51
|
The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats. Biomaterials 2011; 32:3939-48. [DOI: 10.1016/j.biomaterials.2011.02.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/09/2011] [Indexed: 11/19/2022]
|
52
|
Hill PS, Apel PJ, Barnwell J, Smith T, Koman LA, Atala A, Van Dyke M. Repair of peripheral nerve defects in rabbits using keratin hydrogel scaffolds. Tissue Eng Part A 2011; 17:1499-505. [PMID: 21275820 DOI: 10.1089/ten.tea.2010.0184] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Entubulation of transected nerves using bioabsorbable conduits is a promising alternative to sural nerve autografting, but full functional recovery is rarely achieved. Numerous studies have suggested that scaffold-based conduit fillers may promote axon regeneration, but no neuroinductive biomaterial filler has been identified. We previously showed that a nerve guide filled with keratin hydrogel actively stimulates regeneration in a mouse model, and results in functional outcomes superior to empty conduits at early time points. The goal of the present study was to develop a peripheral nerve defect model in a rabbit and assess the effectiveness of a keratin hydrogel filler. Although repairs with keratin-filled conduits were not as consistently successful as autograft overall, the use of keratin resulted in a significant improvement in conduction delay compared to both empty conduits and autograft, as well as a significant improvement in amplitude recovery compared to empty conduits when measurable regeneration did occur. Taking into account all study animals (i.e., regenerated and nonregenerated), histological assessment showed that keratin-treated nerves had significantly greater myelin thickness than empty conduits. These data support the findings of our earlier study and suggest that keratin hydrogel fillers have the potential to be used clinically to improve conduit repair.
Collapse
Affiliation(s)
- Paulina S Hill
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Siemionow M, Bozkurt M, Zor F. Regeneration and repair of peripheral nerves with different biomaterials: review. Microsurgery 2011; 30:574-88. [PMID: 20878689 DOI: 10.1002/micr.20799] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve injury may cause gaps between the nerve stumps. Axonal proliferation in nerve conduits is limited to 10-15 mm. Most of the supportive research has been done on rat or mouse models which are different from humans. Herein we review autografts and biomaterials which are commonly used for nerve gap repair and their respective outcomes. Nerve autografting has been the first choice for repairing peripheral nerve gaps. However, it has been demonstrated experimentally that tissue engineered tubes can also permit lead to effective nerve repair over gaps longer than 4 cm repair that was previously thought to be restorable by means of nerve graft only. All of the discoveries in the nerve armamentarium are making their way into the clinic, where they are, showing great potential for improving both the extent and rate of functional recovery compared with alternative nerve guides.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Plastic Surgery, The Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
54
|
Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials 2011; 32:3958-68. [PMID: 21377726 DOI: 10.1016/j.biomaterials.2011.02.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/09/2011] [Indexed: 12/16/2022]
Abstract
Bridging of long peripheral nerve gaps remains a significant clinical challenge. Electrospun nanofibers have been used to direct and enhance neurite extension in vitro and in vivo. While it is well established that oriented fibers influence neurite outgrowth and Schwann cell migration, the mechanisms by which they influence these cells are still unclear. In this study, thin films consisting of aligned poly-acrylonitrile methylacrylate (PAN-MA) fibers or solvent casted smooth, PAN-MA films were fabricated to investigate the potential role of differential protein adsorption on topography-dependent neural cell responses. Aligned nanofiber films promoted enhanced adsorption of fibronectin compared to smooth films. Studies employing function-blocking antibodies against cell adhesion motifs suggest that fibronectin plays an important role in modulating Schwann cell migration and neurite outgrowth from dorsal root ganglion (DRG) cultures. Atomic Force Microscopy demonstrated that aligned PAN-MA fibers influenced fibronectin distribution, and promoted aligned fibronectin network formation compared to smooth PAN-MA films. In the presence of topographical cues, Schwann cell-generated fibronectin matrix was also organized in a topographically sensitive manner. Together these results suggest that fibronectin adsorption mediated the ability of topographical cues to influence Schwann cell migration and neurite outgrowth. These insights are significant to the development of rational approaches to scaffold designs to bridge long peripheral nerve gaps.
