51
|
Li P, Lu X, Wang Y, Sun L, Qian C, Yan W, Liu N, You Y, Fu Z. MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells. J Biomed Res 2013; 24:436-43. [PMID: 23554660 PMCID: PMC3596691 DOI: 10.1016/s1674-8301(10)60058-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/28/2010] [Accepted: 10/29/2010] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs regulate self renewal and differentiation of cancer stem cells. There, we sought to identify the expression of miR-181b in glioma stem cells and investigate the biological effect of miR-181b on glioma stem cells in this study. MiR-181b expression was measured by real-time PCR in glioma stem cells isolated from U87 cells by FACS sorting. After miR-181b was overexpressed in U87 glioma stem cells by miR-181b lentiviral expression vector and/or treatment of temozolomide, secondary neurosphere assay, soft agar colony assay and MTT assay were performed. Compared with U87 cells, the expression of miR-181b was significantly decreased in U87 glioma stem cells. Overexpression of miR-181b decreased neurosphere formation by U87 glioma stem cells in vitro and suppressed colony formation in soft agar, and the cell growth inhibition rates increased in a time-dependent manner in U87 glioma stem cells infected with miR-181b lentivirus. Furthermore, miR-181b had a synergistic effect on temozolomide-induced inhibition of secondary neurosphere and soft agar colony, and on cell growth inhibition rates. MiR-181b functions as a tumor suppressor that suppresses proliferation and reduces chemoresistance to temozolomide in glioma stem cells.
Collapse
Affiliation(s)
- Ping Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wang JW, Li K, Hellermann G, Lockey RF, Mohapatra S, Mohapatra S. Regulating the Regulators: microRNA and Asthma. World Allergy Organ J 2013; 4:94-103. [PMID: 23282474 PMCID: PMC3651079 DOI: 10.1186/1939-4551-4-6-94] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
One obstacle to developing an effective therapeutic strategy to treat or prevent asthma is that the fundamental causes of asthma are not totally understood. Asthma is thought to be a chronic TH2 immune-mediated inflammatory disease. Epigenetic changes are recognized to play a role in the initiation and maintenance of a TH2 response. MicroRNAs (miRNAs) are key epigenetic regulators of gene expression, and their expression is highly regulated, therefore, deregulation of miRNAs may play an important role in the pathogenesis of asthma. Profiling circulating miRNA might provide the highest specificity and sensitivity to diagnose asthma; similarly, correcting potential defects in the miRNA regulation network may lead to new therapeutic modalities to treat this disease.
Collapse
Affiliation(s)
- Jia-Wang Wang
- Department of Internal Medicine Division of Translational Medicine and Nanomedicine Research Center1, and Division of Allergy and Immunology2, Department of Molecular Medicine3, University of South Florida College of Medicine, and James A. Haley VA Hospital and Medical Research Center4, Tampa, FL 33612
| | | | | | | | | | | |
Collapse
|
53
|
Abstract
MicroRNAs (miRNAs) are a class of tiny noncoding RNAs that play an important role in regulating every aspect of cellular activities. Dysfunctional expression of miRNAs disrupts normal biological processes, leading to the development of various diseases including cancer. Circulating miRNAs are being investigated as biomarkers with a potential for noninvasive disease detection. This demands the development of new technologies to accurately detect miRNAs with short assay time and affordable cost. We have proposed a nanopore single-molecule method for accurate, label-free detection of circulating miRNAs without amplification of the target miRNA. This concise protocol describes how to device a protein nanopore to quantify target miRNAs in RNA extraction, and discusses at the end the advantages, challenges, and broad impact of the nanopore approach for miRNA detection.
Collapse
Affiliation(s)
- Li-Qun Gu
- Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
54
|
Gu LQ, Wanunu M, Wang MX, McReynolds L, Wang Y. Detection of miRNAs with a nanopore single-molecule counter. Expert Rev Mol Diagn 2012; 12:573-84. [PMID: 22845478 DOI: 10.1586/erm.12.58] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
miRNAs are short noncoding RNA molecules that are important in regulating gene expression. Due to the correlation of their expression levels and various diseases, miRNAs are being investigated as potential biomarkers for molecular diagnostics. The fast-growing miRNA exploration demands rapid, accurate, low-cost miRNA detection technologies. This article will focus on two platforms of nanopore single-molecule approach that can quantitatively measure miRNA levels in samples from tissue and cancer patient plasma. Both nanopore methods are sensitive and specific, and do not need labeling, enzymatic reaction or amplification. In the next 5 years, the nanopore-based miRNA techniques will be improved and validated for noninvasive and early diagnosis of diseases.
