51
|
Interactions between NKT cells and Tregs are required for tolerance to combined bone marrow and organ transplants. Blood 2011; 119:1581-9. [PMID: 22174155 DOI: 10.1182/blood-2011-08-371948] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We used a model of combined bone marrow and heart transplantation, in which tolerance and stable chimerism is induced after conditioning with fractionated irradiation of the lymphoid tissues and anti-T-cell antibodies. Graft acceptance and chimerism required host CD4(+)CD25(+) Treg production of IL-10 that was in-turn enhanced by host invariant natural killer (NK) T-cell production of IL-4. Up-regulation of PD-1 on host Tregs, CD4(+)CD25(-) conventional T (Tcon) cells, and CD8(+) T cells was also enhanced by NKT cell production of IL-4. Up-regulated PD-1 expression on Tregs was linked to IL-10 secretion, on CD8(+) T cells was linked to Tim-3 expression, and on CD4(+) Tcon cells was associated with reduced IFNγ secretion. Changes in the expression of PD-1 were induced by the conditioning regimen, and declined after bone marrow transplantation. In conclusion, NKT cells in this model promoted changes in expression of negative costimulatory receptors and anti-inflammatory cytokines by Tregs and other T-cell subsets in an IL-4-dependent manner that resulted in tolerance to the bone marrow and organ grafts.
Collapse
|
52
|
B7-H4 Pathway in Islet Transplantation and β-Cell Replacement Therapies. J Transplant 2011; 2011:418902. [PMID: 22028949 PMCID: PMC3196026 DOI: 10.1155/2011/418902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease and characterized by absolute insulin deficiency. β-cell replacement by islet cell transplantation has been established as a feasible treatment option for T1D. The two main obstacles after islet transplantation are alloreactive T-cell-mediated graft rejection and recurrence of autoimmune diabetes mellitus in recipients. T cells play a central role in determining the outcome of both autoimmune responses and allograft survival. B7-H4, a newly identified B7 homolog, plays a key role in maintaining T-cell homeostasis by reducing T-cell proliferation and cytokine production. The relationship between B7-H4 and allograft survival/autoimmunity has been investigated recently in both islet transplantation and the nonobese diabetic (NOD) mouse models. B7-H4 protects allograft survival and generates donor-specific tolerance. It also prevents the development of autoimmune diabetes. More importantly, B7-H4 plays an indispensable role in alloimmunity in the absence of the classic CD28/CTLA-4 : B7 pathway, suggesting a synergistic/additive effect with other agents such as CTLA-4 on inhibition of unwanted immune responses.
Collapse
|
53
|
Getts DR, Turley DM, Smith CE, Harp CT, McCarthy D, Feeney EM, Getts MT, Martin AJ, Luo X, Terry RL, King NJC, Miller SD. Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2405-17. [PMID: 21821796 DOI: 10.4049/jimmunol.1004175] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ag-specific tolerance is a highly desired therapy for immune-mediated diseases. Intravenous infusion of protein/peptide Ags linked to syngeneic splenic leukocytes with ethylene carbodiimide (Ag-coupled splenocytes [Ag-SP]) has been demonstrated to be a highly efficient method for inducing peripheral, Ag-specific T cell tolerance for treatment of autoimmune disease. However, little is understood about the mechanisms underlying this therapy. In this study, we show that apoptotic Ag-SP accumulate in the splenic marginal zone, where their uptake by F4/80(+) macrophages induces production of IL-10, which upregulates the expression of the immunomodulatory costimulatory molecule PD-L1 that is essential for Ag-SP tolerance induction. Ag-SP infusion also induces T regulatory cells that are dispensable for tolerance induction but required for long-term tolerance maintenance. Collectively, these results indicate that Ag-SP tolerance recapitulates how tolerance is normally maintained in the hematopoietic compartment and highlight the interplay between the innate and adaptive immune systems in the induction of Ag-SP tolerance. To our knowledge, we show for the first time that tolerance results from the synergistic effects of two distinct mechanisms, PD-L1-dependent T cell-intrinsic unresponsiveness and the activation of T regulatory cells. These findings are particularly relevant as this tolerance protocol is currently being tested in a Phase I/IIa clinical trial in new-onset relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Secondary, so-called costimulatory, signals are critically required for the process of T cell activation. Since landmark studies defined that T cells receiving a T cell receptor signal without a costimulatory signal, are tolerized in vitro, the investigation of T cell costimulation has attracted intense interest. Early studies demonstrated that interrupting T cell costimulation allows attenuation of the alloresponse, which is particularly difficult to modulate due to the clone size of alloreactive T cells. The understanding of costimulation has since evolved substantially and now encompasses not only positive signals involved in T cell activation but also negative signals inhibiting T cell activation and promoting T cell tolerance. Costimulation blockade has been used effectively for the induction of tolerance in rodent models of transplantation, but turned out to be less potent in large animals and humans. In this overview we will discuss the evolution of the concept of T cell costimulation, the potential of 'classical' and newly identified costimulation pathways as therapeutic targets for organ transplantation as well as progress towards clinical application of the first costimulation blocking compound.
Collapse
Affiliation(s)
- Nina Pilat
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Austria
| | - Mohamed H. Sayegh
- Brigham and Women's Hospital & Children's Hospital Boston, Harvard Medical School, Boston, USA
| | - Thomas Wekerle
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Austria
| |
Collapse
|
55
|
Yang J, Riella LV, Chock S, Liu T, Zhao X, Yuan X, Paterson AM, Watanabe T, Vanguri V, Yagita H, Azuma M, Blazar BR, Freeman GJ, Rodig SJ, Sharpe AH, Chandraker A, Sayegh MH. The novel costimulatory programmed death ligand 1/B7.1 pathway is functional in inhibiting alloimmune responses in vivo. THE JOURNAL OF IMMUNOLOGY 2011; 187:1113-9. [PMID: 21697455 DOI: 10.4049/jimmunol.1100056] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The programmed death ligand 1 (PDL1)/programmed death 1 (PD1) costimulatory pathway plays an important role in the inhibition of alloimmune responses as well as in the induction and maintenance of peripheral tolerance. It has been demonstrated recently that PDL1 also can bind B7.1 to inhibit T cell responses in vitro. Using the bm12 into B6 heart transplant model, we investigated the functional significance of this interaction in alloimmune responses in vivo. PD1 blockade unlike PDL1 blockade failed to accelerate bm12 allograft rejection, suggesting a role for an additional binding partner for PDL1 other than PD1 in transplant rejection. PDL1 blockade was able to accelerate allograft rejection in B7.2-deficient recipients but not B7.1-deficient recipients, indicating that PDL1 interaction with B7.1 was important in inhibiting rejection. Administration of the novel 2H11 anti-PDL1 mAb, which only blocks the PDL1-B7.1 interaction, aggravated chronic injury of bm12 allografts in B6 recipients. Aggravated chronic injury was associated with an increased frequency of alloreactive IFN-γ-, IL-4-, and IL-6-producing splenocytes and a decreased percentage of regulatory T cells in the recipients. Using an in vitro cell culture assay, blockade of the interaction of PDL1 on dendritic cells with B7.1 on T cells increased IFN-γ production from alloreactive CD4(+) T cells, whereas blockade of dendritic cell B7.1 interaction with T cell PDL1 did not. These data indicate that PDL1 interaction with B7.1 plays an important role in the inhibition of alloimmune responses in vivo and suggests a dominant direction for PDL1 and B7.1 interaction.