Collapse
|
55
|
Tansey KE, Seifert JL, Botterman B, Delgado MR, Romero MI. Peripheral nerve repair through multi-luminal biosynthetic implants. Ann Biomed Eng 2011; 39:1815-28. [PMID: 21347549 DOI: 10.1007/s10439-011-0277-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/12/2011] [Indexed: 10/18/2022]
Abstract
Peripheral nerve damage is routinely repaired by autogenic nerve grafting, often leading to less than optimal functional recovery at the expense of healthy donor nerves. Alternative repair strategies use tubular scaffolds to guide the regeneration of damaged nerves, but despite the progress made on improved structural materials for the nerve tubes, functional recovery remains incomplete. We developed a biosynthetic nerve implant (BNI) consisting of a hydrogel-based transparent multichannel scaffold with luminar collagen matrix as a 3-D substrate for nerve repair. Using a rat sciatic nerve injury model we showed axonal regeneration through the BNI to be histologically comparable to the autologous nerve repair. At 10 weeks post-injury, nerve defects repaired with collagen-filled, single lumen tubes formed single nerve cables, while animals that received the multi-luminal BNIs showed multiple nerve cables and the formation of a perineurial-like layer within the available microchannels. Total numbers of myelinated and unmyelinated axons in the BNI were increased 3-fold and 30%, respectively, compared to collagen tubes. The recovery of reflexive movement confirmed the functional regeneration of both motor and sensory neurons. This study supports the use of multi-luminal BNIs as a viable alternative to autografts in the repair of nerve gap injuries.
Collapse
|
56
|
Wang CY, Zhang KH, Fan CY, Mo XM, Ruan HJ, Li FF. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater 2011; 7:634-43. [PMID: 20849984 DOI: 10.1016/j.actbio.2010.09.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/16/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
Peripheral nerve regeneration remains a significant clinical challenge to researchers. Progress in the design of tissue engineering scaffolds provides an alternative approach for neural regeneration. In this study aligned silk fibroin (SF) blended poly(L-lactic acid-co-ε-caprolactone) (P(LLA-CL)) nanofibrous scaffolds were fabricated by electrospinning methods and then reeled into aligned nerve guidance conduits (NGC) to promote nerve regeneration. The aligned SF/P(LLA-CL) NGC was used as a bridge implanted across a 10mm defect in the sciatic nerve of rats and the outcome in terms of of regenerated nerve at 4 and 8 weeks was evaluated by a combination of electrophysiological assessment and histological and immunohistological analysis, as well as electron microscopy. The electrophysiological examination showed that functional recovery of the regenerated nerve in the SF/P(LLA-CL) NGC group was superior to that in the P(LLA-CL) NGC group. The morphological analysis also indicated that the regenerated nerve in the SF/P(LLA-CL) NGC was more mature. All the results demonstrated that the aligned SF/P(LLA-CL) NGC promoted peripheral nerve regeneration significantly better in comparison with the aligned P(LLA-CL) NGC, thus suggesting a potential application in nerve regeneration.
Collapse
|
57
|
|
58
|
Amado S, Rodrigues JM, Luís AL, Armada-da-Silva PAS, Vieira M, Gartner A, Simões MJ, Veloso AP, Fornaro M, Raimondo S, Varejão ASP, Geuna S, Maurício AC. Effects of collagen membranes enriched with in vitro-differentiated N1E-115 cells on rat sciatic nerve regeneration after end-to-end repair. J Neuroeng Rehabil 2010; 7:7. [PMID: 20149260 PMCID: PMC2829579 DOI: 10.1186/1743-0003-7-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 02/11/2010] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerves possess the capacity of self-regeneration after traumatic injury but the extent of regeneration is often poor and may benefit from exogenous factors that enhance growth. The use of cellular systems is a rational approach for delivering neurotrophic factors at the nerve lesion site, and in the present study we investigated the effects of enwrapping the site of end-to-end rat sciatic nerve repair with an equine type III collagen membrane enriched or not with N1E-115 pre-differentiated neural cells. After neurotmesis, the sciatic nerve was repaired by end-to-end suture (End-to-End group), end-to-end suture enwrapped with an equine collagen type III membrane (End-to-EndMemb group); and end-to-end suture enwrapped with an equine collagen type III membrane previously covered with neural cells pre-differentiated in vitro from N1E-115 cells (End-to-EndMembCell group). Along the postoperative, motor and sensory functional recovery was evaluated using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. After 20 weeks animals were sacrificed and the repaired sciatic nerves were processed for histological and stereological analysis. Results showed that enwrapment of the rapair site with a collagen membrane, with or without neural cell enrichment, did not lead to any significant improvement in most of functional and stereological predictors of nerve regeneration that we have assessed, with the exception of EPT which recovered significantly better after neural cell enriched membrane employment. It can thus be concluded that this particular type of nerve tissue engineering approach has very limited effects on nerve regeneration after sciatic end-to-end nerve reconstruction in the rat.
