51
|
Novy E, Martinière H, Roger C. The Current Status and Future Perspectives of Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients. Antibiotics (Basel) 2023; 12:antibiotics12040681. [PMID: 37107043 PMCID: PMC10135361 DOI: 10.3390/antibiotics12040681] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Beta-lactams (BL) are the first line agents for the antibiotic management of critically ill patients with sepsis or septic shock. BL are hydrophilic antibiotics particularly subject to unpredictable concentrations in the context of critical illness because of pharmacokinetic (PK) and pharmacodynamics (PD) alterations. Thus, during the last decade, the literature focusing on the interest of BL therapeutic drug monitoring (TDM) in the intensive care unit (ICU) setting has been exponential. Moreover, recent guidelines strongly encourage to optimize BL therapy using a PK/PD approach with TDM. Unfortunately, several barriers exist regarding TDM access and interpretation. Consequently, adherence to routine TDM in ICU remains quite low. Lastly, recent clinical studies failed to demonstrate any improvement in mortality with the use of TDM in ICU patients. This review will first aim at explaining the value and complexity of the TDM process when translating it to critically ill patient bedside management, interpretating the results of clinical studies and discussion of the points which need to be addressed before conducting further TDM studies on clinical outcomes. In a second time, this review will focus on the future aspects of TDM integrating toxicodynamics, model informed precision dosing (MIPD) and “at risk” ICU populations that deserve further investigations to demonstrate positive clinical outcomes.
Collapse
Affiliation(s)
- Emmanuel Novy
- Department of Anesthesiology and Critical Care Medicine, Institut Lorrain du Coeur Et Des Vaisseaux, University Hospital of Nancy, Rue du Morvan, 54511 Vandoeuvre-les Nancy, France
- SIMPA, UR 7300, Faculté de Médecine, Maïeutique et Métiers de la Santé, Campus Brabois Santé, University of Lorraine, 54000 Nancy, France
| | - Hugo Martinière
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nimes-Caremeau University Hospital, Place du Professeur Robert Debré, CEDEX 09, 30029 Nimes, France
| | - Claire Roger
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nimes-Caremeau University Hospital, Place du Professeur Robert Debré, CEDEX 09, 30029 Nimes, France
- UR UM 103 IMAGINE, Faculty of Medicine, Montpellier University, 30029 Nimes, France
| |
Collapse
|
52
|
Akshay SD, Nayak S, Deekshit VK, Rohit A, Maiti B. Differential expression of outer membrane proteins and quinolone resistance determining region mutations can lead to ciprofloxacin resistance in Salmonella Typhi. Arch Microbiol 2023; 205:136. [PMID: 36961627 DOI: 10.1007/s00203-023-03485-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/17/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Multi-drug resistance in Salmonella Typhi remains a public health concern globally. This study aimed to investigate the function of quinolone resistance determining region (QRDR) of gyrA and parC in ciprofloxacin (CIP) resistant isolates and examine the differential expression of outer membrane proteins (OMPs) on exposure to sub-lethal concentrations of CIP in S. Typhi. The CIP-resistant isolates were screened for mutations in the QRDR and analyzed for bacterial growth. Furthermore, major OMPs encoding genes such as ompF, lamB, yaeT, tolC, ompS1, and phoE were examined for differential expression under the sub-lethal concentrations of CIP by real-time PCR and SDS-PAGE. Notably, our study has shown a single-point mutation in gyrA at codon 83 (Ser83-tyrosine and Ser83-phenylalanine), also the rare amino acid substitution in parC gene at codon 80 (Glu80-glycine) in CIP-resistant isolates. Additionally, CIP-resistant isolates showed moderate growth compared to susceptible isolates. Although most of the OMP-encoding genes (tolC, ompS1, and phoE) showed some degree of upregulation, a significant level of upregulation (p < 0.05) was observed only for yaeT. However, ompF and lamB genes were down-regulated compared to CIP-susceptible isolates. Whereas OMPs profiling using SDS-PAGE did not show any changes in the banding pattern. These results provide valuable information on the QRDR mutation, and the difference in the growth, and expression of OMP-encoding genes in resistant and susceptible isolates of S. Typhi. This further provides insight into the involvement of QRDR mutation and OMPs associated with CIP resistance in S. Typhi.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Srajana Nayak
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Vijaya Kumar Deekshit
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Anusha Rohit
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
- Department of Microbiology, The Madras Medical Mission, 4-A, Dr, Mogappair, Chennai, Tamil Nadu, 600037, India
| | - Biswajit Maiti
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
53
|
Shah RV, Kipper K, Baker EH, Barker CIS, Oldfield I, Philips BJ, Johnston A, Lipman J, Rhodes A, Basarab M, Sharland M, Almahdi S, Wake RM, Standing JF, Lonsdale DO. Population Pharmacokinetic Study of Benzylpenicillin in Critically Unwell Adults. Antibiotics (Basel) 2023; 12:antibiotics12040643. [PMID: 37107004 PMCID: PMC10135101 DOI: 10.3390/antibiotics12040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Pharmacokinetics are highly variable in critical illness, and suboptimal antibiotic exposure is associated with treatment failure. Benzylpenicillin is a commonly used beta-lactam antibiotic, and pharmacokinetic data of its use in critically ill adults are lacking. We performed a pharmacokinetic study of critically unwell patients receiving benzylpenicillin, using data from the ABDose study. Population pharmacokinetic modelling was undertaken using NONMEM version 7.5, and simulations using the final model were undertaken to optimize the pharmacokinetic profile. We included 77 samples from 12 participants. A two-compartment structural model provided the best fit, with allometric weight scaling for all parameters and a creatinine covariate effect on clearance. Simulations (n = 10,000) demonstrated that 25% of simulated patients receiving 2.4 g 4-hourly failed to achieve a conservative target of 50% of the dosing interval with free drug above the clinical breakpoint MIC (2 mg/L). Simulations demonstrated that target attainment was improved with continuous or extended dosing. To our knowledge, this study represents the first full population PK analysis of benzylpenicillin in critically ill adults.
Collapse
Affiliation(s)
- Reya V Shah
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
- Department of Clinical Pharmacology & Therapeutics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Karin Kipper
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
- Analytical Services International Ltd., London SW17 0RE, UK
| | - Emma H Baker
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
- Department of Clinical Pharmacology & Therapeutics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Charlotte I S Barker
- Department of Medical and Molecular Genetics, King's College London, London WC2R 2LS, UK
| | - Isobel Oldfield
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | | | - Atholl Johnston
- Analytical Services International Ltd., London SW17 0RE, UK
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London WC1E 7HU, UK
| | - Jeffrey Lipman
- Jamieson Trauma Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia
- The University of Queensland Centre for Clinical Research, Brisbane, QLD 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nimes University Hospital, University of Montpellier, 30029 Nimes, France
| | - Andrew Rhodes
- Department of Critical Care, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Marina Basarab
- Infection Care Group, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Mike Sharland
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Sarraa Almahdi
- London North West University Healthcare NHS Trust, London HA1 3UJ, UK
| | - Rachel M Wake
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
- Clinical Academic Group in Infection and Immunity, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Joseph F Standing
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Dagan O Lonsdale
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
- Department of Clinical Pharmacology & Therapeutics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
- Department of Critical Care, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| |
Collapse
|
54
|
Stašek J, Keller F, Kočí V, Klučka J, Klabusayová E, Wiewiorka O, Strašilová Z, Beňovská M, Škardová M, Maláska J. Update on Therapeutic Drug Monitoring of Beta-Lactam Antibiotics in Critically Ill Patients—A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030568. [PMID: 36978435 PMCID: PMC10044408 DOI: 10.3390/antibiotics12030568] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Beta-lactam antibiotics remain one of the most preferred groups of antibiotics in critical care due to their excellent safety profiles and their activity against a wide spectrum of pathogens. The cornerstone of appropriate therapy with beta-lactams is to achieve an adequate plasmatic concentration of a given antibiotic, which is derived primarily from the minimum inhibitory concentration (MIC) of the specific pathogen. In a critically ill patient, the plasmatic levels of drugs could be affected by many significant changes in the patient’s physiology, such as hypoalbuminemia, endothelial dysfunction with the leakage of intravascular fluid into interstitial space and acute kidney injury. Predicting antibiotic concentration from models based on non-critically ill populations may be misleading. Therapeutic drug monitoring (TDM) has been shown to be effective in achieving adequate concentrations of many drugs, including beta-lactam antibiotics. Reliable methods, such as high-performance liquid chromatography, provide the accurate testing of a wide range of beta-lactam antibiotics. Long turnaround times remain the main drawback limiting their widespread use, although progress has been made recently in the implementation of different novel methods of antibiotic testing. However, whether the TDM approach can effectively improve clinically relevant patient outcomes must be proved in future clinical trials.
Collapse
Affiliation(s)
- Jan Stašek
- Department of Internal Medicine and Cardiology, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Filip Keller
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
| | - Veronika Kočí
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
| | - Jozef Klučka
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| | - Eva Klabusayová
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| | - Ondřej Wiewiorka
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Zuzana Strašilová
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Miroslava Beňovská
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Markéta Škardová
- Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Jan Maláska
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
- 2nd Department of Anaesthesiology University Hospital Brno, 620 00 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
55
|
Peitz GJ, Murry DJ. The Influence of Extracorporeal Membrane Oxygenation on Antibiotic Pharmacokinetics. Antibiotics (Basel) 2023; 12:500. [PMID: 36978367 PMCID: PMC10044059 DOI: 10.3390/antibiotics12030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is becoming increasingly utilized to support critically ill patients who experience life-threatening cardiac or pulmonary compromise. The provision of this intervention poses challenges related to its complications and the optimization of medication therapy. ECMO's mechanical circulatory support is facilitated via various devices and equipment that have been shown to sequester lipophilic- and protein-bound medications, including anti-infectives. Since infectious outcomes are dependent on achieving specific anti-infectives' pharmacodynamic targets, the understanding of these medications' pharmacokinetic parameters in the setting of ECMO is important to clinicians. This narrative, non-systematic review evaluated the findings of the most recent and robust pharmacokinetic analyses for commonly utilized anti-infectives in the setting of ECMO. The data from available literature indicates that anti-infective pharmacokinetic parameters are similar to those observed in other non-ECMO critically ill populations, but considerable variability in the findings was observed between patients, thus prompting further evaluation of therapeutic drug monitoring in this complex population.
Collapse
Affiliation(s)
- Gregory J. Peitz
- Nebraska Medicine, Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
56
|
Javanbakht F, Afshar Mogaddam MR, Nemati M, Farajzadeh MA. Dispersive solid phase extraction of metronidazole and clarithromycin from human plasma using a β-cyclodextrin grafted polyethylene polymer composite. J Sep Sci 2023; 46:e2200696. [PMID: 36859691 DOI: 10.1002/jssc.202200696] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
In this work, for the first time, a polymeric composite based on β-cyclodextrin grafted with polyethylene has been prepared through ball milling and used as an efficient sorbent for dispersive solid phase extraction of metronidazole and clarithromycin from plasma samples. The prepared sorbent was characterized using Fourier transform infrared spectrophotometry, X-ray diffraction, and scanning electron microscopy. In the extraction process, after precipitating the proteins, the sorbent was added into the sample solution, and the mixture was vortexed to facilitate and speed up the sorption of the analytes onto the sorbent surface. After centrifuging, the sorbent particles were contacted with methanol to elute the analytes under the vortexing process. After this step, an aliquot of the eluate was taken and injected into high-performance liquid chromatography-diode array detector for quantitative analysis. Under the optimum extraction conditions, the extraction recoveries for metronidazole and clarithromycin were 76 and 83%, respectively. The limits of detection were 2.6 and 2.2 ng/ml for metronidazole and clarithromycin, respectively. The repeatability of the offered approach, expressed as relative standard deviation, was equal to or less than 4.7%. Finally, the method was successfully applied to plasma samples of the patients treated with metronidazole and clarithromycin.