Collapse
Affiliation(s)
- Jun Yang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Bach JF, Chatenoud L. A historical view from thirty eventful years of immunotherapy in autoimmune diabetes. Semin Immunol 2011; 23:174-81. [DOI: 10.1016/j.smim.2011.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 11/29/2022]
|
57
|
Urinary cell levels of mRNA for OX40, OX40L, PD-1, PD-L1, or PD-L2 and acute rejection of human renal allografts. Transplantation 2011; 90:1381-7. [PMID: 21079547 DOI: 10.1097/tp.0b013e3181ffbadd] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The positive costimulatory proteins OX40 and OX40L and negative regulatory proteins programmed death (PD)-1, PD ligand 1, and PD ligand 2 have emerged as significant regulators of acute rejection in experimental transplantation models. METHODS We obtained 21 urine specimens from 21 renal allograft recipients with graft dysfunction and biopsy-confirmed acute rejection and 25 specimens from 25 recipients with stable graft function and normal biopsy results (stable). Urinary cell levels of mRNAs were measured using real-time quantitative polymerase chain reaction assays, and the levels were correlated with allograft status and outcomes. RESULTS Levels of OX40 mRNA (P<0.0001, Mann-Whitney test), OX40L mRNA (P=0.0004), and PD-1 mRNA (P=0.004), but not the mRNA levels of PD ligand 1 (P=0.08) or PD ligand 2 (P=0.20), were significantly higher in the urinary cells from the acute rejection group than the stable group. Receiver operating characteristic curve analysis demonstrated that acute rejection is predicted with a sensitivity of 95% and a specificity of 92% (area under the curve=0.98, 95% confidence interval 0.96-1.0, P<0.0001) using a combination of levels of mRNA for OX40, OX40L, PD-1, and levels of mRNA for the previously identified biomarker Foxp3. Within the acute rejection group, levels of mRNA for OX40 (P=0.0002), OX40L (P=0.0004), and Foxp3 (P=0.04) predicted acute rejection reversal, whereas only OX40 mRNA levels (P=0.04) predicted graft loss after acute rejection. CONCLUSION A linear combination of urinary cell levels of mRNA for OX40, OX40L, PD-1, and Foxp3 was a strong predictor of acute rejection in human renal allograft biopsies. This prediction model should be validated using an independent cohort of renal allograft recipients.
Collapse
|
58
|
Urinary cell levels of mRNA for OX40, OX40L, PD-1, PD-L1, or PD-L2 and acute rejection of human renal allografts. Transplantation 2011. [PMID: 21079547 DOI: 10.1097/tp.0b013 e3181ffbadd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The positive costimulatory proteins OX40 and OX40L and negative regulatory proteins programmed death (PD)-1, PD ligand 1, and PD ligand 2 have emerged as significant regulators of acute rejection in experimental transplantation models. METHODS We obtained 21 urine specimens from 21 renal allograft recipients with graft dysfunction and biopsy-confirmed acute rejection and 25 specimens from 25 recipients with stable graft function and normal biopsy results (stable). Urinary cell levels of mRNAs were measured using real-time quantitative polymerase chain reaction assays, and the levels were correlated with allograft status and outcomes. RESULTS Levels of OX40 mRNA (P<0.0001, Mann-Whitney test), OX40L mRNA (P=0.0004), and PD-1 mRNA (P=0.004), but not the mRNA levels of PD ligand 1 (P=0.08) or PD ligand 2 (P=0.20), were significantly higher in the urinary cells from the acute rejection group than the stable group. Receiver operating characteristic curve analysis demonstrated that acute rejection is predicted with a sensitivity of 95% and a specificity of 92% (area under the curve=0.98, 95% confidence interval 0.96-1.0, P<0.0001) using a combination of levels of mRNA for OX40, OX40L, PD-1, and levels of mRNA for the previously identified biomarker Foxp3. Within the acute rejection group, levels of mRNA for OX40 (P=0.0002), OX40L (P=0.0004), and Foxp3 (P=0.04) predicted acute rejection reversal, whereas only OX40 mRNA levels (P=0.04) predicted graft loss after acute rejection. CONCLUSION A linear combination of urinary cell levels of mRNA for OX40, OX40L, PD-1, and Foxp3 was a strong predictor of acute rejection in human renal allograft biopsies. This prediction model should be validated using an independent cohort of renal allograft recipients.
Collapse
|
59
|
Thangavelu G, Murphy KM, Yagita H, Boon L, Anderson CC. The role of co-inhibitory signals in spontaneous tolerance of weakly mismatched transplants. Immunobiology 2011; 216:918-24. [PMID: 21281982 PMCID: PMC4030676 DOI: 10.1016/j.imbio.2011.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/02/2011] [Accepted: 01/04/2011] [Indexed: 01/22/2023]
Abstract
The immune system of female H-2(b) (C57BL/6) mice is a strong responder against the male minor-H antigen. However rejection or acceptance of such weakly mismatched grafts depends on the type of tissue transplanted. The mechanism responsible for such spontaneous graft acceptance, and its relationship to the natural mechanisms of tolerance of self antigens is unknown. Co-inhibitory molecules negatively regulate immune responses, and are important for self tolerance. We examined whether co-inhibitory molecules play a critical role in "spontaneous" allograft tolerance. Naïve or donor sensitized diabetic female C57BL/6 (B6) wild type (WT), PD-1(-/-), and BTLA(-/-) mice were transplanted with freshly isolated syngeneic male islet grafts. The role of co-inhibitors during priming of anti-donor responses and graft challenge was also assessed using monoclonal antibodies targeting co-inhibitory receptors. Among the co-inhibitor (CTLA-4, PD-1) specific antibodies tested, only anti-PD-1 showed some potential to prevent spontaneous acceptance of male islet grafts. All BTLA(-/-) and almost all PD-1(-/-) recipients maintained the ability to spontaneously accept male islet grafts. While spontaneous graft acceptance in naïve recipients was only weakly PD-1 dependent, tolerance induced by the accepted islets was found to be highly PD-1 dependent. Furthermore, spontaneous graft acceptance in pre-sensitized recipients showed an absolute requirement for recipient PD-1 but not BTLA. Thus, the PD-1 pathway, involved in self tolerance, plays a critical role in spontaneous tolerance induced by weakly mismatched grafts in naïve recipients and spontaneous graft acceptance in pre-sensitized recipients.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Surgery Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Kenneth M. Murphy
- Department of Pathology and Centre for Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo Japan
| | | | - Colin C. Anderson
- Department of Surgery Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
- Department of Medical Microbiology and Immunology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
- Address correspondence to: Colin C. Anderson, 5-126A Li Ka Shing Centre, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2E1 Tel: 780-492-6036 Fax: 780-492-5348
| |
Collapse
|
60
|
Ray WZ, Kasukurthi R, Kale SS, Santosa KB, Hunter DA, Johnson P, Yan Y, Mohanakumar T, Mackinnon SE, Tung TH. Costimulation blockade inhibits the indirect pathway of allorecognition in nerve allograft rejection. Muscle Nerve 2010; 43:120-6. [PMID: 21171102 DOI: 10.1002/mus.21807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nerve allografts provide a temporary scaffold for host nerve regeneration. The need for systemic immunosuppression limits clinical application. Characterization of the immunological mechanisms that induce immune hyporesponsiveness may provide a basis for optimizing immunomodulating regimens. We utilized wild-type and MHC class II-deficient mice, as both recipients and donors. Host treatment consisted of triple costimulatory blockade. Quantitative assessment was made at 3 weeks using nerve histomorphometry, and muscle testing was performed on a subset of animals at 7 weeks. Nerve allograft rejection occurred as long as either the direct or indirect pathways were functional. Indirect antigen presentation appeared to be more important. Nerve allograft rejection occurs in the absence of a normal direct or indirect immune response but may be more dependent on indirect allorecognition. The indirect pathway is required to induce costimulatory blockade immune hyporesponsiveness.
