51
|
Wang RR, Liu B, Long W. Electroacupuncture alleviates neuropathic pain by modulating Th2 infiltration and inhibiting microglial activation in the spinal cord of rats with spared nerve injury. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_40_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
52
|
Yang L, Liu S, Wang Y. Role of bone morphogenetic protein-2/4 in astrocyte activation in neuropathic pain. Mol Pain 2019; 15:1744806919892100. [PMID: 31726923 PMCID: PMC6886276 DOI: 10.1177/1744806919892100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Bone morphogenetic protein-2/4 (BMP2/4) has been recognized as promoters of astrocyte activity. Substantial evidence suggests that BMP2/4 may be elevated and plays a critical role in astrocyte activation upon spinal cord injury. Although neuropathic pain is similarly associated with astrocyte activation, the participation of BMP2/4 in this regard still remains unclear. Methods A rat model of neuropathic pain achieved by spinal nerve ligation at L5 was used to evaluate the expression of glial fibrillary acidic protein and BMP2/4 in the spinal cord in days 1, 4, 7, 10, and 14. Next, normal rats received intrathecal exogenous BMP2/4 and the antagonist Noggin to assess the effect of BMP2/4 on astrocyte activation. In both experiments, von Frey filaments were used to evaluate the changes in paw withdrawal threshold. In addition, Western blotting and immunofluorescence were performed to assess the expression of glial fibrillary acidic protein, BMP2/4, p-Smad 1/5/8, and phospho-signal transducer and activator of transcription-3 (p-STAT3) in the spinal cord. Results Firstly, spinal nerve ligation caused a significant increase in the expression of BMP4, while BMP2 levels remained unchanged. Secondly, exogenous BMP4 but not BMP2 induced a significant decrease in paw withdrawal threshold, along with the upregulation of glial fibrillary acidic protein. Moreover, exogenous BMP4 stimulated both p-Smad 1/5/8 and p-STAT3, while BMP2 only upregulated p-Smad 1/5/8. Finally, exogenous Noggin alleviated the decrease in paw withdrawal threshold induced by BMP4 and reduced astrocyte activation, as well as p-STAT3 upregulation. Conclusions Our results indicate only BMP4—and not BMP2—intervened in allodynia in rats by eliciting glial activation probably through both p-Smad 1/5/8 and p-STAT3 signaling.
Collapse
Affiliation(s)
- Lin Yang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, China
| | - Shuxin Liu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, China
| | - Yaping Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, China
| |
Collapse
|
53
|
Vascular Endothelial Growth Factor A Signaling Promotes Spinal Central Sensitization and Pain-related Behaviors in Female Rats with Bone Cancer. Anesthesiology 2019; 131:1125-1147. [DOI: 10.1097/aln.0000000000002916] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
Cancer pain is a pervasive clinical symptom impairing life quality. Vascular endothelial growth factor A has been well studied in tumor angiogenesis and is recognized as a therapeutic target for anti-cancer treatment. This study tested the hypothesis that vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 contribute to bone cancer pain regulation associated with spinal central sensitization.
Methods
This study was performed on female rats using a metastatic breast cancer bone pain model. Nociceptive behaviors were evaluated by mechanical allodynia, thermal hyperalgesia, spontaneous pain, and CatWalk gait analysis. Expression levels were measured by real-time quantitative polymerase chain reaction, western blot, and immunofluorescence analysis. Excitatory synaptic transmission was detected by whole-cell patch-clamp recordings. The primary outcome was the effect of pharmacologic intervention of spinal vascular endothelial growth factor A/vascular endothelial growth factor receptor 2–signaling on bone cancer pain behaviors.
Results
The mRNA and protein expression of vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 were upregulated in tumor-bearing rats. Spinal blocking vascular endothelial growth factor A or vascular endothelial growth factor receptor 2 significantly attenuated tumor-induced mechanical allodynia (mean ± SD: vascular endothelial growth factor A, 7.6 ± 2.6 g vs. 5.3 ± 3.3 g; vascular endothelial growth factor receptor 2, 7.8 ± 3.0 g vs. 5.2 ± 3.4 g; n = 6; P < 0.0001) and thermal hyperalgesia (mean ± SD: vascular endothelial growth factor A, 9.0 ± 2.4 s vs. 7.4 ± 2.7 s; vascular endothelial growth factor receptor 2, 9.3 ± 2.5 s vs. 7.5 ± 3.1 s; n = 6; P < 0.0001), as well as spontaneous pain and abnormal gaits. Exogenous vascular endothelial growth factor A enhanced excitatory synaptic transmission in a vascular endothelial growth factor receptor 2–dependent manner, and spinal injection of exogenous vascular endothelial growth factor A was sufficient to cause pain hypersensitivity via vascular endothelial growth factor receptor 2–mediated activation of protein kinase C and Src family kinase in naïve rats. Moreover, spinal blocking vascular endothelial growth factor A/vascular endothelial growth factor receptor 2 pathways suppressed protein kinase C-mediated N-methyl-d-aspartate receptor activation and Src family kinase-mediated proinflammatory cytokine production.
Conclusions
Vascular endothelial growth factor A/vascular endothelial growth factor receptor 2 contributes to central sensitization and bone cancer pain via activation of neuronal protein kinase C and microglial Src family kinase pathways in the spinal cord.
Collapse
|
54
|
Abstract
Astrocytes are critical for maintaining the homeostasis of the CNS. Increasing evidence suggests that a number of neurological and neuropsychiatric disorders, including chronic pain, may result from astrocyte 'gliopathy'. Indeed, in recent years there has been substantial progress in our understanding of how astrocytes can regulate nociceptive synaptic transmission via neuronal-glial and glial-glial cell interactions, as well as the involvement of spinal and supraspinal astrocytes in the modulation of pain signalling and the maintenance of neuropathic pain. A role of astrocytes in the pathogenesis of chronic itch is also emerging. These developments suggest that targeting the specific pathways that are responsible for astrogliopathy may represent a novel approach to develop therapies for chronic pain and chronic itch.
