5 microM) prevented the subsequent carbachol contraction. A slowly rising contraction with carbachol was elicited after caffeine (30 mM) or ryanodine (5 microM) in the taenia and after ryanodine in the bladders. Caffeine (30 mM) suppressed the calcium response curves in all tissues. Procaine (30 mM) blocked the carbachol (50 microM) contractions in bladders but not in taenia. These results suggest that calcium induced calcium release (CICR) and IP3 induced calcium release (IICR) release calcium from a common store in bladder but two different compartments in taenia.
Collapse
Affiliation(s)
- N Tugba Durlu-Kandilci
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, 06100, Sihhiye, Ankara, Turkey
| | | |
Collapse
|
69
|
Kuranda K, Leberre V, Sokol S, Palamarczyk G, François J. Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 2006; 61:1147-66. [PMID: 16925551 DOI: 10.1111/j.1365-2958.2006.05300.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Caffeine is a natural purine analogue that elicits pleiotropic effects leading ultimately to cell's death by a largely uncharacterized mechanism. Previous works have shown that this drug induces a rapid phosphorylation of the Mpk1p, the final mitogen-activated protein (MAP) kinase of the Pkc1p-mediated cell integrity pathway. In this work, we showed that this phosphorylation did not necessitate the main cell wall sensors Wsc1p and Mid2p, but was abolished upon deletion of ROM2 encoding a GDP/GTP exchange factor of Rho1p. We also showed that the caffeine-induced phosphorylation of Mpk1p was accompanied by a negligible activation of its main downstream target, the Rlm1p transcription factor. This result was consolidated by the finding that the loss of RLM1 had no consequence on the increased resistance of caffeine-treated cells to zymolyase, indicating that the cell wall modification caused by this drug is largely independent of transcriptional activation of Rlm1p-regulated genes. Additionally, the transcriptional programme elicited by caffeine resembled that of rapamycin, a potent inhibitor of the TOR1/2 kinases. Consistent with this analysis, we found that the caffeine-induced phosphorylation of Mpk1p was lost in a tor1Delta mutant. Moreover, a tor1Delta mutant was, like mutants defective in components of the Pkc1p-Mpk1p cascade, highly sensitive to caffeine. However, the hypersensitivity of a tor1 null mutant to this drug was rescued neither by sorbitol nor by adenine, which was found to outcompete caffeine effects specially on mutants in the PKC pathway. Altogether, these data indicated that Tor1 kinase is a target of caffeine, whose inhibition incidentally activates the Pkc1p-Mpk1p cascade, and that the caffeine-dependent phenotypes are largely dependent on inhibition of Tor1p-regulated cellular functions. Finally, we found that caffeine provoked, in a Rom2p-dependent manner, a transient drop in intracellular levels of cAMP, that was followed by change in expression of genes implicated in Ras/cAMP pathway. This result may pose Rom2p as a mediator in the interplay between Tor1p and the Ras/cAMP pathway.
Collapse
|
70
|
|
71
|
Cheng J, Thompson MA, Walker HJ, Gray CE, Warner GM, Zhou W, Grande JP. Lixazinone stimulates mitogenesis of Madin-Darby canine kidney cells. Exp Biol Med (Maywood) 2006; 231:288-95. [PMID: 16514175 DOI: 10.1177/153537020623100308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polycystic kidney diseases (PKD) are characterized by excessive proliferation of renal tubular epithelial cells, development of fluid-filled cysts, and progressive renal insufficiency. cAMP inhibits proliferation of normal renal tubular epithelial cells but stimulates proliferation of renal tubular epithelial cells derived from patients with PKD. Madin-Darby canine kidney (MDCK) epithelial cells, which are widely used as an in vitro model of cystogenesis, also proliferate in response to cAMP. Intracellular cAMP levels are tightly regulated by phosphodiesterases (PDE). Isoform-specific PDE inhibitors have been developed as therapeutic agents to regulate signaling pathways directed by cAMP. In other renal cell types, we have previously demonstrated that cAMP is hydrolyzed by PDE3 and PDE4, but only PDE3 inhibitors suppress proliferation by inhibiting Raf-1 activity (Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Am J Physiol Renal Physiol 287:F940-F953, 2004.) A potential role for PDE isoform(s) in cAMP-mediated proliferation of MDCK cells has not previously been established. Similar to what we have previously found in several other renal cell types, cAMP hydrolysis in MDCK cells is directed primarily by PDE4 (85% of total activity) and PDE3 (15% of total activity). PDE4 inhibitors are more effective than PDE3 inhibitors in increasing intracellular cAMP levels in MDCK cells. However, only PDE3 inhibitors, and not PDE4 inhibitors, stimulate mitogenesis of MDCK cells. PDE3 but not PDE4 inhibitors activate B-Raf but not Raf-1, as assessed by an in vitro kinase assay. PDE3 but not PDE4 inhibitors activate the ERK pathway and activate cyclins D and E, as assessed by histone H1 kinase assay. We conclude that mitogenesis of MDCK cells is regulated by a functionally compartmentalized intracellular cAMP pool directed by PDE3. Pharmacologic agents that stimulate PDE3 activity may provide the basis for new therapies directed toward reducing cystogenesis in patients with PKD.