Collapse
Affiliation(s)
- Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Ji H, Shen X, Gao F, Ke B, Freitas MCS, Uchida Y, Busuttil RW, Zhai Y, Kupiec-Weglinski JW. Programmed death-1/B7-H1 negative costimulation protects mouse liver against ischemia and reperfusion injury. Hepatology 2010; 52:1380-9. [PMID: 20815020 PMCID: PMC2947605 DOI: 10.1002/hep.23843] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Programmed death-1 (PD-1)/B7-H1 costimulation acts as a negative regulator of host alloimmune responses. Although CD4 T cells mediate innate immunity-dominated ischemia and reperfusion injury (IRI) in the liver, the underlying mechanisms remain to be elucidated. This study focused on the role of PD-1/B7-H1 negative signaling in liver IRI. We used an established mouse model of partial liver warm ischemia (90 minutes) followed by reperfusion (6 hours). Although disruption of PD-1 signaling after anti-B7-H1 monoclonal antibody treatment augmented hepatocellular damage, its stimulation following B7-H1 immunoglobulin (B7-H1Ig) fusion protected livers from IRI, as evidenced by low serum alanine aminotransferase levels and well-preserved liver architecture. The therapeutic potential of B7-H1 engagement was evident by diminished intrahepatic T lymphocyte, neutrophil, and macrophage infiltration/activation; reduced cell necrosis/apoptosis but enhanced anti-necrotic/apoptotic Bcl-2/Bcl-xl; and decreased proinflammatory chemokine/cytokine gene expression in parallel with selectively increased interleukin (IL)-10. Neutralization of IL-10 re-created liver IRI and rendered B7-H1Ig-treated hosts susceptible to IRI. These findings were confirmed in T cell-macrophage in vitro coculture in which B7-H1Ig diminished tumor necrosis factor-α/IL-6 levels in an IL-10-dependent manner. Our novel findings document the essential role of the PD-1/B7-H1 pathway in liver IRI. CONCLUSION This study is the first to demonstrate that stimulating PD-1 signals ameliorated liver IRI by inhibiting T cell activation and Kupffer cell/macrophage function. Harnessing mechanisms of negative costimulation by PD-1 upon T cell-Kupffer cell cross-talk may be instrumental in the maintenance of hepatic homeostasis by minimizing organ damage and promoting IL-10-dependent cytoprotection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jerzy W. Kupiec-Weglinski
- Address correspondence to: Jerzy W. Kupiec-Weglinski, MD, PhD. Dumont-UCLA Transplant Center, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-4196; Fax: (310) 267-2358;
| |
Collapse
|
62
|
Affiliation(s)
- Paolo Fiorina
- The Transplantation Research Center, Nephrology Division, Children's Hospital of Boston, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
63
|
Dai H, Wan N, Zhang S, Moore Y, Wan F, Dai Z. Cutting edge: programmed death-1 defines CD8+CD122+ T cells as regulatory versus memory T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:803-7. [PMID: 20548035 DOI: 10.4049/jimmunol.1000661] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent convincing data have shown that naturally occurring CD8(+)CD122(+) T cells are also regulatory T cells. Paradoxically, CD8(+)CD122(+) T cells have been well described as memory T cells. Given their critical role in tolerance versus long-term immunity, it is important to reconcile this profound dichotomy. In this study, we reported that CD8(+)CD122(+) T cells contain both programmed death-1 (PD-1)(-) and PD-1(+) populations. It was CD8(+)CD122(+)PD-1(+) T cells, but not their PD-1(-) counterparts, that suppressed T cell responses in vitro and in vivo. This suppression was largely dependent on their production of IL-10. Moreover, the costimulatory signaling of both CD28 and PD-1 is required for their optimal IL-10 production. In contrast, Ag-specific CD8(+)CD122(+)PD-1(-) T cells were bona fide memory T cells. Thus, CD8(+)CD122(+) T cells can be either regulatory T or memory T cells, depending on their PD-1 expression and Ag specificity. This study reconciles previously contradictory findings and has important implications for tolerance induction.
Collapse
Affiliation(s)
- Hehua Dai
- Division of Immunology and Microbiology, University of Texas Health Science Center, Tyler, TX 75708, USA
| | | | | | | | | | | |
Collapse
|
64
|
Valujskikh A, Baldwin WM, Fairchild RL. Recent progress and new perspectives in studying T cell responses to allografts. Am J Transplant 2010; 10:1117-25. [PMID: 20353479 PMCID: PMC3208261 DOI: 10.1111/j.1600-6143.2010.03087.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Studies in the past decade advanced our understanding of the development, execution and regulation of T-cell-mediated allograft rejection. This review outlines recent progress and focuses on three major areas of investigation that are likely to guide the development of graft-prolonging therapies in the future. The discussed topics include the contribution of recently discovered molecules to the activation and functions of alloreactive T cells, the emerging problem of alloreactive memory T cells and recently gained insights into the old question of transplantation tolerance.
Collapse
Affiliation(s)
- Anna Valujskikh
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William M. Baldwin
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert L. Fairchild
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
65
|
Abstract
BACKGROUND In the nerve allograft model, costimulation blockade has permitted good regeneration but is still inferior to the nerve isograft. We hypothesize that a short course of multiple costimulatory pathway blockade will be more effective in inhibiting the redundancy of the immune response and improve nerve regeneration through the nerve allograft. METHODS The murine sciatic nerve allograft model was used to reconstruct a 1 cm sciatic nerve gap. Treatment consisted of the inhibition of the CD40, CD28/B7 and ICOS pathways and was compared with only single or double costimulation blockade. Assessment methods included quantitative histomorphometry and ELISPOT assay to quantify the host immune response after 3 weeks post-operatively. RESULTS Triple costimulation blockade permitted regeneration through the nerve allograft that was equivalent to the nerve isograft. A short course of three doses was more effective than a single dose for all combinations tested. ELISPOT assay demonstrated minimal in vitro immune response with a short course of double or triple pathway-blocking agents. CONCLUSION Costimulation blockade, especially with the simultaneous inhibition of multiple pathways, remains a promising strategy to promote regeneration through the peripheral nerve allograft, and may be uniquely suited to the temporary immunosuppressive requirements of the peripheral nerve allograft.
Collapse
Affiliation(s)
- Chau Y. Tai
- Division of Plastics and Orthopedics, Kern Medical Center, CA, USA
| | - Renata V. Weber
- Plastic and Reconstructive Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, NY, USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Thomas H. Tung
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
66
|
Thangavelu G, Smolarchuk C, Anderson CC. Co-inhibitory molecules: Controlling the effectors or controlling the controllers? SELF NONSELF 2010; 1:77-88. [PMID: 21487510 DOI: 10.4161/self.1.2.11548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 12/31/2022]
Abstract
Nearly forty years ago the concept was proposed that lymphocytes are negatively regulated by what are now called co-inhibitory signals. Nevertheless, it is only the more recent identification of numerous co-inhibitors and their critical functions that has brought co-inhibition to the forefront of immunologic research. Although co-inhibitory signals have been considered to directly regulate conventional T cells, more recent data has indicated a convergence between co-inhibitory signals and the other major negative control mechanism in the periphery that is mediated by regulatory T cells. Furthermore, it is now clear that lymphocytes are not the sole domain of co-inhibitory signals, as cells of the innate immune system, themselves controllers of immunity, are regulated by co-inhibitors they express. Thus, in order to better understand negative regulation in the periphery and apply this knowledge to the treatment of disease, a major focus for the future should be the definition of the conditions where co-inhibition controls effector cells intrinsically versus extrinsically (via regulatory or innate cells).
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Surgery; Alberta Diabetes Institute; University of Alberta; Edmonton, Alberta Canada
| | | | | |
Collapse
|
67
|
Ding H, Wang L, Wu X, Yan J, He Y, Ni B, Gao W, Zhong X. Blockade of B-cell-activating factor suppresses lupus-like syndrome in autoimmune BXSB mice. J Cell Mol Med 2009; 14:1717-25. [PMID: 19627403 PMCID: PMC3829033 DOI: 10.1111/j.1582-4934.2009.00817.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
B-cell-activating factor (BAFF), a member of the tumour necrosis factor superfamily, plays a critical role in the maturation, homeostasis and function of B cells. In this study, we demonstrated the biological outcome of BAFF blockade in BXSB murine lupus model, using a soluble fusion protein consisting of human BAFF-R and human mutant IgG4 Fc. Mutation of Leu(235) to Glu in IgG4 Fc eliminated antibody-dependent cell cytotoxicity (ADCC) and complement lysis activity, and generated a protein devoid of immune effector functions. Treatment of BXSB mice with BAFF-R-IgG4mut fusion protein for 5 weeks resulted in significant B-cell reduction in both the peripheral blood and spleen. Treated mice developed lower proteinuria, reduced glomerulonephritis and much delayed host death than untreated animals. Thus, BAFF blockade with BAFF-R-IgG4mut protein is an effective strategy to treat B-cell-mediated lupus-like pathology. Moreover, compared with other IgG isotypes with undesired effector functions, mutant IgG4 Fc should prove useful in constructing novel therapeutic reagents to block immune molecule signalling in various diseases.