Collapse
|
55
|
Zhang L, Niu J, Zhang X, He W. Metformin Can Alleviate the Symptom of Patient with Diabetic Nephropathy Through Reducing the Serum Level of Hcy and IL-33. Open Med (Wars) 2019; 14:625-628. [PMID: 31535033 PMCID: PMC6731542 DOI: 10.1515/med-2019-0071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/13/2019] [Indexed: 01/24/2023] Open
Abstract
Background Interleukin-33 (IL-33) and homocysteine (Hcy) were found to be up-regulated in patients with diabetic nephropathy (DN), and the present study aimed to investigate whether metformin (MT) can influence the serum levels of IL-33 and Hcy in patients with DN. Methods Sixty patients with type 2 diabetes mellitus (DM) were divided into DM group (albumin: Alb <20 mg/L), DN group (Alb >20mg/L), and DN+ MT treatment group, with 20 cases in each group. Patients in each group were treated with insulin for 3 months, and patients in DN+MT group was treated with insulin+MT for 3 months. The serum levels of IL-33, urinary microalbumin excretion rate (UAE), body mass index (BMI), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), creatinine (Cr), cystatin C (CysC) and Hcy were measured before and after medication. Twenty normal subjects were involved as control. Results BMI, Hcy and TC were reduced and HDL-C was increased of patients had been treated with metformin and insulin. UAE, Cr, Ccr and CysC had no differences before and after treatment. The serum level of IL-33 significantly up-regulated in patients with DN, and MT treatment significantly decreased the serum level of IL-33 in patients with DN. Conclusion Metformin could alleviate the symptom of patient with DN through decreasing the serum level of IL-33 and Hcy.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Endocrinology, Second Hospital of Yulin City, Yulin 719000, Shaanxi Province, Yulin, China
| | - Jiansheng Niu
- Department of Endocrinology, Second Hospital of Yulin City, Yulin 719000, Shaanxi Province, Yulin, China
| | - Xiumei Zhang
- Department of Endocrinology, Second Hospital of Yulin City, Yulin 719000, Shaanxi Province, Yulin, China
| | - Wanxia He
- Department of Endocrinology, Second Hospital of Yulin City, Yulin 719000, Shaanxi Province, Yulin, China
| |
Collapse
|
56
|
Bravo-Caparrós I, Perazzoli G, Yeste S, Cikes D, Baeyens JM, Cobos EJ, Nieto FR. Sigma-1 Receptor Inhibition Reduces Neuropathic Pain Induced by Partial Sciatic Nerve Transection in Mice by Opioid-Dependent and -Independent Mechanisms. Front Pharmacol 2019; 10:613. [PMID: 31263413 PMCID: PMC6584826 DOI: 10.3389/fphar.2019.00613] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Sigma-1 (σ1) receptor antagonists are promising tools for neuropathic pain treatment, but it is unknown whether σ1 receptor inhibition ameliorates the neuropathic signs induced by nerve transection, in which the pathophysiological mechanisms and response to drug treatment differ from other neuropathic pain models. In addition, σ1 antagonism ameliorates inflammatory pain through modulation of the endogenous opioid system, but it is unknown whether this occurs during neuropathic pain. We investigated the effect of σ1 inhibition on the painful hypersensitivity associated with the spared nerve injury (SNI) model in mice. Wild-type (WT) mice developed prominent cold (acetone test), mechanical (von Frey test), and heat hypersensitivity (Hargreaves test) after SNI. σ1 receptor knockout (ခσ1-KO) mice did not develop cold allodynia and showed significantly less mechanical allodynia, although they developed heat hyperalgesia after SNI. The systemic acute administration of the selective σ1 receptor antagonist S1RA attenuated all three types of SNI-induced hypersensitivity in WT mice. These ameliorative effects of S1RA were reversed by the administration of the σ1 agonist PRE-084, and were absent in σ1-KO mice, indicating the selectivity of S1RA-induced effects. The opioid antagonist naloxone and its peripherally restricted analog naloxone methiodide prevented S1RA-induced effects in mechanical and heat hypersensitivity, but not in cold allodynia, indicating that opioid-dependent and -independent mechanisms are involved in the effects of this σ1 antagonist. The repeated administration of S1RA twice a day during 10 days reduced SNI-induced cold, mechanical, and heat hypersensitivity without inducing analgesic tolerance during treatment. These effects were observed up to 12 h after the last administration, when S1RA was undetectable in plasma or brain, indicating long-lasting pharmacodynamic effects. These data suggest that σ1 antagonism may have therapeutic value for the treatment of neuropathic pain induced by the transection of peripheral nerves.
Collapse
Affiliation(s)
- Inmaculada Bravo-Caparrós
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain
| | - Gloria Perazzoli
- Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
| | - Sandra Yeste
- Drug Discovery and Preclinical Development, Esteve, Barcelona, Spain
| | - Domagoj Cikes
- Institute of Molecular Biotechnology, Vienna, Austria
| | - José Manuel Baeyens
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain
| | - Enrique José Cobos
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain.,Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| | - Francisco Rafael Nieto
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute, University Hospital Complex of Granada, Granada, Spain
| |
Collapse
|
57
|
Zhang Y, Li S, Huang S, Cao L, Liu T, Zhao J, Wu J, Wang J, Cao L, Xu J, Dong L. IL33/ST2 contributes to airway remodeling via p-JNK MAPK/STAT3 signaling pathway in OVA-induced allergic airway inflammation in mice. Exp Lung Res 2019; 45:65-75. [PMID: 31112061 DOI: 10.1080/01902148.2019.1611972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aim of this study: Airway remodeling, which encompasses structural changes in airway is a main feature of asthma. Interleukin-33 (IL-33) has been reported to be a vital cytokine in airway remodeling in asthma, but the underlying mechanisms are not clear yet. This study focused on discussing the role of IL-33 in airway remodeling in asthma. Material and methods: Female BALB/c mice were divided into a control group, an OVA induced allergic airway disease group and an anti-ST2 antibody intervention group. Immunohistochemistry and western blot were performed to detect IL-33, ST2 expression in addition to airway remodeling markers a-smooth muscle actin (a-SMA) and type 1 collagen in OVA-induced mice model. Levels of p-JNK and p-STAT3 activation in mice were detected by western blot. Human lung fibroblast (HLF) were stimulated with rhIL-33, anti-ST2 antibody and JNK inhibitor sp600125 and levels of JNK and STAT3 activation were determined via western blot and immunofluorescence staining. Results: Anti-ST2 treatment inhibited JNK/STAT3 phosphorylation and airway remodeling in OVA-induced mouse model. IL-33 induced a-SMA and collagen 1 expression was inhibited by anti-ST2 antibody and sp600125 treatment via decreased JNK/STAT3 phosphorylation in human lung fibroblast. Conclusions: IL-33 promoted airway remodeling by interacting with ST2 to activate the JNK/STAT3 signaling pathway in asthma.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Shuo Li
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Siyuan Huang
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Liuzhao Cao
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Tian Liu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Jiping Zhao
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Jinxiang Wu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Junfei Wang
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Lili Cao
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Jiawei Xu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Liang Dong
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| |
Collapse
|
58
|
Du L, Hu X, Yang W, Yasheng H, Liu S, Zhang W, Zhou Y, Cui W, Zhu J, Qiao Z, Maoying Q, Chu Y, Zhou H, Wang Y, Mi W. Spinal IL-33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2-STAT3 cascade. Glia 2019; 67:1680-1693. [PMID: 31087583 DOI: 10.1002/glia.23639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Interleukin-33 (IL-33) and its receptor ST2 contribute to spinal glial activation and chronic pain. A recent study showed that peripheral IL-33 plays a pivotal role in the pathogenesis of chronic itch induced by poison ivy. However, how IL-33/ST2 signaling in the spinal cord potentially mediates chronic itch remains elusive. Here, we determined that St2-/- substantially reduced scratching behaviors in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) as well as acetone and diethylether followed by water-induced dry skin in mice. Intrathecal administration of the neutralizing anti-ST2 or anti-IL-33 antibody remarkably decreased the scratching response in DNFB-induced ACD mice. Expression of spinal IL-33 and ST2 significantly increased in ACD mice, as evidenced by increased mRNA and protein levels. Immunofluorescence and in situ hybridization demonstrated that increased expression of spinal IL-33 was predominant in oligodendrocytes and astrocytes, whereas ST2 was mainly expressed in astrocytes. Further studies showed that in ACD mice, the activation of astrocytes and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) were markedly attenuated by St2-/- . Intrathecal injection of Janus Kinase 2 Inhibitor AG490 significantly alleviated scratching behaviors in ACD mice. rIL-33 pretreatment exacerbated gastrin-releasing peptide (GRP)-evoked scratching behaviors. This increased gastrin-releasing peptide receptor (GRPR) expression was abolished by St2-/- . Tnf-α upregulation was suppressed by St2-/- . Our results indicate that the spinal IL-33/ST2 signaling pathway contributes to chronic itch via astrocytic JAK2-STAT3 cascade activation, promoting TNF-α release to regulate the GRP/GRPR signaling-related itch response. Thus, these findings provide a potential therapeutic option for treating chronic pruritus.