Collapse
Affiliation(s)
- Faezeh Javanbakht
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical and Food Control Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboob Nemati
- Pharmaceutical and Food Control Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Nicosia, Turkey
| |
Collapse
|
57
|
Motos A, Yang H, Li Bassi G, Yang M, Meli A, Battaglini D, Cabrera R, Bobi J, Pagliara F, Frigola G, Camprubí-Rimblas M, Fernández-Barat L, Rigol M, Ferrer-Segarra A, Kiarostami K, Martinez D, Nicolau DP, Artigas A, Pelosi P, Vila J, Torres A. Inhaled amikacin for pneumonia treatment and dissemination prevention: an experimental model of severe monolateral Pseudomonas aeruginosa pneumonia. Crit Care 2023; 27:60. [PMID: 36788582 PMCID: PMC9930251 DOI: 10.1186/s13054-023-04331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa pneumonia is commonly treated with systemic antibiotics to ensure adequate treatment of multidrug resistant (MDR) bacteria. However, intravenous (IV) antibiotics often achieve suboptimal pulmonary concentrations. We therefore aimed to evaluate the effect of inhaled amikacin (AMK) plus IV meropenem (MEM) on bactericidal efficacy in a swine model of monolateral MDR P. aeruginosa pneumonia. METHODS We ventilated 18 pigs with monolateral MDR P. aeruginosa pneumonia for up to 102 h. At 24 h after the bacterial challenge, the animals were randomized to receive 72 h of treatment with either inhaled saline (control), IV MEM only, or IV-MEM plus inhaled AMK (MEM + AMK). We dosed IV MEM at 25 mg/kg every 8 h and inhaled AMK at 400 mg every 12 h. The primary outcomes were the P. aeruginosa burden and histopathological injury in lung tissue. Secondary outcomes included the P. aeruginosa burden in tracheal secretions and bronchoalveolar lavage fluid, the development of antibiotic resistance, the antibiotic distribution, and the levels of inflammatory markers. RESULTS The median (25-75th percentile) P. aeruginosa lung burden for animals in the control, MEM only, and MEM + AMK groups was 2.91 (1.75-5.69), 0.72 (0.12-3.35), and 0.90 (0-4.55) log10 CFU/g (p = 0.009). Inhaled therapy had no effect on preventing dissemination compared to systemic monotherapy, but it did have significantly higher bactericidal efficacy in tracheal secretions only. Remarkably, the minimum inhibitory concentration of MEM increased to > 32 mg/L after 72-h exposure to monotherapy in 83% of animals, while the addition of AMK prevented this increase (p = 0.037). Adjunctive therapy also slightly affected interleukin-1β downregulation. Despite finding high AMK concentrations in pulmonary samples, we found no paired differences in the epithelial lining fluid concentration between infected and non-infected lungs. Finally, a non-significant trend was observed for higher amikacin penetration in low-affected lung areas. CONCLUSIONS In a swine model of monolateral MDR P. aeruginosa pneumonia, resistant to the inhaled AMK and susceptible to the IV antibiotic, the use of AMK as an adjuvant treatment offered no benefits for either the colonization of pulmonary tissue or the prevention of pathogen dissemination. However, inhaled AMK improved bacterial eradication in the proximal airways and hindered antibiotic resistance.
Collapse
Affiliation(s)
- Ana Motos
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Hua Yang
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Gianluigi Li Bassi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Queensland University of Technology, UnitingCare Hospitals, Wesley Medical Research, Brisbane, Australia
| | - Minlan Yang
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Andrea Meli
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, and Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Denise Battaglini
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Roberto Cabrera
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Joaquim Bobi
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesco Pagliara
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Gerard Frigola
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Marta Camprubí-Rimblas
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Critical Care Center, ParcTaulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Laia Fernández-Barat
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Montserrat Rigol
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antoni Ferrer-Segarra
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Anestesiologia i Reanimació, Hospital del Mar - Parc de Salut Mar, Barcelona, Spain
| | - Kasra Kiarostami
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Antonio Artigas
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Critical Care Center, ParcTaulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Jordi Vila
- Barcelona Centre for International Health Research (CRESIB), ISGlobal, Barcelona, Spain
- Department of Clinical Microbiology, Centre for Biomedical Diagnosis, Hospital Clínic, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - Antoni Torres
- Servei de Pneumologia i Al•lèrgia Respiratòria, Pneumology Department, Hospital Clínic, Thorax Institute, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
58
|
Bourgoin P, Lecomte J, Oualha M, Berthomieu L, Pereira T, Davril E, Lamoureux F, Joram N, Chenouard A, Duflot T. Population Pharmacokinetics of Levosimendan and its Metabolites in Critically Ill Neonates and Children Supported or Not by Extracorporeal Membrane Oxygenation. Clin Pharmacokinet 2023; 62:335-348. [PMID: 36631687 DOI: 10.1007/s40262-022-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Levosimendan (LVSMD) is a calcium-sensitizer inotropic and vasodilator agent whose use might have a beneficial effect on the weaning of venoarterial extracorporeal membrane oxygenation (VA-ECMO). In light of LVSMD pharmacological characteristics, we hypothesized that ECMO may induce major pharmacokinetic (PK) modifications for LVSMD and its metabolites. OBJECTIVE The aim of this study was to investigate the PK of LVSMD and its metabolites, and to assess the effects of ECMO on PK parameters. METHODS We conducted a multicentric, prospective study (NCT03681379). Twenty-seven infusions of LVSMD were performed, allowing for the collection of 255 blood samples. Non-linear mixed-effects modeling software (MONOLIX®) was used to develop a parent-metabolite PK model of LVSMD and its metabolites. RESULTS Most patients received a 0.2 µg/kg/min infusion of LVSMD over 24 h. After elimination of non-reliable samples or concentrations below the limit of quantification, 166, 101 and 85 samples were considered for LVSMD, OR-1855 and OR-1896, respectively, of which 81, 53 and 41, respectively, were drawn under ECMO conditions. Parent-metabolite PK modeling revealed that a two-compartment model with first-order elimination best described LVSMD PK. Use of a transit compartment allowed for an explanation of the delayed appearance of circulating OR-1855 and OR-1896, with the latter following a first-order elimination. Patient weight influenced the central volume of distribution and elimination of LVSMD. ECMO support increased the elimination rate of LVSMD by 78%, and ECMO also slowed down the metabolite formation rate by 85% for OR-1855, which in turn is converted to the active metabolite OR-1896, 14% slower than without ECMO. Simulated data revealed that standard dosing may not be appropriate for patients under ECMO, with a decrease in the steady-state concentration of LVSMD and lower exposure to the active metabolite OR-1896. CONCLUSIONS ECMO altered PK parameters for LVSMD and its metabolites. An infusion of LVSMD over 48 h, instead of 24 h, with a slightly higher dose may promote synthesis of the active metabolite OR-1896, which is responsible for the long-term efficacy of LVSMD. Further trials evaluating ECMO effects using a PK/pharmacodynamic approach may be of interest. REGISTRATION ClinicalTrials.gov identifier number NCT03681379.
Collapse
Affiliation(s)
- Pierre Bourgoin
- Pediatric Intensive Care Unit, CHU Nantes, 44093, Nantes, France. .,Department of Anesthesiology, CHU Nantes, 44093, Nantes, France.
| | - Jules Lecomte
- Department of Anesthesiology, CHU Nantes, 44093, Nantes, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, CHU Necker Enfants Malades, 75015, Paris, France
| | - Lionel Berthomieu
- Pediatric Intensive Care Unit, CHU Toulouse, 31059, Toulouse, France
| | - Tony Pereira
- INSERM U1096, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Emeline Davril
- INSERM U1096, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Fabien Lamoureux
- INSERM U1096, UNIROUEN, Normandie University, 76000, Rouen, France.,Department of Pharmacology, CHU Rouen, 76000, Rouen, France
| | - Nicolas Joram
- Pediatric Intensive Care Unit, CHU Nantes, 44093, Nantes, France
| | - Alexis Chenouard
- Pediatric Intensive Care Unit, CHU Nantes, 44093, Nantes, France
| | - Thomas Duflot
- INSERM U1096, UNIROUEN, Normandie University, 76000, Rouen, France.,Department of Pharmacology, CHU Rouen, 76000, Rouen, France.,CHU Rouen, CIC-CRB U1404, 76000, Rouen, France
| |
Collapse
|
59
|
Antimicrobial stewardship programs in the Intensive Care Unit in patients with infections caused by multidrug-resistant Gram-negative bacilli. Med Intensiva 2023; 47:99-107. [PMID: 36319534 DOI: 10.1016/j.medine.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 01/20/2023]
Abstract
Antimicrobial stewardship programs (ASPs) have been shown to be effective and safe, contributing to reducing and adjusting antimicrobial use in clinical practice. Such programs not only reduce antibiotic selection pressure and therefore the selection of multidrug-resistant strains, but also reduce the potential deleterious effects for individual patients and even improve the prognosis by adjusting the choice of drug and dosage, and lessening the risk of adverse effects and interactions. Gram-negative bacilli (GNB), particularly multidrug-resistant strains (MDR-GNB), represent the main infectious problem in the Intensive Care Unit (ICU), and are therefore a target for ASPs. The present review provides an update on the relationship between ASPs and MDR-GNB.
Collapse
|
60
|
Ng HF, Ngeow YF. Mutations in Genes Encoding 23S rRNA and FadD32 May be Associated with Linezolid Resistance in Mycobacteroides abscessus. Microb Drug Resist 2023; 29:41-46. [PMID: 36802272 DOI: 10.1089/mdr.2022.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Linezolid is one of the antibiotics used to treat the Mycobacteroides abscessus infection. However, linezolid-resistance mechanisms of this organism are not well understood. The objective of this study was to identify possible linezolid-resistance determinants in M. abscessus through characterization of step-wise mutants selected from a linezolid-susceptible strain, M61 (minimum inhibitory concentration [MIC]: 0.25 mg/L). Whole-genome sequencing and subsequent PCR verification of the resistant second-step mutant, A2a(1) (MIC: >256 mg/L), revealed three mutations in its genome, two of which were found in the 23S rDNA (g2244t and g2788t) and another one was found in a gene encoding the fatty-acid-CoA ligase FadD32 (c880t→H294Y). The 23S rRNA is the molecular target of linezolid and mutations in this gene are likely to contribute to resistance. Furthermore, PCR analysis revealed that the c880t mutation in the fadD32 gene first appeared in the first-step mutant, A2 (MIC: 1 mg/L). Complementation of the wild-type M61 with the pMV261 plasmid carrying the mutant fadD32 gene caused the previously sensitive M61 to develop a reduced susceptibility to linezolid (MIC: 1 mg/L). The findings of this study uncovered hitherto undescribed mechanisms of linezolid resistance in M. abscessus that may be useful for the development of novel anti-infective agents against this multidrug-resistant pathogen.
