51
|
Frank MM, Goodrich LV. Talking back: Development of the olivocochlear efferent system. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e324. [PMID: 29944783 PMCID: PMC6185769 DOI: 10.1002/wdev.324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
|
52
|
Kalaiah MK, Lasrado A, Pinto N, Shastri U. Short Term Test-Retest Reliability of Contralateral Inhibition of Distortion Product Otoacoustic Emissions. J Audiol Otol 2018; 22:189-196. [PMID: 30126264 PMCID: PMC6233937 DOI: 10.7874/jao.2018.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/30/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Strength of medial olivocochlear reflex can be measured reliably using contralateral inhibition of distortion product otoacoustic emissions (DPOAEs) when its fine structure is considered. However, measurement of fine structure of DPOAE is difficult with clinical equipment. Thus, this study investigated the clinically relevant test-retest reliability of contralateral inhibition of DPOAEs. Subjects and. METHODS Twenty-six young adults with normal hearing sensitivity participated. DPOAEs were recorded at 27 discrete f2 frequencies between 800 Hz and 8,000 Hz at frequency resolution of 8 points per octave with and without contralateral white noise presented at 50 dB SPL. To check for short term inter-session reliability, contralateral inhibition of DPOAEs were recorded in three sessions, two recording sessions on first day separated by 30 minutes and third time after one week of the first session. Within each session, DPOAEs were recorded twice in single probe-fit condition to test for intra-session reliability. RESULTS Cronbach's alpha was calculated having poor reliability (α≤ 0.7) of contralateral inhibition of DPOAEs in both intra-session and inter-session conditions for most of the tested frequencies. 95% confidence intervals of contralateral inhibition magnitude also showed large variability. CONCLUSIONS The current results showed that though DPOAE amplitudes were highly reliable across sessions, amount of inhibition of DPOAEs was not reliable when DPOAEs were measured at discrete frequencies. These findings are concurrent with the literature.
Collapse
Affiliation(s)
- Mohan Kumar Kalaiah
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alina Lasrado
- Department of Speech and Hearing Sciences, Arizona State University, Tempe, AZ, USA
| | - Nikita Pinto
- Early Learning Center (ELC), Bejai Kapikad, Mangalore, Karnataka, India
| | - Usha Shastri
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
53
|
Iliadou VV, Weihing J, Chermak GD, Bamiou DE. Otoacoustic emission suppression in children diagnosed with central auditory processing disorder and speech in noise perception deficits. Int J Pediatr Otorhinolaryngol 2018; 111:39-46. [PMID: 29958612 DOI: 10.1016/j.ijporl.2018.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The present study was designed to test the hypothesis that medial olivocochlear system functionality is associated with speech recognition in babble performance in children diagnosed with central auditory processing disorder. METHOD Children diagnosed with central auditory processing disorder who specifically demonstrated speech in noise deficits were compared to children diagnosed with central auditory processing disorder without these deficits. Suppression effects were examined across 15 time intervals to examine variability. Analysis of right and left ear suppression was performed separately to evaluate laterality. STUDY SAMPLE 52 children diagnosed with central auditory processing disorder, aged 6-14 years were divided into normal or abnormal groups based on SinB performance in each ear. Cut-off value was set at SNR = 1.33 dB. Transient otoacoustic emissions suppression was measured. RESULTS The abnormal Speech in Babble Right Ear group showed significant negative correlations with suppression levels for 7 of the 15 time intervals measured. No significant correlations with SinBR performance were observed for the remaining time intervals, as was the case for the typically evaluated R8-18 time interval and the Speech in Babble Left Ear. CONCLUSIONS Results indicate that suppression is influenced by the time window analysed, and ear tested, and is associated with speech recognition in babble performance in children with central auditory processing disorder.
Collapse
Affiliation(s)
| | - Jeffrey Weihing
- Department of Otolaryngology - Head and Neck Surgery - and Communicative Disorders, University of Louisville, Louisville, KY, United States
| | - Gail D Chermak
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University Health Sciences, Spokane, WA, United States
| | - Doris Eva Bamiou
- Neuro-Otology Department, University College London Hospitals NHS Trust, United Kingdom; University College London Ear Institute, United Kingdom
| |
Collapse
|
54
|
Karunarathne B, Wang T, So RHY, Kam ACS, Meddis R. Adversarial relationship between combined medial olivocochlear (MOC) and middle-ear-muscle (MEM) reflexes and alarm-in-noise detection thresholds under negative signal-to-noise ratios (SNRs). Hear Res 2018; 367:124-128. [PMID: 30107299 DOI: 10.1016/j.heares.2018.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
Abstract
The role of auditory efferent feedback from the medial olivocochlear system (MOCS) and the middle-ear-muscle (MEM) reflex in tonal detection tasks for humans in the presence of noise is not clearly understood. Past studies have yielded inconsistent results on the relationship between efferent feedback and tonal detection thresholds. This study attempts to address this inconsistency. Fifteen human subjects with normal hearing participated in an experiment where they were asked to identify an alarm signal in the presence of 80 dBA background (pink) noise. Masked detection thresholds were estimated using the method of two-interval forced choice (2IFC). Contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs) was measured to estimate the strength of auditory efferent feedback. Subsequent correlation analysis revealed that the contralateral suppression of TEOAEs was significantly negatively correlated (r = -0.526, n = 15, p = 0.0438) with alarm-in-noise (AIN) detection thresholds under negative signal-to-noise conditions. The result implies that the stronger the auditory efferent feedback, the worse the detection thresholds and thus the poorer the tonal detection performance in the presence of loud noise.
Collapse
Affiliation(s)
- Buddhika Karunarathne
- HKUST-Shenzhen Research Institute, Shenzhen, 518057, China; Department of Industrial Engineering and Decision Analytics, Clearwater Bay, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tingyi Wang
- HKUST-Shenzhen Research Institute, Shenzhen, 518057, China; Department of Industrial Engineering and Decision Analytics, Clearwater Bay, Hong Kong University of Science and Technology, Hong Kong, China
| | - Richard H Y So
- HKUST-Shenzhen Research Institute, Shenzhen, 518057, China; Department of Industrial Engineering and Decision Analytics, Clearwater Bay, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Anna C S Kam
- Department of Special Education and Counselling, Education University of Hong Kong, Hong Kong, China
| | - Ray Meddis
- Department of Psychology, University of Essex, Colchester, CO4 3SQ, United Kingdom
| |
Collapse
|
55
|
Marian V, Lam TQ, Hayakawa S, Dhar S. Top-Down Cognitive and Linguistic Influences on the Suppression of Spontaneous Otoacoustic Emissions. Front Neurosci 2018; 12:378. [PMID: 29937708 PMCID: PMC6002685 DOI: 10.3389/fnins.2018.00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Abstract
Auditory sensation is often thought of as a bottom-up process, yet the brain exerts top-down control to affect how and what we hear. We report the discovery that the magnitude of top-down influence varies across individuals as a result of differences in linguistic background and executive function. Participants were 32 normal-hearing individuals (23 female) varying in language background (11 English monolinguals, 10 Korean-English late bilinguals, and 11 Korean-English early bilinguals), as well as cognitive abilities (working memory, cognitive control). To assess efferent control over inner ear function, participants were presented with speech-sounds (e.g., /ba/, /pa/) in one ear while spontaneous otoacoustic emissions (SOAEs) were measured in the contralateral ear. SOAEs are associated with the amplification of sound in the cochlea, and can be used as an index of top-down efferent activity. Individuals with bilingual experience and those with better cognitive control experienced larger reductions in the amplitude of SOAEs in response to speech stimuli, likely as a result of greater efferent suppression of amplification in the cochlea. This suppression may aid in the critical task of speech perception by minimizing the disruptive effects of noise. In contrast, individuals with better working memory exert less control over the cochlea, possibly due to a greater capacity to process complex stimuli at later stages. These findings demonstrate that even peripheral mechanics of auditory perception are shaped by top-down cognitive and linguistic influences.