Collapse
Affiliation(s)
- Li-Qun Gu
- Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
55
|
Ji W, Yang L, Yuan J, Yang L, Zhang M, Qi D, Duan X, Xuan A, Zhang W, Lu J, Zhuang Z, Zeng G. MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism. Carcinogenesis 2012; 34:446-53. [DOI: 10.1093/carcin/bgs343] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
56
|
Pigazzi M, Manara E, Bresolin S, Tregnago C, Beghin A, Baron E, Giarin E, Cho EC, Masetti R, Rao DS, Sakamoto KM, Basso G. MicroRNA-34b promoter hypermethylation induces CREB overexpression and contributes to myeloid transformation. Haematologica 2012; 98:602-10. [PMID: 23100280 DOI: 10.3324/haematol.2012.070664] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-34b down-regulation in acute myeloid leukemia was previously shown to induce CREB overexpression, thereby causing leukemia proliferation in vitro and in vivo. The role of microRNA-34b and CREB in patients with myeloid malignancies has never been evaluated. We examined microRNA-34b expression and the methylation status of its promoter in cells from patients diagnosed with myeloid malignancies. We used gene expression profiling to identify signatures of myeloid transformation. We established that microRNA-34b has suppressor ability and that CREB has oncogenic potential in primary bone marrow cell cultures and in vivo. MicroRNA-34b was found to be up-regulated in pediatric patients with juvenile myelomonocytic leukemia (n=17) and myelodysplastic syndromes (n=28), but was down-regulated in acute myeloid leukemia patients at diagnosis (n=112). Our results showed that hypermethylation of the microRNA-34b promoter occurred in 66% of cases of acute myeloid leukemia explaining the low microRNA-34b levels and CREB overexpression, whereas preleukemic myelodysplastic syndromes and juvenile myelomonocytic leukemia were not associated with hypermethylation or CREB overexpression. In paired samples taken from the same patients when they had myelodysplastic syndrome and again during the subsequent acute myeloid leukemia, we confirmed microRNA-34b promoter hypermethylation at leukemia onset, with 103 CREB target genes differentially expressed between the two disease stages. This subset of CREB targets was confirmed to associate with high-risk myelodysplastic syndromes in a separate cohort of patients (n=20). Seventy-eight of these 103 CREB targets were also differentially expressed between healthy samples (n=11) and de novo acute myeloid leukemia (n=72). Further, low microRNA-34b and high CREB expression levels induced aberrant myelopoiesis through CREB-dependent pathways in vitro and in vivo. In conclusion, we suggest that microRNA-34b controls CREB expression and contributes to myeloid transformation from both healthy bone marrow and myelodysplastic syndromes. We identified a subset of CREB target genes that represents a novel transcriptional network that may control myeloid transformation.
Collapse
Affiliation(s)
- Martina Pigazzi
- Women and Child Health Department, Hematology-Oncology Laboratory, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Evaluation of microRNA expression in patient bone marrow aspirate slides. PLoS One 2012; 7:e42951. [PMID: 22912766 PMCID: PMC3418238 DOI: 10.1371/journal.pone.0042951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022] Open
Abstract
Like formalin fixed paraffin embedded (FFPE) tissues, archived bone marrow aspirate slides are an abundant and untapped resource of biospecimens that could enable retrospective molecular studies of disease. Historically, RNA obtained from slides is limited in utility because of their low quality and highly fragmented nature. MicroRNAs are small (≈22 nt) non-coding RNA that regulate gene expression, and are speculated to preserve well in FFPE tissue. Here we investigate the use of archived bone marrow aspirate slides for miRNA expression analysis in paediatric leukaemia. After determining the optimal method of miRNA extraction, we used TaqMan qRT-PCR to identify reference miRNA for normalisation of other miRNA species. We found hsa-miR-16 and hsa-miR-26b to be the most stably expressed between lymphoblastoid cell lines, primary bone marrow aspirates and archived samples. We found the average fold change in expression of hsa-miR-26b and two miRNA reportedly dysregulated in leukaemia (hsa-miR-128a, hsa-miR-223) was <0.5 between matching archived slide and bone marrow aspirates. Differential expression of hsa-miR-128a and hsa-miR-223 was observed between leukaemic and non-leukaemic bone marrow from archived slides or flash frozen bone marrow. The demonstration that archived bone marrow aspirate slides can be utilized for miRNA expression studies offers tremendous potential for future investigations into the role miRNA play in the development and long term outcome of hematologic, as well as non-hematologic, diseases.