Collapse
Affiliation(s)
- Hien Fuh Ng
- Dr. Wu Lien-Teh Centre for Research in Communicable Diseases, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Department of Pre-clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Yun Fong Ngeow
- Dr. Wu Lien-Teh Centre for Research in Communicable Diseases, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Department of Pre-clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| |
Collapse
|
61
|
Tang Girdwood S, Tang P, Fenchel M, Dong M, Stoneman E, Jones R, Ostermeier A, Curry C, Forton M, Hail T, Mullaney R, Diseroad E, Punt N, Kaplan J, Vinks AA. Pharmacokinetic parameters over time during sepsis and the association of target attainment and outcomes in critically ill children and young adults receiving ceftriaxone. Pharmacotherapy 2023. [PMID: 36727212 PMCID: PMC10363190 DOI: 10.1002/phar.2774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/16/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Early sepsis results in pharmacokinetic (PK) changes due to physiologic alterations. PK changes can lead to suboptimal drug target attainment, risking inadequate coverage from antibiotics like ceftriaxone. Little is known about how ceftriaxone PK and target attainment quantitatively change over time in patients with sepsis or the association between target attainment and outcomes in critically ill children and young adults. METHODS A retrospective analysis of a prospective study was conducted in a single-center pediatric intensive care unit. Septic patients given at least one ceftriaxone dose (commonly as 50 mg/kg every 12 h) and who had blood obtained in both the first 48 h of therapy (early) and afterwards (late) were included. Normalized clearance and central volume were estimated and compared in both sepsis phases. We evaluated target attainment, defined as concentrations above 1× or 4× the minimum inhibitory concentration (MIC) for 100% of dosing intervals, and investigated the association between target attainment and clinical outcomes. RESULTS Fifty-five septic patients (median age: 7.5 years) were included. Normalized clearance and central volume were similar in both phases (6.18 ± 1.48 L/h/70 kg early vs. 6.10 ± 1.61 L/h/70 kg late, p = 0.60; 26.6 [IQR 22.3, 31.3] L/70 kg early vs. 24.5 [IQR 22.0, 29.4] L/70 kg late, p = 0.18). Individual percent differences in normalized clearance and central volume between sepsis phases ranged from -39% to 276% and -51% to 212% (reference, late sepsis), respectively. Fewer patients attained the 1× MIC target in late sepsis (82% late vs. 96% early, p = 0.013), which was associated with transition to once daily dosing, typically done due to transfer from the pediatric intensive care unit (PICU) to a lower acuity unit. Failure to attain either target in late sepsis was associated with antibiotic broadening. CONCLUSION Ceftriaxone PK parameters were similar between early and late sepsis, but there were large individual differences. Fewer patients attained MIC targets in late sepsis and all who did not attain the less stringent target received once daily dosing during this period. The failure to attain targets in late sepsis was associated with antibiotic broadening and could be an area for antibiotic stewardship intervention.
Collapse
Affiliation(s)
- Sonya Tang Girdwood
- Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Clinical Pharmacology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Peter Tang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Pathology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew Fenchel
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Min Dong
- Division of Clinical Pharmacology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erin Stoneman
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rhonda Jones
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Austin Ostermeier
- Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Calise Curry
- Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Melissa Forton
- Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Traci Hail
- Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Randi Mullaney
- Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily Diseroad
- Department of Pharmacy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nieko Punt
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Medimatics, Maastricht, The Netherlands
| | - Jennifer Kaplan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
62
|
Heidari S, Khalili H. Linezolid pharmacokinetics: a systematic review for the best clinical practice. Eur J Clin Pharmacol 2023; 79:195-206. [PMID: 36565357 DOI: 10.1007/s00228-022-03446-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To summarize the pharmacokinetics of linezolid to optimize the dosing regimen in special populations. METHODS A literature search was performed in three largest medical databases, including Embase, Scopus, and PubMed. The main applied keywords were linezolid and pharmacokinetics. Of 3663 retrieved publications in the English language, 35 original research articles, clinical studies, and case reports about linezolid pharmacokinetics in different populations such as pregnant women, pediatrics, elderly subjects, obese people, individuals with organ dysfunction, and critically ill patients were included. RESULTS AND CONCLUSION: Dose adjustment is not currently recommended for linezolid in patients with mild to moderate renal or hepatic impairment, older adults, and pregnant women. Although dose adjustment is not recommended in patients with severe renal or hepatic impairment, it should be considered that these patients are more vulnerable to linezolid adverse effects and drug interactions. In pediatrics, reducing the linezolid dosing interval to 8 h is suggested. Despite the lack of sufficient information in obese individuals, dosing based on body weight or use of higher dose seems to be justifiable to prevent sub-therapeutic concentrations. Although dose adjustment of linezolid is not recommended in critically ill patients, administration of linezolid as continuous intravenous infusion is suggested in this population. Blood level monitoring should be considered in populations that are vulnerable to linezolid underexposure (such as critically ill patients with augmented renal clearance, pediatrics, overweight, and obese patients) or overexposure (such as elderly, patients with hepatic and renal impairment). To assess the efficacy and safety of linezolid, the area under the concentration-time curve over 24 h to minimum inhibitory concentration (AUC0-24 h/MIC) equal to 80-120, percentage of time above the MIC ≥ 85%, and serum trough concentration between 2 and 7 mg/L are suggested.
Collapse
Affiliation(s)
- Shima Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
63
|
Mirjalili M, Zand F, Karimzadeh I, Masjedi M, Sabetian G, Mirzaei E, Vazin A. The clinical and paraclinical effectiveness of four-hour infusion vs. half-hour infusion of high-dose ampicillin-sulbactam in treatment of critically ill patients with sepsis or septic shock: An assessor-blinded randomized clinical trial. J Crit Care 2023; 73:154170. [PMID: 36272277 DOI: 10.1016/j.jcrc.2022.154170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE This study was conducted to determine whether critically ill patients admitted to the intensive care unit (ICU) with sepsis and septic shock may benefit from extended infusion of ampicillin/sulbactam compared with those receiving intermittent infusion. MATERIAL AND METHODS This randomized assessor-blinded clinical trial was conducted in the ICUs of Nemazee and Shahid Rajaee hospital, Shiraz, Iran, from August 2019 to August 2021. The participants randomly received 9 g Ampicillin/Sulbactam every 8 h by either extended (infused over 4 h) or intermittent (infused over 30 min) intravenous infusion if their estimated glomerular filtration rate based on Cockrorft-Gault formula was higher than 60 ml/min. RESULTS Totally, 136 patients were enrolled and allocated to the intervention and control groups, each with 68 patients. Clinical cure was significantly higher in the extended group (P = 0.039), but ICU and hospital length of stay did not differ between the groups (P = 0.87 and 0.83, respectively). The ICU (P = 0.031) and hospital (P = 0.037) mortality rates in the extended infusion group were significantly lower than those in the intermittent infusion group. CONCLUSION These data should be replicated in larger clinical trials before providing any recommendation in favor of this method of administration in clinical practice.
Collapse
Affiliation(s)
- Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Fars, Iran
| | - Farid Zand
- Anesthesiology and Critical Care Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Fars, Iran
| | - Mansoor Masjedi
- Department of Anesthesiology, Faculty of Medicine, Shiraz University of Medical Science, Shiraz, Fars, Iran
| | - Golnar Sabetian
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ehsan Mirzaei
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Fars, Iran.
| |
Collapse
|
64
|
Tang Girdwood S, Hasson D, Caldwell JT, Slagle C, Dong S, Fei L, Tang P, Vinks AA, Kaplan J, Goldstein SL. Relationship between piperacillin concentrations, clinical factors and piperacillin/tazobactam-associated acute kidney injury. J Antimicrob Chemother 2023; 78:478-487. [PMID: 36545869 PMCID: PMC10169424 DOI: 10.1093/jac/dkac416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Piperacillin/tazobactam, a commonly used antibiotic, is associated with acute kidney injury (AKI). The relationship between piperacillin concentrations and AKI remains unknown. OBJECTIVE Estimate piperacillin exposures in critically ill children and young adults administered piperacillin/tazobactam to identify concentrations and clinical factors associated with piperacillin-associated AKI. PATIENTS AND METHODS We assessed piperacillin pharmacokinetics in 107 patients admitted to the paediatric ICU who received at least one dose of piperacillin/tazobactam. Piperacillin AUC, highest peak (Cmax) and highest trough (Cmin) in the first 24 hours of therapy were estimated. Piperacillin-associated AKI was defined as Kidney Disease: Improving Global Outcomes (KDIGO) Stage 2/3 AKI present >24 hours after initial piperacillin/tazobactam dose. Likelihood of piperacillin-associated AKI was rated using the Naranjo Adverse Drug Reaction Probability Scale. Multivariable logistic regression was performed to identify patient and clinical predictors of piperacillin-associated AKI. RESULTS Out of 107 patients, 16 (15%) were rated as possibly or probably having piperacillin-associated AKI. Estimated AUC and highest Cmin in the first 24 hours were higher in patients with piperacillin-associated AKI (2042 versus 1445 mg*h/L, P = 0.03; 50.1 versus 10.7 mg/L, P < 0.001). Logistic regression showed predictors of piperacillin-associated AKI included higher Cmin (OR: 5.4, 95% CI: 1.7-23) and age (OR: 1.13, 95% CI: 1.05-1.25). CONCLUSIONS We show a relationship between estimated piperacillin AUC and highest Cmin in the first 24 hours of piperacillin/tazobactam therapy and piperacillin-associated AKI, suggesting total piperacillin exposure early in the course is associated with AKI development. These data could serve as the foundation for implementation of model-informed precision dosing to reduce AKI incidence in patients given piperacillin/tazobactam.
Collapse
Affiliation(s)
- Sonya Tang Girdwood
- Division of Hospital Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 9016, Cincinnati, OH, 45229, USA
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45229, USA
| | - Denise Hasson
- Division of Nephrology & Hypertension, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Center of Acute Care Nephrology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - J Timothy Caldwell
- Division of Nephrology & Hypertension, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Cara Slagle
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45229, USA
- Center of Acute Care Nephrology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Neonatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Shun Dong
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Business, University of Kansas School of Business, 1654 Naismith Drive, USA
| | - Lin Fei
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45229, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Peter Tang
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45229, USA
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45229, USA
| | - Jennifer Kaplan
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45229, USA
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Stuart L Goldstein
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45229, USA
- Division of Nephrology & Hypertension, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Center of Acute Care Nephrology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| |
Collapse
|
65
|
Coste A, Bellouard R, Deslandes G, Jalin L, Roger C, Ansart S, Dailly E, Bretonnière C, Grégoire M. Development of a Predictive Dosing Nomogram to Achieve PK/PD Targets of Amikacin Initial Dose in Critically Ill Patients: A Non-Parametric Approach. Antibiotics (Basel) 2023; 12:antibiotics12010123. [PMID: 36671324 PMCID: PMC9854650 DOI: 10.3390/antibiotics12010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
French guidelines recommend reaching an amikacin concentration of ≥8 × MIC 1 h after beginning infusion (C1h), with MIC = 8 mg/L for probabilistic therapy. We aimed to elaborate a nomogram guiding clinicians in choosing the right first amikacin dose for ICU patients in septic shock. A total of 138 patients with 407 observations were prospectively recruited. A population pharmacokinetic model was built using a non-parametric, non-linear mixed-effects approach. The total body weight (TBW) influenced the central compartment volume, and the glomerular filtration rate (according to the CKD-EPI formula) influenced its clearance. A dosing nomogram was produced using Monte Carlo simulations of the amikacin amount needed to achieve a C1h ≥ 8 × MIC. The dosing nomogram recommended amikacin doses from 1700 mg to 4200 mg and from 28 mg/kg to 49 mg/kg depending on the patient's TBW and renal clearance. However, a Cthrough ≤ 2.5 mg/L 24 h and 48 h after an optimal dose of amikacin was obtained with probabilities of 0.20 and 0.81, respectively. Doses ≥ 30 mg/kg are required to achieve a C1h ≥ 8 × MIC with MIC = 8 mg/L. Targeting a MIC = 8 mg/L should depend on local ecology.