Collapse
Affiliation(s)
- Lixia Du
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Xueming Hu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Hanikezi Yasheng
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenwen Zhang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Yang Zhou
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenqiang Cui
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Zheng Qiao
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Qiliang Maoying
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
59
|
Li CD, Zhao JY, Chen JL, Lu JH, Zhang MB, Huang Q, Cao YN, Jia GL, Tao YX, Li J, Cao H. Mechanism of the JAK2/STAT3-CAV-1-NR2B signaling pathway in painful diabetic neuropathy. Endocrine 2019; 64:55-66. [PMID: 30830585 PMCID: PMC6453875 DOI: 10.1007/s12020-019-01880-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE The aim of the present study was to further elucidate the role of JAK2/STAT3-CAV-1-NR2B on painful diabetic neuropathy. METHODS In vivo, the mechanical withdrawal threshold and thermal withdrawal latency were measured to evaluate neuropathic pain behaviors (n= 8), while western blot (n= 5) and an immunofluorescence double staining experiment (n= 6) were performed to understand the molecular mechanism. In vitro, the individual culture of BV2 mouse microglia cell lines, the co-culture of BV2 mouse microglia cell lines and PC12 rat neuron cell lines, and western blot analysis were performed to understand the molecular mechanism between microglia and neurons. RESULTS The expression of p-JAK2, p-STAT3, t-CAV-1, and p-NR2B was upregulated in the dorsal horn of DNP rats throughout the experiment. Through the immunofluorescence double staining experiment, it was found that p-STAT3 was mainly expressed in activated microglia, and this condition can be stably maintained for approximately 2 weeks after the establishment of the DNP model. The intrathecal injection of JAK2 inhibitor AG490 can relieve the abnormal expression of p-JAK2, p-STAT3, t-CAV-1, and p-NR2B, and relieve pain. The remission of AG490 began on the third day, and it could be stably sustained for 14 days. In vitro high-glucose induced the activation of p-STAT3 in microglia, thereby upregulating the expression of p-CAV-1 and p-NR2B in neurons in the co-culture system. JAK2 inhibitor AG490 can alleviate the abnormal expression of these proteins in the JAK2/STAT3-CAV-1-NR2B signaling pathway in vitro. CONCLUSIONS Microglial JAK2/STAT3 signaling probably contributes to neuropathic pain by activating the CAV-1-NR2B pathway.
Collapse
Affiliation(s)
- Chuan-Da Li
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, 325035, Zhejiang, China
| | - Jia-Yi Zhao
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, 325035, Zhejiang, China
| | - Jia-Li Chen
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, 325035, Zhejiang, China
| | - Jia-Hui Lu
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, 325035, Zhejiang, China
| | - Mao-Biao Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, 325035, Zhejiang, China
| | - Qi Huang
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, 325035, Zhejiang, China
| | - Yan-Nan Cao
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, 325035, Zhejiang, China
| | - Gai-Li Jia
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, 325035, Zhejiang, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Jun Li
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, 325035, Zhejiang, China.
| | - Hong Cao
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, 325035, Zhejiang, China.
| |
Collapse
|
60
|
Zhao L, Du L, Zhang Y, Chao J, Duan M, Yao H, Shen C, Zhang Y. Role of PUMA in the methamphetamine-induced migration of microglia. Metab Brain Dis 2019; 34:61-69. [PMID: 30259295 DOI: 10.1007/s11011-018-0319-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Abstract
In this study, we demonstrated that PUMA was involved in the microglial migration induced by methamphetamine. PUMA expression was examined by western blotting and immunofluorescence staining. BV2 and HAPI cells were pretreated with a sigma-1R antagonist and extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), c-Jun N-terminal protein kinase (JNK), and phosphatidylinositol-3 kinase (PI3K)/Akt inhibitors, and PUMA expression was detected by western blotting. The cell migration in BV2 and HAPI cells transfected with a lentivirus encoding red fluorescent protein (LV-RFP) was also examined using a wound-healing assay and nested matrix model and cell migration assay respectively. The molecular mechanisms of PUMA in microglial migration were validated using a siRNA approach. The exposure of BV2 and HAPI cells to methamphetamine increased the expression of PUMA, reactive oxygen species (ROS), the MAPK and PI3K/Akt pathways and the downstream transcription factor signal transducer and activator of transcription 3 (STAT3) pathways. PUMA knockdown in microglia transfected with PUMA siRNA attenuated the increased cell migration induced by methamphetamine, thereby implicating PUMA in the migration of BV2 and HAPI cells. This study demonstrated that methamphetamine-induced microglial migration involved PUMA up-regulation. Targeting PUMA could provide insights into the development of a potential therapeutic approach for the alleviation of microglia migration induced by methamphetamine.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Longfei Du
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yanhong Zhang
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Ming Duan
- Key Laboratory for Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Chuanlu Shen
- Department of Pathophysiology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Yuan Zhang
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
61
|
Spinal Serotonin 1A Receptor Contributes to the Analgesia of Acupoint Catgut Embedding by Inhibiting Phosphorylation of the N-Methyl-d-Aspartate Receptor GluN1 Subunit in Complete Freund's Adjuvant-Induced Inflammatory Pain in Rats. THE JOURNAL OF PAIN 2019; 20:16.e1-16.e16. [DOI: 10.1016/j.jpain.2018.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 02/08/2023]
|
62
|
Li Q, Liu S, Li L, Ji X, Wang M, Zhou J. Spinal IL-36γ/IL-36R participates in the maintenance of chronic inflammatory pain through astroglial JNK pathway. Glia 2018; 67:438-451. [PMID: 30578562 DOI: 10.1002/glia.23552] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
Emerging evidence indicates that spinal neuroinflammation contributes to the maintenance of chronic inflammatory pain. IL-36, as a novel member of the interleukin (IL)-1 super-family cytokines, plays an important role in inflammatory responses. The present study aimed to investigate the role of spinal IL-36 and IL-36 receptor (IL-36R) signaling in the pathology of chronic inflammatory pain. IL-36γ and IL-36R, but not IL-36α and IL-36β, were persistently upregulated in the spinal cord of mice with intraplantar injections of complete Freund's adjuvant (CFA). Intrathecal administration of both IL-36R antagonist (IL-36Ra) and IL-36γ siRNA significantly attenuated CFA-induced chronic inflammatory pain behaviors. Furthermore, CFA-induced IL-36γ expression was mainly observed in spinal neurons whereas IL-36R was primarily expressed in spinal astrocytes. Additionally, the intrathecal injection of IL-36γ was sufficient to induce pain hypersensitivity and astrocyte activation in naive mice, and these effects could be inhibited by blocking c-Jun N-terminal kinase (JNK) phosphorylation. In vitro experiments also demonstrated that the IL-36γ could induce astrocytic JNK activation and inflammatory cytokines release, which was mediated by IL-36R. Finally, intrathecal injection of IL-36γ-activated astrocytes in a pJNK-dependent manner induced mechanical allodynia and thermal hyperalgesia in naive mice. Collectively, these findings reveal that the neuronal/astrocytic interaction in the spinal cord by which neuronally produced IL-36γ activates astrocytes via IL-36R-mediated JNK pathway is crucial for the maintenance of chronic inflammatory pain. Thus, IL-36γ/IL-36R-mediated astrocyte signaling may be a suitable therapeutic target for chronic inflammatory pain.