Collapse
Affiliation(s)
- Viorica Marian
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Tuan Q Lam
- Department of Psychological Sciences, Loyola University, New Orleans, LA, United States
| | - Sayuri Hayakawa
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Sumitrajit Dhar
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
56
|
Mertes IB. Human medial efferent activity elicited by dynamic versus static contralateral noises. Hear Res 2018; 365:100-109. [PMID: 29793763 DOI: 10.1016/j.heares.2018.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022]
Abstract
The medial olivocochlear reflex (MOCR) modifies cochlear amplifier function to improve encoding of signals in static noise, but conflicting results have been reported regarding how the MOCR responds to dynamic, temporally-complex noises. The current study utilized three MOCR elicitors with identical spectral content but different temporal properties: broadband noise, amplitude-modulated noise, and speech envelope-modulated noise. MOCR activity was assessed using contralateral inhibition of transient-evoked otoacoustic emissions in 27 normal-hearing young adults. Elicitors were presented contralaterally at two intensities of 50 and 60 dB SPL. Magnitude and growth of contralateral inhibition with increasing elicitor intensity were compared across the three elicitor types. Results revealed that contralateral inhibition was significantly larger at the elicitor intensity of 60 dB SPL than at 50 dB SPL, but there were no significant differences in the magnitude and growth of inhibition across the three elicitors, contrary to hypothesis. These results suggest that the MOCR responds similarly to both static and dynamic noise.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, IL, 61820, United States.
| |
Collapse
|
57
|
Boothalingam S, Kurke J, Dhar S. Click-Evoked Auditory Efferent Activity: Rate and Level Effects. J Assoc Res Otolaryngol 2018; 19:421-434. [PMID: 29736560 DOI: 10.1007/s10162-018-0664-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/22/2018] [Indexed: 11/29/2022] Open
Abstract
There currently are no standardized protocols to evaluate auditory efferent function in humans. Typical tests use broadband noise to activate the efferents, but only test the contralateral efferent pathway, risk activating the middle ear muscle reflex (MEMR), and are laborious for clinical use. In an attempt to develop a clinical test of bilateral auditory efferent function, we have designed a method that uses clicks to evoke efferent activity, obtain click-evoked otoacoustic emissions (CEOAEs), and monitor MEMR. This allows for near-simultaneous estimation of cochlear and efferent function. In the present study, we manipulated click level (60, 70, and 80 dB peak-equivalent sound pressure level [peSPL]) and rate (40, 50, and 62.5 Hz) to identify an optimal rate-level combination that evokes measurable efferent modulation of CEOAEs. Our findings (n = 58) demonstrate that almost all click levels and rates used caused significant inhibition of CEOAEs, with a significant interaction between level and rate effects. Predictably, bilateral activation produced greater inhibition compared to stimulating the efferents only in the ipsilateral or contralateral ear. In examining the click rate-level effects during bilateral activation in greater detail, we observed a 1-dB inhibition of CEOAE level for each 10-dB increase in click level, with rate held constant at 62.5 Hz. Similarly, a 10-Hz increase in rate produced a 0.74-dB reduction in CEOAE level, with click level held constant at 80 dB peSPL. The effect size (Cohen's d) was small for either monaural condition and medium for bilateral, faster-rate, and higher-level conditions. We were also able to reliably extract CEOAEs from efferent eliciting clicks. We conclude that clicks can indeed be profitably employed to simultaneously evaluate cochlear health using CEOAEs as well as their efferent modulation. Furthermore, using bilateral clicks allows the evaluation of both the crossed and uncrossed elements of the auditory efferent nervous system, while yielding larger, more discernible, inhibition of the CEOAEs relative to either ipsilateral or contralateral condition.
Collapse
Affiliation(s)
- Sriram Boothalingam
- Department of Communication Sciences and Disorders, and The Waisman Center, University of Wisconsin, Madison, WI, USA.
| | - Julianne Kurke
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, and The Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
58
|
Jennings SG, Chen J, Fultz SE, Ahlstrom JB, Dubno JR. Amplitude modulation detection with a short-duration carrier: Effects of a precursor and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2232. [PMID: 29716275 PMCID: PMC5908713 DOI: 10.1121/1.5031122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 05/28/2023]
Abstract
This study tests the hypothesis that amplitude modulation (AM) detection will be better under conditions where basilar membrane (BM) response growth is expected to be linear rather than compressive. This hypothesis was tested by (1) comparing AM detection for a tonal carrier as a function of carrier level for subjects with and without cochlear hearing impairment (HI), and by (2) comparing AM detection for carriers presented with and without an ipsilateral notched-noise precursor, under the assumption that the precursor linearizes BM responses. Average AM detection thresholds were approximately 5 dB better for subjects with HI than for subjects with normal hearing (NH) at moderate-level carriers. Average AM detection for low-to-moderate level carriers was approximately 2 dB better with the precursor than without the precursor for subjects with NH, whereas precursor effects were absent or smaller for subjects with HI. Although effect sizes were small and individual differences were noted, group differences are consistent with better AM detection for conditions where BM responses are less compressive due to cochlear hearing loss or due to a reduction in cochlear gain. These findings suggest the auditory system may quickly adjust to the local soundscape to increase effective AM depth and improve signal-to-noise ratios.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| | - Jessica Chen
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| | - Sara E Fultz
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425-5500, USA
| | - Jayne B Ahlstrom
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425-5500, USA
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425-5500, USA
| |
Collapse
|
59
|
Smith SB, Ichiba K, Velenovsky DS, Cone B. Efferent modulation of pre-neural and neural distortion products. Hear Res 2017; 356:25-34. [PMID: 29122423 PMCID: PMC5705265 DOI: 10.1016/j.heares.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 01/18/2023]
Abstract
Distortion product otoacoustic emissions (DPOAEs) and distortion product frequency following responses (DPFFRs) are respectively pre-neural and neural measurements associated with cochlear nonlinearity. Because cochlear nonlinearity is putatively linked to outer hair cell electromotility, DPOAEs and DPFFRs may provide complementary measurements of the human medial olivocochlear (MOC) reflex, which directly modulates outer hair cell function. In this study, we first quantified MOC reflex-induced DPOAE inhibition at spectral fine structure peaks in 22 young human adults with normal hearing. The f1 and f2 tone pairs producing the largest DPOAE fine structure peak for each subject were then used to evoke DPFFRs with and without MOC reflex activation to provide a related neural measure of efferent inhibition. We observed significant positive relationships between DPOAE fine structure peak inhibition and inhibition of DPFFR components representing neural phase locking to f2 and 2f1-f2, but not f1. These findings may support previous observations that the MOC reflex inhibits DPOAE sources differentially. That these effects are maintained and represented in the auditory brainstem suggests that the MOC reflex may exert a potent influence on subsequent subcortical neural representation of sound.
Collapse
Affiliation(s)
- S B Smith
- University of Arizona, Department of Speech, Language, and Hearing Sciences, Tucson, AZ, USA.
| | - K Ichiba
- University of Arizona, Department of Speech, Language, and Hearing Sciences, Tucson, AZ, USA
| | - D S Velenovsky
- University of Arizona, Department of Speech, Language, and Hearing Sciences, Tucson, AZ, USA
| | - B Cone
- University of Arizona, Department of Speech, Language, and Hearing Sciences, Tucson, AZ, USA
| |
Collapse
|
60
|
Bhatt I. Increased medial olivocochlear reflex strength in normal-hearing, noise-exposed humans. PLoS One 2017; 12:e0184036. [PMID: 28886123 PMCID: PMC5590870 DOI: 10.1371/journal.pone.0184036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022] Open
Abstract
Research suggests that college-aged adults are vulnerable to tinnitus and hearing loss due to exposure to traumatic levels of noise on a regular basis. Recent human studies have associated exposure to high noise exposure background (NEB, i.e., routine noise exposure) with the reduced cochlear output and impaired speech processing ability in subjects with clinically normal hearing sensitivity. While the relationship between NEB and the functions of the auditory afferent neurons are studied in the literature, little is known about the effects of NEB on functioning of the auditory efferent system. The objective of the present study was to investigate the relationship between medial olivocochlear reflex (MOCR) strength and NEB in subjects with clinically normal hearing sensitivity. It was hypothesized that subjects with high NEB would exhibit reduced afferent input to the MOCR circuit which would subsequently lead to reduced strength of the MOCR. In normal-hearing listeners, the study examined (1) the association between NEB and baseline click-evoked otoacoustic emissions (CEOAEs) and (2) the association between NEB and MOCR strength. The MOCR was measured using CEOAEs evoked by 60 dB pSPL linear clicks in a contralateral acoustic stimulation (CAS)-off and CAS-on (a broadband noise at 60 dB SPL) condition. Participants with at least 6 dB signal-to-noise ratio (SNR) in the CAS-off and CAS-on conditions were included for analysis. A normalized CEOAE inhibition index was calculated to express MOCR strength in a percentage value. NEB was estimated using a validated questionnaire. The results showed that NEB was not associated with the baseline CEOAE amplitude (r = -0.112, p = 0.586). Contrary to the hypothesis, MOCR strength was positively correlated with NEB (r = 0.557, p = 0.003). NEB remained a significant predictor of MOCR strength (β = 2.98, t(19) = 3.474, p = 0.003) after the unstandardized coefficient was adjusted to control for effects of smoking, sound level tolerance (SLT) and tinnitus. These data provide evidence that MOCR strength is associated with NEB. The functional significance of increased MOCR strength is discussed.