Collapse
Affiliation(s)
- Anne Coste
- Service de Maladies Infectieuses et Tropicales, CHU de Brest, 29200 Brest, France
- Cibles et Médicaments des Infections et de l’Immunité, 9 IICiMed, UR1155, Nantes Université, 44000 Nantes, France
- Laboratoire de Traitement de l’Information Médicale, INSERM, UMR1101, Brest Université, 29200 Brest, France
- Correspondence:
| | - Ronan Bellouard
- Cibles et Médicaments des Infections et de l’Immunité, 9 IICiMed, UR1155, Nantes Université, 44000 Nantes, France
- Service de Pharmacologie Clinique, CHU Nantes, 44000 Nantes, France
| | | | - Laurence Jalin
- Unité de Neuro-Anesthésie-Réanimation, Groupe Hospitalier Pitié-Salpétrière, AP-HP, 75013 Paris, France
| | - Claire Roger
- Département d’anesthésie et réanimation, douleur et médecine d’urgence, CHU Carémeau, 30029 Nîmes, France
- UR UM 103 IMAGINE, Faculté de Médecine, Montpellier Université, 30029 Nîmes, France
| | - Séverine Ansart
- Service de Maladies Infectieuses et Tropicales, CHU de Brest, 29200 Brest, France
- Laboratoire de Traitement de l’Information Médicale, INSERM, UMR1101, Brest Université, 29200 Brest, France
| | - Eric Dailly
- Cibles et Médicaments des Infections et de l’Immunité, 9 IICiMed, UR1155, Nantes Université, 44000 Nantes, France
- Service de Pharmacologie Clinique, CHU Nantes, 44000 Nantes, France
| | - Cédric Bretonnière
- Service des Soins Intensifs de Pneumologie, CHU Nantes, 44000 Nantes, France
| | - Matthieu Grégoire
- Cibles et Médicaments des Infections et de l’Immunité, 9 IICiMed, UR1155, Nantes Université, 44000 Nantes, France
- Service de Pharmacologie Clinique, CHU Nantes, 44000 Nantes, France
| |
Collapse
|
66
|
Cai X, Li W, Yang J, Wu G, Song J, Gong X, Liu D, He Y. Is Halving Maintenance of Voriconazole Safe and Efficient in Patients Suffering from Invasive Fungal Infections with Serious Hepatic Dysfunction? Infect Drug Resist 2023; 16:1-8. [PMID: 36636370 PMCID: PMC9830075 DOI: 10.2147/idr.s390026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background There is a wide debate about the efficacy and safety of voriconazole in patients with impaired hepatic function at Child-Pugh C level. Objective The purpose of this study was to investigate the safety and efficacy between the two groups treated with different dosages of voriconazole (400mg/day vs 200mg/day) in the treatment of invasive fungal infections (IFIs) in patients with hepatic dysfunction. Methods A retrospective study enrolling patients with hepatic dysfunction receiving intravenous voriconazole for IFIs from January 1st, 2017, to December 30th, 2021 was conducted. Patients were enrolled in the 400mg per day dose group and 200mg per day dose group. In patients with the same degree of hepatic impairment, factors affecting prognosis were screened and differences in steady-state blood trough concentrations (Cmin) of voriconazole, positive G/GM tests and adverse effects (AEs) were compared between the two groups described above. Results In total, 308 patients with IFIs were enrolled. For Child-Pugh C class, patients receiving the halved maintenance dose had a lower Cmin and AEs rate but higher recovered rate compared to those receiving maintenance dose, and significant predictors of recovery were dosage (OR, 5.131; 95% CI, 1.599-16.464; p = 0.006) and diabetes (OR, 0.111; 95% CI, 0.020-0.597; p = 0.010). For patients of Child-Pugh A & B class, chronic liver disease (OR, 0.334; 95% CI, 0.159-0.704; p = 0.004) was a prognosis-related factor. Conclusion Halving maintenance dose ensure the efficacy and safety of voriconazole in patients suffering from invasive fungal infections with serious hepatic dysfunction.
Collapse
Affiliation(s)
- Xuezhou Cai
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Department of Pharmacy, Xianning Central Hospital, Hubei University of Science and Technology, Xianning, People’s Republic of China
| | - Wei Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jian Yang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Department of Pharmacy, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, People’s Republic of China
| | - Guangjie Wu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jianxin Song
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xuepeng Gong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yan He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Correspondence: Yan He; Dong Liu, Email ;
| |
Collapse
|
67
|
Critically Ill Patients with Renal Hyperfiltration: Optimizing Antibiotic Dose. Int J Nephrol 2023; 2023:6059079. [PMID: 36896122 PMCID: PMC9991472 DOI: 10.1155/2023/6059079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/09/2022] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
Renal hyperfiltration (RHF) is a prevalent phenomenon in critically ill patients characterized by augmented renal clearance (ARC) and increased of elimination of renally eliminated medications. Multiple risk factors had been described and potential mechanisms may contribute to the occurrence of this condition. RHF and ARC are associated with the risk of suboptimal exposure to antibiotics increasing the risk of treatment failure and unfavorable patient outcomes. The current review discusses the available evidence related to the RHF phenomenon, including definition, epidemiology, risk factors, pathophysiology, pharmacokinetic variability, and considerations for optimizing the dosage of antibiotics in critically ill patients.
Collapse
|
68
|
Stewart SD, Allen S, Eisenberg B, Sakakeeny K, Hammond TN, Schneider B, Mochel J, Zhou T. Comparison of the pharmacokinetics of continuous and intermittent infusions of ampicillin-sulbactam in dogs with septic peritonitis. Am J Vet Res 2022; 84:ajvr.22.08.0139. [PMID: 36520648 DOI: 10.2460/ajvr.22.08.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate the time-course of ampicillin-sulbactam and percentage of time that its concentration is above a given MIC (T% > MIC) in dogs with septic peritonitis when delivered as either a continuous infusion (CI) or intermittent infusion (II). ANIMALS 11 dogs with septic peritonitis. PROCEDURES Dogs were randomized to receive ampicillin-sulbactam as either CI or II. Continuous infusions were delivered as a 50 mg/kg bolus IV followed by a rate of 0.1 mg/kg/min. Intermittent infusions were administered as 50 mg/kg IV q8h. Serum ampicillin-sulbactam concentrations were measured at hours 0, 1, 6, and every 12 hours after until patients were transitioned to an oral antimicrobial equivalent. All other care was at the discretion of the attending clinician. Statistical analysis was used to determine each patient's percentage of time T% > MIC for 4 MIC breakpoints (0.25, 1.25, 8, and 16 µg/mL). RESULTS No dogs experienced adverse events related to ampicillin-sulbactam administration. Both CI and II maintained a T% > MIC of 100% of MIC 0.25 µg/mL and MIC 1.25 µg/mL. The CI group maintained a higher T% > MIC for MIC 8 µg/mL and MIC 16 µg/mL; however, these differences did not reach statistical significance (P = .15 and P = .12, respectively). CLINICAL RELEVANCE This study could not demonstrate that ampicillin-sulbactam CI maintains a greater T% > MIC in dogs with septic peritonitis than II; however, marginal differences were noted at higher antimicrobial breakpoints. While these data support the use of antimicrobial CI in septic and critically ill patients, additional prospective trials are needed to fully define the optimal doses and the associated clinical responses.
Collapse
Affiliation(s)
- Samuel D Stewart
- Massachusetts Veterinary Referral Hospital, Ethos Veterinary Health, Woburn, MA
| | - Sarah Allen
- Massachusetts Veterinary Referral Hospital, Ethos Veterinary Health, Woburn, MA
| | - Beth Eisenberg
- Massachusetts Veterinary Referral Hospital, Ethos Veterinary Health, Woburn, MA
| | - Katie Sakakeeny
- Department of Emergency and Critical Care, Tufts Veterinary Emergency Treatment and Specialties, Walpole, MA
| | - Tara N Hammond
- Department of Emergency and Critical Care, Tufts Veterinary Emergency Treatment and Specialties, Walpole, MA
| | | | - Jonathan Mochel
- SMART Pharmacology, Iowa State College of Veterinary Medicine, Ames, IA
| | - Tianjian Zhou
- Department of Statistics, Colorado State University, Fort Collins, CO
| |
Collapse
|
69
|
Pereira JG, Fernandes J, Duarte AR, Fernandes SM. β-Lactam Dosing in Critical Patients: A Narrative Review of Optimal Efficacy and the Prevention of Resistance and Toxicity. Antibiotics (Basel) 2022; 11:antibiotics11121839. [PMID: 36551496 PMCID: PMC9774837 DOI: 10.3390/antibiotics11121839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial prescription in critically ill patients represents a complex challenge due to the difficult balance between infection treatment and toxicity prevention. Underexposure to antibiotics and therapeutic failure or, conversely, drug overexposure and toxicity may both contribute to a worse prognosis. Moreover, changes in organ perfusion and dysfunction often lead to unpredictable pharmacokinetics. In critically ill patients, interindividual and intraindividual real-time β-lactam antibiotic dose adjustments according to the patient's condition are critical. The continuous infusion of β-lactams and the therapeutic monitoring of their concentration have both been proposed to improve their efficacy, but strong data to support their use are still lacking. The knowledge of the pharmacokinetic/pharmacodynamic targets is poor and is mostly based on observational data. In patients with renal or hepatic failure, selecting the right dose is even more tricky due to changes in drug clearance, distribution, and the use of extracorporeal circuits. Intermittent usage may further increase the dosing conundrum. Recent data have emerged linking overexposure to β-lactams to central nervous system toxicity, mitochondrial recovery delay, and microbiome changes. In addition, it is well recognized that β-lactam exposure facilitates resistance selection and that correct dosing can help to overcome it. In this review, we discuss recent data regarding real-time β-lactam antibiotic dose adjustment, options in special populations, and the impacts on mitochondria and the microbiome.
Collapse
Affiliation(s)
- João Gonçalves Pereira
- Hospital Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, 4450-681 Matosinhos, Portugal
- Correspondence: ; Tel.: +351-96-244-1546
| | - Joana Fernandes
- Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal
| | - Ana Rita Duarte
- Nova Medical School, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal
| | - Susana Mendes Fernandes
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, 4450-681 Matosinhos, Portugal
- Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| |
Collapse
|
70
|
Tang Girdwood S, Pavia K, Paice K, Hambrick HR, Kaplan J, Vinks AA. β-lactam precision dosing in critically ill children: Current state and knowledge gaps. Front Pharmacol 2022; 13:1044683. [PMID: 36532752 PMCID: PMC9752101 DOI: 10.3389/fphar.2022.1044683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
There has been emerging interest in implementing therapeutic drug monitoring and model-informed precision dosing of β-lactam antibiotics in critically ill patients, including children. Despite a position paper endorsed by multiple international societies that support these efforts in critically ill adults, implementation of β-lactam precision dosing has not been widely adopted. In this review, we highlight what is known about β-lactam antibiotic pharmacokinetics and pharmacodynamics in critically ill children. We also define the knowledge gaps that present barriers to acceptance and implementation of precision dosing of β-lactam antibiotics in critically ill children: a lack of consensus on which subpopulations would benefit most from precision dosing and the uncertainty of how precision dosing changes outcomes. We conclude with opportunities for further research to close these knowledge gaps.
Collapse
Affiliation(s)
- Sonya Tang Girdwood
- Division of Clinical Pharmacology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,*Correspondence: Sonya Tang Girdwood,
| | - Kathryn Pavia
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Kelli Paice
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - H. Rhodes Hambrick
- Division of Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jennifer Kaplan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander A. Vinks
- Division of Clinical Pharmacology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
71
|
Luterbach CL, Rao GG. Use of pharmacokinetic/pharmacodynamic approaches for dose optimization: a case study of plazomicin. Curr Opin Microbiol 2022; 70:102204. [PMID: 36122516 DOI: 10.1016/j.mib.2022.102204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023]
Abstract
With limited treatment options available for multidrug-resistant bacteria, dose optimization is critical for achieving effective drug concentrations at the site of infection. Yet, selecting an appropriate dose and appropriate time to administer the dose with dosing frequency requires extensive understanding of the interplay between drug pharmacokinetics/pharmacodynamics (PK/PD), the host immune system, and bacterial-resistant mechanisms. Model-informed dose optimization (MIDO) uses PK/PD models (e.g. population PK, mechanism-based models, etc.) that incorporate preclinical and clinical data to simulate/predict performance of treatment regimens in appropriate patient populations and/or infection types that may not be well-represented in clinical trials. Here, we highlight the stages of a MIDO approach for designing optimized regimens by reviewing current clinical, preclinical, and PK/PD modeling data available for plazomicin. Plazomicin is an aminoglycoside approved in 2018 for the treatment of complicated urinary tract infections in adults. Applying knowledge gained by PK/PD modeling can guide therapeutic drug monitoring to ensure that drug exposure is appropriate for clinical efficacy while limiting drug-related toxicity.