Collapse
|
58
|
Yamamoto H, Adachi Y, Taniguchi H, Kunimoto H, Nosho K, Suzuki H, Shinomura Y. Interrelationship between microsatellite instability and microRNA in gastrointestinal cancer. World J Gastroenterol 2012; 18:2745-55. [PMID: 22719182 PMCID: PMC3374977 DOI: 10.3748/wjg.v18.i22.2745] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 03/02/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023] Open
Abstract
There is an increasing understanding of the roles that microsatellite instability (MSI) plays in Lynch syndrome (by mutations) and sporadic (by mainly epigenetic changes) gastrointestinal (GI) and other cancers. Deficient DNA mismatch repair (MMR) results in the strong mutator phenotype known as MSI, which is the hallmark of cancers arising within Lynch syndrome. MSI is characterized by length alterations within simple repeated sequences called microsatellites. Lynch syndrome occurs primarily because of germline mutations in one of the MMR genes, mainly MLH1 or MSH2, less frequently MSH6, and rarely PMS2. MSI is also observed in about 15% of sporadic colorectal, gastric, and endometrial cancers and in lower frequencies in a minority of other cancers where it is often associated with the hypermethylation of the MLH1 gene. miRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level and are critical in many biological processes and cellular pathways. There is accumulating evidence to support the notion that the interrelationship between MSI and miRNA plays a key role in the pathogenesis of GI cancer. As a possible new mechanism underlying MSI, overexpression of miR-155 has been shown to downregulate expression of MLH1, MSH2, and MSH6. Thus, a subset of MSI-positive (MSI+) cancers without known MMR defects may result from miR-155 overexpression. Target genes of frameshift mutation for MSI are involved in various cellular functions, such as DNA repair, cell signaling, and apoptosis. A novel class of target genes that included not only epigenetic modifier genes, such as HDAC2, but also miRNA processing machinery genes, including TARBP2 and XPO5, were found to be mutated in MSI+ GI cancers. Thus, a subset of MSI+ colorectal cancers (CRCs) has been proposed to exhibit a mutated miRNA machinery phenotype. Genetic, epigenetic, and transcriptomic differences exist between MSI+ and MSI− cancers. Molecular signatures of miRNA expression apparently have the potential to distinguish between MSI+ and MSI− CRCs. In this review, we summarize recent advances in the MSI pathogenesis of GI cancer, with the focus on its relationship with miRNA as well as on the potential to use MSI and related alterations as biomarkers and novel therapeutic targets.
Collapse
|
59
|
Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol Res 2012; 65:565-76. [DOI: 10.1016/j.phrs.2012.03.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 02/07/2023]
|
60
|
Epigenética y cáncer colorrectal. Cir Esp 2012; 90:277-83. [DOI: 10.1016/j.ciresp.2011.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/25/2011] [Accepted: 11/07/2011] [Indexed: 12/31/2022]
|
61
|
Huang Y, Dai Y, Zhang J, Wang C, Li D, Cheng J, Lu Y, Ma K, Tan L, Xue F, Qin B. Circulating microRNAs as potential biomarkers for smoking-related interstitial fibrosis. Biomarkers 2012; 17:435-40. [DOI: 10.3109/1354750x.2012.680611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
62
|
Chatterton Z, Morenos L, Saffery R, Craig JM, Ashley D, Wong NC. DNA methylation and miRNA expression profiling in childhood B-cell acute lymphoblastic leukemia. Epigenomics 2012; 2:697-708. [PMID: 22122053 DOI: 10.2217/epi.10.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children in the modern world. Recent efforts in characterizing the genetic contribution to this disease through uncovering gene mutations, deletions and structural variation by genome-scale methods have only accounted for a modest proportion of children with ALL. This suggests that either further genetic contributions to ALL have yet to be characterized or other factors, such as epigenetic aberrations are involved. A number of DNA methylation and miRNA profiling studies have investigated the role of both in childhood ALL. Here, we review these profiling efforts, summarize their major findings and speculate as to what the future may hold.