Collapse
Affiliation(s)
- Hanlu Ding
- Department of Nephrology, Sichuan Provincial People's Hospital, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Cheng X, Dai H, Wan N, Moore Y, Vankayalapati R, Dai Z. Interaction of programmed death-1 and programmed death-1 ligand-1 contributes to testicular immune privilege. Transplantation 2009; 87:1778-86. [PMID: 19543053 DOI: 10.1097/tp.0b013e3181a75633] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Immune responses are tempered in immunologically privileged sites including the testis. Previous studies have shown that islet transplantation in the testis significantly prolongs islet allograft survival. However, mechanisms underlying testicular immune privilege and intratesticular allograft survival remain unclear. METHODS Allogeneic murine islets were transplanted in the testis. Programmed death-1 ligand-1 (PD-L1) expression was detected by immunohistochemstry and real-time polymerase chain reaction. Infiltrating T-cell proliferation was measured by bromodeoxyuridine uptakes, whereas their apoptosis was quantified by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling methods. Transgenic T cells were used to track allospecific memory T-cell generation. RESULTS We found that programmed death-1 (PD-1):PD-L1 negative costimulation is essential for prolonged survival of intratesticular islet allografts, as blocking PD-L1 or PD-1, but not PD-L2 and cytotoxic T-lymphocyte antigen 4, abrogated long-term survival of intratesticular islet allografts. As controls, blocking PD-1 or PD-L1 did not significantly accelerate the acute rejection of islet allografts transplanted under the renal capsule, a conventional islet-grafting site. We also found for the first time that PD-L1 is constitutively expressed mainly by spermatocytes and spermatids in seminiferous tubules of the testis. Moreover, infiltrating T cells underwent less vigorous proliferation but faster apoptosis in the testis than in the kidney. Blocking PD-1:PD-L1 costimulation largely abolished the suppression of T-cell proliferation and acceleration of T-cell apoptosis. Importantly, testicular immune privilege significantly suppressed the generation and proliferation of donor-specific memory CD8 T cells. CONCLUSIONS The constitutive expression of PD-L1 in the testis is an important mechanism underlying testicular immune privilege and long-term survival of intratesticular islet allografts.
Collapse
Affiliation(s)
- Xuyang Cheng
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX 75708, USA
| | | | | | | | | | | |
Collapse
|
69
|
Le Bas-Bernardet S, Blancho G. Current cellular immunological hurdles in pig-to-primate xenotransplantation. Transpl Immunol 2009; 21:60-4. [DOI: 10.1016/j.trim.2008.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/09/2008] [Indexed: 12/13/2022]
|
70
|
Li XC, Rothstein DM, Sayegh MH. Costimulatory pathways in transplantation: challenges and new developments. Immunol Rev 2009; 229:271-93. [DOI: 10.1111/j.1600-065x.2009.00781.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
71
|
Suppression of Human T-Cell Activation and Expansion of Regulatory T Cells by Pig Cells Overexpressing PD-Ligands. Transplantation 2009; 87:975-82. [DOI: 10.1097/tp.0b013e31819c85e8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
72
|
Yuan CL, Xu JF, Tong J, Yang H, He FR, Gong Q, Xiong P, Duan L, Fang M, Tan Z, Xu Y, Chen YF, Zheng F, Gong FL. B7-H4 transfection prolongs beta-cell graft survival. Transpl Immunol 2009; 21:143-9. [PMID: 19361556 DOI: 10.1016/j.trim.2009.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 01/10/2023]
Abstract
B7-H4, a recently discovered member of B7 family, can negatively regulate T cell responses. However, it is not clear whether B7-H4 negatively function in cell transplantation. In this study we investigated the immunosuppressive effect of B7-H4 on beta-cell transplantation. An insulinoma cell line, NIT-1, transfected with B7-H4 (B7-H4-NIT) was established, and transplanted to diabetic C57BL/6 mice by intraperitoneal injection. Proliferation assay of splenocytes in vitro showed that B7-H4-NIT suppressed alloreactive T cell activation. The proportion of IFN-gamma-producing cells in recipient spleen was significantly reduced and the number of Treg cells was upregulated in B7-H4-NIT group compared to the control, EGFP-NIT. The expression of mRNA coding IFN-gamma was lower but that of IL-4 was higher in B7-H4-NIT transplanted recipients than in the control animals. The results of ELISA also revealed the same trends. Diabetic mice reached normalglycemic quickly and gained weight after transplantation of B7-H4-NIT. More importantly, the survival time for recipients transplanted with B7-H4-NIT cells was significantly longer than that with EGFP-NIT cells. These results indicate that B7-H4 transfection prolongs beta-cell graft survival.
Collapse
Affiliation(s)
- Chun-Lei Yuan
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
|
74
|
PD-L1/PD-1 signal deficiency promotes allogeneic immune responses and accelerates heart allograft rejection. Transplantation 2008; 86:836-44. [PMID: 18813109 DOI: 10.1097/tp.0b013e3181861932] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND PD-L1, a ligand for programmed death 1 (PD-1), delivers a negative costimulatory signal to T cells and plays a critical role in the regulation of peripheral tolerance. METHODS We used PD-L1(-/-) mice to evaluate the role of the PD-L1 signal on allogeneic immune responses in vivo and the underlying mechanisms. Heart transplantation was performed from PD-L1(-/-) donors or recipients in major histocompatibility complex fully mismatched mouse combinations. The immunologic function of allograft recipients was evaluated ex vivo by enzyme-linked immunospot, mixed lymphocytes reaction, cytotoxic T lymphocyte, and flow cytometry. RESULTS Our results demonstrated that PD-L1(-/-) T cells proliferated vigorously under alloantigen stimulation, and also that the antigen-presenting cells (APCs) from PD-L1(-/-) mice exhibited a stronger allostimulatory activity compared with that in wild-type mice. Heart allografts were rejected at an accelerated rate in both PD-L1(-/-) donors and recipients. This was associated with significantly augmented donor specific T-cell proliferation and antidonor cytotoxic T lymphocyte activities, and enhanced Th1- or Th2-type immune responses of heart allograft recipients. CONCLUSIONS Absence of PD-L1 input triggers a stimulatory signal to effector T cells and APCs, accelerating heart allograft rejection. Engagement of the PD-L1 signal on T cells or APCs may be necessary to induce transplant tolerance.
Collapse
|
75
|
Koehn BH, Ford ML, Ferrer IR, Borom K, Gangappa S, Kirk AD, Larsen CP. PD-1-dependent mechanisms maintain peripheral tolerance of donor-reactive CD8+ T cells to transplanted tissue. THE JOURNAL OF IMMUNOLOGY 2008; 181:5313-22. [PMID: 18832687 DOI: 10.4049/jimmunol.181.8.5313] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peripheral mechanisms of self-tolerance often depend on the quiescent state of the immune system. To what degree such mechanisms can be engaged in the enhancement of allograft survival is unclear. To examine the role of the PD-1 pathway in the maintenance of graft survival following blockade of costimulatory pathways, we used a single-Ag mismatch model of graft rejection where we could track the donor-specific cells as they developed endogenously and emerged from the thymus. We found that graft-specific T cells arising under physiologic developmental conditions at low frequency were actively deleted at the time of transplantation under combined CD28/CD40L blockade. However, this deletion was incomplete, and donor-specific cells that failed to undergo deletion up-regulated expression of PD-1. Furthermore, blockade of PD-1 signaling on these cells via in vivo treatment with anti-PD-1 mAb resulted in rapid expansion of donor-specific T cells and graft loss. These results suggest that the PD-1 pathway was engaged in the continued regulation of the low-frequency graft-specific immune response and thus in maintenance of graft survival.
Collapse
Affiliation(s)
- Brent H Koehn
- Emory Transplant Center and Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
del Rio ML, Buhler L, Gibbons C, Tian J, Rodriguez-Barbosa JI. PD-1/PD-L1, PD-1/PD-L2, and other co-inhibitory signaling pathways in transplantation. Transpl Int 2008; 21:1015-28. [PMID: 18662368 DOI: 10.1111/j.1432-2277.2008.00726.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transplantation of cells, tissues and vascularized solid organs is a successful therapeutic intervention for many end-stage chronic diseases. The combination of co-stimulatory blockade with the delivery of negative signals to T cells through co-inhibitory receptors would provide a robust approach to modulating T-cell receptor signaling and improving alloantigen-specific control of transplant rejection. This approach based on fundamental knowledge of APC/T-cell interactions may complement conventional therapies in the near future to reinforce long-term allograft survival, and permit minimal immunosuppression. The focus of this review was primarily on two major co-inhibitory signaling pathways, namely PD-1/PD-L1/PD-L2 and BTLA/CD160/HVEM/LIGHT that have been thoroughly characterized in murine models of transplantation using genetically modified mice, specific monoclonal antibodies and fusion proteins.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Laboratory of Immunobiology, School of Biotechnology and Institute of Biomedicine, University of Leon, Leon, Spain
| | | | | | | | | |
Collapse
|
77
|
Wang CJ, Chou FC, Chu CH, Wu JC, Lin SH, Chang DM, Sytwu HK. Protective role of programmed death 1 ligand 1 (PD-L1)in nonobese diabetic mice: the paradox in transgenic models. Diabetes 2008; 57:1861-9. [PMID: 18420489 PMCID: PMC2453619 DOI: 10.2337/db07-1260] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Coinhibitory signals mediated via programmed death 1 (PD-1) receptor play a critical role in downregulating immune responses and in maintaining peripheral tolerance. Programmed death 1 ligand 1 (PD-L1), the interacting ligand for PD-1, widely expressed in many cell types, acts as a tissue-specific negative regulator of pathogenic T-cell responses. We investigated the protective potential of PD-L1 on autoimmune diabetes by transgenically overexpressing PD-L1 in pancreatic beta-cells in nonobese diabetic (NOD) mice. RESEARCH DESIGN AND METHODS We established an insulin promoter-driven murine PD-L1 transgenic NOD mouse model to directly evaluate the protective effect of an organ-specific PD-L1 transgene against autoimmune diabetes. Transgene expression, insulitis, and diabetic incidence were characterized in these transgenic NOD mice. Lymphocyte development, Th1 cells, and regulatory T-cells were analyzed in these transgenic mice; and T-cell proliferation, adoptive transfer, and islet transplantation were performed to evaluate the PD-L1 transgene-mediated immune-protective mechanisms. RESULTS The severity of insulitis in these transgenic mice is significantly decreased, disease onset is delayed, and the incidence of diabetes is markedly decreased compared with littermate controls. NOD/SCID mice that received lymphocytes from transgenic mice became diabetic at a slower rate than mice receiving control lymphocytes. Moreover, lymphocytes collected from recipients transferred by lymphocytes from transgenic mice revealed less proliferative potential than lymphocytes obtained from control recipients. Transgenic islets transplanted in diabetic recipients survived moderately longer than control islets. CONCLUSIONS Our results demonstrate the protective potential of transgenic PD-L1 in autoimmune diabetes and illustrate its role in downregulating diabetogenic T-cells in NOD mice.