Collapse
Affiliation(s)
- Ishan Bhatt
- Department of Communication Sciences & Disorders, Northern Arizona University, Flagstaff, AZ, United States of America
- * E-mail:
| |
Collapse
|
61
|
Kaipa R, Kumar UA. Functioning of medial olivocochlear bundle in right- and left-handed individuals. Laterality 2017; 22:445-454. [DOI: 10.1080/1357650x.2016.1217229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
62
|
Clause A, Lauer AM, Kandler K. Mice Lacking the Alpha9 Subunit of the Nicotinic Acetylcholine Receptor Exhibit Deficits in Frequency Difference Limens and Sound Localization. Front Cell Neurosci 2017; 11:167. [PMID: 28663725 PMCID: PMC5471293 DOI: 10.3389/fncel.2017.00167] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/31/2017] [Indexed: 01/16/2023] Open
Abstract
Sound processing in the cochlea is modulated by cholinergic efferent axons arising from medial olivocochlear neurons in the brainstem. These axons contact outer hair cells in the mature cochlea and inner hair cells during development and activate nicotinic acetylcholine receptors composed of α9 and α10 subunits. The α9 subunit is necessary for mediating the effects of acetylcholine on hair cells as genetic deletion of the α9 subunit results in functional cholinergic de-efferentation of the cochlea. Cholinergic modulation of spontaneous cochlear activity before hearing onset is important for the maturation of central auditory circuits. In α9KO mice, the developmental refinement of inhibitory afferents to the lateral superior olive is disturbed, resulting in decreased tonotopic organization of this sound localization nucleus. In this study, we used behavioral tests to investigate whether the circuit anomalies in α9KO mice correlate with sound localization or sound frequency processing. Using a conditioned lick suppression task to measure sound localization, we found that three out of four α9KO mice showed impaired minimum audible angles. Using a prepulse inhibition of the acoustic startle response paradigm, we found that the ability of α9KO mice to detect sound frequency changes was impaired, whereas their ability to detect sound intensity changes was not. These results demonstrate that cholinergic, nicotinic α9 subunit mediated transmission in the developing cochlear plays an important role in the maturation of hearing.
Collapse
Affiliation(s)
- Amanda Clause
- Departments of Otolaryngology and Neurobiology, University of PittsburghPittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of PittsburghPittsburgh, PA, United States
| | - Amanda M. Lauer
- Center for Hearing and Balance, David M. Rubenstein Center, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimore, MD, United States
| | - Karl Kandler
- Departments of Otolaryngology and Neurobiology, University of PittsburghPittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of PittsburghPittsburgh, PA, United States
- Department of Bioengineering, University of PittsburghPittsburgh, PA, United States
| |
Collapse
|
63
|
Medial olivocochlear function in children with poor speech-in-noise performance and language disorder. Int J Pediatr Otorhinolaryngol 2017; 96:116-121. [PMID: 28390599 DOI: 10.1016/j.ijporl.2017.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Contralateral masking of transient-evoked otoacoustic emissions is a phenomenon that suggests an inhibitory effect of the olivocochlear efferent auditory pathway. Many studies have been inconclusive in demonstrating a clear connection between this system and a behavioral speech-in-noise listening skill. The purpose of this study was to investigate the activation of a medial olivocochlear (MOC) efferent in children with poor speech-in-noise (PSIN) performance and children with language impairment and PSIN (SLI + PSIN). METHODS Transient evoked otoacoustic emissions (TEOAEs) with and without contralateral white noise were tested in 52 children (between 6 and 12 years). These children were arranged in three groups: typical development (TD) (n = 25), PSIN (n = 14) and SLI + PSI (n = 13). RESULTS PSIN and SLI + PSI groups presented reduced otoacoustic emission suppression in comparison with the TD group. CONCLUSION Our finding suggests differences in MOC function among children with typical development and children with poor SIN and language problems.
Collapse
|
64
|
Maruthy S, Kumar UA, Gnanateja GN. Functional Interplay Between the Putative Measures of Rostral and Caudal Efferent Regulation of Speech Perception in Noise. J Assoc Res Otolaryngol 2017; 18:635-648. [PMID: 28447225 DOI: 10.1007/s10162-017-0623-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/22/2017] [Indexed: 01/23/2023] Open
Abstract
Efferent modulation has been demonstrated to be very important for speech perception, especially in the presence of noise. We examined the functional relationship between two efferent systems: the rostral and caudal efferent pathways and their individual influences on speech perception in noise. Earlier studies have shown that these two efferent mechanisms were correlated with speech perception in noise. However, previously, these mechanisms were studied in isolation, and their functional relationship with each other was not investigated. We used a correlational design to study the relationship if any, between these two mechanisms in young and old normal hearing individuals. We recorded context-dependent brainstem encoding as an index of rostral efferent function and contralateral suppression of otoacoustic emissions as an index of caudal efferent function in groups with good and poor speech perception in noise. These efferent mechanisms were analysed for their relationship with each other and with speech perception in noise. We found that the two efferent mechanisms did not show any functional relationship. Interestingly, both the efferent mechanisms correlated with speech perception in noise and they even emerged as significant predictors. Based on the data, we posit that the two efferent mechanisms function relatively independently but with a common goal of fine-tuning the afferent input and refining auditory perception in degraded listening conditions.
Collapse
Affiliation(s)
- Sandeep Maruthy
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India
| | - U Ajith Kumar
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India
| | - G Nike Gnanateja
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India.
| |
Collapse
|
65
|
Kalaiah MK, Theruvan NB, Kumar K, Bhat JS. Role of Active Listening and Listening Effort on Contralateral Suppression of Transient Evoked Otoacousic Emissions. J Audiol Otol 2017; 21:1-8. [PMID: 28417101 PMCID: PMC5392001 DOI: 10.7874/jao.2017.21.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/18/2016] [Accepted: 01/09/2017] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives The present study aimed to investigate the effect of active listening and listening effort on the contralateral suppression of transient evoked otoacoustic emissions (CSTEOAEs). Subjects and Methods Twenty eight young adults participated in the study. Transient evoked otoacoustic emissions (TEOAEs) were recorded using ‘linear’ clicks at 60 dB peSPL, in three contralateral noise conditions. In condition 1, TEOAEs were obtained in the presence of white noise in the contralateral ear. While, in condition 2, speech was embedded into white noise at +3, −3, and −9 dB signal-to-noise ratio (SNR) and delivered to the contralateral ear. The SNR was varied to investigate the effect of listening effort on the CSTEOAE. In condition 3, speech was played backwards and embedded into white noise at −3 dB SNR. The conditions 1 and 3 served as passive listening condition and the condition 2 served as active listening condition. In active listening condition, the participants categorized the words in to two groups (e.g., animal and vehicle). Results CSTEOAE was found to be largest in the presence of white noise, and the amount of CSTEOAE was not significantly different between active and passive listening conditions (condition 2 and 3). Listening effort had an effect on the CSTEOAE, the amount of suppression increased with listening effort, when SNR was decreased from +3 dB to −3 dB. However, when the SNR was further reduced to −9 dB, there was no further increase in the amount of CSTEOAE, instead there was a reduction in the amount of suppression. Conclusions The findings of the present study show that listening effort might affect CSTEOAE.
Collapse
Affiliation(s)
- Mohan Kumar Kalaiah
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Nikhitha B Theruvan
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Kaushlendra Kumar
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Jayashree S Bhat
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| |
Collapse
|
66
|
Shaikh MA, Fox-Thomas L, Tucker D. Maturational Changes in Ear Advantage for Monaural Word Recognition in Noise Among Listeners with Central Auditory Processing Disorders. Audiol Res 2017; 7:157. [PMID: 28286635 PMCID: PMC5337817 DOI: 10.4081/audiores.2017.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/13/2016] [Accepted: 01/05/2017] [Indexed: 11/25/2022] Open
Abstract
This study aimed to investigate differences between ears in performance on a monaural word recognition in noise test among individuals across a broad range of ages assessed for (C)APD. Word recognition scores in quiet and in speech noise were collected retrospectively from the medical files of 107 individuals between the ages of 7 and 30 years who were diagnosed with (C)APD. No ear advantage was found on the word recognition in noise task in groups less than ten years. Performance in both ears was equally poor. Right ear performance improved across age groups, with scores of individuals above age 10 years falling within the normal range. In contrast, left ear performance remained essentially stable and in the impaired range across all age groups. Findings indicate poor left hemispheric dominance for speech perception in noise in children below the age of 10 years with (C)APD. However, a right ear advantage on this monaural speech in noise task was observed for individuals 10 years and older.