Collapse
Affiliation(s)
- Zac Chatterton
- Developmental Epigenetics, Early Development & Disease Theme, Murdoch Children's Research Institute, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
63
|
Andolfo I, Liguori L, De Antonellis P, Cusanelli E, Marinaro F, Pistollato F, Garzia L, De Vita G, Petrosino G, Accordi B, Migliorati R, Basso G, Iolascon A, Cinalli G, Zollo M. The micro-RNA 199b-5p regulatory circuit involves Hes1, CD15, and epigenetic modifications in medulloblastoma. Neuro Oncol 2012; 14:596-612. [PMID: 22411914 DOI: 10.1093/neuonc/nos002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Micro-RNA (miR) 199b-5p targets Hes1 in medulloblastoma, one of the downstream effectors of both the canonical Notch and noncanonical Sonic Hedgehog pathways. In medulloblastoma patients, expression of miR-199b-5p is significantly decreased in metastatic cases, thus suggesting a downregulation mechanism. We studied this mechanism, which is mediated mostly by Hes1 and epigenetic promoter modifications. The miR-199b-5p promoter region was characterized, which identified a Hes1 binding site, thus demonstrating a negative feedback loop of regulation. MiR-199b-5p was shown to be downregulated in several medulloblastoma cell lines and in tumors by epigenetic methylation of a cytosine-phosphate-guanine island upstream of the miR-199b-5p promoter. Furthermore, the cluster of differention (CD) carbohydrate antigen CD15, a marker of medulloblastoma tumor-propagating cells, is an additional direct target of miR-199b-5p. Most importantly, regulation of miR-199b-5p expression in these CD15+/CD133+ tumor-propagating cells was influenced by only Hes1 expression and not by any epigenetic mechanism of regulation. Moreover, reverse-phase protein array analysis showed both the Akt and extracellular-signal-regulated kinase pathways as being mainly negatively regulated by miR-199b-5p expression in several medulloblastoma cell lines and in primary cell cultures. We present here the finely tuned regulation of miR-199b-5p in medulloblastoma, underlining its crucial role by its additional targeting of CD15.
Collapse
|
64
|
Alpini G, Glaser SS, Zhang JP, Francis H, Han Y, Gong J, Stokes A, Francis T, Hughart N, Hubble L, Zhuang SM, Meng F. Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer. J Hepatol 2011; 55:1339-45. [PMID: 21703189 PMCID: PMC3184370 DOI: 10.1016/j.jhep.2011.04.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 03/27/2011] [Accepted: 04/04/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS microRNAs (miRNAs) are a class of small noncoding RNAs that can regulate gene expression by translation repression or mRNA degradation. Our aim was to evaluate the role of aberrantly expressed miRNAs in hepatocellular cancer (HCC). METHODS miRNA expression in HCC tissues and cells was evaluated by qPCR array and Taqman miRNA assay. Cell proliferation, motility, invasion, and the angiogenesis index were quantitated using commercial assays. DNA methylation status, matrix metalloproteinases (MMPs) mRNA expression was quantitated by real-time PCR analysis. RESULTS miRNA profiling identified a decrease in miR-125b expression in HCC tumor tissues and cell lines. The expression of miR-125b was significantly increased by the methylation inhibitor 5-aza-2'-deoxycytidine in HCC cells but not in normal controls, suggesting that the expression of miR-125b could be epigenetically modulated. Methylation-specific PCR revealed hypermethylation status of miR-125b in HCC cells compared to non-malignant controls. Cell proliferation, anchorage-independent growth, cell migration, invasion, and angiogenesis were significantly decreased by the introduction of miR-125b precursor in HCC cell lines. Placenta growth factor was identified as a target of miR-125b by bioinformatics analysis and experimentally verified using luciferase reporter constructs. Overexpression of miR-125b in HCC cells decreased PIGF expression, and altered the angiogenesis index. Furthermore, modulation of miR-125b also distorted expression of MMP-2 and -9, the mediators of enzymatic degradation of the extracellular matrix. CONCLUSIONS Our studies showing epigenetic silencing of miR-125b contributes to an invasive phenotype provide novel mechanistic insights and identify a potential target mechanism that could be manipulated for therapeutic benefit in HCC.