Collapse
Affiliation(s)
- Courtney L Luterbach
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC, United States; Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
72
|
Preanalytical Stability of Flucloxacillin, Piperacillin, Tazobactam, Meropenem, Cefalexin, Cefazolin, and Ceftazidime in Therapeutic Drug Monitoring: A Structured Review. Ther Drug Monit 2022; 44:709-719. [PMID: 35175248 DOI: 10.1097/ftd.0000000000000975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/22/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Therapeutic drug monitoring is increasingly being used to optimize beta-lactam antibiotic dosing. Because beta-lactams are inherently unstable, confirming preanalytical sample stability is critical for reporting reliable results. This review aimed to summarize the published literature on the preanalytical stability of selected widely prescribed beta-lactams used in therapeutic drug monitoring. METHODS The published literature (2010-2020) on the preanalytical stability of flucloxacillin, piperacillin, tazobactam, meropenem, cefalexin, cefazolin, and ceftazidime in human plasma, serum, and whole blood was reviewed. Articles examining preanalytical stability at room temperature, refrigerated, or frozen (-20°C) using liquid chromatography with mass spectrometry or ultraviolet detection were included. RESULTS Summarizing the available data allowed for general observations to be made, although data were conflicting in some cases (piperacillin, tazobactam, ceftazidime, and meropenem at room temperature, refrigerated, or -20°C) or limited (cefalexin, cefazolin, and flucloxacillin at -20°C). Overall, with the exception of the more stable cefazolin, preanalytical instability was observed after 6-12 hours at room temperature, 2-3 days when refrigerated, and 1-3 weeks when frozen at -20°C. In all cases, excellent stability was detected at -70°C. Studies focusing on preanalytical stability reported poorer stability than studies investigating stability as part of method validation. CONCLUSIONS Based on this review, as general guidance, clinical samples for beta-lactam analysis should be refrigerated and analyzed within 2 days or frozen at -20°C and analyzed within 1 week. For longer storage times, freezing at -70°C was required to ensure sample stability. This review highlights the importance of conducting well-designed preanalytical stability studies on beta-lactams and other potentially unstable drugs under clinically relevant conditions.
Collapse
|
73
|
van der Heijden JEM, Freriksen JJM, de Hoop-Sommen MA, van Bussel LPM, Driessen SHP, Orlebeke AEM, Verscheijden LFM, Greupink R, de Wildt SN. Feasibility of a Pragmatic PBPK Modeling Approach: Towards Model-Informed Dosing in Pediatric Clinical Care. Clin Pharmacokinet 2022; 61:1705-1717. [PMID: 36369327 PMCID: PMC9651907 DOI: 10.1007/s40262-022-01181-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND OBJECTIVE More than half of all drugs are still prescribed off-label to children. Pharmacokinetic (PK) data are needed to support off-label dosing, however for many drugs such data are either sparse or not representative. Physiologically-based pharmacokinetic (PBPK) models are increasingly used to study PK and guide dosing decisions. Building compound models to study PK requires expertise and is time-consuming. Therefore, in this paper, we studied the feasibility of predicting pediatric exposure by pragmatically combining existing compound models, developed e.g. for studies in adults, with a pediatric and preterm physiology model. METHODS Seven drugs, with various PK characteristics, were selected (meropenem, ceftazidime, azithromycin, propofol, midazolam, lorazepam, and caffeine) as a proof of concept. Simcyp® v20 was used to predict exposure in adults, children, and (pre)term neonates, by combining an existing compound model with relevant virtual physiology models. Predictive performance was evaluated by calculating the ratios of predicted-to-observed PK parameter values (0.5- to 2-fold acceptance range) and by visual predictive checks with prediction error values. RESULTS Overall, model predicted PK in infants, children and adolescents capture clinical data. Confidence in PBPK model performance was therefore considered high. Predictive performance tends to decrease when predicting PK in the (pre)term neonatal population. CONCLUSION Pragmatic PBPK modeling in pediatrics, based on compound models verified with adult data, is feasible. A thorough understanding of the model assumptions and limitations is required, before model-informed doses can be recommended for clinical use.
Collapse
Affiliation(s)
- Joyce E M van der Heijden
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | - Jolien J M Freriksen
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Marika A de Hoop-Sommen
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Royal Dutch Pharmacist Association, The Hague, The Netherlands
| | - Lianne P M van Bussel
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Sander H P Driessen
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Anne E M Orlebeke
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Laurens F M Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
74
|
Wieringa A, Ter Horst PGJ, Wagenvoort GHJ, Dijkstra A, Abdulla A, Haringman JJ, Koch BCP. Target attainment and pharmacokinetics of cefotaxime in critically ill patients undergoing continuous kidney replacement therapy. J Antimicrob Chemother 2022; 77:3421-3426. [PMID: 36210582 DOI: 10.1093/jac/dkac334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Limited data exist about the antimicrobial target attainment and pharmacokinetics of cefotaxime in critically ill patients in the ICU undergoing continuous kidney replacement therapy (CKRT). We conducted a prospective observational study in two large teaching hospitals [Isala Hospital (IH) and Zwolle and Maasstad Hospital (MH)] to investigate target attainment and pharmacokinetics of cefotaxime in patients undergoing CKRT. PATIENTS AND METHODS Patients aged ≥18 years admitted to the ICU treated with IV cefotaxime 1000 mg three times daily (IH) or 4 times daily (MH) were included. Fifteen patients were enrolled in total. Per patient eight cefotaxime plasma and eight ultrafiltrate samples were drawn in IH and four plasma samples in MH on Day 2 of treatment. In ICU patients the recommended antimicrobial target of cefotaxime is a plasma concentration 100% of the time above the MIC. RESULTS In IH 10/11 patients had higher plasma trough concentrations than the MIC breakpoint of Enterobacterales of 1 mg/L (clinical breakpoint for susceptible strains) and 9/11 patients had concentrations above 2 mg/L (clinical breakpoint for resistant strains). All patients (4/4) in MH had higher plasma trough concentrations than 2 mg/L. A sieving coefficient of 0.74 was identified, with a median amount of 40% of cefotaxime eliminated by CKRT. CONCLUSIONS We conclude that cefotaxime 1000 mg 3-4 times daily gives adequate plasma concentrations in patients with anuria or oliguria undergoing CKRT. The 1000 mg four times daily dosage is recommended in patients undergoing CKRT with partially preserved renal function to achieve the target.
Collapse
Affiliation(s)
- André Wieringa
- Department of Clinical Pharmacy, Isala Hospital, Zwolle, The Netherlands.,Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands
| | | | - Gertjan H J Wagenvoort
- Laboratory of Clinical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
| | - Annemieke Dijkstra
- Department of Intensive Care, Maasstad Hospital, Rotterdam, The Netherlands
| | - Alan Abdulla
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands.,Department of Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Birgit C P Koch
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands.,Department of Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
75
|
Next-Generation Polymyxin Class of Antibiotics: A Ray of Hope Illuminating a Dark Road. Antibiotics (Basel) 2022; 11:antibiotics11121711. [PMID: 36551367 PMCID: PMC9774142 DOI: 10.3390/antibiotics11121711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Although new-generation antimicrobials, in particular β-lactam/β-lactamase inhibitors, have largely replaced polymyxins in carbapenem-resistant Gram-negative bacterial infections, polymyxins are still needed for carbapanem-resistant Acinetobacter baumannii infections and in settings where novel agents are not readily available. Despite their potent in vitro activity, the clinical utility of polymyxins is significantly limited by their pharmacokinetic properties and nephrotoxicity risk. There is significant interest, therefore, in developing next-generation polymyxins with activity against colistin-resistant strains and lower toxicity than existing polymyxins. In this review, we aim to present the antibacterial activity mechanisms, in vitro and in vivo efficacy data, and toxicity profiles of new-generation polymyxins, including SPR206, MRX-8, and QPX9003, as well as the general characteristics of old polymyxins. Considering the emergence of colistin-resistant strains particularly in endemic regions, the restoration of the antimicrobial activity of polymyxins via PBT2 is also described in this review.
Collapse
|
76
|
Optimizing Meropenem in Highly Resistant Klebsiella pneumoniae Environments: Population Pharmacokinetics and Dosing Simulations in Critically Ill Patients. Antimicrob Agents Chemother 2022; 66:e0032122. [PMID: 36197095 PMCID: PMC9664861 DOI: 10.1128/aac.00321-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Critically ill patients are characterized by substantial pathophysiological changes that alter the pharmacokinetics (PK) of hydrophilic antibiotics, including carbapenems. Meropenem is a key antibiotic for multidrug-resistant Gram-negative bacilli, and such pathophysiological alterations can worsen treatment outcomes. This study aimed to determine the population PK of meropenem and to propose optimized dosing regimens for the treatment of multidrug-resistant Klebsiella pneumoniae in critically ill patients. Two plasma samples were collected from eligible patients over a dosing interval. Nonparametric population PK modeling was performed using Pmetrics. Monte Carlo simulations were applied to different dosing regimens to determine the probability of target attainment and the cumulative fraction of response, taking into account the local MIC distribution for K. pneumoniae. The targets of 40% and 100% for the fraction of time that free drug concentrations remained above the MIC (ƒT>MIC) were tested, as suggested for critically ill patients. A one-compartment PK model using data from 27 patients showed high interindividual variability. Significant PK covariates were the 8-h creatinine clearance for meropenem and the presence of an indwelling catheter for pleural, abdominal, or cerebrospinal fluid drainage for the meropenem volume of distribution. The target 100% ƒT>MIC for K. pneumoniae, with a MIC of ≤2 mg/liter, could be attained by the use of a continuous infusion of 2.0 g/day. Meropenem therapy in critically ill patients could be optimized for K. pneumoniae isolates with an MIC of ≤2 mg/liter by using a continuous infusion in settings with more than 50% isolates have a MIC of ≥32mg/L.
Collapse
|
77
|
Ruiz Ramos J, Ramírez Galleymore P. Programas de optimización de antibióticos en la unidad de cuidados intensivos en caso de infecciones por bacilos gramnegativos multiresistentes. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
78
|
Zou D, Ji M, Du T, Wang Q, Zhang H, Yu H, Hou N. The application of antimicrobials in VAP patients requiring ECMO supportive treatment. Front Pharmacol 2022; 13:918175. [PMID: 36210821 PMCID: PMC9538395 DOI: 10.3389/fphar.2022.918175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Dongna Zou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingting Du
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, China
| | - Qian Wang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haiwen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hengcai Yu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Hou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Ning Hou,
| |
Collapse
|
79
|
The intravenous vancomycin prescription practices of French infectious disease specialists: A cross-sectional observational study. Infect Dis Now 2022; 52:414-417. [DOI: 10.1016/j.idnow.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
|
80
|
Evaluating the usefulness of the estimated glomerular filtration rate for determination of imipenem dosage in critically ill patients. S Afr Med J 2022; 112. [DOI: 10.7196/samj.2022.v112i9.16371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
Background. Antibiotic dosing in critically ill patients is complicated by variations in the pharmacokinetics of antibiotics in this group. The dosing of imipenem/cilastatin is usually determined by severity of illness and renal function.Objectives. To determine the correlation between estimated glomerular filtration rates (eGFRs) calculated with the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation and imipenem trough levels in critically ill patients.Methods. This prospective observational study was done in the surgical intensive care unit (ICU) at Steve Biko Academic Hospital, Pretoria, South Africa. Imipenem trough levels were measured by high-performance liquid chromatography and compared with eGFRs calculated with the CKD-EPI equation. Correlation was evaluated by the Pearson product-moment correlation coefficient.Results. The study population consisted of 68 critically ill patients aged between 18 and 81 years; 43 (63%) were male, and the mean weight was 78 kg (range 40 - 140). On admission, 30 patients (44%) had sepsis, 16 (24%) were admitted for trauma, and 22 (32%) were admitted for miscellaneous surgical conditions. Acute Physiology and Chronic Health Evaluation II (APACHE II) scores ranged from 4 to 39 (mean 18). The 28-day mortality rate was 29%. The mean albumin level was 16 g/L (range 7 - 25), the mean creatinine level 142 μmol/L (range 33 - 840), and the mean eGFR 91 mL/min/1.73 m2 (range 6 - 180). Imipenem trough levels ranged between 3.6 and 92.2 mg/L (mean 11.5). The unadjusted Pearson product-moment correlation coefficient between eGFR and imipenem trough level was –0.04 (p=0.761).Conclusion. Considering the high mortality rate of sepsis in ICUs and the rapid global increase in antimicrobial resistance, it is crucial to dose antibiotics appropriately. Owing to the variability of antibiotic pharmacokinetics in critically ill patients, this task becomes almost impossible when relying on conventional dosing guidelines. This study found that eGFRs do not correlate with imipenem blood levels in critically ill patients and should not be used to determine the dose of imipenem/cilastatin. Instead, the dose should be individualised for patients through routine therapeutic drug monitoring.