Collapse
Affiliation(s)
- Qian Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lingling Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoli Ji
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Min Wang
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Junmei Zhou
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
63
|
Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang HR. Expression and Function of IL-33/ST2 Axis in the Central Nervous System Under Normal and Diseased Conditions. Front Immunol 2018; 9:2596. [PMID: 30515150 PMCID: PMC6255965 DOI: 10.3389/fimmu.2018.02596] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Interleukin-33 (IL-33) is a well-recognized immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. The abundant expression of IL-33 in brain and spinal cord prompted many scientists to explore its unique role in the central nervous system (CNS) under physiological and pathological conditions. Indeed emerging evidence from over a decade's research suggests that IL-33 acts as one of the key molecular signaling cues coordinating the network between the immune and CNS systems, particularly during the development of neurological diseases. Here, we highlight the recent advances in our knowledge regarding the distribution and cellular localization of IL-33 and its receptor ST2 in specific CNS regions, and more importantly the key roles IL-33/ST2 signaling pathway play in CNS function under normal and diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
64
|
Liu X, Zhang L, Jin L, Tan Y, Li W, Tang J. HCN2 contributes to oxaliplatin-induced neuropathic pain through activation of the CaMKII/CREB cascade in spinal neurons. Mol Pain 2018; 14:1744806918778490. [PMID: 29806529 PMCID: PMC5974562 DOI: 10.1177/1744806918778490] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Emerging evidence showed that hyperpolarization-activated cation channels (HCN) participate in the development of inflammatory and neuropathic pain. However, the role of HCN2 in oxaliplatin-induced neuropathic pain remains unknown. Here, we found that HCN2 expression was upregulated in a rat model of oxaliplatin-induced neuropathic pain. Intrathecal injection of ZD7288, an HCN specific inhibitor, decreased the HCN2 level, as well as weakened the neuropathic pain behaviors compared to naive rats. Besides, mechanistic studies revealed that the expression of the spinal N-methyl-D-aspartate receptor subunit 2B was increased after oxaliplatin administration and was reduced by ZD7288 administration. The nociceptive behaviors were reversed by NR2B antagonist Ro 25–6981 in HCN2-overexpression rats. Furthermore, the underlying cellular mechanism demonstrated that ZD7288 administration restrained the enhanced activation of the neuronal calcium–calmodulin-dependent kinase II (CaMKII)/cyclic adenosine monophosphate response element-binding protein cascade after oxaliplatin administration. Moreover, pretreatment of CaMKII inhibitor KN-93 suppressed the nociceptive behaviors, as well as NR2B upregulation induced by overexpression of HCN2. In a word, HCN2 is conducive to oxaliplatin-induced neuropathic pain by activating the neuronal CaMKII/CREB cascade.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Lidong Zhang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Li Jin
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Yuanhui Tan
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
- Weiyan Li and Jun Tang, Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu Province 210002, P.R. China. Emails: ;
| | - Jun Tang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
- Weiyan Li and Jun Tang, Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu Province 210002, P.R. China. Emails: ;
| |
Collapse
|
65
|
Durrant A, Swift M, Beazley-Long N. A role for pericytes in chronic pain? Curr Opin Support Palliat Care 2018; 12:154-161. [PMID: 29553988 PMCID: PMC6027993 DOI: 10.1097/spc.0000000000000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW The importance of the blood-brain barrier (BBB) and neuroinflammation in neurodegenerative conditions is becoming increasingly apparent, yet very little is known about these neurovascular functions in nonmalignant disease chronic pain. Neural tissue pericytes play critical roles in the formation and maintenance of the BBB. Herein, we review the important roles of neural pericytes and address their potential role in chronic pain. RECENT FINDINGS Pericytes are implicated in the function of neural microvasculature, including BBB permeability, neuroimmune factor secretion and leukocyte transmigration. In addition, the multipotent stem cell nature of pericytes affords pericytes the ability to migrate into neural parenchyma and differentiate into pain-associated cell types. These recent findings indicate that pericytes are key players in pathological BBB disruption and neuroinflammation, and as such pericytes may be key players in chronic pain states. SUMMARY Pericytes play key roles in pathological processes associated with chronic pain. We propose that pericytes may be a therapeutic target for painful diseases that have associated neural vascular dysfunction. Given the paucity of new pharmacotherapies for chronic pain conditions, we hope that this review inspires researchers to unearth the potential role(s) of pericytes in chronic pain sowing the seeds for future new chronic pain therapies.
Collapse
Affiliation(s)
- A.M. Durrant
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| | - M.N Swift
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| | - N. Beazley-Long
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| |
Collapse
|
66
|
Huang SJ, Yan JQ, Luo H, Zhou LY, Luo JG. IL-33/ST2 signaling contributes to radicular pain by modulating MAPK and NF-κB activation and inflammatory mediator expression in the spinal cord in rat models of noncompressive lumber disk herniation. J Neuroinflammation 2018; 15:12. [PMID: 29329586 PMCID: PMC5766999 DOI: 10.1186/s12974-017-1021-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Immune and inflammatory responses occurring in the spinal cord play a pivotal role in the progression of radicular pain caused by intervertebral disk herniation. Interleukin-33 (IL-33) orchestrates inflammatory responses in a wide range of inflammatory and autoimmune disorders of the nervous system. Thus, the purpose of this study is to investigate the expression of IL-33 and its receptor ST2 in the dorsal spinal cord and to elucidate whether the inhibition of spinal IL-33 expression significantly attenuates pain-related behaviors in rat models of noncompressive lumbar disc herniation. METHODS Lentiviral vectors encoding short hairpin RNAs that target IL-33 (LV-shIL-33) were constructed for gene silencing. Rat models of noncompressive lumber disk herniation were established, and the spines of rats were injected with LV-shIL-33 (5 or 10 μl) on the first day after the operation. Mechanical thresholds were evaluated during an observation period of 21 days. Moreover, the expression levels of spinal tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase 2 (COX-2) and the activation of the mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) pathways were evaluated to gain insight into the mechanisms related to the contribution of IL-33/ST2 signaling to radicular pain. RESULTS The application of nucleus pulposus (NP) to the dorsal root ganglion (DRG) induced an increase in IL-33 and ST2 expression in the spinal cord, mainly in the dorsal horn neurons, astrocytes, and oligodendrocytes. Spinally delivered LV-shIL-33 knocked down the expression of IL-33 and markedly attenuated mechanical allodynia. In addition, spinal administration of LV-shIL-33 reduced the overexpression of spinal IL-1β, TNF-α, and COX-2 and attenuated the activation of C-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and NF-κB/p65 but not p38. CONCLUSIONS This study indicates that spinal IL-33/ST2 signaling plays an important role in the development and progression of radicular pain in rat models of noncompressive lumber disk herniation. Thus, the inhibition of spinal IL-33 expression may provide a potential treatment to manage radicular pain caused by intervertebral disk herniation.