Collapse
Affiliation(s)
- Jingfei Cheng
- Renal Pathophysiology Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Baker JA, McCann SE, Reid ME, Nowell S, Beehler GP, Moysich KB. Associations Between Black Tea and Coffee Consumption and Risk of Lung Cancer Among Current and Former Smokers. Nutr Cancer 2005; 52:15-21. [PMID: 16090999 DOI: 10.1207/s15327914nc5201_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Although cigarette smoking is a clear risk factor for lung cancer, the other determinants of lung cancer risk among smokers are less clear. Tea and coffee contain catechins and flavonoids, which have been shown to exhibit anticarcinogenic properties. Conversely, caffeine may elevate cancer risk through a variety of mechanisms. The current study investigated the effects of regular consumption of black tea and coffee on lung cancer risk among 993 current and former smokers with primary incident lung cancer and 986 age-, sex-, and smoking-matched hospital controls with non-neoplastic conditions. Results indicated that lung cancer risk was not different for those with the highest black tea consumption (>or=2 cups/day) compared with nondrinkers of tea [adjusted odds ratio (aOR)=0.90; 95% confidence interval (CI)=0.66-1.24]. However, elevated lung cancer risk was observed for participants who consumed 2-3 cups of regular coffee daily (aOR=1.34; 95% CI=0.99-1.82) or >or=4 cups of regular coffee daily (aOR=1.51, 95% CI=1.11-2.05). In contrast, decaffeinated coffee drinking was associated with decreased lung cancer risk for both participants who consumed <or=1 cup/day (aOR=0.67; 95% CI=0.54-0.84) and those who consumed >or=2 cups/day (aOR=0.64; 95% CI=0.51-0.80). These results suggest that any chemoprotective effects of phytochemicals in coffee and tea may be overshadowed by the elevated risk associated with caffeine in these beverages.
Collapse
Affiliation(s)
- Julie A Baker
- Department of Epidemiology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
73
|
Belibi FA, Reif G, Wallace DP, Yamaguchi T, Olsen L, Li H, Helmkamp GM, Grantham JJ. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells11See Editorial by Torres, p. 1283. Kidney Int 2004; 66:964-73. [PMID: 15327388 DOI: 10.1111/j.1523-1755.2004.00843.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Progressive cyst enlargement, the hallmark of autosomal-dominant polycystic kidney disease (ADPKD) and autosomal-recessive (ARPKD) polycystic kidney disease, precedes the eventual decline of function in these conditions. The expansion of individual cysts in ADPKD is determined to a major extent by mural epithelial cell proliferation and transepithelial fluid secretion. This study determined if common receptor-mediated agonists and an anonymous lipid stimulate the production of 3' 5'-cyclic monophosphate (cAMP) in mural epithelial cells from the two major types of human cystic diseases. METHODS cAMP responses to maximally effective concentrations of renal agonists were determined together with measurements of transepithelial anion current and cellular proliferation and extracellular signal-related kinase (ERK 1/2) expression in primary cultures of epithelial cells from human ADPKD and ARPKD cysts. RESULTS The rank orders of responses to ligands for ADPKD and ARPKD cells were identical: epinephrine > desmopressin (DDAVP) approximately arginine vasopressin (AVP) > adenosine > prostaglandin E(2) (PGE(2)) > parathyroid hormone (PTH). cAMP concentrations elevated by epinephrine, DDAVP, adenosine, and PGE(2) were diminished by receptor-specific inhibitors. Pools of cyst fluid collected individually from 16 of 19 ADPKD kidneys increased, to varying degrees, cAMP levels in ADPKD and ARPKD cells. PGE(2), beta-adrenergic and AVP antagonists partially inhibited cAMP accumulation in response to fluids from three kidneys, but a large portion of the endogenous activity was attributed to yet-to-be identified bioactive lipid, designated cyst activating factor (CAF). CAF stimulated cAMP production in ADPKD and ARPKD cells, activated ERK(1/2), and increased cellular proliferation in ADPKD cells. CAF increased positive short circuit current (I(SC)) in polarized ADPKD and T-84 monolayers, indicating stimulation of net anion secretion. CONCLUSION Endogenous adenylyl cyclase agonists promote cell proliferation and electrolyte secretion of human ADPKD and ARPKD cells in vitro. We suggest that increased levels of cAMP may accelerate cyst growth and overall renal enlargement in patients with PKD.