Collapse
Affiliation(s)
- Mohsin Ahmed Shaikh
- Department of Audiology and Speech-Language Pathology, Bloomsburg University of Pennsylvania , USA
| | - Lisa Fox-Thomas
- Department of Communication Sciences and Disorders, University of North Carolina at Greensboro , USA
| | - Denise Tucker
- Department of Communication Sciences and Disorders, University of North Carolina at Greensboro , USA
| |
Collapse
|
67
|
Suthakar K, Ryugo DK. Descending projections from the inferior colliculus to medial olivocochlear efferents: Mice with normal hearing, early onset hearing loss, and congenital deafness. Hear Res 2017; 343:34-49. [DOI: 10.1016/j.heares.2016.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
|
68
|
Bester C, Jayakody DMP, Hammond G, Robertson D. Selective attentional processes in cochlear implant recipients: Measurements of the attentional filter. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:4091. [PMID: 28040033 DOI: 10.1121/1.4968783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In normal hearing subjects, detection of near-threshold tones in noise is influenced by signal certainty. Thus, tones that are presented more frequently than others, and/or are preceded by a clearly audible cue tone of the same frequency (target tones) are detected better than other tones (probe tones). This auditory attentional filter was examined in six cochlear implant (CI) recipients, using acoustic stimuli and direct programmed electrode stimulation. Three of the subjects showed no evidence of an attentional filter. Three subjects showed a relatively higher detection rate of the target frequency or electrode stimulated during the attentional task, and in two of these subjects the target benefit was influenced by stimulus certainty. The absence of an attentional filter in some CI recipients is consistent with suggestions that the attentional filter may be generated by efferent modulation of outer hair cells, which would presumably be absent in CI recipients, however, the presence of some frequency-selective attentional effects and a near-normal attentional filter in two CI subjects imply that central processes can modulate signal detection in CI recipients according to stimulus certainty. Such central processes might serve as a neural substrate to improve signal detection in CI recipients.
Collapse
Affiliation(s)
- Christofer Bester
- School of Anatomy Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Dona M P Jayakody
- Ear Sciences Institute Australia, 1 Salvado Road, Subiaco, Western Australia 6008, Australia
| | - Geoffrey Hammond
- School of Psychology, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Donald Robertson
- School of Anatomy Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
69
|
Mertes IB, Leek MR. Concurrent measures of contralateral suppression of transient-evoked otoacoustic emissions and of auditory steady-state responses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2027. [PMID: 27914370 PMCID: PMC5392076 DOI: 10.1121/1.4962666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Contralateral suppression of otoacoustic emissions (OAEs) is frequently used to assess the medial olivocochlear (MOC) efferent system, and may have clinical utility. However, OAEs are weak or absent in hearing-impaired ears, so little is known about MOC function in the presence of hearing loss. A potential alternative measure is contralateral suppression of the auditory steady-state response (ASSR) because ASSRs are measurable in many hearing-impaired ears. This study compared contralateral suppression of both transient-evoked otoacoustic emissions (TEOAEs) and ASSRs in a group of ten primarily older adults with either normal hearing or mild sensorineural hearing loss. Responses were elicited using 75-dB peak sound pressure level clicks. The MOC was activated using contralateral broadband noise at 60 dB sound pressure level. Measurements were made concurrently to ensure a consistent attentional state between the two measures. The magnitude of contralateral suppression of ASSRs was significantly larger than contralateral suppression of TEOAEs. Both measures usually exhibited high test-retest reliability within a session. However, there was no significant correlation between the magnitude of contralateral suppression of TEOAEs and of ASSRs. Further work is needed to understand the role of the MOC in contralateral suppression of ASSRs.
Collapse
Affiliation(s)
- Ian B Mertes
- Research Service 151, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, California 92357, USA
| | - Marjorie R Leek
- Research Service 151, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, California 92357, USA
| |
Collapse
|
70
|
Roverud E, Strickland EA. The effects of ipsilateral, contralateral, and bilateral broadband noise on the mid-level hump in intensity discrimination. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:3245-3261. [PMID: 26627798 PMCID: PMC4662679 DOI: 10.1121/1.4935515] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 05/29/2023]
Abstract
Previous psychoacoustical and physiological studies indicate that the medial olivocochlear reflex (MOCR), a bilateral, sound-evoked reflex, may lead to improved sound intensity discrimination in background noise. The MOCR can decrease the range of basilar-membrane compression and can counteract effects of neural adaptation from background noise. However, the contribution of these processes to intensity discrimination is not well understood. This study examined the effect of ipsilateral, contralateral, and bilateral noise on the "mid-level hump." The mid-level hump refers to intensity discrimination Weber fractions (WFs) measured for short-duration, high-frequency tones which are poorer at mid levels than at lower or higher levels. The mid-level hump WFs may reflect a limitation due to basilar-membrane compression, and thus may be decreased by the MOCR. The noise was either short (50 ms) or long (150 ms), with the long noise intended to elicit the sluggish MOCR. For a tone in quiet, mid-level hump WFs improved with ipsilateral noise for most listeners, but not with contralateral noise. For a tone in ipsilateral noise, WFs improved with contralateral noise for most listeners, but only when both noises were long. These results are consistent with MOCR-induced WF improvements, possibly via decreases in effects of compression and neural adaptation.
Collapse
Affiliation(s)
- Elin Roverud
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| |
Collapse
|
71
|
Guthrie OW, Wong BA, McInturf SM, Reboulet JE, Ortiz PA, Mattie DR. Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1154-1169. [PMID: 26408153 DOI: 10.1080/15287394.2015.1070389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.
Collapse
Affiliation(s)
- O'neil W Guthrie
- a Cell & Molecular Pathology Laboratory, Department of Communication Sciences and Disorders , Northern Arizona University , Flagstaff , Arizona , USA
- b Research Service, Loma Linda Veterans Affairs Medical Center , Loma Linda , California , USA
- c Department of Otolaryngology and Head & Neck Surgery , School of Medicine, Loma Linda University Medical Center , Loma Linda , California , USA
| | - Brian A Wong
- d Naval Medical Research Unit-Dayton , Wright-Patterson Air Force Base , Ohio , USA
| | - Shawn M McInturf
- d Naval Medical Research Unit-Dayton , Wright-Patterson Air Force Base , Ohio , USA
| | - James E Reboulet
- d Naval Medical Research Unit-Dayton , Wright-Patterson Air Force Base , Ohio , USA
| | - Pedro A Ortiz
- d Naval Medical Research Unit-Dayton , Wright-Patterson Air Force Base , Ohio , USA
| | - David R Mattie
- e Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate , Air Force Research Laboratory, Wright Patterson Air Force Base , Ohio , USA
| |
Collapse
|
72
|
Walsh KP, Pasanen EG, McFadden D. Changes in otoacoustic emissions during selective auditory and visual attention. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:2737-57. [PMID: 25994703 PMCID: PMC4441704 DOI: 10.1121/1.4919350] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Previous studies have demonstrated that the otoacoustic emissions (OAEs) measured during behavioral tasks can have different magnitudes when subjects are attending selectively or not attending. The implication is that the cognitive and perceptual demands of a task can affect the first neural stage of auditory processing-the sensory receptors themselves. However, the directions of the reported attentional effects have been inconsistent, the magnitudes of the observed differences typically have been small, and comparisons across studies have been made difficult by significant procedural differences. In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring selective auditory attention (dichotic or diotic listening), selective visual attention, or relative inattention. Within subjects, the differences in nSFOAE magnitude between inattention and attention conditions were about 2-3 dB for both auditory and visual modalities, and the effect sizes for the differences typically were large for both nSFOAE magnitude and phase. These results reveal that the cochlear efferent reflex is differentially active during selective attention and inattention, for both auditory and visual tasks, although they do not reveal how attention is improved when efferent activity is greater.
Collapse
Affiliation(s)
- Kyle P Walsh
- Department of Psychology and Center for Perceptual Systems, University of Texas, 1 University Station A8000, Austin, Texas 78712-0187, USA
| | - Edward G Pasanen
- Department of Psychology and Center for Perceptual Systems, University of Texas, 1 University Station A8000, Austin, Texas 78712-0187, USA
| | - Dennis McFadden
- Department of Psychology and Center for Perceptual Systems, University of Texas, 1 University Station A8000, Austin, Texas 78712-0187, USA
| |
Collapse
|
73
|
Abstract
OBJECTIVE To determine if active listening modulates the strength of the medial olivocochlear (MOC) reflex in children. DESIGN Click-evoked otoacoustic emissions (CEOAEs) were recorded from the right ear in quiet and in four test conditions: one with contralateral broadband noise (BBN) only, and three with active listening tasks wherein attention was directed to speech embedded in contralateral BBN. STUDY SAMPLE Fifteen typically-developing children (ranging in age from 8 to14 years) with normal hearing. RESULTS CEOAE levels were reduced in every condition with contralateral acoustic stimulus (CAS) when compared to preceding quiet conditions. There was an additional systematic decrease in CEOAE level with increased listening task difficulty, although this effect was very small. These CEOAE level differences were most apparent in the 8-18 ms region after click onset. CONCLUSIONS Active listening may change the strength of the MOC reflex in children, although the effects reported here are very subtle. Further studies are needed to verify that task difficulty modulates the activity of the MOC reflex in children.