Collapse
|
81
|
Finazzi S, Luci G, Olivieri C, Langer M, Mandelli G, Corona A, Viaggi B, Di Paolo A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part I. Antibiotics (Basel) 2022; 11:antibiotics11091164. [PMID: 36139944 PMCID: PMC9495190 DOI: 10.3390/antibiotics11091164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
The challenging severity of some infections, especially in critically ill patients, makes the diffusion of antimicrobial drugs within tissues one of the cornerstones of chemotherapy. The knowledge of how antibacterial agents penetrate tissues may come from different sources: preclinical studies in animal models, phase I–III clinical trials and post-registration studies. However, the particular physiopathology of critically ill patients may significantly alter drug pharmacokinetics. Indeed, changes in interstitial volumes (the third space) and/or in glomerular filtration ratio may influence the achievement of bactericidal concentrations in peripheral compartments, while inflammation can alter the systemic distribution of some drugs. On the contrary, other antibacterial agents may reach high and effective concentrations thanks to the increased tissue accumulation of macrophages and neutrophils. Therefore, the present review explores the tissue distribution of beta-lactams and other antimicrobials acting on the cell wall and cytoplasmic membrane of bacteria in critically ill patients. A systematic search of articles was performed according to PRISMA guidelines, and tissue/plasma penetration ratios were collected. Results showed a highly variable passage of drugs within tissues, while large interindividual variability may represent a hurdle which must be overcome to achieve therapeutic concentrations in some compartments. To solve that issue, off-label dosing regimens could represent an effective solution in particular conditions.
Collapse
Affiliation(s)
- Stefano Finazzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giacomo Luci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carlo Olivieri
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Anesthesia and Intensive Care, Sant’Andrea Hospital, ASL VC, 13100 Vercelli, Italy
| | - Martin Langer
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia Mandelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
| | - Alberto Corona
- ICU and Accident & Emergency Department, ASST Valcamonica, 25043 Breno, Italy
| | - Bruno Viaggi
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Anesthesiology, Neuro-Intensive Care Unit, Florence Careggi University Hospital, 50139 Florence, Italy
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
82
|
Charco Roca LM, Ortega Cerrato A, Tortajada Soler JJ. Hiperfiltración glomerular en el paciente traumático grave. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
83
|
Kobuchi S, Kanda N, Okumi T, Kano Y, Tachi H, Ito Y, Sakaeda T. Comparing the pharmacokinetics and organ/tissue distribution of anti-methicillin-resistant Staphylococcus aureus agents using a rat model of sepsis. Xenobiotica 2022; 52:583-590. [PMID: 35815433 DOI: 10.1080/00498254.2022.2098201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sepsis is a major cause of death, and sepsis-derived physiological changes complicate the understanding of drug distribution in organs/tissues, which determines the efficacy and toxicity of antimicrobial agents. In this study, we evaluated and compared the pharmacokinetics of methicillin-resistant Staphylococcus aureus treatment agents in sepsis with that of vancomycin, arbekacin, linezolid, and daptomycin.Rat models of sepsis were prepared using cecal ligation puncture. The pharmacokinetics of vancomycin, arbekacin, linezolid, and daptomycin were evaluated using their drug concentration profiles in plasma, kidneys, liver, lungs, skin, and muscles after intravenous administration in normal and septic rats.The kidney/plasma concentration ratio was higher in septic rats than in normal rats for vancomycin, arbekacin, and daptomycin but not for linezolid. The increase in the kidney/plasma concentration ratio for vancomycin was time-dependent, indicating an association between sepsis and stasis of vancomycin in the kidneys. In contrast, the distribution of linezolid from the blood to the organs/tissues in septic rats was comparable to that in normal rats.Sepsis-induced nephrotoxicity results in the stasis of vancomycin in the kidney, suggesting that this exacerbates proximal tubular epithelial cell injury. No dose modification of linezolid may be required for patients with sepsis.
Collapse
Affiliation(s)
- Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Naoya Kanda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Taichi Okumi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuma Kano
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Himawari Tachi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Toshiyuki Sakaeda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
84
|
Use available data to optimise antibiotic use in critically ill children. DRUGS & THERAPY PERSPECTIVES 2022. [DOI: 10.1007/s40267-022-00924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
85
|
Hodiamont CJ, van den Broek AK, de Vroom SL, Prins JM, Mathôt RAA, van Hest RM. Clinical Pharmacokinetics of Gentamicin in Various Patient Populations and Consequences for Optimal Dosing for Gram-Negative Infections: An Updated Review. Clin Pharmacokinet 2022; 61:1075-1094. [PMID: 35754071 PMCID: PMC9349143 DOI: 10.1007/s40262-022-01143-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 11/04/2022]
Abstract
Gentamicin is an aminoglycoside antibiotic with a small therapeutic window that is currently used primarily as part of short-term empirical combination therapy. Gentamicin dosing schemes still need refinement, especially for subpopulations where pharmacokinetics can differ from pharmacokinetics in the general adult population: obese patients, critically ill patients, paediatric patients, neonates, elderly patients and patients on dialysis. This review summarizes the clinical pharmacokinetics of gentamicin in these patient populations and the consequences for optimal dosing of gentamicin for infections caused by Gram-negative bacteria, highlighting new insights from the last 10 years. In this period, several new population pharmacokinetic studies have focused on these subpopulations, providing insights into the typical values of the most relevant pharmacokinetic parameters, the variability of these parameters and possible explanations for this variability, although unexplained variability often remains high. Both dosing schemes and pharmacokinetic/pharmacodynamic (PK/PD) targets varied widely between these studies. A gentamicin starting dose of 7 mg/kg based on total body weight (or on adjusted body weight in obese patients) appears to be the optimal strategy for increasing the probability of target attainment (PTA) after the first administration for the most commonly used PK/PD targets in adults and children older than 1 month, including critically ill patients. However, evidence that increasing the PTA results in higher efficacy is lacking; no studies were identified that show a correlation between estimated or predicted PK/PD target attainment and clinical success. Although it is unclear if performing therapeutic drug monitoring (TDM) for optimization of the PTA is of clinical value, it is recommended in patients with highly variable pharmacokinetics, including patients from all subpopulations that are critically ill (such as elderly, children and neonates) and patients on intermittent haemodialysis. In addition, TDM for optimization of the dosing interval, targeting a trough concentration of at least < 2 mg/L but preferably < 0.5–1 mg/L, has proven to reduce nephrotoxicity and is therefore recommended in all patients receiving more than one dose of gentamicin. The usefulness of the daily area under the plasma concentration–time curve for predicting nephrotoxicity should be further investigated. Additionally, more research is needed on the optimal PK/PD targets for efficacy in the clinical situations in which gentamicin is currently used, that is, as monotherapy for urinary tract infections or as part of short-term combination therapy.
Collapse
Affiliation(s)
- Caspar J Hodiamont
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Annemieke K van den Broek
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Suzanne L de Vroom
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan M Prins
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ron A A Mathôt
- Hospital Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Reinier M van Hest
- Hospital Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
86
|
Guerra Valero YC, Dorofaeff T, Coulthard MG, Sparkes L, Lipman J, Wallis SC, Roberts JA, Parker SL. Optimal dosing of cefotaxime and desacetylcefotaxime for critically ill paediatric patients. Can we use microsampling? J Antimicrob Chemother 2022; 77:2227-2237. [PMID: 35678266 PMCID: PMC9333413 DOI: 10.1093/jac/dkac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To describe the population pharmacokinetics of cefotaxime and desacetylcefotaxime in critically ill paediatric patients and provide dosing recommendations. We also sought to evaluate the use of capillary microsampling to facilitate data-rich blood sampling. Methods Patients were recruited into a pharmacokinetic study, with cefotaxime and desacetylcefotaxime concentrations from plasma samples collected at 0, 0.5, 2, 4 and 6 h used to develop a population pharmacokinetic model using Pmetrics. Monte Carlo dosing simulations were tested using a range of estimated glomerular filtration rates (60, 100, 170 and 200 mL/min/1.73 m2) and body weights (4, 10, 15, 20 and 40 kg) to achieve pharmacokinetic/pharmacodynamic (PK/PD) targets, including 100% ƒT>MIC with an MIC breakpoint of 1 mg/L. Results Thirty-six patients (0.2–12 years) provided 160 conventional samples for inclusion in the model. The pharmacokinetics of cefotaxime and desacetylcefotaxime were best described using one-compartmental model with first-order elimination. The clearance and volume of distribution for cefotaxime were 12.8 L/h and 39.4 L, respectively. The clearance for desacetylcefotaxime was 10.5 L/h. Standard dosing of 50 mg/kg q6h was only able to achieve the PK/PD target of 100% ƒT>MIC in patients >10 kg and with impaired renal function or patients of 40 kg with normal renal function. Conclusions Dosing recommendations support the use of extended or continuous infusion to achieve cefotaxime exposure suitable for bacterial killing in critically ill paediatric patients, including those with severe or deep-seated infection. An external validation of capillary microsampling demonstrated skin-prick sampling can facilitate data-rich pharmacokinetic studies.
Collapse
Affiliation(s)
| | - Tavey Dorofaeff
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Paediatric Intensive Care, Queensland Children's Hospital, Brisbane, Australia
| | - Mark G Coulthard
- Paediatric Intensive Care, Queensland Children's Hospital, Brisbane, Australia.,Mayne Academy of Paediatrics, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Louise Sparkes
- Paediatric Intensive Care, Queensland Children's Hospital, Brisbane, Australia
| | - Jeffrey Lipman
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia.,Jamieson Trauma Institute, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia
| | - Steven C Wallis
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Jason A Roberts
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia.,Department of Pharmacy, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Suzanne L Parker
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
87
|
Predicting Antibiotic Effect of Vancomycin Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation: Dense Sampling versus Sparse Sampling. Antibiotics (Basel) 2022; 11:antibiotics11060743. [PMID: 35740150 PMCID: PMC9220236 DOI: 10.3390/antibiotics11060743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to investigate the effect of a structural pharmacokinetic (PK) model with fewer compartments developed following sparse sampling on the PK parameter estimation and the probability of target attainment (PTA) prediction of vancomycin. Two- and three-compartment PK models of vancomycin were used for the virtual concentration–time profile simulation. Datasets with reduced blood sampling times were generated to support a model with a lesser number of compartments. Monte Carlo simulation was conducted to evaluate the PTA. For the two-compartment PK profile, the total clearance (CL) of the reduced one-compartment model showed a relative bias (RBias) and relative root mean square error (RRMSE) over 90%. For the three-compartment PK profile, the CL of the reduced one-compartment model represented the largest RBias and RRMSE, while the steady-state volume of distribution of the reduced two-compartment model represented the largest absolute RBias and RRMSE. A lesser number of compartments corresponded to a lower predicted area under the concentration–time curve of vancomycin. The estimated PK parameters and predicted PK/PD index from models built with sparse sampling designs that cannot support the PK profile can be significantly inaccurate and unprecise. This might lead to the misprediction of the PTA and selection of improper dosage regimens when clinicians prescribe antibiotics.