Collapse
Affiliation(s)
- Sandra Amado
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto (UP), Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Peripheral nerve regeneration is a complicated and long-term medical challenge that requires suitable guides for bridging nerve injury gaps and restoring nerve functions. Many natural and synthetic polymers have been used to fabricate nerve conduits as well as luminal fillers for achieving desired nerve regenerative functions. It is important to understand the intrinsic properties of these polymers and techniques that have been used for fabricating nerve conduits. Previously extensive reviews have been focused on the biological functions and in vivo performance of polymeric nerve conduits. In this paper, we emphasize on the structures, thermal and mechanical properties of these naturally derived synthetic polymers, and their fabrication methods. These aspects are critical for the performance of fabricated nerve conduits. By learning from the existing candidates, we can advance the strategies for designing novel polymeric systems with better properties for nerve regeneration.
Collapse
|
60
|
Biodegradable fibrin conduit promotes long-term regeneration after peripheral nerve injury in adult rats. J Plast Reconstr Aesthet Surg 2009; 63:1893-9. [PMID: 20005193 DOI: 10.1016/j.bjps.2009.11.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/28/2009] [Accepted: 11/13/2009] [Indexed: 01/05/2023]
Abstract
Peripheral nerve injuries are often associated with loss of nerve tissue and require autologous nerve grafts to provide a physical substrate for axonal growth. Biosynthetic neural conduits could be an alternative treatment strategy in such injuries. The present study investigates the long-term effects of a tubular fibrin conduit on neuronal regeneration, axonal sprouting and recovery of muscle weight following peripheral nerve injury and repair in adult rats. Sciatic axotomy was performed proximally in the thigh to create a 10-mm gap between the nerve stumps. The injury gap was bridged by using a 14-mm-long fibrin glue conduit, entubulating 2 mm of the nerve stump at each end. A reversed autologous nerve graft was used as a control. The regenerative response from sensory and motor neurones was evaluated following retrograde labelling with Fast Blue fluorescent tracer. In control experiments, at 16 weeks following peripheral nerve grafting, 5184 (±574 standard error of mean (SEM)) sensory dorsal root ganglion neurones and 1001 (±37 SEM) spinal motor neurones regenerated across the distal nerve-graft interface. The fibrin conduit promoted regeneration of 60% of sensory neurones and 52% of motor neurones when compared to the control group. The total number of myelinated axons in the distal nerve stump in the fibrin-conduit group reached 86% of the control and the weight of gastrocnemius and soleus muscles recovered to 82% and 89% of the controls, respectively. The present results suggest that a tubular fibrin conduit can be used to promote neuronal regeneration following peripheral nerve injury.
Collapse
|
61
|
|
62
|
Jiang X, Lim SH, Mao HQ, Chew SY. Current applications and future perspectives of artificial nerve conduits. Exp Neurol 2009; 223:86-101. [PMID: 19769967 DOI: 10.1016/j.expneurol.2009.09.009] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 12/27/2022]
Abstract
Artificial nerve guide conduits have the advantage over autografts in terms of their availability and ease of fabrication. However, clinical outcomes associated with the use of artificial nerve conduits are often inferior to that of autografts, particularly over long lesion gaps. There have been significant advances in the designs of artificial nerve conduits over the years. In terms of materials selection and design, a wide variety of new synthetic polymers and biopolymers have been evaluated. The inclusion of nerve conduit lumen fillers has also been demonstrated as essential to enable nerve regeneration across large defect gaps. These lumen filler designs have involved the integration of physical cues for contact guidance and biochemical signals to control cellular function and differentiation. Novel conduit architectural designs using porous and fibrous substrates have also been developed. This review highlights the recent advances in synthetic nerve guide designs for peripheral nerve regeneration, and the in vivo applicability and future prospects of these nerve guide conduits.