Collapse
Affiliation(s)
- Spencer B Smith
- Department of Speech, Language, and Hearing Sciences, University of Arizona , Tucson , USA
| | | |
Collapse
|
74
|
Ludwig AA, Fuchs M, Kruse E, Uhlig B, Kotz SA, Rübsamen R. Auditory processing disorders with and without central auditory discrimination deficits. J Assoc Res Otolaryngol 2015; 15:441-64. [PMID: 24658855 DOI: 10.1007/s10162-014-0450-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 02/17/2014] [Indexed: 10/25/2022] Open
Abstract
Auditory processing disorder (APD) is defined as a processing deficit in the auditory modality and spans multiple processes. To date, APD diagnosis is mostly based on the utilization of speech material. Adequate nonspeech tests that allow differentiation between an actual central hearing disorder and related disorders such as specific language impairments are still not adequately available. In the present study, 84 children between 6 and 17 years of age (clinical group), referred to three audiological centers for APD diagnosis, were evaluated with standard audiological tests and additional auditory discrimination tests. Latter tests assessed the processing of basic acoustic features at two different stages of the ascending central auditory system: (1) auditory brainstem processing was evaluated by quantifying interaural frequency, level, and signal duration discrimination (interaural tests). (2) Diencephalic/telencephalic processing was assessed by varying the same acoustic parameters (plus signals with sinusoidal amplitude modulation), but presenting the test signals in conjunction with noise pulses to the contralateral ear (dichotic(signal/noise) tests). Data of children in the clinical group were referenced to normative data obtained from more than 300 normally developing healthy school children. The results in the audiological and the discrimination tests diverged widely. Of the 39 children that were diagnosed with APD in the audiological clinic, 30 had deficits in auditory performance. Even more alarming was the fact that of the 45 children with a negative APD diagnosis, 32 showed clear signs of a central hearing deficit. Based on these results, we suggest revising current diagnostic procedure to evaluate APD in order to more clearly differentiate between central auditory processing deficits and higher-order (cognitive and/or language) processing deficits.
Collapse
|
75
|
Mishra SK, Abdala C. Stability of the medial olivocochlear reflex as measured by distortion product otoacoustic emissions. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2015; 58:122-134. [PMID: 25320951 PMCID: PMC4712848 DOI: 10.1044/2014_jslhr-h-14-0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/05/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
PURPOSE The purpose of this study was to assess the repeatability of a fine-resolution, distortion product otoacoustic emission (DPOAE)-based assay of the medial olivocochlear (MOC) reflex in normal-hearing adults. METHOD Data were collected during 36 test sessions from 4 normal-hearing adults to assess short-term stability and 5 normal-hearing adults to assess long-term stability. DPOAE level and phase measurements were recorded with and without contralateral acoustic stimulation. MOC reflex indices were computed by (a) noting contralateral acoustic stimulation-induced changes in DPOAE level (both absolute and normalized) at fine-structure peaks, (b) recording the effect as a vector difference, and (c) separating DPOAE components and considering a component-specific metric. RESULTS Analyses indicated good repeatability of all indices of the MOC reflex in most frequency ranges. Short- and long-term repeatability were generally comparable. Indices normalized to a subject's own baseline fared best, showing strong short- and long-term stability across all frequency intervals. CONCLUSIONS These results suggest that fine-resolution DPOAE-based measures of the MOC reflex measured at strategic frequencies are stable, and natural variance from day-to-day or week-to-week durations is small enough to detect between-group differences and possibly to monitor intervention-related success. However, this is an empirical question that must be directly tested to confirm its utility.
Collapse
|
76
|
An auditory-neuroscience perspective on the development of selective mutism. Dev Cogn Neurosci 2015; 12:86-93. [PMID: 25625220 PMCID: PMC6989783 DOI: 10.1016/j.dcn.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/02/2015] [Accepted: 01/07/2015] [Indexed: 11/20/2022] Open
Abstract
Selective mutism (SM) is a relatively rare psychiatric disorder of childhood characterized by consistent inability to speak in specific social situations despite the ability to speak normally in others. SM typically involves severe impairments in social and academic functioning. Common complications include school failure, social difficulties in the peer group, and aggravated intra-familial relationships. Although SM has been described in the medical and psychological literatures for many years, the potential underlying neural basis of the disorder has only recently been explored. Here we explore the potential role of specific auditory neural mechanisms in the psychopathology of SM and discuss possible implications for treatment.
Collapse
|
77
|
Attentional modulation of medial olivocochlear inhibition: Evidence for immaturity in children. Hear Res 2014; 318:31-6. [DOI: 10.1016/j.heares.2014.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/27/2014] [Accepted: 10/22/2014] [Indexed: 11/16/2022]
|
78
|
Mishra SK. Medial efferent mechanisms in children with auditory processing disorders. Front Hum Neurosci 2014; 8:860. [PMID: 25386132 PMCID: PMC4209830 DOI: 10.3389/fnhum.2014.00860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/06/2014] [Indexed: 12/04/2022] Open
Abstract
Auditory processing disorder (APD) affects about 2–5% of children. However, the nature of this disorder is poorly understood. Children with APD typically have difficulties in complex listening situations. One mechanism thought to aid in listening-in-noise is the medial olivocochlear (MOC) inhibition. The purpose of this review was to critically analyze the published data on MOC inhibition in children with APD to determine whether the MOC efferents are involved in these individuals. The otoacoustic emission (OAE) methods used to assay MOC reflex were examined in the context of the current understanding of OAE generation mechanisms. Relevant literature suggests critical differences in the study population and OAE methods. Variables currently known to influence MOC reflex measurements, for example, middle-ear muscle reflexes or OAE signal-to-noise ratio, were not controlled in most studies. The use of potentially weaker OAE methods and the remarkable heterogeneity across studies does not allow for a definite conclusion whether or not the MOC reflex is altered in children with APD. Further carefully designed studies are needed to confirm the involvement of MOC efferents in APD. Knowledge of efferent functioning in children with APD would be mechanistically and clinically beneficial.
Collapse
Affiliation(s)
- Srikanta K Mishra
- Department of Special Education and Communication Disorders, New Mexico State University , Las Cruces, NM , USA
| |
Collapse
|
79
|
Influence of 100Hz amplitude modulation on the human medial olivocochlear reflex. Neurosci Lett 2014; 580:56-61. [PMID: 25102324 DOI: 10.1016/j.neulet.2014.07.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
It is well known that medial olivocochlear system (MOC) activity causes inhibition of cochlear amplification that can be measured using otoacoustic emissions (OAEs). The temporal characteristics of this MOC inhibitory effect are still not well understood. Two experiments were performed to further explore a previously reported enhancement in MOC inhibition of OAEs by a broadband noise (BBN) elicitor modulated at 100Hz (AM-BBN). In experiment I, MOC inhibition was measured for toneburst (1 and 2kHz presented at 41.67Hz) and stimulus-frequency (0.96-1.92kHz) OAEs for two elicitor conditions, BBN and AM-BBN (100% modulation depth [MD]), in 27 young normal hearing adults. In experiment II, tonebursts were presented at 50Hz instead of 41.67Hz to test if the previously reported enhancement of the MOC response to 100Hz AM-BBN is specific to a 50Hz toneburst presentation rate. All elicitors caused significant reduction of both TB- and SF-OAE amplitude. AM-BBN evoked the same OAE inhibition compared to BBN in both experiments. This pattern was consistent across OAE types, and toneburst presentation rates. Results suggest that the MOC is not especially sensitive to 100Hz AM-BBN; instead, AM dips in noise energy likely reduce its effectiveness in evoking MOC activity due to temporal energy integration.
Collapse
|
80
|
Weich TM, Tochetto TM, Seligman L. Limiares auditivos tonais, emissões otoacústicas e sistema olivococlear medial de ex-usuários de drogas. REVISTA CEFAC 2014. [DOI: 10.1590/1982-021620148312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objetivos analisar se o uso de drogas ilícitas pode interferir nos sistemas auditivos periférico e central. Métodos a amostra foi composta por 17 indivíduos distribuídos conforme o tipo de droga mais consumida: 10 indivíduos no grupo maconha (G1) e sete no grupo crack/cocaína (G2). Os grupos foram subdivididos segundo o tempo de uso de drogas: um a cinco, seis a 10 e mais que 15 anos. Foram avaliados por meio de anamnese, audiometria tonal liminar, imitânciometria, emissões otoacústicas transientes (EOAT) e efeito supressor das EOAT. Resultados comparando os limiares tonais do G1 e G2, observaram-se limiares elevados para o G2, com diferença estatisticamente significante no grupo de um a cinco anos para 250, 500, 6000 e 8000Hz na orelha direita e de seis a 10 anos para 4000 e 8000Hz na orelha esquerda. Para usuários por mais que 15 anos, observou-se limiares superiores a 25dBNA de 3000 a 8000Hz na orelha direita. Nas EOAT e efeito supressor das EOAT não houve diferença estatisticamente significante entre G1 e G2 e entre os tempos de uso das drogas. O G1 apresentou relação sinal/ruído das EOAT superior ao G2. O efeito supressor das EOAT esteve presente em 79% das orelhas avaliadas. Conclusão na amostra estudada, o crack/cocaína apresentou efeito mais deletério sobre o sistema auditivo do que a maconha. O maior tempo de uso de drogas influenciou nos resultados do G1. O uso de drogas ilícitas não provocou alterações no SOCM.