Collapse
Affiliation(s)
- Chia-Jen Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
78
|
Chen L, Hussien Y, Hwang KW, Wang Y, Zhou P, Alegre ML. Overexpression of program death-1 in T cells has mild impact on allograft survival. Transpl Int 2008; 21:21-9. [PMID: 18076633 DOI: 10.1111/j.1432-2277.2007.00536.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Program death-1 (PD-1), an inhibitory receptor upregulated on T cells upon TCR stimulation, has been shown to attenuate a number of immune responses in vivo, including acute allograft rejection. We tested whether constitutive expression of PD-1 would further inhibit allograft rejection. To this end, we generated transgenic mice expressing T-cell-restricted PD-1 under the control of the Lck proximal promoter and CD2 locus control. PD-1 transgenic (PD-1-Tg) mice did not develop gross abnormalities of thymic development and displayed normal numbers of thymocyte subsets and peripheral T cells. In vitro, PD-1-Tg T cells had reduced proliferative and cytokine secretion capacity upon TCR stimulation and cross-linking of PD-1 resulted in diminished phosphorylation of protein kinase C-theta and Akt, as well as increased activation of the phosphate and tensin homolog. However, only T-cell responses to minor but not major mismatches were reduced in vitro. Similarly, PD-1-Tg mice exhibited prolonged survival of cardiac allografts only in mice transplanted with heart allografts expressing multiple minor mismatches and treated with suboptimal doses of cyclosporine A. We conclude that genetic engineering of T cells to express PD-1 constitutively has only a mild impact on allograft survival.
Collapse
Affiliation(s)
- Luqiu Chen
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
79
|
Peripheral deletional tolerance of alloreactive CD8 but not CD4 T cells is dependent on the PD-1/PD-L1 pathway. Blood 2008; 112:2149-55. [PMID: 18577709 DOI: 10.1182/blood-2007-12-127449] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although interaction between programmed death-1 (PD-1) and the ligand PD-L1 has been shown to mediate CD8 cell exhaustion in the setting of chronic infection or the absence of CD4 help, a role for this pathway in attenuating early alloreactive CD8 cell responses has not been identified. We demonstrate that the PD-1/PD-L1 pathway is needed to rapidly tolerize alloreactive CD8 cells in a model that requires CD4 cells and culminates in CD8 cell deletion. This protocol involves allogeneic bone marrow transplantation (BMT) following conditioning with low-dose total body irradiation and anti-CD154 antibody. Tolerized donor-reactive T-cell receptor transgenic CD8 cells are shown to be in an abortive activation state prior to their deletion, showing early and prolonged expression of activation markers (compared with rejecting CD8 cells) while being functionally silenced by day 4 after transplantation. Although both tolerized and rejecting alloreactive CD8 cells up-regulate PD-1, CD8 cell tolerance is dependent on the PD-1/PD-L1 pathway. In contrast, CD4 cells are tolerized independently of this pathway following BMT with anti-CD154. These studies demonstrate a dichotomy between the requirements for CD4 and CD8 tolerance and identify a role for PD-1 in the rapid tolerization of an alloreactive T-cell population via a deletional mechanism.
Collapse
|
80
|
|
81
|
|
82
|
Popoola J, Sayegh MH. Harnessing negative T-cell costimulatory pathways to promote engraftment. Transpl Int 2007; 21:18-20. [DOI: 10.1111/j.1432-2277.2007.00565.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Habicht A, Kewalaramani R, Vu MD, Demirci G, Blazar BR, Sayegh MH, Li XC. Striking dichotomy of PD-L1 and PD-L2 pathways in regulating alloreactive CD4(+) and CD8(+) T cells in vivo. Am J Transplant 2007; 7:2683-92. [PMID: 17924994 DOI: 10.1111/j.1600-6143.2007.01999.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Programmed death-1 (PD-1) is a recently identified coinhibitory molecule that belongs to the CD28 superfamily. PD-1 has two ligands PD-L1 and PD-L2. There is some evidence that PD-L1 and PD-L2 serve distinct functions, but their exact function in alloimmunity remains unclear. In the present study, we used a GVHD-like model that allows detailed analyses of T-cell activation at a single cell level in vivo to examine the role of PD-1/PD-L1 and PD-1/PD-L2 interactions in regulating proliferation of CD4(+) and CD8(+) T cells in response to alloantigen stimulation. We found that both CD4(+) and CD8(+) T cells proliferated vigorously in vivo and that PD-L1 and PD-L2 exhibit strikingly different effect on T-cell proliferation. While blocking PD-L1 did not affect the in vivo proliferation of CD4(+) and CD8(+) T cells regardless of CD28 costimulation, blocking PD-L2 resulted in a marked increase in the responder frequency of CD8(+) T-cells in vivo. The effect of PD-L2 on the CD8(+) T-cell proliferation is regulated by CD28 costimulation and by the CD4(+) T cells. We conclude that PD-L1 and PD-L2 function differently in regulating alloreactive T-cell activation in vivo, and PD-L2 is predominant in this model in limiting alloreactive CD8(+) T-cell proliferation.
Collapse
Affiliation(s)
- A Habicht
- Transplantation Research Center, Brigham and Women's Hospital and the Children's Hospital of Boston, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Immunological properties of human embryonic stem cell-derived oligodendrocyte progenitor cells. J Neuroimmunol 2007; 192:134-44. [DOI: 10.1016/j.jneuroim.2007.09.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/07/2007] [Accepted: 09/21/2007] [Indexed: 01/14/2023]
|
85
|
Truong W, Plester JC, Hancock WW, Merani S, Murphy TL, Murphy KM, Kaye J, Anderson CC, Shapiro AMJ. Combined coinhibitory and costimulatory modulation with anti-BTLA and CTLA4Ig facilitates tolerance in murine islet allografts. Am J Transplant 2007; 7:2663-74. [PMID: 17983390 DOI: 10.1111/j.1600-6143.2007.01996.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Complex interactions between positive and negative cosignaling receptors ultimately determine the fate of the immune response. The recently identified coinhibitory receptor, B and T lymphocyte attenuator (BTLA), contributes to regulation of autoimmune and potentially alloimmune responses. We investigated the role of BTLA in a fully major histocompatibility complex-mismatched mouse islet transplant model. We report that anti-BTLA mAb (6F7) alone does not accelerate graft rejection. Rather, while CTLA4Ig alone improved allograft survival, the addition of anti-BTLA mAb to CTLA4Ig led to indefinite (>100 days) allograft survival. Immediately after treatment with anti-BTLA mAb and CTLA4Ig, islet allografts showed intact islets and insulin production despite a host cellular response, with local accumulation of Foxp3+ cells. We clearly demonstrate that combined therapy with anti-BTLA mAb and CTLA4Ig mice induced donor-specific tolerance, since mice accepted a second donor-specific islet graft without further treatment and rejected third party grafts. CTLA4Ig and anti-BTLA mAb limited the initial in vivo proliferation of CFSE-labeled allogeneic lymphocytes, and anti-BTLA mAb enhanced the proportion of PD-1 expressing T cells while depleting pathogenic BTLA+ lymphocytes. We conclude that targeting the BTLA pathway in conjunction with CTLA4Ig costimulatory blockade may be a useful strategy for promoting immunological tolerance in murine islet allografts.