Collapse
Affiliation(s)
- Xu Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Block N1.2-B2-20, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
63
|
Kokai LE, Lin YC, Oyster NM, Marra KG. Diffusion of soluble factors through degradable polymer nerve guides: Controlling manufacturing parameters. Acta Biomater 2009; 5:2540-50. [PMID: 19369123 DOI: 10.1016/j.actbio.2009.03.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 02/09/2009] [Accepted: 03/09/2009] [Indexed: 11/30/2022]
Abstract
Nerve guides are cylindrical conduits of either biologically based or synthetic materials that are used to bridge nerve defects. While it is well known that a critical aspect of nerve regeneration is the delivery of oxygen and nutrients to the surviving nerve tissue, several guide parameters that determine the permeability of nerve guides to nutrients are often overlooked. We have reproducibly manufactured poly(caprolactone) (PCL) nerve guides of tailored porosity percentage, wall thickness and pore diameter through a dip-coating/salt-leaching technique. In this study, these three parameters were varied to measure the response of glucose and lysozyme diffusion through the guide wall. In addition, nerve guide permeability following protein fouling studies was examined. Based on the results from this study, it was determined that at high porosity percentages (80%), decreasing the pore diameter (10-38microm) was a measurable method of decreasing the lysozyme permeability of PCL nerve guides while not creating a loss of glucose permeability. PCL fouling studies were used to fine-tune the desirable nerve guide wall thickness. Results indicated that nerve guides 0.6mm thick decreased the loss of lysozyme to almost 10% without significantly diminishing glucose (nutrient) permeability. These results will be utilized to optimize nerve guide parameters for future in vivo applications.
Collapse
Affiliation(s)
- Lauren E Kokai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
64
|
Innovations in Innervation; Further Thoughts on Peripheral Nerve Injuries of the Pediatric Hand. J Craniofac Surg 2009; 20:1016-7. [DOI: 10.1097/scs.0b013e3181abb131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
65
|
Moore AM, Kasukurthi R, Magill CK, Farhadi HF, Borschel GH, Mackinnon SE. Limitations of conduits in peripheral nerve repairs. Hand (N Y) 2009; 4:180-6. [PMID: 19137378 PMCID: PMC2686795 DOI: 10.1007/s11552-008-9158-3] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/11/2008] [Indexed: 12/30/2022]
Abstract
Nerve conduits have emerged as alternatives to autologous nerve grafts, but their use in large-diameter nerve deficits remains untested. We report four patients who underwent repair of large-diameter nerves using absorbable nerve conduits and discuss the failed clinical outcomes. The reported cases demonstrate the importance of evaluating the length, diameter, and function of nerves undergoing conduit repair. In large-diameter nerves, the use of conduits should be carefully considered.
Collapse
Affiliation(s)
- Amy M. Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Washington University, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Rahul Kasukurthi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Washington University, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Christina K. Magill
- Department of Otolaryngology, School of Medicine, Washington University, St. Louis, MO 63110 USA
| | - H. Francis Farhadi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Washington University, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Gregory H. Borschel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Washington University, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Washington University, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| |
Collapse
|
66
|
Wood MD, Moore AM, Hunter DA, Tuffaha S, Borschel GH, Mackinnon SE, Sakiyama-Elbert SE. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater 2009; 5:959-68. [PMID: 19103514 PMCID: PMC2678870 DOI: 10.1016/j.actbio.2008.11.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/20/2008] [Accepted: 11/19/2008] [Indexed: 12/13/2022]
Abstract
Glial-derived neurotrophic factor (GDNF) promotes both sensory and motor neuron survival. The delivery of GDNF to the peripheral nervous system has been shown to enhance regeneration following injury. In this study, we evaluated the effect of affinity-based delivery of GDNF from a fibrin matrix in a nerve guidance conduit on nerve regeneration in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated which received GDNF or nerve growth factor (NGF) with the delivery system within the conduit, control groups excluding one or more components of the delivery system, and nerve isografts. Nerves were harvested 6 weeks after treatment for analysis by histomorphometry and electron microscopy. The use of the delivery system (DS) with either GDNF or NGF resulted in a higher frequency of nerve regeneration vs. control groups, as evidenced by a neural structure spanning the 13 mm gap. The GDNF DS and NGF DS groups were also similar to the nerve isograft group in measures of nerve fiber density, percent neural tissue and myelinated area measurements, but not in terms of total fiber counts. In addition, both groups contained a significantly greater percentage of larger diameter fibers, with GDNF DS having the largest in comparison to all groups, suggesting more mature neural content. The delivery of GDNF via the affinity-based delivery system can enhance peripheral nerve regeneration through a silicone conduit across a critical nerve gap and offers insight into potential future alternatives to the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Matthew D. Wood