Collapse
|
81
|
Does hyperandrogenism affect the otoacoustic emissions and medial olivocochlear reflex in female adults? Otol Neurotol 2014; 34:784-9. [PMID: 23770686 DOI: 10.1097/mao.0b013e31828dae3e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS To evaluate the effects of hyperandrogenism on otoacoustic emission levels and the medial olivocochlear reflex in adult female subjects. BACKGROUND Women have a hearing advantage over men. Otoacoustic emission levels tend to be higher in female subjects, in both newborns and adults. This discrepancy has been presumed to result from prenatal androgen exposure in male subjects. METHODS The study involved 37 polycystic ovary syndrome patients who were referred from the endocrinology department and 26 healthy volunteers. All participants who showed normal otoscopic findings, hearing thresholds, and acoustic admittance were included. All polycystic ovary syndrome patients showed biochemical signs of hyperandrogenism. Cochlear activity of participants was evaluated by means of distortion product otoacoustic emissions and transient otoacoustic emissions. The medial olivocochlear reflex was evoked with contralateral acoustic stimulation and recorded with distortion product otoacoustic emissions and transient otoacoustic emissions. RESULTS Neither distortion products nor transient otoacoustic emission levels showed a statistically significant difference between the right and left ears (p > 0.05). Comparisons of distortion products and transient otoacoustic emission levels between the patient and control groups showed no statistically significant difference (p > 0.05). Comparison of the medial olivocochlear reflex response between the 2 groups also revealed no statistically significant difference (p > 0.05). CONCLUSION Hyperandrogenism did not seem to influence otoacoustic emission levels or the medial olivocochlear reflex response in adult female subjects.
Collapse
|
82
|
Roverud E, Strickland EA. Accounting for nonmonotonic precursor duration effects with gain reduction in the temporal window model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:1321-34. [PMID: 24606271 PMCID: PMC3985874 DOI: 10.1121/1.4864783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 05/19/2023]
Abstract
The mechanisms of forward masking are not clearly understood. The temporal window model (TWM) proposes that masking occurs via a neural mechanism that integrates within a temporal window. The medial olivocochlear reflex (MOCR), a sound-evoked reflex that reduces cochlear amplifier gain, may also contribute to forward masking if the preceding sound reduces gain for the signal. Psychophysical evidence of gain reduction can be observed using a growth of masking (GOM) paradigm with an off-frequency forward masker and a precursor. The basilar membrane input/output (I/O) function is estimated from the GOM function, and the I/O function gain is reduced by the precursor. In this study, the effect of precursor duration on this gain reduction effect was examined for on- and off-frequency precursors. With on-frequency precursors, thresholds increased with increasing precursor duration, then decreased (rolled over) for longer durations. Thresholds with off-frequency precursors continued to increase with increasing precursor duration. These results are not consistent with solely neural masking, but may reflect gain reduction that selectively affects on-frequency stimuli. The TWM was modified to include history-dependent gain reduction to simulate the MOCR, called the temporal window model-gain reduction (TWM-GR). The TWM-GR predicted rollover and the differences with on- and off-frequency precursors whereas the TWM did not.
Collapse
Affiliation(s)
- Elin Roverud
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907-2038
| | - Elizabeth A Strickland
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907-2038
| |
Collapse
|
83
|
Shastri U, Mythri HM, Kumar UA. Descending auditory pathway and identification of phonetic contrast by native listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:896-905. [PMID: 25234897 DOI: 10.1121/1.4861350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The present study investigated the ability of native listeners to identify subtle phonetic contrasts in nonsense words and its relationship with the contralateral inhibition of transient evoked otoacoustic emissions (TEOAE). A group of 45 young adults with normal hearing sensitivity who were native speakers of Malayalam participated in the behavioral experiment. Phone identification score and reaction time for four phonetic pairs in nonsense words were measured for each participant. Based on the phone identification score, the participants were divided into high and low performers. Twelve participants randomly selected from each group were evaluated for contralateral inhibition of TEOAEs. Phone identification score and global contralateral inhibition amplitude of TEOAE were significantly higher and reaction time was significantly shorter in high performers than that of low performers. Significant correlation was found between the phone identification score and contralateral inhibition of TEOAE. Strength of the medial olivocochlear bundle activity explained about 30% of the variance in the phone identification scores providing evidence for the involvement of the descending auditory pathways in identifying the phonetic contrasts that are acoustically similar. These results support the emerging view that top down influences from higher centers shapes the responses of lower centers.
Collapse
Affiliation(s)
- Usha Shastri
- Department of Audiology, All India Institute of Speech and Hearing, Mysore 570 006, Karnataka, India
| | - H M Mythri
- Department of Audiology, All India Institute of Speech and Hearing, Mysore 570 006, Karnataka, India
| | - U Ajith Kumar
- Department of Audiology, All India Institute of Speech and Hearing, Mysore 570 006, Karnataka, India
| |
Collapse
|
84
|
Abdala C, Dhar S, Ahmadi M, Luo P. Aging of the medial olivocochlear reflex and associations with speech perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:754-65. [PMID: 25234884 PMCID: PMC3985974 DOI: 10.1121/1.4861841] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 05/24/2023]
Abstract
The medial olivocochlear reflex (MOCR) modulates cochlear amplifier gain and is thought to facilitate the detection of signals in noise. High-resolution distortion product otoacoustic emissions (DPOAEs) were recorded in teens, young, middle-aged, and elderly adults at moderate levels using primary tones swept from 0.5 to 4 kHz with and without a contralateral acoustic stimulus (CAS) to elicit medial efferent activation. Aging effects on magnitude and phase of the 2f1-f2 DPOAE and on its components were examined, as was the link between speech-in-noise performance and MOCR strength. Results revealed a mild aging effect on the MOCR through middle age for frequencies below 1.5 kHz. Additionally, positive correlations were observed between strength of the MOCR and performance on select measures of speech perception parsed into features. The elderly group showed unexpected results including relatively large effects of CAS on DPOAE, and CAS-induced increases in DPOAE fine structure as well as increases in the amplitude and phase accumulation of DPOAE reflection components. Contamination of MOCR estimates by middle ear muscle contractions cannot be ruled out in the oldest subjects. The findings reiterate that DPOAE components should be unmixed when measuring medial efferent effects to better consider and understand these potential confounds.
Collapse
Affiliation(s)
- Carolina Abdala
- House Research Institute, Division of Communication and Auditory Neuroscience, 2100 West Third Street, Los Angeles, California 90057
| | - Sumitrajit Dhar
- Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208
| | - Mahnaz Ahmadi
- House Research Institute, Division of Communication and Auditory Neuroscience, 2100 West Third Street, Los Angeles, California 90057
| | - Ping Luo
- House Research Institute, Division of Communication and Auditory Neuroscience, 2100 West Third Street, Los Angeles, California 90057
| |
Collapse
|
85
|
Mishra SK, Lutman ME. Top-down influences of the medial olivocochlear efferent system in speech perception in noise. PLoS One 2014; 9:e85756. [PMID: 24465686 PMCID: PMC3896402 DOI: 10.1371/journal.pone.0085756] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/01/2013] [Indexed: 11/18/2022] Open
Abstract
One of the putative functions of the medial olivocochlear (MOC) system is to enhance signal detection in noise. The objective of this study was to elucidate the role of the MOC system in speech perception in noise. In normal-hearing human listeners, we examined (1) the association between magnitude of MOC inhibition and speech-in-noise performance, and (2) the association between MOC inhibition and the amount of contralateral acoustic stimulation (CAS)-induced shift in speech-in-noise acuity. MOC reflex measurements in this study considered critical measurement issues overlooked in past work by: recording relatively low-level, linear click-evoked otoacoustic emissions (CEOAEs), adopting 6 dB signal-to-noise ratio (SNR) criteria, and computing normalized CEOAE differences. We found normalized index to be a stable measure of MOC inhibition (mean = 17.21%). MOC inhibition was not related to speech-in-noise performance measured without CAS. However, CAS in a speech-in-noise task caused an SNRSP enhancement (mean = 2.45 dB), and this improvement in speech-in-noise acuity was directly related to their MOC reflex assayed by CEOAEs. Individuals do not necessarily use the available MOC-unmasking characteristic while listening to speech in noise, or do not utilize unmasking to the extent that can be shown by artificial MOC activation. It may be the case that the MOC is not actually used under natural listening conditions and the higher auditory centers recruit MOC-mediated mechanisms only in specific listening conditions-those conditions remain to be investigated.