Collapse
Affiliation(s)
- Si-Jian Huang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Jian-Qin Yan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Hui Luo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Lu-Yao Zhou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Jian-Gang Luo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| |
Collapse
|
67
|
Chen SP, Sun J, Zhou YQ, Cao F, Braun C, Luo F, Ye DW, Tian YK. Sinomenine attenuates cancer-induced bone pain via suppressing microglial JAK2/STAT3 and neuronal CAMKII/CREB cascades in rat models. Mol Pain 2018; 14:1744806918793232. [PMID: 30027795 PMCID: PMC6096675 DOI: 10.1177/1744806918793232] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer-induced bone pain is one of the most severe types of pathological pain, which often occurs in patients with advanced prostate, breast, and lung cancer. It is of great significance to improve the therapies of cancer-induced bone pain due to the opioids' side effects including addiction, sedation, pruritus, and vomiting. Sinomenine, a traditional Chinese medicine, showed obvious analgesic effects on a rat model of chronic inflammatory pain, but has never been proven to treat cancer-induced bone pain. In the present study, we investigated the analgesic effect of sinomenine after tumor cell implantation and specific cellular mechanisms in cancer-induced bone pain. Our results indicated that single administration of sinomenine significantly and dose-dependently alleviated mechanical allodynia in rats with cancer-induced bone pain and the effect lasted for 4 h. After tumor cell implantation, the protein levels of phosphorylated-Janus family tyrosine kinase 2 (p-JAK2), phosphorylated-signal transducers and activators of transcription 3 (p-STAT3), phosphorylated-Ca2+/calmodulin-dependent protein kinase II (p-CAMKII), and phosphorylated-cyclic adenosine monophosphate response element-binding protein (p-CREB) were persistently up-regulated in the spinal cord horn. Chronic intraperitoneal treatment with sinomenine markedly suppressed the activation of microglia and effectively inhibited the expression of JAK2/STAT3 and CAMKII/CREB signaling pathways. We are the first to reveal that up-regulation of microglial JAK2/STAT3 pathway are involved in the development and maintenance of cancer-induced bone pain. Moreover, our investigation provides the first evidence that sinomenine alleviates cancer-induced bone pain by inhibiting microglial JAK2/STAT3 and neuronal CAMKII/CREB cascades.
Collapse
Affiliation(s)
- Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Cao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, UMKC School of Medicine, Kansas City, MO
| | - Cody Braun
- UMKC School of Medicine, Kansas City, MO
| | - Fang Luo
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
68
|
Li SF, Ouyang BS, Zhao X, Wang YP. Analgesic effect of AG490, a Janus kinase inhibitor, on oxaliplatin-induced acute neuropathic pain. Neural Regen Res 2018; 13:1471-1476. [PMID: 30106061 PMCID: PMC6108211 DOI: 10.4103/1673-5374.235305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Neuropathic pain often occurs during chemotherapy with oxaliplatin. AG490 has been shown to exert an antagonistic effect on inflammatory pain, but its effect on oxaliplatin-induced neuropathic pain remains poorly understood. This study sought to observe the analgesic effect of AG490 on acute neuropathic pain induced by a single oxaliplatin treatment and to address the possible mechanism. In this study, we established a model of oxaliplatin-induced acute neuropathic pain by intraperitoneal injection of 6 mg/kg oxaliplatin. On day 2 after injection, models were intraperitoneally injected with 1, 5, or 10 mg/kg AG490. Paw withdrawal threshold to mechanical stimuli and tail withdrawal latency to cold stimuli were determined. Western blot assay was performed to detect the expression of spinal phosphorylated signal transducer and activator of transcription 3 (p-STAT3). Immunohistochemistry was used to determine the immunoreactivity of p-STAT3 and interleukin-6. Results demonstrated that paw withdrawal threshold and tail withdrawal latency were significantly increased by the treatment of AG490 in rats. There was no significant difference in the effect among the different doses of AG490. AG490 10 mg/kg decreased the expression of p-STAT3, the immunoreactivity of p-STAT3 and interleukin-6 in spinal cord of acute neuropathic pain rats. These findings confirm that AG490 can attenuate oxaliplatin-induced acute neuropathic pain and is associated with the inhibition in the JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shuang-Feng Li
- Department of Anesthesiology, The Second Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan Province; Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Bi-Shan Ouyang
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Xin Zhao
- Department of Neurology, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Ya-Ping Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
69
|
Hu ZJ, Han W, Cao CQ, Mao-Ying QL, Mi WL, Wang YQ. Peripheral Leptin Signaling Mediates Formalin-Induced Nociception. Neurosci Bull 2017; 34:321-329. [PMID: 29204732 DOI: 10.1007/s12264-017-0194-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence suggests that obesity is associated with chronic pain. However, whether obesity is associated with acute inflammatory pain is unknown. Using a well-established obese mouse model induced by a high-fat diet, we found that: (1) the acute thermal pain sensory threshold did not change in obese mice; (2) the model obese mice had fewer nociceptive responses in formalin-induced inflammatory pain tests; restoring the obese mice to a chow diet for three weeks partly recovered their pain sensation; (3) leptin injection induced significant phosphorylation of STAT3 in control mice but not in obese mice, indicating the dysmodulation of topical leptin-leptin receptor signaling in these mice; and (4) leptin-leptin receptor signaling-deficient mice (ob/ob and db/db) or leptin-leptin receptor pathway blockade with a leptin receptor antagonist and the JAK2 inhibitor AG 490 in wild-type mice reduced their nociceptive responses in formalin tests. These results indicate that leptin plays a role in nociception induced by acute inflammation and that interference in the leptin-leptin receptor pathway could be a peripheral target against acute inflammatory pain.
Collapse
Affiliation(s)
- Zhi-Jing Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
- WuXi AppTec, Shanghai, 200131, China
| | - Wei Han
- WuXi AppTec, Shanghai, 200131, China
| | | | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
70
|
Du LX, Wang YQ, Hua GQ, Mi WL. IL-33/ST2 Pathway as a Rational Therapeutic Target for CNS Diseases. Neuroscience 2017; 369:222-230. [PMID: 29175156 DOI: 10.1016/j.neuroscience.2017.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
Interleukin (IL)-33 is a member of the interleukin-1 cytokine family that is produced by many different types of tissues including the central nervous system (CNS). IL-33 mediates its effects via its heterodimeric receptor complex, comprised of ST2 and the IL-1 receptor accessory protein (IL-1RAcp). As a pleiotropic nuclear cytokine, IL-33 is a crucial factor in the development of cardiovascular diseases, allergic diseases, infectious diseases, and autoimmune diseases. Recently, accumulated evidence shows that the IL-33/ST2 axis plays a crucial and diverse role in the pathogenesis of CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, infectious diseases, traumatic CNS injury, chronic pain, etc. In this review, we discuss the recent findings in the cellular signaling of IL-33 and advancement of the role of IL-33 in several CNS diseases, as well as its therapeutic potential for the treatment of those diseases.