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Amy M. Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel A. Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sami Tuffaha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Gregory H. Borschel
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Shelly E. Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Center for Materials Innovation, Washington University, Campus Box 1105, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
67
|
Luís AL, Rodrigues JM, Geuna S, Amado S, Shirosaki Y, Lee JM, Fregnan F, Lopes MA, Veloso AP, Ferreira AJ, Santos JD, Armada-Da-silva PAS, Varejão ASP, Maurício AC. Use of PLGA 90:10 scaffolds enriched with in vitro-differentiated neural cells for repairing rat sciatic nerve defects. Tissue Eng Part A 2009; 14:979-93. [PMID: 18447635 DOI: 10.1089/ten.tea.2007.0273] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number and size of regenerated nerve fibers, suggesting thus that this approach is not adequate for promoting peripheral nerve repair. Further studies are warranted to assess the role of other cellular systems as a foreseeable therapeutic strategy in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ana L Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto, Vairão, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Aberg M, Ljungberg C, Edin E, Millqvist H, Nordh E, Theorin A, Terenghi G, Wiberg M. Clinical evaluation of a resorbable wrap-around implant as an alternative to nerve repair: a prospective, assessor-blinded, randomised clinical study of sensory, motor and functional recovery after peripheral nerve repair. J Plast Reconstr Aesthet Surg 2008; 62:1503-9. [PMID: 18938119 DOI: 10.1016/j.bjps.2008.06.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 12/11/2022]
Abstract
Peripheral nerve injures are common and often result in impaired functional recovery. The majority of injuries involve the arm and/or the hand. The traditional treatment for peripheral nerve injuries is repair by using microsurgical techniques, either by primary nerve suture or nerve graft, but research to find more successful methods that could improve recovery is ongoing. Tubulisation has been investigated by several authors and is suggested as an alternative to microsurgical techniques. The resorbable poly[(R)-3-hydroxybutyrate] (PHB) is one of the materials that has been previously tested experimentally. In this prospective, randomised, assessor-blinded clinical study, PHB was investigated as an alternative to epineural suturing in the treatment of peripheral nerve injuries at the wrist/forearm level of the arm. Twelve patients, with a complete, common, sharp injury of the median and/or ulnar nerve at the wrist/forearm level, were treated by either using PHB or microsurgical epineural end-to-end suturing. All patients were assessed using a battery of tests, including evaluation of functional, sensory and motor recovery by means of clinical, neurophysiological, morphological and physiological evaluations at 2 weeks and 3, 6, 9, 12 and 18 months after surgery. No adverse events or complications considered as product related were reported, and thus PHB can be regarded as a safe alternative for microsurgical epineural suturing. The majority of the methods in the test battery showed no significant differences between the treatment groups, but one should consider that the study involved a limited number of patients and a high variability was reported for the evaluating techniques. However, sensory recovery, according to the British Medical Research Council score and parts of the manual muscle test, suggested that treating with PHB may be advantageous as compared to epineural suturing. This, however, should be confirmed by large-scale efficacy studies.
Collapse
Affiliation(s)
- Maria Aberg
- Department of Hand & Plastic Surgery, Umeå University SE-901 87 Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Allmeling C, Jokuszies A, Reimers K, Kall S, Choi CY, Brandes G, Kasper C, Scheper T, Guggenheim M, Vogt PM. Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif 2008; 41:408-20. [PMID: 18384388 DOI: 10.1111/j.1365-2184.2008.00534.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE In our study, we describe the use of spider silk fibres as a new material in nerve tissue engineering, in a 20-mm sciatic nerve defect in rats. MATERIALS AND METHODS We compared isogenic nerve grafts to vein grafts with spider silk fibres, either alone or supplemented with Schwann cells, or Schwann cells and matrigel. Controls, consisting of veins and matrigel, were transplanted. After 6 months, regeneration was evaluated for clinical outcome, as well as for histological and morphometrical performance. RESULTS Nerve regeneration was achieved with isogenic nerve grafts as well as with all constructs, but not in the control group. Effective regeneration by isogenic nerve grafts and grafts containing spider silk was corroborated by diminished degeneration of the gastrocnemius muscle and by good histological evaluation results. Nerves stained for S-100 and neurofilament indicated existence of Schwann cells and axonal re-growth. Axons were aligned regularly and had a healthy appearance on ultrastructural examination. Interestingly, in contrast to recently published studies, we found that bridging an extensive gap by cell-free constructs based on vein and spider silk was highly effective in nerve regeneration. CONCLUSION We conclude that spider silk is a viable guiding material for Schwann cell migration and proliferation as well as for axonal re-growth in a long-distance model for peripheral nerve regeneration.