Collapse
Affiliation(s)
- Srikanta K Mishra
- Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom ; Department of Communication Sciences and Disorders, Butler University, Indianapolis, Indiana, United States of America
| | - Mark E Lutman
- Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
86
|
Perrot X, Collet L. Function and plasticity of the medial olivocochlear system in musicians: a review. Hear Res 2013; 308:27-40. [PMID: 23994434 DOI: 10.1016/j.heares.2013.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/11/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
The outer hair cells of the organ of Corti are the target of abundant efferent projections from the olivocochlear system. This peripheral efferent auditory subsystem is currently thought to be modulated by central activity via corticofugal descending auditory system, and to modulate active cochlear micromechanics. Although the function of this efferent subsystem remains unclear, physiological, psychophysical, and modeling data suggest that it may be involved in ear protection against noise damage and auditory perception, especially in the presence of background noise. Moreover, there is mounting evidence that its activity is modulated by auditory and visual attention. A commonly used approach to measure olivocochlear activity noninvasively in humans relies on the suppression of otoacoustic emissions by contralateral noise. Previous studies have found substantial interindividual variability in this effect, and statistical differences have been observed between professional musicians and non-musicians, with stronger bilateral suppression effects in the former. In this paper, we review these studies and discuss various possible interpretations for these findings, including experience-dependent neuroplasticity. We ask whether differences in olivocochlear function between musicians and non-musicians reflect differences in peripheral auditory function or in more central factors, such as top-down attentional modulation.
Collapse
Affiliation(s)
- Xavier Perrot
- Université de Lyon, Lyon F-69000, France; INSERM U1028, CNRS UMR5292, Université Lyon 1, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon F-69000, France; Claude Bernard Lyon 1 University, Lyon F-69500, France; Hospices Civils de Lyon, Lyon Sud Teaching Hospital, Department of Audiology and Orofacial Explorations, Pierre-Bénite F-69310, France.
| | - Lionel Collet
- Université de Lyon, Lyon F-69000, France; INSERM U1028, CNRS UMR5292, Université Lyon 1, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon F-69000, France; Claude Bernard Lyon 1 University, Lyon F-69500, France; Hospices Civils de Lyon, Lyon Sud Teaching Hospital, Department of Audiology and Orofacial Explorations, Pierre-Bénite F-69310, France.
| |
Collapse
|
87
|
Tokgoz-Yilmaz S, Kose SK, Turkyilmaz MD, Atay G. The role of the medial olivocochlear system in the complaints of understanding speech in noisy environments by individuals with normal hearing. Auris Nasus Larynx 2013; 40:521-4. [PMID: 23694738 DOI: 10.1016/j.anl.2013.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The aim of our study is to investigate the relationship between the complaint of speech understanding in noisy environments and the findings of contralateral suppression of transient evoked otoacoustic emissions and speech recognition in noise test methods in individuals with normal hearing. METHODS Sixty-nine subjects between 18 and 53 years of age with normal hearing participated in the present study. The subjects were assigned to one of two groups, reported difficulty understanding speech in noise or no reported difficulty understanding speech in noise. After hearing and immitancemetric evaluation, contralateral suppression of transient evoked otoacoustic emissions and speech recognition in noise tests were administered to both groups. Suppression was calculated in half-octave frequency bands centered at 1.0, 1.5, 2.0, 3.0 and 4.0kHz. RESULTS We found out that the speech recognition in noise scores and contralateral suppression values were lower in subjects with the complaint of speech understanding in noise than those who do not have such complaints. CONCLUSIONS We concluded that the complaint of speech understanding in noise may be related to the medial efferent system dysfunction, so central auditory nervous system.
Collapse
Affiliation(s)
- Suna Tokgoz-Yilmaz
- Audiology and Speech Pathology Section, Ankara University School of Medicine, Ankara, Turkey.
| | | | | | | |
Collapse
|
88
|
Muchnik C, Ari-Even Roth D, Hildesheimer M, Arie M, Bar-Haim Y, Henkin Y. Abnormalities in Auditory Efferent Activities in Children with Selective Mutism. ACTA ACUST UNITED AC 2013; 18:353-61. [DOI: 10.1159/000354160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 07/03/2013] [Indexed: 11/19/2022]
|
89
|
Kumar UA, Methi R, Avinash MC. Test/retest repeatability of effect contralateral acoustic stimulation on the magnitudes of distortion product ototacoustic emissions. Laryngoscope 2012; 123:463-71. [PMID: 23161444 DOI: 10.1002/lary.23623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2012] [Indexed: 11/07/2022]
Abstract
OBJECTIVES/HYPOTHESIS Contralateral inhibition of distortion product otoacoustic emissions (DPOAE) has become an important tool to assess the functioning of the medial olivocochlear efferents in humans. However, before this measurement can be applied clinically, the test/retest repeatability needs to be established. Therefore, the current study aimed at evaluating intra- and intersession test/retest repeatability of contralateral inhibition of DPOAE at 2f(1) -f(2) . STUDY DESIGN Prospective Test/Retest Reliability Study. METHODS Contralateral inhibition of DPOAE magnitudes were measured in the right ear of 24 adult male participants. To assess the intrasession repeatability, measurements were repeated without altering the position of the DPOAE probe (single-probe-fit). To assess intersession reliability, measurements were repeated on 8 different days (multiple-probe-fit). Repeatability of inhibition of DPOAE magnitudes was evaluated by Cronbach's alpha, interclass correlations, standard error of measurement, and its 95% confidence interval and smallest detectable difference. RESULTS DPOAE magnitudes were highly stable and repeatable across different recording sessions. However, test/retest reliability coefficients of DPOAE inhibition magnitudes were less than satisfactory for all the frequencies, in both single-probe-fit and multiple-probe-fit modes. CONCLUSIONS Results of the present study showed that contralateral inhibition magnitudes of DPOAEs varied considerably, even though DPOAEs magnitudes remained essentially the same across different recording sessions. As reliability is an essential aspect of any clinical procedure, it is suggested that at present contralateral inhibition of DPOAEs should not be used clinically to evaluate the medial efferent system. Laryngoscope, 2012.
Collapse
Affiliation(s)
- U Ajith Kumar
- Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, India.
| | | | | |
Collapse
|
90
|
Spyridakou C, Luxon LM, Bamiou DE. Patient-reported speech in noise difficulties and hyperacusis symptoms and correlation with test results. Laryngoscope 2012; 122:1609-14. [PMID: 22565811 DOI: 10.1002/lary.23337] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/20/2012] [Accepted: 03/08/2012] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS To compare self-reported symptoms of difficulty hearing speech in noise and hyperacusis in adults with auditory processing disorders (APDs) and normal controls; and to compare self-reported symptoms to objective test results (speech in babble test, transient evoked otoacoustic emission [TEOAE] suppression test using contralateral noise). STUDY DESIGN A prospective case-control pilot study. METHODS Twenty-two participants were recruited in the study: 10 patients with reported hearing difficulty, normal audiometry, and a clinical diagnosis of APD; and 12 normal age-matched controls with no reported hearing difficulty. All participants completed the validated Amsterdam Inventory for Auditory Disability questionnaire, a hyperacusis questionnaire, a speech in babble test, and a TEOAE suppression test using contralateral noise. RESULTS Patients had significantly worse scores than controls in all domains of the Amsterdam Inventory questionnaire (with the exception of sound detection) and the hyperacusis questionnaire (P < .005). Patients also had worse TEOAE suppression test results in both ears than controls; however, this result was not significant after Bonferroni correction. Strong correlations were observed between self-reported symptoms of difficulty hearing speech in noise and speech in babble test results in the right ear (ρ = 0.624, P = .002), and between self-reported symptoms of hyperacusis and TEOAE suppression test results in the right ear (ρ = -0.597 P = .003). CONCLUSIONS There was no significant correlation between the two tests. A strong correlation was observed between right ear speech in babble and patient-reported intelligibility of speech in noise, and right ear TEOAE suppression by contralateral noise and hyperacusis questionnaire.
Collapse
Affiliation(s)
- Chrysa Spyridakou
- Department of Neuro-otology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| | | | | |
Collapse
|
91
|
Contralateral Suppression of Transient-Evoked Otoacoustic Emissions in Children With Sickle Cell Disease. Ear Hear 2012; 33:421-9. [DOI: 10.1097/aud.0b013e31823effd9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
92
|
Abstract
Asymmetry in auditory cortical oscillations could play a role in speech perception by fostering hemispheric triage of information across the two hemispheres. Due to this asymmetry, fast speech temporal modulations relevant for phonemic analysis could be best perceived by the left auditory cortex, while slower modulations conveying vocal and paralinguistic information would be better captured by the right one. It is unclear, however, whether and how early oscillation-based selection influences speech perception. Using a dichotic listening paradigm in human participants, where we provided different parts of the speech envelope to each ear, we show that word recognition is facilitated when the temporal properties of speech match the rhythmic properties of auditory cortices. We further show that the interaction between speech envelope and auditory cortices rhythms translates in their level of neural activity (as measured with fMRI). In the left auditory cortex, the neural activity level related to stimulus-brain rhythm interaction predicts speech perception facilitation. These data demonstrate that speech interacts with auditory cortical rhythms differently in right and left auditory cortex, and that in the latter, the interaction directly impacts speech perception performance.