Collapse
Affiliation(s)
- Gianfranco Alpini
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, TX 76504, USA.
| | - Shannon S. Glaser
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, Texas
| | - Jing-Ping Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, PR China
| | - Heather Francis
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, Texas., Research & Education, Scott & White Hospital, Temple, Texas
| | - Yuyan Han
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, Texas
| | - Jiao Gong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, PR China
| | - Allison Stokes
- Research & Education, Scott & White Hospital, Temple, Texas
| | - Taylor Francis
- Research & Education, Scott & White Hospital, Temple, Texas
| | - Nathan Hughart
- Research & Education, Scott & White Hospital, Temple, Texas
| | - Levi Hubble
- Research & Education, Scott & White Hospital, Temple, Texas
| | - Shi-Mei Zhuang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, PR China
| | - Fanyin Meng
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, Texas., Research & Education, Scott & White Hospital, Temple, Texas
| |
Collapse
|
65
|
Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY, Zhao J, Meng YL, Ren XL, Wang T, Li Q, Jin BQ, Yao LB, Wang RA, Fan DM, Chen SY, Jia LT, Yang AG. HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology 2011; 141:2076-2087.e6. [PMID: 21925125 DOI: 10.1053/j.gastro.2011.08.050] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Human epidermal growth factor receptor 2 (HER2) (neu/ERBB2) is overexpressed on many types of cancer cells, including gastric cancer cells; HER2 overexpression has been associated with metastasis and poor prognosis. We investigated the mechanisms by which HER2 regulates cell migration and invasion. METHODS HER2 expression or activity was reduced in gastric cancer cell lines using small interfering RNAs or the monoclonal antibody, trastuzumab. We identified proteins that interact with HER2 or microRNAs (miRNAs) involved in HER2 signaling. We used various software programs to identify miRNAs that regulate factors in the HER2 signaling pathway. We analyzed expression patterns of these miRNAs in gastric cancer cell lines and tumor samples from patients. RESULTS We found that CD44 binds directly to HER2, which up-regulates the expression of metastasis-associated protein-1, induces deacetylation of histone H3 lysine 9, and suppresses transcription of microRNA139 (miR-139) to inhibit expression of its target gene, C-X-C chemokine receptor type 4 (CXCR4). Knockdown of HER2 and CD44 reduced invasive activity of cultured gastric cancer cells and suppressed tumor growth in nude mice. Lymph node metastasis was associated with high levels of HER2, CD44, and CXCR4, and reduced levels of miR-139 in human metastatic gastric tumors. Cultures of different types of metastatic cancer cells with histone deacetylase inhibitors and/or DNA methyltransferase resulted in up-regulation of miR-139. CONCLUSIONS HER2 interaction with CD44 up-regulates CXCR4 by inhibiting expression of miR-139, at the epigenetic level, in gastric cancer cells. These findings indicate how HER2 signaling might promote gastric tumor progression and metastasis.