Collapse
Affiliation(s)
- Li-Xia Du
- Department of Integrative Medicine and Neurobiology, Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, People's Republic of China
| | - Guo-Qiang Hua
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, People's Republic of China.
| |
Collapse
|
71
|
Fattori V, Hohmann MSN, Rossaneis AC, Manchope MF, Alves-Filho JC, Cunha TM, Cunha FQ, Verri WA. Targeting IL-33/ST2 signaling: regulation of immune function and analgesia. Expert Opin Ther Targets 2017; 21:1141-1152. [PMID: 29076792 DOI: 10.1080/14728222.2017.1398734] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION IL-33 signals through ST2 receptor and promotes inflammation by activating downstream pathways culminating in the production of pro-inflammatory mediators such as IL-1β, TNF-α, and IL-6 in an NF-κB-dependent manner. In fact, compelling evidence has demonstrated the importance of IL-33/ST2 in both innate and adaptive immune responses in diseases presenting pain as an important clinical symptom. Areas covered: IL-33 is a pleiotropic cytokine with varied immune functions. Dysregulation of this pathway has been described as a key step in varied immune responses. Further, IL-33 contributes to peripheral and spinal cord nociceptor neuron sensitization in innate and adaptive inflammatory immune responses as well as in neuropathic and cancer pain. In this sense, targeting IL-33/ST2 signaling is a promising therapeutic approach. Expert opinion: The modulation of IL-33/ST2 signaling represents a possible approach in regulating immune functions. In addition to immune function, strategies targeting IL-33/ST2 signaling pathway display a favorable preclinical analgesic profile in both acute and chronic models of pain. Therefore, IL-33-targeting therapies represent a potential target for the development of novel analgesic drugs given that IL-33 activates, for instance, neutrophils, mast cells, macrophages, astrocytes, and microglia that are important cells in the induction and maintenance of chronic pain states.
Collapse
Affiliation(s)
- Victor Fattori
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Miriam S N Hohmann
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Ana C Rossaneis
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Marilia F Manchope
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Jose C Alves-Filho
- b Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Thiago M Cunha
- b Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Fernando Q Cunha
- b Department of Pharmacology, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Waldiceu A Verri
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| |
Collapse
|
72
|
Chao J, Zhang Y, Du L, Zhou R, Wu X, Shen K, Yao H. Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci Rep 2017; 7:11540. [PMID: 28912535 PMCID: PMC5599501 DOI: 10.1038/s41598-017-11065-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/15/2017] [Indexed: 01/26/2023] Open
Abstract
Our previous study demonstrated that the sigma-1 receptor is involved in methamphetamine-induced microglial apoptosis and death; however, whether the sigma-1 receptor is involved in microglial activation as well as the molecular mechanisms underlying this process remains poorly understood. The aim of this study is to demonstrate the involvement of the sigma-1 receptor in methamphetamine-mediated microglial activation. The expression of σ-1R, iNOS, arginase and SOCS was examined by Western blot; activation of cell signaling pathways was detected by Western blot analysis. The role of σ-1R in microglial activation was further validated in C57BL/6 N WT and sigma-1 receptor knockout mice (male, 6-8 weeks) injected intraperitoneally with saline or methamphetamine (30 mg/kg) by Western blot combined with immunostaining specific for Iba-1. Treatment of cells with methamphetamine (150 μM) induced the expression of M1 markers (iNOS) with concomitant decreased the expression of M2 markers (Arginase) via its cognate sigma-1 receptor followed by ROS generation. Sequential activation of the downstream MAPK, Akt and STAT3 pathways resulted in microglial polarization. Blockade of sigma-1 receptor significantly inhibited the generation of ROS and activation of the MAPK and Akt pathways. These findings underscore the critical role of the sigma-1 receptor in methamphetamine-induced microglial activation.
Collapse
Affiliation(s)
- Jie Chao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
- Department of Physiology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Yuan Zhang
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Longfei Du
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiaodong Wu
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Kai Shen
- Department of Pharmacy, Nantong Tongzhou People's Hospital, Nantong, China.
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
73
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Luo F, Tian YK, Ye DW. Cellular and Molecular Mechanisms of Calcium/Calmodulin-Dependent Protein Kinase II in Chronic Pain. J Pharmacol Exp Ther 2017; 363:176-183. [DOI: 10.1124/jpet.117.243048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023] Open
|
74
|
Wei JY, Liu CC, Ouyang HD, Ma C, Xie MX, Liu M, Lei WL, Ding HH, Wu SL, Xin WJ. Activation of RAGE/STAT3 pathway by methylglyoxal contributes to spinal central sensitization and persistent pain induced by bortezomib. Exp Neurol 2017; 296:74-82. [PMID: 28729113 DOI: 10.1016/j.expneurol.2017.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
Bortezomib is a first-line chemotherapeutic drug widely used for multiple myeloma and other nonsolid malignancies. Although bortezomib-induced persistent pain is easily diagnosed in clinic, the pathogenic mechanism remains unclear. Here, we studied this issue with use of a rat model of systemic intraperitoneal administration of bortezomib for consecutive 5days. Consisted with our previous study, we found that bortezomib treatment markedly induced mechanical allodynia in rats. Furthermore, we first found that bortezomib treatment significantly induced the upregulation of methylglyoxal in spinal dorsal horn of rats. Spinal local application of methylglyoxal also induced mechanical allodynia and central sensitization in normal rats. Moreover, administration of bortezomib upregulated the expression of receptors for advanced glycation end products (RAGE) and phosphorylated STAT3 (p-STAT3) in dorsal horn. Importantly, intrathecal injection of metformin, a known scavenger of methylglyoxal, significantly attenuated the upregulation of methylglyoxal and RAGE in dorsal horn, central sensitization and mechanical allodynia induced by bortezomib treatment, and blockage of RAGE also prevented the upregulation of p-STAT3, central sensitization and mechanical allodynia induced by bortezomib treatment. In addition, inhibition of STAT3 activity by S3I-201 attenuated bortezomib-induced mechanical allodynia and central sensitization. Local knockdown of STAT3 also ameliorated the mechanical allodynia induced by bortezomib administration. Our results suggest that accumulation of methylglyoxal may activate the RAGE/STAT3 signaling pathway in dorsal horn, and contributes to the spinal central sensitization and persistent pain induced by bortezomib treatment.
Collapse
Affiliation(s)
- Jia-You Wei
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Han-Dong Ouyang
- Department of Anesthesiology, Cancer Center, Sun Yat-sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chao Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Man-Xiu Xie
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Liu
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wan-Long Lei
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Huan-Huan Ding
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shao-Ling Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wen-Jun Xin
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
75
|
DNA Hydroxymethylation by Ten-eleven Translocation Methylcytosine Dioxygenase 1 and 3 Regulates Nociceptive Sensitization in a Chronic Inflammatory Pain Model. Anesthesiology 2017; 127:147-163. [DOI: 10.1097/aln.0000000000001632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Background
Ten-eleven translocation methylcytosine dioxygenase converts 5-methylcytosine in DNA to 5-hydroxymethylcytosine, which plays an important role in gene transcription. Although 5-hydroxymethylcytosine is enriched in mammalian neurons, its regulatory function in nociceptive information processing is unknown.