Collapse
|
93
|
Measurement of medial olivocochlear efferent activity in humans: comparison of different distortion product otoacoustic emission-based paradigms. Otol Neurotol 2012; 32:1379-88. [PMID: 21921859 DOI: 10.1097/mao.0b013e31822f1548] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the suitability of contralateral suppression (CS) of distortion product otoacoustic emissions (DPOAEs) for measurement of activity of the medial olivocochlear (MOC) efferents. BACKGROUND The MOC efferent system has been shown to be involved in sound discrimination, selective attention to tones, sound localization, and protection of the cochlea against noise. A great variety of paradigms for measurement of MOC activity by CS of OAE (MOC reflex [MOCR]), has been described. An issue of this approach is the dependence of the CS values on stimulus parameters, especially when DPOAE are used. METHODS Four different measurement paradigms, which used different combinations of stimulus frequencies and primary tone levels, were applied in 16 human subjects. RESULTS Mean absolute values of CS were in the range of 1.2 to 2.6 dB. The use of different stimulus parameters produced not only MOCR values of different size-which was expected-but, in many cases, also different relative classifications of the subjects according to their MOCR strength. CONCLUSION The suppression effects on DPOAE demonstrated in this study reflect MOC activity. However, the new conclusion from our data is that CS of DPOAE measurements, as they were used in this study, may not allow for a consistent quantitative classification of human subjects according to their MOCR strength. This finding concerns interpretation of previous studies using CS of DPOAE and analogous future studies. One future approach may lie in the separation of the DPOAE components to distinguish interference phenomena, which complicate interpretation of CS values.
Collapse
|
94
|
Sound-evoked olivocochlear activation in unanesthetized mice. J Assoc Res Otolaryngol 2011; 13:209-217. [PMID: 22160753 DOI: 10.1007/s10162-011-0306-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/08/2011] [Indexed: 10/14/2022] Open
Abstract
Genetic tools available for the mouse make it a powerful model to study the modulation of cochlear function by descending control systems. Suppression of distortion product otoacoustic emission (DPOAE) amplitude by contralateral acoustic stimulation (CAS) provides a robust tool for noninvasively monitoring the strength of descending modulation, yet investigations in mice have been performed infrequently and only under anesthesia, a condition likely to reduce olivocochlear activation. Here, we characterize the contralateral olivocochlear reflex in the alert, unanesthetized mouse. Head-fixed mice were restrained between two closed acoustic systems, while an artifact rejection protocol minimized contamination from self-generated sounds and movements. In mice anesthetized with pentobarbital, ketamine or urethane, CAS at 80 dB SPL evoked, on average, a <1-dB change in DPOAE amplitude. In contrast, the mean CAS-induced DPOAE suppression in unanesthetized mice was nearly 8 dB. Experiments in mice with targeted deletion of the α9 subunit of the nicotinic acetylcholine receptor confirmed the contribution of the medial olivocochlear efferents to this phenomenon. These findings demonstrate the utility of the CAS assay in the unanesthetized mouse and highlight the adverse effects of anesthesia when probing the functional status of descending control pathways within the auditory system.
Collapse
|
95
|
de Boer J, Thornton ARD, Krumbholz K. What is the role of the medial olivocochlear system in speech-in-noise processing? J Neurophysiol 2011; 107:1301-12. [PMID: 22157117 DOI: 10.1152/jn.00222.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The medial olivocochlear (MOC) bundle reduces the gain of the cochlear amplifier through reflexive activation by sound. Physiological results indicate that MOC-induced reduction in cochlear gain can enhance the response to signals when presented in masking noise. Some previous studies suggest that this "antimasking" effect of the MOC system plays a role in speech-in-noise perception. The present study set out to reinvestigate this hypothesis by correlating measures of MOC activity and speech-in-noise processing across a group of normal-hearing participants. MOC activity was measured using contralateral suppression of otoacoustic emissions (OAEs), and speech-in-noise processing was measured by measuring the effect of noise masking on performance in a consonant-vowel (CV) discrimination task and on auditory brain stem responses evoked by a CV syllable. Whereas there was a significant correlation between OAE suppression and both measures of speech-in-noise processing, the direction of this correlation was opposite to that predicted by the antimasking hypothesis, in that individuals with stronger OAE suppression tended to show greater noise-masking effects on CV processing. The current results indicate that reflexive MOC activation is not always beneficial to speech-in-noise processing. We propose an alternative to the antimasking hypothesis, whereby the MOC system benefits speech-in-noise processing through dynamic (e.g., attention- and experience-dependent), rather than reflexive, control of cochlear gain.
Collapse
Affiliation(s)
- Jessica de Boer
- MRC Institute of Hearing Research, Univ. Park, Nottingham, UK.
| | | | | |
Collapse
|
96
|
Garinis AC, Glattke T, Cone BK. The MOC reflex during active listening to speech. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2011; 54:1464-76. [PMID: 21862678 DOI: 10.1044/1092-4388(2011/10-0223)] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
PURPOSE The purpose of this study was to test the hypothesis that active listening to speech would increase medial olivocochlear (MOC) efferent activity for the right vs. the left ear. METHOD Click-evoked otoacoustic emissions (CEOAEs) were evoked by 60-dB p.e. SPL clicks in 13 normally hearing adults in 4 test conditions for each ear: (a) in quiet; (b) with 60-dB SPL contralateral broadband noise; (c) with words embedded (at -3-dB signal-to-noise ratio [SNR]) in 60-dB SPL contralateral noise during which listeners directed attention to the words; and (d) for the same SNR as in the 3rd condition, with words played backwards. RESULTS There was greater suppression during active listening compared with passive listening that was apparent in the latency range of 6- to 18-ms poststimulus onset. Ear differences in CEOAE amplitude were observed in all conditions, with right-ear amplitudes larger than those for the left. The absolute difference between CEOAE amplitude in quiet and with contralateral noise, a metric of suppression, was equivalent for right and left ears. When the amplitude differences were normalized, suppression was greater for noise presented to the right and the effect measured for a probe in the left ear. CONCLUSION The findings support the theory that cortical mechanisms involved in listening to speech affect cochlear function through the MOC efferent system.
Collapse
|
97
|
Garinis A, Werner L, Abdala C. The relationship between MOC reflex and masked threshold. Hear Res 2011; 282:128-37. [PMID: 21878379 DOI: 10.1016/j.heares.2011.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/04/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
Otoacoustic emission (OAE) amplitude can be reduced by acoustic stimulation. This effect is produced by the medial olivocochlear (MOC) reflex. Past studies have shown that the MOC reflex is related to listening in noise and attention. In the present study, the relationship between strength of the contralateral MOC reflex and masked threshold was investigated in 19 adults. Detection thresholds were determined for 1000-Hz, 300-ms tone presented simultaneously with one repetition of a 300-ms masker in an ongoing train of masker bursts. Three masking conditions were tested: 1) broadband noise 2) a fixed-frequency 4-tone complex masker and 3) a random-frequency 4-tone complex masker. Broadband noise was expected to produce energetic masking and the tonal maskers were expected to produce informational masking in some listeners. DPOAEs were recorded at fine frequency intervals from 500 to 4000 Hz, with and without contralateral acoustic stimulation. MOC reflex strength was estimated as a reduction in baseline level and a shift in frequency of DPOAE fine-structure maxima near 1000-Hz. MOC reflex and psychophysical testing were completed in separate sessions. Individuals with poorer thresholds in broadband noise and in random-frequency maskers were found to have stronger MOC reflexes.
Collapse
Affiliation(s)
- Angela Garinis
- University of Washington, Department of Speech and Hearing Sciences, 1417 N.E. 42nd Street, Seattle, WA 98105-6246, USA.
| | | | | |
Collapse
|
98
|
Butler BE, Purcell DW, Allen P. Contralateral inhibition of distortion product otoacoustic emissions in children with auditory processing disorders. Int J Audiol 2011; 50:530-9. [DOI: 10.3109/14992027.2011.582167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
99
|
Guinan JJ. Physiology of the Medial and Lateral Olivocochlear Systems. AUDITORY AND VESTIBULAR EFFERENTS 2011. [DOI: 10.1007/978-1-4419-7070-1_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
100
|
Wu HP, Guo YL, Cheng TJ, Hsu CJ. Chronological changes in compromised olivocochlear activity and the effect of insulin in diabetic Wistar rats. Hear Res 2010; 270:173-8. [DOI: 10.1016/j.heares.2010.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 07/08/2010] [Accepted: 07/24/2010] [Indexed: 01/12/2023]
|