Collapse
|
88
|
Hussain Khan Z, Maki Aldulaimi A, Varpaei HA, Mohammadi M. Various Aspects of Non-Invasive Ventilation in COVID-19 Patients: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:194-209. [PMID: 35634520 PMCID: PMC9126903 DOI: 10.30476/ijms.2021.91753.2291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 01/08/2023]
Abstract
Non-invasive ventilation (NIV) is primarily used to treat acute respiratory failure. However, it has broad applications to manage a range of other diseases successfully. The main advantage of NIV lies in its capability to provide the same physiological effects as invasive ventilation while avoiding the placement of an artificial airway and its associated life-threatening complications. The war on the COVID-19 pandemic is far from over. The present narrative review aimed at identifying various aspects of NIV usage, in COVID-19 and other patients, such as the onset time, mode, setting, positioning, sedation, and types of interface. A search for articles published from May 2020 to April 2021 was conducted using MEDLINE, PMC central, Scopus, Web of Science, Cochrane Library, and Embase databases. Of the initially identified 5,450 articles, 73 studies and 24 guidelines on the use of NIV were included. The search was limited to studies involving human cases and English language articles. Despite several reported benefits of NIV, the evidence on the use of NIV in COVID-19 patients does not yet fully support its routine use.
Collapse
Affiliation(s)
- Zahid Hussain Khan
- Department of Anesthesiology and Critical Care, Imam Khomeini Medical Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Maki Aldulaimi
- Al-furat Al-awsat Hospital, Al-furat Al-awsat Technical University, Health and Medical Technical College, Department of Anesthesia and Critical Care, Kufa, Iraq
| | - Hesam Aldin Varpaei
- Department of Nursing and Midwifery, School of Nursing, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Mostafa Mohammadi
- Department of Anesthesiology and Critical Care, Tehran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
89
|
Ciprofloxacin in Patients Undergoing Extracorporeal Membrane Oxygenation (ECMO): A Population Pharmacokinetic Study. Pharmaceutics 2022; 14:pharmaceutics14050965. [PMID: 35631551 PMCID: PMC9145815 DOI: 10.3390/pharmaceutics14050965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is utilized to temporarily sustain respiratory and/or cardiac function in critically ill patients. Ciprofloxacin is used to treat nosocomial infections, but data describing the effect of ECMO on its pharmacokinetics is lacking. Therefore, a prospective, observational trial including critically ill adults (n = 17), treated with ciprofloxacin (400 mg 8–12 hourly) during ECMO, was performed. Serial blood samples were collected to determine ciprofloxacin concentrations to assess their pharmacokinetics. The pharmacometric modeling was performed (NONMEM®) and utilized for simulations to evaluate the probability of target attainment (PTA) to achieve an AUC0–24/MIC of 125 mg·h/L for ciprofloxacin. A two-compartment model most adequately described the concentration-time data of ciprofloxacin. Significant covariates on ciprofloxacin clearance (CL) were plasma bicarbonate and the estimated glomerular filtration rate (eGFR). For pathogens with an MIC of ≤0.25 mg/L, a PTA of ≥90% was attained. However, for pathogens with an MIC of ≥0.5 mg/L, plasma bicarbonate ≥ 22 mmol/L or eGFR ≥ 10 mL/min PTA decreased below 90%, steadily declining to 7.3% (plasma bicarbonate 39 mmol/L) and 21.4% (eGFR 150 mL/min), respectively. To reach PTAs of ≥90% for pathogens with MICs ≥ 0.5 mg/L, optimized dosing regimens may be required.
Collapse
|
90
|
Maimongkol P, Yonwises W, Anugulruengkitt S, Sophonphan J, Treyaprasert W, Wacharachaisurapol N. Therapeutic drug monitoring of meropenem and pharmacokinetic-pharmacodynamic target assessment in critically ill pediatric patients from a prospective observational study. Int J Infect Dis 2022; 120:96-102. [PMID: 35489632 DOI: 10.1016/j.ijid.2022.04.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES To compare the unbound plasma meropenem concentrations at mid-dosing intervals (Cmid, 50%fT), end-dosing intervals (Ctrough, 100%fT), and proportions of patients achieving 50%fT and 100%fT above MIC (50%fT>MIC and 100%fT>MIC) between extended infusion (EI) and intermittent bolus (IB) administration in a therapeutic drug monitoring (TDM) program in children. METHODS A prospective observational study was conducted in children aged 1 month to 18 years receiving meropenem every 8 h by either EI or IB. Meropenem Cmid, Ctrough, and proportions of patients achieving 50%fT>MIC and 100%fT>MIC were compared. RESULTS TDM data from 72 patients with a median age (IQR) of 12 months (3-37) were used. Meropenem dose was 120 and 60 mg/kg/day in EI and IB groups, respectively. Geometric mean (95% CI) Cmid of EI versus IB was 17.3 mg/L (13.7-21.8) versus 3.4 mg/L (1.7-6.7) (P<0.001). Geometric mean (95% CI) Ctrough of EI versus IB was 2.3 mg/L (1.6-3.4) versus 0.8 mg/L (0.4-1.5) (P=0.005). Greater proportions of patients achieving 50%fT>MIC and 100%fT>MIC were observed in the EI group. CONCLUSIONS A meropenem dose of 20 mg/kg/dose given by IB should not be used in critically ill children, even if they are not suspected of having a CNS infection. A dose of 40 mg/kg/dose given by EI resulted in higher Cmid, Ctrough, and proportions of patients achieving 50%fT>MIC and 100%fT>MIC.
Collapse
Affiliation(s)
- Passara Maimongkol
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wanlika Yonwises
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suvaporn Anugulruengkitt
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Sophonphan
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand
| | - Wanchai Treyaprasert
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Wacharachaisurapol
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
91
|
Minotti C, Barbieri E, Doni D, Impieri C, Giaquinto C, Donà D. Anti-infective Medicines Use in Children and Neonates With Pre-existing Kidney Dysfunction: A Systematic Review. Front Pediatr 2022; 10:868513. [PMID: 35558367 PMCID: PMC9087830 DOI: 10.3389/fped.2022.868513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dosing recommendations for anti-infective medicines in children with pre-existing kidney dysfunction are derived from adult pharmacokinetics studies and adjusted to kidney function. Due to neonatal/pediatric age and kidney impairment, modifications in renal clearance and drug metabolism make standard anti-infective dosing for children and neonates inappropriate, with a risk of drug toxicity or significant underdosing. The aim of this study was the systematic description of the use of anti-infective medicines in pediatric patients with pre-existing kidney impairment. Methods A systematic review of the literature was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The EMBASE, Medline and Cochrane databases were searched on September 21st, 2021. Studies in all languages reporting data on pre-defined outcomes (pharmacokinetics-PK, kidney function, safety and efficacy) regarding the administration of anti-infective drugs in children up to 18 years with pre-existing kidney dysfunction were included. Results 29 of 1,792 articles were eligible for inclusion. There were 13 case reports, six retrospective studies, nine prospective studies and one randomized controlled trial (RCT), reporting data on 2,168 pediatric patients. The most represented anti-infective class was glycopeptides, with seven studies on vancomycin, followed by carbapenems, with five studies, mostly on meropenem. Antivirals, aminoglycosides and antifungals counted three articles, followed by combined antibiotic therapy, cephalosporins, lipopeptides with two studies, respectively. Penicillins and polymixins counted one study each. Nine studies reported data on patients with a decreased kidney function, while 20 studies included data on kidney replacement therapy (KRT). Twenty-one studies reported data on PK. In 23 studies, clinical outcomes were reported. Clinical cure was achieved in 229/242 patients. There were four cases of underdosing, one case of overdosing and 13 reported deaths. Conclusion This is the first systematic review providing evidence of the use of anti-infective medicines in pediatric patients with impaired kidney function or requiring KRT. Dosing size or interval adjustments in pediatric patients with kidney impairment vary according to age, critical illness status, decreased kidney function and dialysis type. Our findings underline the relevance of population PK in clinical practice and the need of developing predictive specific models for critical pediatric patients.
Collapse
Affiliation(s)
- Chiara Minotti
- Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Elisa Barbieri
- Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Denis Doni
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Cristina Impieri
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Carlo Giaquinto
- Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Daniele Donà
- Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
| |
Collapse
|
92
|
Chen C, Seabury RW, Steele JM, Parsels KA, Darko W, Miller CD, Kufel WD. Evaluation of β-lactam therapeutic drug monitoring among US health systems with postgraduate year 2 infectious diseases pharmacy residency programs. Am J Health Syst Pharm 2022; 79:1273-1280. [PMID: 35439284 DOI: 10.1093/ajhp/zxac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DISCLAIMER In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. PURPOSE While some guidelines recognize the need for β-lactam therapeutic drug monitoring (TDM), there is still a paucity of data regarding the prevalence of and barriers to performing β-lactam TDM in the United States. We sought to estimate the prevalence of β-lactam TDM, describe monitoring practices, and identify actual and perceived barriers to implementation among health systems in the US. METHODS A multicenter, cross-sectional, 40-item electronic survey was distributed to all postgraduate year 2 (PGY2) infectious diseases (ID) pharmacy residency program directors (RPDs) listed in the American Society of Health-System Pharmacists pharmacy residency directory. The primary outcome was the percentage of institutions with established β-lactam TDM. Secondary outcomes included assessing β-lactam TDM methods and identifying potential barriers to implementation. RESULTS The survey was distributed to 126 PGY2 ID RPDs, with a response rate of 31.7% (40 of 126). Only 7.7% of respondents (3 of 39) performed β-lactam TDM. Patient populations, therapeutic targets, and frequency and timing of obtaining repeat β-lactam concentration measurements varied among institutions. The greatest barrier to implementation was lack of access to testing with a rapid turnaround time. Institutions were unlikely to implement β-lactam TDM within the next year but were significantly more inclined to do so within 5 years (P < 0.001). CONCLUSION Β-lactam TDM was infrequently performed at the surveyed US health systems. Lack of access to serum concentration testing with rapid turnaround and lack of US-specific guidelines appear to be considerable barriers to implementing β-lactam TDM. Among institutions that have implemented β-lactam TDM, there is considerable variation in monitoring approaches.