Collapse
Affiliation(s)
- W Truong
- The Surgical Medical Research Institute, Department of Surgery, Faculty of Medicine, The University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Tanaka K, Albin MJ, Yuan X, Yamaura K, Habicht A, Murayama T, Grimm M, Waaga AM, Ueno T, Padera RF, Yagita H, Azuma M, Shin T, Blazar BR, Rothstein DM, Sayegh MH, Najafian N. PDL1 is required for peripheral transplantation tolerance and protection from chronic allograft rejection. THE JOURNAL OF IMMUNOLOGY 2007; 179:5204-10. [PMID: 17911605 PMCID: PMC2291549 DOI: 10.4049/jimmunol.179.8.5204] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The PD-1:PDL pathway plays an important role in regulating alloimmune responses but its role in transplantation tolerance is unknown. We investigated the role of PD-1:PDL costimulatory pathway in peripheral and a well established model of central transplantation tolerance. Early as well as delayed blockade of PDL1 but not PDL2 abrogated tolerance induced by CTLA4Ig in a fully MHC-mismatched cardiac allograft model. Accelerated rejection was associated with a significant increase in the frequency of IFN-gamma-producing alloreactive T cells and expansion of effector CD8(+) T cells in the periphery, and a decline in the percentage of Foxp3(+) graft infiltrating cells. Similarly, studies using PDL1/L2-deficient recipients confirmed the results with Ab blockade. Interestingly, while PDL1-deficient donor allografts were accepted by wild-type recipients treated with CTLA4Ig, the grafts developed severe chronic rejection and vasculopathy when compared with wild-type grafts. Finally, in a model of central tolerance induced by mixed allogeneic chimerism, engraftment was not abrogated by PDL1/L2 blockade. These novel data demonstrate the critical role of PDL1 for induction and maintenance of peripheral transplantation tolerance by its ability to alter the balance between pathogenic and regulatory T cells. Expression of PDL1 in donor tissue is critical for prevention of in situ graft pathology and chronic rejection.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Shen L, Jin Y, Freeman GJ, Sharpe AH, Dana MR. The function of donor versus recipient programmed death-ligand 1 in corneal allograft survival. THE JOURNAL OF IMMUNOLOGY 2007; 179:3672-9. [PMID: 17785803 DOI: 10.4049/jimmunol.179.6.3672] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Programmed death-ligand (PD-L)1 and PD-L2, newer B7 superfamily members, are implicated in the negative regulation of immune responses and peripheral tolerance. To examine their function in alloimmunity, we used the murine model of orthotopic corneal transplantation. We demonstrate that PD-L1, but not PD-L2, is constitutively expressed at high levels by the corneal epithelial cells, and at low levels by corneal CD45+ cells in the stroma, whereas it is undetectable on stromal fibroblasts and corneal endothelial cells. Inflammation induces PD-L1 up-regulation by corneal epithelial cells, and infiltration of significant numbers of PD-L1+CD45+CD11b+ cells. Blockade with anti-PD-L1 mAb dramatically enhances rejection of C57BL/6 corneal allografts by BALB/c recipients. To examine the selective contribution of donor vs host PD-L1 in modulating allorejection, we used PD-L1-/- mice as hosts or donors of combined MHC and minor H-mismatched corneal grafts. BALB/c grafts placed in PD-L1-/- C57BL/6 hosts resulted in pronounced T cell priming in the draining lymph nodes, and universally underwent rapid rejection. Allografts from PD-L1-/- C57BL/6 donors were also significantly more susceptible to rejection than wild-type C57BL/6 grafts placed into BALB/c hosts, primarily as a result of increased T cell infiltration rather than enhanced priming. Taken together, our results identify differential roles for recipient vs donor PD-L1 in regulating induction vs effector of alloimmunity in corneal grafts, the most common form of tissue transplantation, and highlight the importance of peripheral tissue-derived PD-L1 in down-regulating local immune responses.
Collapse
Affiliation(s)
- Linling Shen
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
88
|
Waeckerle-Men Y, Starke A, Wahl PR, Wüthrich RP. Limited costimulatory molecule expression on renal tubular epithelial cells impairs T cell activation. Kidney Blood Press Res 2007; 30:421-9. [PMID: 17975322 DOI: 10.1159/000110578] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 08/26/2007] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIMS MHC molecules are upregulated on renal proximal tubular epithelial cells (TEC) under inflammatory conditions. This allows TEC to act as 'non-professional' antigen-presenting cells (APC). The aim of this study was to compare the costimulatory molecule expression pattern and the T cell activation capacity between renal TEC and professional APC, e.g. bone marrow-derived dendritic cells (BM-DC). METHODS Flow cytometry analysis was used to study the costimulatory molecule surface expression on TEC or BM-DC. Ovalbumin-specific CD4 and CD8 T cell activation induced by TEC or BM-DC was compared, in terms of T cell proliferation, cytokine production and CTL activity. RESULTS TEC did not constitutively express significant amounts of costimulatory molecules. Stimulation of TEC with IFN-beta or IFN-gamma, but not other tested cytokines, enhanced the expression of PD-L1, ICOS-L and CD40. Compared to BM-DC, TEC only induced suboptimal T cell activation. Blockade of PD-L1 on both APC strongly increased T cell activity. Furthermore, high PD-L1-expressing TEC were more resistant to the cytolysis by CTL. CONCLUSION The low costimulatory molecule expression may explain the suboptimal T cell activation by TEC. The IFN-upregulated negative costimulatory molecule PD-L1 on TEC may play a protective role to limit tissue injury during renal parenchymal immune responses.
Collapse
Affiliation(s)
- Ying Waeckerle-Men
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich-Irchel, Zürich, Switzerland.
| | | | | | | |
Collapse
|
89
|
Kingsley CI, Nadig SN, Wood KJ. Transplantation tolerance: lessons from experimental rodent models. Transpl Int 2007; 20:828-41. [PMID: 17711408 PMCID: PMC2156188 DOI: 10.1111/j.1432-2277.2007.00533.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 05/23/2007] [Accepted: 07/10/2007] [Indexed: 12/30/2022]
Abstract
Immunological tolerance or functional unresponsiveness to a transplant is arguably the only approach that is likely to provide long-term graft survival without the problems associated with life-long global immunosuppression. Over the past 50 years, rodent models have become an invaluable tool for elucidating the mechanisms of tolerance to alloantigens. Importantly, rodent models can be adapted to ensure that they reflect more accurately the immune status of human transplant recipients. More recently, the development of genetically modified mice has enabled specific insights into the cellular and molecular mechanisms that play a key role in both the induction and maintenance of tolerance to be obtained and more complex questions to be addressed. This review highlights strategies designed to induce alloantigen specific immunological unresponsiveness leading to transplantation tolerance that have been developed through the use of experimental models.
Collapse
Affiliation(s)
- Cherry I Kingsley
- Transplantation Research Immunology Group, Nuffield Department of Surgery, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
90
|
Guleria I, Gubbels Bupp M, Dada S, Fife B, Tang Q, Ansari MJ, Trikudanathan S, Vadivel N, Fiorina P, Yagita H, Azuma M, Atkinson M, Bluestone JA, Sayegh MH. Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clin Immunol 2007; 125:16-25. [PMID: 17627890 DOI: 10.1016/j.clim.2007.05.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 05/18/2007] [Accepted: 05/18/2007] [Indexed: 01/22/2023]
Abstract
The PD-1-PDL1 pathway plays a critical role in regulating autoimmune diabetes as blockade or deficiency of PD-1 or PDL1 results in accelerated disease in NOD mice. We explored the cellular mechanisms involved in the regulation of these autoimmune responses by investigations involving various gene-deficient mice on the NOD background. Administration of blocking anti-PDL1 antibody to CD4+ T cell-deficient, CD8+ T cell-deficient and B cell-deficient mice demonstrated that PDL1-mediated regulation of autoreactive CD4+ and CD8+ T cells is critical for diabetes development. This concept was confirmed by adoptive transfer studies utilizing lymphocytes from BDC2.5 and 4.1 (CD4+) TCR transgenic mice and 8.3 (CD8+) TCR transgenic mice; efforts showing increased proliferation of both CD4+ and CD8+ T cells following PDL1 blockade in vivo. Furthermore, we observed that anti-PDL1-mediated acceleration is dependent upon events occurring in the pancreatic lymph nodes during early disease stages, but becomes independent of the pancreatic lymph nodes during later disease stages. These data provide strong evidence that PDL1 regulates autoimmune diabetes by limiting the expansion of CD4+ and CD8+ autoreactive T cells, and define the timing and locale of PDL1-mediated regulation of type 1 diabetes.