Methods
The global levels of 5-hydroxymethylcytosine and ten-eleven translocation methylcytosine dioxygenase were measured in spinal cords in mice treated with complete Freund’s adjuvant. Immunoblotting, immunohistochemistry, and behavioral tests were used to explore the downstream ten-eleven translocation methylcytosine dioxygenase-dependent signaling pathway.
Results
Complete Freund’s adjuvant-induced nociception increased the mean levels (± SD) of spinal 5-hydroxymethylcytosine (178 ± 34 vs. 100 ± 21; P = 0.0019), ten-eleven translocation methylcytosine dioxygenase-1 (0.52 ± 0.11 vs. 0.36 ± 0.064; P = 0.0088), and ten-eleven translocation methylcytosine dioxygenase-3 (0.61 ± 0.13 vs. 0.39 ± 0.08; P = 0.0083) compared with levels in control mice (n = 6/group). The knockdown of ten-eleven translocation methylcytosine dioxygenase-1 or ten-eleven translocation methylcytosine dioxygenase-3 alleviated thermal hyperalgesia and mechanical allodynia, whereas overexpression cytosinethem in naïve mice (n = 6/group). Down-regulation of spinal ten-eleven translocation methylcytosine dioxygenase-1 and ten-eleven translocation methylcytosine dioxygenase-3 also reversed the increases in Fos expression (123 ± 26 vs. 294 ± 6; P = 0.0031; and 140 ± 21 vs. 294 ± 60; P = 0.0043, respectively; n = 6/group), 5-hydroxymethylcytosine levels in the Stat3 promoter (75 ± 16.1 vs. 156 ± 28.9; P = 0.0043; and 91 ± 19.1 vs. 156 ± 28.9; P = 0.0066, respectively; n = 5/group), and consequent Stat3 expression (93 ± 19.6 vs. 137 ± 27.5; P = 0.035; and 72 ± 15.2 vs. 137 ± 27.5; P = 0.0028, respectively; n = 5/group) in complete Freund’s adjuvant-treated mice.
Conclusions
This study reveals a novel epigenetic mechanism for ten-eleven translocation methylcytosine dioxygenase-1 and ten-eleven translocation methylcytosine dioxygenase-3 in the modulation of spinal nociceptive information via targeting of Stat3.
Collapse
|
76
|
Abstract
We previously demonstrated that the chemokine receptor CXCR4 plays an important role in cancer-induced bone pain by activating spinal neurons and glial cells. However, the specific neuronal mechanism of CXCR4 signaling is not clear. We further report that CXCR4 contributes to the activation of the neuronal CaMKII/CREB pathway in cancer-induced bone pain. We used a tumor cell implantation (TCI) model and observed that CXCR4, p-CaMKII and p-CREB were persistently up-regulated in spinal neurons. CXCR4 also co-expressed with p-CaMKII and p-CREB, and mediated p-CaMKII and p-CREB expression after TCI. Intrathecal delivery of CXCR4 siRNA or CaMKII inhibitor AIP2 abrogated TCI-induced pain hypersensitivity and TCI-induced increase in p-CaMKII and p-CREB expression. Intrathecal injection of the principal ligand for CXCR4, SDF-1, promoted p-CaMKII and p-CREB expression in naive rats, which was prevented by post-administration of CXCR4 inhibitor Plerixafor or PLC inhibitor U73122. Plerixafor, U73122, or AIP2 also alleviated SDF-1-elicited pain behaviors. Intrathecal injection of CXCR4 siRNA significantly suppressed TCI-induced up-regulation of NMDAR1 mRNA and protein, which is a known gene target of CREB. Collectively, these results suggest that the CaMKII/CREB pathway in spinal neurons mediates CXCR4-facilitated pain hypersensitivity in cancer rats.
Collapse
|
77
|
Guo CH, Bai L, Wu HH, Yang J, Cai GH, Zeng SX, Wang X, Wu SX, Ma W. Midazolam and ropivacaine act synergistically to inhibit bone cancer pain with different mechanisms in rats. Oncol Rep 2016; 37:249-258. [PMID: 27841001 DOI: 10.3892/or.2016.5241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/24/2016] [Indexed: 11/06/2022] Open
Abstract
Analgesic strategy of a single drug analgesia in bone cancer pain (BCP) has shifted to combined analgesia with different drugs which have different mechanism. After tumor cell inculation, the activation of signal transducer and activator of transcription (STAT3) and extracellular signal-regulated kinase (ERK) signaling pathway are involved in the development and maintenance of BCP, whereas a decrease in the expression of spinal STAT3 and ERK through using their specific blocker, lead to attenuation of BCP. Hence, in this study, we clarified that intrathecal (i.t.) injection of midazolam (MZL) and ropivacaine (Ropi) induces synergistic analgesia on BCP and is accompanied with different mechanisms of these analgesic effect. Hargreaves heat test was used to detect the analgesic effect of single dose of i.t. MZL, Ropi and their combination on the BCP rats. At consecutive daily administration experiment, thermal hyperalgesia was recorded, and immunohistochemical staining was used to detect the expression of c-Fos, spinal glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule-1 (IBA-1). Then, western blot analysis was used to examine spinal TSPO, GFAP, IBA-1, pERK/ERK and pSTAT3/STAT3 levels on day 14 after tumor cell inoculation. i.t. MZL or Ropi showed a short-term analgesia dose-dependently, and MZL displayed better effect on inhibition of pSTAT3 expression than pERK, but Ropi was just the reverse, then consecutive daily administrations of their combination acted synergistically to attenuate thermal hyperalgesia with downregulated spinal 'neuron-astrocytic activation' in the BCP rats. i.t. co-delivery of MZL and Ropi shows synergistic analgesia on the BCP with the inhibition of spinal 'neuron-astrocytic activation'. Spinal different signaling pathway inhibition for MZL and Ropi may be involved in this process.