Collapse
Affiliation(s)
- C Allmeling
- Department of Plastic, Hand- and Reconstructive Surgery, Medical School Hannover, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Allmeling C, Reimers-Fadhlaoui K, Vogt PM. Spinnenseide in der plastischen Chirurgie. Wunderwerkstoff der Natur. CHEM UNSERER ZEIT 2007. [DOI: 10.1002/ciuz.200700425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
71
|
Luis AL, Rodrigues JM, Amado S, Veloso AP, Armada-Da-Silva PAS, Raimondo S, Fregnan F, Ferreira AJ, Lopes MA, Santos JD, Geuna S, Varejão ASP, Maurício AC. PLGA 90/10 and caprolactone biodegradable nerve guides for the reconstruction of the rat sciatic nerve. Microsurgery 2007; 27:125-37. [PMID: 17290381 DOI: 10.1002/micr.20317] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to test in vivo two different nerve guides for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve: 1) one made of PLGA in a novel proportion (90:10) of the two polymers poly(L-lactide):poly(glycolide); 2) another made of (DL-lactide-epsilon-caprolactone) copolyester (Neurolac) tube, by comparing its healing efficacy with that of the more traditional methods of end-to-end nerve suture and autologous graft. Motor and sensory functional recovery were assessed throughout the healing period of 20 weeks, and the repaired nerves were processed for morphological and histomorphometrical analysis. Both motor and sensory functions improved significantly in all experimental nerve repaired groups. At the end of the 20-week follow-up, the end-to-end group showed better recovery of motor function when compared with the groups treated with guiding tubes. However, at this time point, the level of motor function in the Neurolac(R) and PLGA groups was similar to the one of the graft group. Nociception function also recovered faster in the end-to-end group compared with the Neurolac(R) and PLGA groups, and in this case, recovery was also delayed in the graft group. At the end of follow-up, nociception was similar in all experimental groups. Morphological and histomorphometrical analysis showed that axon regeneration occurred in both PLGA and Neurolac(R) experimental groups, with no significant differences in the total number of regenerated fibers, but disclosed a different pattern of degradation of the two types of tubes with larger biodegradation of PLGA material by the end of 20 weeks. These results suggest that both types of biomaterials are a good substrate for preparing tubular nerve guides, and their different pattern of degradation does not seem to influence the degree of nerve regeneration.
Collapse
Affiliation(s)
- Ana L Luis
- Animal Science and Study Centre, Food and Agrarian Sciences and Technologies Institute, Porto University, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Geuna S, Nicolino S, Raimondo S, Gambarotta G, Battiston B, Tos P, Perroteau I. Nerve regeneration along bioengineered scaffolds. Microsurgery 2007; 27:429-38. [PMID: 17596863 DOI: 10.1002/micr.20383] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tissue engineering has recently seen great advancements in many medical fields, including peripheral nerve reconstruction. In the rat median nerve model, we investigated nerve repair by means of bioengineered tissue scaffolds (muscle-vein-combined tubes) focusing on changes in the neuregulin-1/ErbB-receptor system which represents one of the main regulatory systems of axo-glial interaction in peripheral nerves. Repaired nerves were withdrawn at 5, 15, and 30 days postoperative and processed for morphological and retro-transcriptase polymerase chain reaction (RT-PCR) analysis. Results revealed an early and progressive increase in the expression of NRG1alpha isoform only, while the appearance of the beta isoform of NRG1, which is normally present in peripheral nerves, was delayed. In regards to ErbB2 and ErbB3 receptors, their expression increased progressively inside the muscle-vein-combined scaffolds, though with different kinetics. Taken together, these results suggest that variations in neuregulin-1/ErbB system activation play a key role in peripheral nerve regeneration along bioengineered muscle-vein-combined scaffolds. Since similar variations are also detectable in denervated skeletal muscles, it can be hypothesized that the existence of a NRG1's autocrine/paracrine trophic loop shared by both glial and muscle fibers could be responsible for the effectiveness of muscle-vein-combined conduits for repairing nerve defects.
Collapse
Affiliation(s)
- S Geuna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano (TO), Italy.
| | | | | | | | | | | | | |
Collapse
|