Collapse
Affiliation(s)
- Wei Bao
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Chen IP, Henning S, Faust A, Boukamp P, Volkmer B, Greinert R. UVA-induced epigenetic regulation of P16(INK4a) in human epidermal keratinocytes and skin tumor derived cells. Photochem Photobiol Sci 2011; 11:180-90. [PMID: 21986889 DOI: 10.1039/c1pp05197k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UVA-radiation (315-400 nm) has been demonstrated to be capable of inducing DNA damage and is regarded as a carcinogen. While chromosomal aberrations found in UVA-irradiated cells and skin tumors provided evidence of the genetic involvement in UVA-carcinogenesis, its epigenetic participation is still illusive. We thus analysed the epigenetic patterns of 5 specific genes that are involved in stem cell fate (KLF4, NANOG), telomere maintenance (hTERT) and tumor suppression in cell cycle control (P16(INK4a), P21(WAFI/CIPI)) in chronically UVA-irradiated HaCaT human keratinocytes. A striking reduction of the permissive histone mark H3K4me3 has been detected in the promoter of P16(INK4a) (4-fold and 9-fold reduction for 10 and 15 weeks UVA-irradiated cells, respectively), which has often been found deregulated in skin cancers. This alteration in histone modification together with a severe promoter hypermethylation strongly impaired the transcription of P16(INK4a) (20-fold and 40-fold for 10 weeks and 15 weeks UVA-irradiation, respectively). Analysis of the skin tumor-derived cells revealed the same severe impairment of the P16(INK4a) transcription attributed to promoter hypermethylation and enrichment of the heterochromatin histone mark H3K9me3 and the repressive mark H3K27me3. Less pronounced UVA-induced epigenetic alterations were also detected for the other genes, demonstrating for the first time that UVA is able to modify transcription of skin cancer associated genes by means of epigenetic DNA and histone alterations.
Collapse
Affiliation(s)
- I-Peng Chen
- Dept. Mol. Cell Biology, Center of Dermatology, Elbekliniken, Stade/Buxtehude, Germany
| | | | | | | | | | | |
Collapse
|
67
|
Faria CMC, Rutka JT, Smith C, Kongkham P. Epigenetic mechanisms regulating neural development and pediatric brain tumor formation. J Neurosurg Pediatr 2011; 8:119-32. [PMID: 21806352 DOI: 10.3171/2011.5.peds1140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pediatric brain tumors are the leading cause of cancer-related death in children, and among them, embryonal tumors represent the largest group with an associated poor prognosis and long-term morbidity for survivors. The field of cancer epigenetics has emerged recently as an important area of investigation and causation of a variety of neoplasms, and is defined as alterations in gene expression without changes in DNA sequence. The best studied epigenetic modifications are DNA methylation, histone modifications, and RNA-based mechanisms. These modifications play an important role in normal development and differentiation but their dysregulation can lead to altered gene function and cancer. In this review the authors describe the mechanisms of normal epigenetic regulation, how they interplay in neuroembryogenesis, and how these can cause brain tumors in children when dysregulated. The potential use of epigenetic markers to design more effective treatment strategies for children with malignant brain tumors is also discussed.
Collapse
Affiliation(s)
- Claudia M C Faria
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
68
|
Devor EJ, Hovey AM, Goodheart MJ, Ramachandran S, Leslie KK. microRNA expression profiling of endometrial endometrioid adenocarcinomas and serous adenocarcinomas reveals profiles containing shared, unique and differentiating groups of microRNAs. Oncol Rep 2011; 26:995-1002. [PMID: 21725615 DOI: 10.3892/or.2011.1372] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/23/2011] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs) control a multitude of pathways in human cancers. Differential expression of miRNAs among different histological types of tumors within the same type of tissue offers insight into the mechanism of pathogenesis and may help to direct treatment to improve prognosis. We assessed expression of 667 miRNAs in endometrial endometrioid and serous adenocarcinomas using RNA extracted from benign endometrium as well as from primary endometrial tumors. Quantitative miRNA profiling of endometrial adenocarcinomas revealed four overlapping groups of significantly overexpressed and underexpressed miRNAs. The first group was composed of 20 miRNAs significantly dysregulated in both adenocarcinoma types compared with benign endometrium, two groups were composed of miRNAs significantly dysregulated in either endometrioid adenocarcinomas or in serous adenocarcinomas compared with benign endometrium, and the fourth group was composed of 17 miRNAs that significantly distinguished between endometrioid adenocarcinomas and serous adenocarcinomas themselves. Validation of the expression levels of the selected miRNAs was carried out in a second panel composed of ten endometrioid and five serous tumors. Experimentally validated mRNA targets of these dysregulated miRNAs were identified using published sources, whereas TargetScan was used to predict targets of miRNAs in the first and fourth profile groups. These validated and potential miRNA target lists were filtered using published lists of genes displaying significant overexpression or underexpression in endometrial cancers compared to benign endometrium. Our results revealed a number of dysregulated miRNAs that are commonly found in endometrial (and other) cancers as well as several dysregulated miRNAs not previously identified in endometrial cancers. Understanding these differences may permit the development of both prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 3234 MERF, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