Collapse
Affiliation(s)
- Chieh Chen
- State University of New York Upstate University Hospital, Syracuse, NY, USA
| | - Robert W Seabury
- State University of New York Upstate University Hospital, Syracuse, NY, and State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Jeffrey M Steele
- State University of New York Upstate University Hospital, Syracuse, NY, and State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Katie A Parsels
- State University of New York Upstate University Hospital, Syracuse, NY, USA
| | - William Darko
- State University of New York Upstate University Hospital, Syracuse, NY, and State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Christopher D Miller
- State University of New York Upstate University Hospital, Syracuse, NY, and State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Wesley D Kufel
- State University of New York Upstate University Hospital, Syracuse, NY, State University of New York Upstate Medical University, Syracuse, NY, and Binghamton University School of Pharmacy and Pharmaceutical Sciences, Binghamton, NY, USA
| |
Collapse
|
93
|
Ni SQ, Teng WB, Fu YH, Su W, Yang Z, Cai J, Xu JN, Deng XY, Liu XF, Fu SN, Zeng J, Zhang C. The effect of a loading dose of meropenem on outcomes of patients with sepsis treated by continuous renal replacement: study protocol for a randomized controlled trial. Trials 2022; 23:294. [PMID: 35413886 PMCID: PMC9006454 DOI: 10.1186/s13063-022-06264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/31/2022] [Indexed: 08/30/2023] Open
Abstract
Background Sepsis and continuous renal replacement therapy (CRRT) are both responsible for the alterations of the pharmacokinetics of antibiotics. For patients with sepsis receiving CRRT, the serum concentrations of meropenem in the early phase (< 48 h) was significantly lower than that in the late phase (> 48 h). This current trial aimed to investigate whether administration of a loading dose of meropenem results in a more likely achievement of the pharmacokinetic (PK)/pharmacodynamics (PD) target (100% fT > 4 × MIC) and better therapeutic results in the patients with sepsis receiving CRRT. Methods This is a single-blinded, single-center, randomized, controlled, two-arm, and parallel-group trial. This trial will be carried out in Guangzhou First People’s Hospital, School of Medicine, South China University of Technology Guangdong, China. Adult patients (age ≥ 18 years) with critical sepsis or sepsis-related shock receiving CRRT will be included in the study. The subjects will be assigned to the control group and the intervention group (LD group) randomly at a 1:1 ratio, the estimated sample size should be 120 subjects in each group. In the LD group, the patient will receive a loading dose of 1.5-g meropenem resolved in 30-ml saline which is given via central line for 30 min. Afterward, 0.75-g meropenem will be given immediately for 30 min every 8 h. In the control group, the patient will receive 0.75-g meropenem for 30 min every 8 h. The primary objective is the probabilities of PK/PD target (100% fT > 4 × MIC) achieved in the septic patients who receive CRRT in the first 48 h. Secondary objectives include clinical cure rate, bacterial clearance rate, sepsis-related mortality and all-cause mortality, the total dose of meropenem, duration of meropenem treatment, duration of CRRT, Sequential Organ Failure Assessment (SOFA), C-reactive protein levels, procalcitonin levels, white blood cell count, and safety. Discussion This trial will assess for the first time whether administration of a loading dose of meropenem results in a more likely achievement of the PK/PD target and better therapeutic results in the patients with sepsis receiving CRRT. Since CRRT is an important therapeutic strategy for sepsis patients with hemodynamic instability, the results from this trial may help to provide evidence-based therapy for septic patients receiving CRRT. Trial registration Chinese Clinical Trials Registry, ChiCTR2000032865. Registered on 13 May 2020, http://www.chictr.org.cn/showproj.aspx?proj=53616. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06264-2.
Collapse
Affiliation(s)
- Sui-Qing Ni
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Wen-Bing Teng
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Yong-Hong Fu
- Department of Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Wei Su
- Department of Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Zhi Yang
- Department of Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Jie Cai
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Jin-Nuo Xu
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xiao-Ying Deng
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xiang-Fang Liu
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Sheng-Nan Fu
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Jun Zeng
- Department of Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Chen Zhang
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
94
|
Methods for Determination of Meropenem Concentration in Biological Samples. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Measuring the concentration of antibiotics in biological samples allow implementation of therapeutic monitoring of these drugs and contribute to the adjustment of the dosing regimen in patients. This increases the effectiveness of antimicrobial therapy, reduces the toxicity of these drugs and prevents the development of bacterial resistance. This review article summarizes current knowledge on methods for determining concentration of meropenem, an antibiotic drug from the group of carbapenems, in different biological samples. It provides a brief discussion of the chemical structure, physicochemical and pharmacokinetic properties of meropenem, different sample preparation techniques, use of apparatus and equipment, knowledge of the advantages and limitations of available methods, as well as directions in which new methods should be developed. This review should facilitate clinical laboratories to select and apply one of the established methods for measuring of meropenem, as well as to provide them with the necessary knowledge to develop new methods for quantification of meropenem in biological samples according to their needs.
Collapse
|
95
|
The Role of Surface Enhanced Raman Scattering for Therapeutic Drug Monitoring of Antimicrobial Agents. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rapid quantification of antimicrobial agents is important for therapeutic drug monitoring (TDM), enabling personalized dosing schemes in critically ill patients. Highly sophisticated TDM technology is becoming available, but its implementation in hospitals is still limited. Among the various proposed techniques, surface-enhanced Raman scattering (SERS) stands out as one of the more interesting due to its extremely high sensitivity, rapidity, and fingerprinting capabilities. Here, we present a comprehensive review of various SERS-based novel approaches applied for direct and indirect detection and quantification of antibiotic, antifungal, and antituberculosis drugs in different matrices, particularly focusing on the challenges for successful exploitation of this technique in the development of assays for point-of-care tests.
Collapse
|
96
|
Population Pharmacokinetic Model of Piperacillin in Critically Ill Patients and Describing Interethnic Variation Using External Validation. Antibiotics (Basel) 2022; 11:antibiotics11040434. [PMID: 35453185 PMCID: PMC9029174 DOI: 10.3390/antibiotics11040434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Objectives: This study aimed to develop a piperacillin population PK model for critically ill Brazil-ian patients and describe interethnic variation using an external validation. Methods: Plasma samples were obtained from 24 ICU patients during the fifth day of piperacillin treatment and assayed by HPLC-UV. Population pharmacokinetic modelling was conducted using Pmetrics. Empiric dose of 4 g IV 6- and 8-hourly were simulated for 50 and 100% fT > MIC and the probabil-ity of target attainment (PTA) and the fractional target attainment (FTA) determined. Results: A two-compartment model was designed to describe the pharmacokinetics of critically ill Brazillian patients. Clearance and volume of distribution were (mean ± SD) 3.33 ± 1.24 L h−1 and 10.69 ± 4.50 L, respectively. Creatinine clearance was positively correlated with piperacillin clearance and a high creatinine clearance was associated with lower values of PTA and FTA. An external vali-dation was performed using data from two different ethnic ICU populations (n = 30), resulting in acceptable bias and precision. Conclusion: The primary pharmacokinetic parameters obtained from critically ill Brazilian patients were similar to those observed in studies performed in critically ill patients of other ethnicities. Based on our results, the use of dose adjustment based on creati-nine clearance is required in Brazilian patients.
Collapse
|
97
|
Linezolid Administration to Critically Ill Patients: Intermittent or Continuous Infusion? A Systematic Literature Search and Review. Antibiotics (Basel) 2022; 11:antibiotics11040436. [PMID: 35453188 PMCID: PMC9025826 DOI: 10.3390/antibiotics11040436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
A judicious antibiotic therapy is one of the challenges in the therapy of critically ill patients with sepsis and septic shock. The pathophysiological changes in these patients significantly alter the antibiotic pharmacokinetics (PK) and pharmacodynamics (PD) with important consequences in reaching the therapeutic targets or the risk of side effects. The use of linezolid, an oxazolidinone antibiotic, in intensive care is such an example. The optimization of its therapeutic effects, administration in intermittent (II) or continuous infusion (CI) is gaining increased interest. In a systematic review of the main databases, we propose a detailed analysis of the main PK/PD determinants, their relationship with the clinical therapeutic response and the occurrence of adverse effects following II or CI of linezolid to different classes of critically ill patients or in Monte Carlo simulations.
Collapse
|
98
|
Mao W, Lu D, Zhou J, Zhen J, Yan J, Li L. Chinese ICU physicians' knowledge of antibiotic pharmacokinetics/pharmacodynamics (PK/PD): a cross-sectional survey. BMC MEDICAL EDUCATION 2022; 22:173. [PMID: 35287666 PMCID: PMC8920424 DOI: 10.1186/s12909-022-03234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Patients with sepsis have a high mortality rate, accumulated evidences suggest that an optimal antibiotic administration strategy based on pharmacokinetics/pharmacodynamics (PK/PD) can improve the prognosis of septic patients. Therefore, we assessed Chinese intensive care unit (ICU) physicians' knowledge about PK/PD. METHODS In December 2019, we designed a questionnaire focused on Chinese ICU physicians' knowledge about PK/PD and collected the questionnaires after 3 months. The questionnaire was distributed via e-mail and WeChat, and was distributed to ICU doctors in 31 administrative regions of China except Hong Kong, Macao and Taiwan. The passing score was corrected by the Angoff method, and the ICU physicians' knowledge about PK/PD was analysed accordingly. RESULTS We received a total of 1,309 questionnaires and retained 1,240 valid questionnaires. The passing score was 90.8, and the overall pass rate was 56.94%. The pass rate for tertiary and secondary hospitals was 59.07% and 37.19%, respectively. ICU physicians with less than 5 years of work experience and resident physician accounted for the highest pass rate, while those with between 5 to 10 years of work experience and attending accounted for the lowest pass rate. The majority of participants in the Chinese Critical Care Certified Course (5C) were from Jiangsu and Henan provinces, and they had the highest average scores (125.8 and 126.5, respectively). For Beijing and Shanghai, the average score was only 79.4 and 90.9, respectively. CONCLUSIONS Chinese ICU physicians' knowledge about PK/PD is unsatisfactory. Therefore, it is essential to strengthen ICU physicians' knowledge about PK/PD.
Collapse
Affiliation(s)
- Wenchao Mao
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, China
| | - Difan Lu
- The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Jia Zhou
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, China
| | - Junhai Zhen
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, China
| | - Jing Yan
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Li Li
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, 310013, China.
| |
Collapse
|
99
|
Gomez F, Veita J, Laudanski K. Antibiotics and ECMO in the Adult Population-Persistent Challenges and Practical Guides. Antibiotics (Basel) 2022; 11:338. [PMID: 35326801 PMCID: PMC8944696 DOI: 10.3390/antibiotics11030338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is an emerging treatment modality associated with a high frequency of antibiotic use. However, several covariables emerge during ECMO implementation, potentially jeopardizing the success of antimicrobial therapy. These variables include but are not limited to: the increased volume of distribution, altered clearance, and adsorption into circuit components, in addition to complex interactions of antibiotics in critical care illness. Furthermore, ECMO complicates the assessment of antibiotic effectiveness as fever, or other signs may not be easily detected, the immunogenicity of the circuit affects procalcitonin levels and other inflammatory markers while disrupting the immune system. We provided a review of pharmacokinetics and pharmacodynamics during ECMO, emphasizing practical application and review of patient-, illness-, and ECMO hardware-related factors.
Collapse
Affiliation(s)
- Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65021, USA;
| | - Jesyree Veita
- Society for Healthcare Innovation, Philadelphia, PA 19146, USA;
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19146, USA
- Leonard Davis Institute for HealthCare Economics, University of Pennsylvania, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19146, USA
| |
Collapse
|
100
|
Gorham J, Taccone FS, Hites M. Ensuring target concentrations of antibiotics in critically ill patients through dose adjustment. Expert Opin Drug Metab Toxicol 2022; 18:177-187. [PMID: 35311440 DOI: 10.1080/17425255.2022.2056012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Antibiotics are commonly prescribed in critical care, and given the large variability of pharmacokinetic (PK) parameters in these patients, drug PK frequently varies during therapy with the risk of either treatment failure or toxicity. Therefore, adequate antibiotic dosing in critically ill patients is very important. AREAS COVERED This review provides an overview of the basic principles of PK and pharmacodynamics of antibiotics and the main patient and pathogen characteristics that may affect the dosage of antibiotics and different approaches to adjust doses. EXPERT OPINION Dose adjustment should be done for aminoglycosides and glycopeptides based on daily drug concentration monitoring. For glycopeptides, in particular vancomycin, the residual concentration (Cres) should be assessed daily. For beta-lactam antibiotics, a loading dose should be administered, followed by three different possible approaches, as TDM is rarely available in most centers: 1) antibiotic regimens should be adapted according to renal function and other risk factors; 2) nomograms or software can be used to calculate daily dosing; 3) TDM should be performed 24-48 h after the initiation of treatment; however, the results are required within 24 hours to appropriately adjust dosage regimens. Drug dosing should be reduced or increased according to the TDM results.
Collapse
Affiliation(s)
- Julie Gorham
- Department of intensive care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of intensive care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Maya Hites
- Clinic of Infectious diseases, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|