Collapse
Affiliation(s)
- Franck A Belibi
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160-7382, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Wallace DP, Reif G, Hedge AM, Thrasher JB, Pietrow P. Adrenergic regulation of salt and fluid secretion in human medullary collecting duct cells. Am J Physiol Renal Physiol 2004; 287:F639-48. [PMID: 15226157 DOI: 10.1152/ajprenal.00448.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transepithelial salt and fluid secretion mediated by cAMP in initial inner medullary collecting ducts (IMCDi) may be important for making final adjustments to urine composition. We examined in primary cultures of human IMCDi cells the effects of adrenergic receptor (AR) agonists and antagonists on intracellular cAMP levels, short-circuit current (I(SC)), and fluid secretion. Epinephrine (1 microM), norepinephrine (1 microM), and isoproterenol (10 nM) individually increased intracellular cAMP levels 57-, 2-, and 25-fold, respectively, and stimulated I(SC) 3.3-, 2.9-, and 3.4-fold, respectively. beta-AR activation increased net fluid secretion by cultured human IMCDi cell monolayers from 0.09 +/- 0.04 to 0.26 +/- 0.05 microl x h(-1) x cm(-2) and freshly isolated rat IMCDi from 0.02 +/- 0.01 to 0.09 +/- 0.02 nl x h(-1) x mm(-1). In monolayers, these effects were eliminated by blocking beta2-AR, but not beta1-AR. Activation of alpha2-AR with guanabenz inhibited isoproterenol-induced I(SC) by 37% in human IMCDi monolayers and fluid secretion by 91% in rat IMCDi. Immunohistochemistry of human medullary tissue sections revealed greater expression of beta2-AR than beta1-AR; beta2-AR was localized to the basolateral membranes of human IMCDi. Immunoblots identified alpha2A-AR and alpha2B-AR in cultured human IMCDi cell monolayers. We conclude that 1) catecholamines stimulate cAMP-dependent anion and fluid secretion by IMCDi cells primarily through beta2-AR activation and 2) alpha2-AR activation attenuates cAMP-dependent anion secretion.
Collapse
Affiliation(s)
- Darren P Wallace
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
75
|
Grantham JJ. Lillian Jean Kaplan International Prize for advancement in the understanding of polycystic kidney disease. Understanding polycystic kidney disease: a systems biology approach. Kidney Int 2003; 64:1157-62. [PMID: 12969132 DOI: 10.1046/j.1523-1755.2003.00242.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Understanding polycystic kidney disease: A systems biology approach. Fluid secretion was discovered in the mammalian nephron in the early 1970s upon a chance observation. This finding aroused interest in the possibility that a similar process might be involved in the filling of renal epithelial cysts. A research strategy was formulated to understand the life cycle of human renal cysts using a systems biology approach. A not-for-profit foundation was begun to increase the number of researchers in the United States and abroad working on the polycystic kidney disease (PKD) problem. Primary outcomes related to PKD include (1). explication of the transport mechanisms underlying the transepithelial secretion of chloride, sodium and fluid, and the regulation of that secretion by cyclic adenosine monophosphate (AMP); (2). the discovery that cyclic AMP stimulates the proliferation of cyst epithelial cells through activation of of B-Raf and the mitogen-activated protein (MAP) kinase pathway; and (3). the discovery that normal medullary collecting ducts secrete solutes and fluid under the control of cyclic AMP. The Polycystic Kidney Disease Foundation has become an international leader in promoting the research of these disorders and is a strong advocate for increased translation of fundamental laboratory discoveries to the care of the millions of patients with PKD.
Collapse
Affiliation(s)
- Jared J Grantham
- Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| |
Collapse
|