Collapse
Affiliation(s)
- Indira Guleria
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Izawa A, Yamaura K, Albin MJ, Jurewicz M, Tanaka K, Clarkson MR, Ueno T, Habicht A, Freeman GJ, Yagita H, Abdi R, Pearson T, Greiner DL, Sayegh MH, Najafian N. A novel alloantigen-specific CD8+PD1+ regulatory T cell induced by ICOS-B7h blockade in vivo. THE JOURNAL OF IMMUNOLOGY 2007; 179:786-96. [PMID: 17617568 DOI: 10.4049/jimmunol.179.2.786] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Delayed ICOS-B7h signal blockade promotes significant prolongation of cardiac allograft survival in wild-type but not in CD8-deficient C57BL/6 recipients of fully MHC-mismatched BALB/c heart allografts, suggesting the possible generation of CD8(+) regulatory T cells in vivo. We now show that the administration of a blocking anti-ICOS mAb results in the generation of regulatory CD8(+) T cells. These cells can transfer protection and prolong the survival of donor-specific BALB/c, but not third party C3H, heart grafts in CD8-deficient C57BL/6 recipients. This is unique to ICOS-B7h blockade, because B7 blockade by CTLA4-Ig prolongs graft survival in CD8-deficient mice and does not result in the generation of regulatory CD8(+) T cells. Those cells localize to the graft, produce both IFN-gamma and IL-4 after allostimulation in vitro, prohibit the expansion of alloreactive CD4(+) T cells, and appear to mediate a Th2 switch of recipient CD4(+) T cells after adoptive transfer in vivo. Finally, these cells are not confined to the CD28-negative population but express programmed death 1, a molecule required for their regulatory function in vivo. CD8(+)PD1(+) T cells suppress alloreactive CD4(+) T cells but do not inhibit the functions by alloreactive CD8(+) T cells in vitro. These results describe a novel allospecific regulatory CD8(+)PD1(+) T cell induced by ICOS-B7h blockade in vivo.
Collapse
Affiliation(s)
- Atsushi Izawa
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Mai G, del Rio ML, Tian J, Ramirez P, Buhler L, Rodriguez-Barbosa JI. Blockade of the PD-1/PD-1L pathway reverses the protective effect of anti-CD40L therapy in a rat to mouse concordant islet xenotransplantation model. Xenotransplantation 2007; 14:243-8. [PMID: 17489865 DOI: 10.1111/j.1399-3089.2007.00402.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND We have previously demonstrated that costimulatory blockade with anti-CD40L monoclonal antibody (mAb) prolongs the survival of non-vascularized concordant rat to mouse islet xenografts. Here, we examine whether signaling through the PD-1/PD-1L pathway is required for the anti-CD40L therapy to prolong concordant islet graft survival using a novel anti-murine PD-1 mAb (clone 4F10). METHODS C57BL/6 mice received a cellular concordant islet xenograft under the left kidney capsule and four experimental groups were prepared. Group I: untreated control; group II: recipient mice were treated with three doses of 0.5 mg of anti-CD40L mAb (clone MR1) on days 0, 2 and 4; group III: mice were treated with 0.5 mg of anti-PD-1 (CD279) mAb (clone 4F10) every other day for 8 days; and finally group IV: mice received the combined treatment that consisted of anti-CD40L plus anti-PD-1 mAb. RESULTS Concordant islet xenografts transplanted in control untreated mice showed a median survival time (MST) of 17 +/- 7.43 days, whereas anti-CD40L treatment led to a significant prolongation of graft survival (MST: 154 +/- 65.56, P < 0.0001). The administration of anti-PD-1 alone significantly accelerated graft rejection compared to non-treated controls (MST: 10 +/- 2.24 vs. MST: 17 +/- 7.43, P < 0.0004). Remarkably, the combined administration of anti-CD40L and anti-PD-1 reversed the protective effect obtained with anti-CD40L alone (anti-CD40L, MST: 154 +/- 65.56 vs. anti-CD40L plus anti-PD-1, MST: 10 +/- 7.72, P < 0.0002). CONCLUSION Overall, our data indicate that the PD-1/PD-1L pathway is required for the achievement of prolonged graft survival in anti-CD40L-treated mice in a setting of rat to mouse concordant islet xenotransplantation.
Collapse
Affiliation(s)
- Gang Mai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | | | | | |
Collapse
|
93
|
Bagley J, Tian C, Iacomini J. New Approaches to the Prevention of Organ Allograft Rejection and Tolerance Induction. Transplantation 2007; 84:S38-41. [PMID: 17632412 DOI: 10.1097/01.tp.0000269185.28701.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The therapeutic use of organ allograft transplantation is dependent on the discovery and clinical application of immunologic strategies to blunt the immune response and prevent graft rejection. It was the discovery of powerful immunotherapeutics such as cyclosporine A and rapamycin that has allowed for the widespread use of organ transplantation to treat organ failure. However, despite the attainment of impressive survival rates 1 year after organ transplantation, a significant number of organ allografts are lost to immune-mediated chronic rejection. Furthermore, significant morbidity and mortality can be associated with the use of currently available immunosuppressive regimens. Thus, the development of novel approaches to prevent of organ allograft rejection remains extremely important. Here we discuss two promising and novel avenues of research. First, the discovery and characterization of naturally occurring immune inhibitory signals have led to recent research aimed at exploiting these pathways to induce peripheral tolerance to alloantigen. Furthermore, we discuss new approaches to the induction of donor-specific tolerance by induction of molecular chimerism and the transfer of alloantigen-expressing mature T cells.
Collapse
Affiliation(s)
- Jessamyn Bagley
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
94
|
Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 2007; 56:739-45. [PMID: 17195077 PMCID: PMC11030209 DOI: 10.1007/s00262-006-0272-1] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 12/08/2006] [Indexed: 12/29/2022]
Abstract
Recent clinical data support ideas of Programmed death receptor-ligand 1 (PD-L1; also called B7-H1, CD274) playing an important role in immune evasion of tumor cells. Expression of PD-L1 on tumors strongly correlates with the survival of cancer patients. PD-L1 on tumors interacts with the co-inhibitory molecule Programmed death receptor-1 (PD-1, CD279) on T cells mediating decreased TCR-mediated proliferation and cytokine production. In animal tumor models, blockade of PD-L1/PD-1 interactions resulted in an improved tumor control. In addition, exhausted T cells during chronic viral infections could be revived by PD-L1 blockade. Thus, targeting PD-L1/PD-1 interactions might improve the efficacy of adoptive cell therapies (ACT) of chronic infections as well as cancers. Obstacles for a general blockade of PD-L1 might be its role in mediating peripheral tolerance. This review discusses the currently available data concerning the role of PD-L1 in tumor immune evasion and envisions possibilities for implementation into ACT for cancer patients.
Collapse
Affiliation(s)
- Christian Blank
- Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
95
|
Jeon DH, Oh K, Oh BC, Nam DH, Kim CH, Park HB, Cho J, Lee JR, Lee DS, Lee G. Porcine PD-L1: cloning, characterization, and implications during xenotransplantation. Xenotransplantation 2007; 14:236-42. [PMID: 17489864 DOI: 10.1111/j.1399-3089.2007.00403.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Effective intervention achieved by manipulating cell-mediated xenogeneic immune responses would critically increase the clinical feasibility of xenotransplantation as immediate hyperacute rejections become controllable through genetic modulations of donor organs. Endogenous negative regulatory signals like the programmed death 1 (PD-1)-programmed death ligand 1 (PD-L1) system are candidate targets for the control of cell-mediated xenogeneic immune response. METHODS A porcine PD-L1 molecule was cloned using RACE (rapid amplification of cDNA ends) technology based on the human PD-L1 sequence. The functional effects of cloned porcine PD-L1 were tested on human CD4(+) T cell activation using porcine PD-L1-transfected bystander cells. Cellular proliferation was monitored by [3H] thymidine incorporation, and human T cell apoptosis was measured by flow cytometry. RESULTS Porcine PD-L1 (GenBank accession number AY837780) was found to have 73.8% sequence homology with human PD-L1 and to contain two immunoglobulin domains in its extracellular region. Moreover, porcine PD-L1 expressed on Chinese hamster ovary (CHO) cells inhibited human CD4(+) T cell proliferation stimulated with anti-CD3 only or anti-CD3 plus anti-CD28. Percentages of apoptotic activated human T cells increased by over 30% in the presence of porcine PD-L1/CHO cells, and the addition of recombinant human PD-1-Fc fusion proteins during human T cell activation reversed the inhibitory effects of porcine PD-L1. CONCLUSIONS Cloned porcine PD-L1 showed high sequence homology with human PD-L1 and a similar molecular structure. Moreover, porcine PD-L1 inhibited human CD4(+) T cell activation in human PD-1-dependent manner, and this involved activated T cell apoptosis. The authors suggest that PD-1-PD-L1 might play an important endogenous immune regulatory role during xenogeneic transplantation, and that the effective application of this system would improve transplanted xenogeneic organ survival.