Collapse
Affiliation(s)
- Chi-Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lu Bai
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huang-Hui Wu
- Department of Anesthesiology, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Jing Yang
- Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Guo-Hong Cai
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Si-Xiang Zeng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Sheng-Xi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ma
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
78
|
Li D, Yan Y, Yu L, Duan Y. Procaine Attenuates Pain Behaviors of Neuropathic Pain Model Rats Possibly via Inhibiting JAK2/STAT3. Biomol Ther (Seoul) 2016; 24:489-94. [PMID: 27530113 PMCID: PMC5012873 DOI: 10.4062/biomolther.2016.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 01/04/2023] Open
Abstract
Neuropathic pain (NPP) is the main culprit among chronic pains affecting the normal life of patients. Procaine is a frequently-used local anesthesia with multiple efficacies in various diseases. However, its role in modulating NPP has not been reported yet. This study aims at uncovering the role of procaine in NPP. Rats were pretreated with procaine by intrathecal injection. Then NPP rat model was induced by sciatic nerve chronic compression injury (CCI) and behavior tests were performed to analyze the pain behaviors upon mechanical, thermal and cold stimulations. Spinal expression of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was detected by qRT-PCR and western blot. JAK2 was also overexpressed in procaine treated model rats for behavior tests. Results showed that procaine pretreatment improved the pain behaviors of model rats upon mechanical, thermal and cold stimulations, with the best effect occurring on the 15(th) day post model construction (p<0.05). Procaine also inhibited JAK2 and STAT3 expression in both mRNA (p<0.05) and protein levels. Overexpression of JAK2 increased STAT3 level and reversed the improvement effects of procaine in pain behaviors (p<0.01). These findings indicate that procaine is capable of attenuating NPP, suggesting procaine is a potential therapeutic strategy for treating NPP. Its role may be associated with the inhibition on JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Donghua Li
- Department of Pain, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China.,Department of Anesthesiology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Yurong Yan
- Department of Anesthesiology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Lingzhi Yu
- Department of Pain, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Yong Duan
- Department of State-owned Assets Management, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| |
Collapse
|
79
|
Liu S, Li Q, Zhang MT, Mao-Ying QL, Hu LY, Wu GC, Mi WL, Wang YQ. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci Rep 2016; 6:28956. [PMID: 27381056 PMCID: PMC4933926 DOI: 10.1038/srep28956] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022] Open
Abstract
Curcumin has been shown to possess strong anti-inflammatory activity in many diseases. It has been demonstrated that the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) cascade and the NAcht leucine-rich-repeat protein 1 (NALP1) inflammasome are important for the synthesis of Pro-Interleukin (IL)-1β and the processing of the inactive protein to its mature form, which plays an active role in the pathogenesis of neuropathic pain. The present study showed that repeated intraperitoneal injection of curcumin ameliorated SNI-induced mechanical and cold allodynia in a dose-dependent manner and inhibited the elevation of spinal mature IL-1β protein levels. Additionally, repeated curcumin treatment significantly inhibited the aggregation of the NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in spinal astrocytes. Furthermore, the genetic down-regulation of NALP1 inflammasome activation by NALP1 siRNA and the pharmacological inhibition of the JAK2-STAT3 cascade by AG490 markedly inhibited IL-1β maturation and Pro-IL-1β synthesis, respectively, and reduced SNI-induced pain hypersensitivity. Our results suggest that curcumin attenuated neuropathic pain and down-regulated the production of spinal mature IL-1β by inhibiting the aggregation of NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in astrocytes.
Collapse
Affiliation(s)
- Shenbin Liu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Qian Li
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Meng-Ting Zhang
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Lang-Yue Hu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| |
Collapse
|
80
|
Han F, Zhou D, Yin X, Sun Z, Han J, Ye L, Zhao W, Zhang Y, Wang Z, Zheng L. Paeoniflorin protects diabetic mice against myocardial ischemic injury via the transient receptor potential vanilloid 1/calcitonin gene-related peptide pathway. Cell Biosci 2016; 6:37. [PMID: 27252827 PMCID: PMC4888521 DOI: 10.1186/s13578-016-0085-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/21/2016] [Indexed: 12/13/2022] Open
Abstract
Background Diabetes mellitus has multiple complications including neuropathy and increases cardiovascular events. Paeoniflorin (PF), a monoterpene glycoside, plays an essential role in neuroprotection and ischemic heart disease. In this study, we aimed to investigate the hypothesis that PF protects mice with diabetes mellitus against myocardial ischemic injury, and determine its associated mechanisms. Results Myocardial infarction (MI) was generated in the streptozotocin-mediated diabetic mice, which were pretreated with either vehicle or PF, respectively. Myocardial infarct size, myocardial enzyme, cardiac function, circulating calcitonin gene-related peptide (CGRP) concentration, histological analysis and the expression of associated molecules were determined and compared among different experimental groups. Compared to diabetic hearts pretreated with vehicle, hearts pretreated with PF exhibited less tissue damage and better CGRP concentration in serum when subjected to myocardial ischemia. Transient receptor potential vanilloid 1(TRPV1) gene knockout attenuated PF-mediated cardioprotection. Moreover, a specific Ca2+/calmodulin-dependent protein kinase (CaMK) inhibitor, KN-93, increased tissue damage and decreased CGRP activity in serum. Meanwhile, pretreated with PF increased the phosphorylation of cAMP response element binding protein (CREB). Conclusions Taken together, these findings demonstrate that PF protects diabetic mice against MI at least partially via the TRPV1/CaMK/CREB/CGRP signaling pathway.
Collapse
Affiliation(s)
- Fei Han
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Dongchen Zhou
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Xiang Yin
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Zewei Sun
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Jie Han
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Lifang Ye
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Wengting Zhao
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Yuanyuan Zhang
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Zhen Wang
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Liangrong Zheng
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| |
Collapse
|
81
|
Li Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 2016; 324:131-9. [PMID: 26964681 DOI: 10.1016/j.neuroscience.2016.03.013] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/04/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a series of neurodevelopmental disorders that are characterized by deficits in both social and cognitive functions. Although the exact etiology and pathology of ASD remain unclear, a disorder of the microbiota-gut-brain axis is emerging as a prominent factor in the generation of autistic behaviors. Clinical studies have shown that gastrointestinal symptoms and compositional changes in the gut microbiota frequently accompany cerebral disorders in patients with ASD. A disturbance in the gut microbiota, which is usually induced by a bacterial infection or chronic antibiotic exposure, has been implicated as a potential contributor to ASD. The bidirectional microbiota-gut-brain axis acts mainly through neuroendocrine, neuroimmune, and autonomic nervous mechanisms. Application of modulators of the microbiota-gut-brain axis, such as probiotics, helminthes and certain special diets, may be a promising strategy for the treatment of ASD. This review mainly discusses the salient observations of the disruptions of the microbiota-gut-brain axis in the pathogenesis of ASD and reveals its potential therapeutic role in autistic deficits.
Collapse
Affiliation(s)
- Q Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - J-M Zhou
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
82
|
Popiolek-Barczyk K, Mika J. Targeting the Microglial Signaling Pathways: New Insights in the Modulation of Neuropathic Pain. Curr Med Chem 2016; 23:2908-2928. [PMID: 27281131 PMCID: PMC5427777 DOI: 10.2174/0929867323666160607120124] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
The microglia, once thought only to be supporting cells of the central nervous system (CNS), are now recognized to play essential roles in many pathologies. Many studies within the last decades indicated that the neuro-immune interaction underlies the generation and maintenance of neuropathic pain. Through a large number of receptors and signaling pathways, the microglial cells communicate with neurons, astrocytes and other cells, including those of the immune system. A disturbance or loss of CNS homeostasis causes rapid responses of the microglia, which undergo a multistage activation process. The activated microglia change their cell shapes and gene expression profiles, which induce proliferation, migration, and the production of pro- or antinociceptive factors. The cells release a large number of mediators that can act in a manner detrimental or beneficial to the surrounding cells and can indirectly alter the nociceptive signals. This review discusses the most important microglial intracellular signaling cascades (MAPKs, NF-kB, JAK/STAT, PI3K/Akt) that are essential for neuropathic pain development and maintenance. Our objective was to identify new molecular targets that may result in the development of powerful tools to control the signaling associated with neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland.
| |
Collapse
|