Collapse
Affiliation(s)
- Dae-Hyun Jeon
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Xu JF, Huang BJ, Yin H, Xiong P, Feng W, Xu Y, Fang M, Zheng F, Wang CY, Gong FL. A limited course of soluble CD83 delays acute cellular rejection of MHC-mismatched mouse skin allografts. Transpl Int 2007; 20:266-76. [PMID: 17291220 DOI: 10.1111/j.1432-2277.2006.00426.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD83 is a surface marker expressed on matured dendritic cells (DCs). It plays a pivotal role in the mediation of DC/T cell interaction and induction of T-cell activation. Previous studies have suggested that a soluble form of CD83 could suppress DC maturation and inhibit T-cell activation and, as a result, it can prevent paralysis associated with experimental autoimmune encephalomyelitis. Here, we explored its potential effect on allograft rejection in a fully major histocompatibility complex-mismatched murine skin transplantation model. A form of mouse soluble CD83 (CD83-Ig) fused the extracellular domain of murine CD83 with human IgG1alpha Fc tail was purified from transfected COS-7 cell. It was found that the treatment of recipient mice with CD83-Ig significantly delayed allograft rejection. Especially, when T cells originated from recipients treated with CD83-Ig re-stimulated with donor-specific splenocytes, they showed a significant reduced responding capability as compared with that of originated from control recipients. In line with these results, a reduction for serum IFN-gamma and IL-2 and a decreased mRNA expression of IFN-gamma and IL-2 in allograft infiltrated immune cells were also observed. Our results suggest that CD83-Ig could be useful for the treatment of allograft rejection in combination with other therapeutic strategies.
Collapse
Affiliation(s)
- Jun-Fa Xu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
T cell costimulatory pathways in allograft rejection and tolerance: what's new? Curr Opin Organ Transplant 2007; 12:17-22. [PMID: 27792084 DOI: 10.1097/mot.0b013e328012b651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The induction or maintenance of allograft tolerance remains an ongoing challenge. One approach to the development of tolerogenic strategies involves targeting T-cell costimulatory signals. The two most widely studied costimulatory pathways are the CD28/B7 and CD40/CD154 pathways, and blocking of both, either alone or in combination, has been shown to prolong allograft survival in rodents and primates. Recent work revealed that CD28-independent 'novel costimulatory' pathways exist, which can mediate allograft rejection. This review highlights new studies on the role of these pathways in allograft rejection and tolerance. RECENT FINDINGS NK cells, CD8 T cells, and memory-effector responses appear to be less dependent on CD28 and/or CD154 costimulation, and utilize these novel costimulatory pathways for activation. The novel signals differ in their ability to enhance or inhibit T-cell activation, in their temporal and spatial expression patterns, and in their relative importance within the hierarchy of costimulatory signals. Emerging data suggest that costimulatory molecules are expressed on parenchymal cells. SUMMARY A strategy to induce tolerance might involve targeting novel costimulatory signals particularly at the time point of maximal expression, and delivering negative signals, while inhibiting the positive signals that drive T-cell alloresponses.
Collapse
|
98
|
Geng L, Jiang G, Fang Y, Dong S, Xie H, Chen Y, Shen M, Zheng S. B7-H1 expression is upregulated in peripheral blood CD14+ monocytes of patients with chronic hepatitis B virus infection, which correlates with higher serum IL-10 levels. J Viral Hepat 2006; 13:725-33. [PMID: 17052271 DOI: 10.1111/j.1365-2893.2006.00746.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronicity in hepatitis B virus (HBV) infection is maintained by increased type 2 T-helper cell response, possibly because of increased interleukin-10 (IL-10) productions. B7-H1 can negatively regulate T-cell responses via its receptor, programmed death 1. Ligation of B7-H1 to T-cells can result in the preferential secretion of IL-10. In this study, we investigated whether there was an upregulated expression of B7-H1 in peripheral blood mononuclear cells in patients chronically infected by HBV and further explored the correlation between B7-H1 expression and serum interleukin 2, interferon-gamma, IL-10, HBeAg, alanine aminotransferase (ALT) levels and viral load. Fifty-five patients with chronic HBV infection and 20 healthy controls (HCs) were enrolled in the present study. The results showed that in patients with chronic hepatitis B CD14+ monocytes but not CD3+ and CD19+ cells had a significantly increased expression of B7-H1 compared with HCs, which positively correlates with serum IL-10 levels and the presence of HBeAg and negatively correlates with serum ALT levels. In conclusion, chronic HBV patients harbour an increased B7-H1 expression in CD14+ monocytes compared with controls, which may be responsible for the increased serum IL-10 levels. This might be an important way by which HBV evades an adequate immune response, leading to viral persistence and disease chronicity.
Collapse
Affiliation(s)
- L Geng
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou 310003, China.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Snanoudj R, de Préneuf H, Créput C, Arzouk N, Deroure B, Beaudreuil S, Durrbach A, Charpentier B. Costimulation blockade and its possible future use in clinical transplantation. Transpl Int 2006; 19:693-704. [PMID: 16918529 DOI: 10.1111/j.1432-2277.2006.00332.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nonimmune effects of currently used immunosuppressive drugs result in a high incidence of late graft loss due to nephrotoxicity and death of patients. As an immune-specific alternative to conventional immunosuppressants, new biotechnology tools can be used to block the costimulation signals of T-cell activation. Many experimental studies--particularly preclinical studies in nonhuman primates--have focused on blocking the 'classical' B7/CD28 and CD40/CD40L pathways, which are critical in primary T-cell activation. Here, we review the limitations, the recent advances and the first large-scale clinical application of the CTLA4-Ig fusion protein to block the B7/CD28 costimulation pathway. We also focus on new B7/CD28 and tumor necrosis factor (TNF)/TNF-R family costimulatory molecules that can deliver positive or negative costimulation signals regulating the alloimmune response. Strategies that use single agents to block costimulation have often proved to be insufficient. Given the diversity of the different costimulation molecules, future strategies for human transplantation may involve the simultaneous blockade of several selected pathways or the simultaneous use of conventional immunosuppressants.
Collapse
Affiliation(s)
- Renaud Snanoudj
- Service de Néphrologie et Transplantation Rénale, Hôpital du Kremlin Bicêtre, Le Kremlin-Bicêtre, INSERM U542, Villejuif, France.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Li L, Boussiotis VA. Physiologic regulation of central and peripheral T cell tolerance: lessons for therapeutic applications. J Mol Med (Berl) 2006; 84:887-99. [PMID: 16972086 DOI: 10.1007/s00109-006-0098-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 06/30/2006] [Indexed: 12/14/2022]
Abstract
Immunologic tolerance is a state of unresponsiveness that is specific for a particular antigen. The immune system has an extraordinary potential for making T cell and B cell that recognize and neutralize any chemical entity and microbe entering the body. Certainly, some of these T cells and B cells recognize self-components; therefore, cellular mechanisms have evolved to control the activity of these self-reactive cells and achieve immunological self-tolerance. The most important in vivo biological significance of mechanisms regulating self-tolerance is to prevent the immune system from mounting an attack against the host's own tissues resulting in autoimmunity. This review summarizes recent developments in our understanding of T-helper cell tolerance and discusses how the new findings can be exploited to prevent and treat autoimmune diseases, allergy, cancer, and chronic infection, or establish donor-specific transplantation tolerance.
Collapse
Affiliation(s)
- Lequn Li
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|