69
|
Rizzo M, Mariani L, Pitto L, Rainaldi G, Simili M. miR-20a and miR-290, multi-faceted players with a role in tumourigenesis and senescence. J Cell Mol Med 2011; 14:2633-40. [PMID: 21114763 PMCID: PMC4373484 DOI: 10.1111/j.1582-4934.2010.01173.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Expression of microRNAs changes markedly in tumours and evidence indicates that they are causatively related to tumourigenesis, behaving as tumour suppressor microRNAs or onco microRNAs; in some cases they can behave as both depending on the type of cancer. Some tumour suppressor microRNAs appear to be an integral part of the p53 and Retinoblastoma (RB) network, the main regulatory pathways controlling senescence, a major tumour suppressor mechanism. The INK4a/ARF locus which codifies for two proteins, p19ARF and p16INK4a, plays a central role in senescence by controlling both p53 and RB. Recent evidence shows that the proto-oncogene leukaemia/lymphoma related factor, a p19ARF specific repressor, is controlled by miRNAs and that miRNAs, in particular miR-20a and miR-290, are causatively involved in mouse embryo fibroblasts (MEF) senescence in culture. Intriguingly, both miR-20a, member of the oncogenic miR-17–92 cluster, and miR-290, belonging to the miR-290–295 cluster, are highly expressed in embryonic stem (ES) cells. The pro-senescence role of miR-20a and miR-290 in MEF is apparently in contrast with their proliferative role in tumour and ES cells. We propose that miRNAs may exert opposing functions depending on the miRNAs repertoire as well as target/s level/s present in different cellular contexts, suggesting the importance of evaluating miRNAs activity in diverse genetic settings before their therapeutic use as tumour suppressors.
Collapse
Affiliation(s)
- Milena Rizzo
- Laboratory of Gene and Molecular Therapy, Institute of Clinical Physiology, CNR, Pisa, Italy
| | | | | | | | | |
Collapse
|
70
|
Hoon DSB, Ferris R, Tanaka R, Chong KK, Alix-Panabières C, Pantel K. Molecular mechanisms of metastasis. J Surg Oncol 2011; 103:508-17. [PMID: 21480243 DOI: 10.1002/jso.21690] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism of metastasis is a complex set of events that build upon each other to achieve successful growth in organ sites beyond the primary tumor. The cumulative events for metastasis of different cancers have both common and specific cancer specific events. This review discusses several key factors in different cancers that are responsible in metastasis, which includes epigenetic regulation of tumor suppressor genes, functional activity of tumor-related chemokine receptors, and circulating tumor cells.
Collapse
Affiliation(s)
- Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California 90404, USA.
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW This review describes recent advances in technologies for massive parallel sequencing of human genomes and discusses their application to the analysis of cancer genomes. RECENT FINDINGS Several different instruments are now available for next-generation sequencing (NGS). Although they use different sample preparation and sequencing technologies, they all rely on large computing capacity for assembling sequences and identifying somatic mutations against the background of genetic variations. Recent examples of NGS application to cancer genomes include the sequencing of 22 cases of glioblastoma multiforme that identified IDH1, the gene encoding isocitrate dehydrogenase 1, as target for cancer-driving mutations. Analysis of entire genomes of single samples of lung cancer and melanoma has brought unprecedented details on how tobacco carcinogens and UV exposure, respectively, may sculpt specific mutation landscapes. In breast cancer, comparative genome sequencing of primary and secondary lesions of a single patient has revealed clues on the phylogeny of tumor cells. SUMMARY NGS is opening a new era for understanding how environmental factors alter the human genome to generate cancerous cells, paving the way to a better understanding of the origins of human cancer.
Collapse
|
72
|
Blüml S, Bonelli M, Niederreiter B, Puchner A, Mayr G, Hayer S, Koenders MI, van den Berg WB, Smolen J, Redlich K. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. ARTHRITIS AND RHEUMATISM 2011; 63:1281-8. [PMID: 21321928 DOI: 10.1002/art.30281] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE MicroRNAs (miRNA) are a new class of regulatory elements. Altered expression of miRNA has been demonstrated in the inflamed joints of patients with rheumatoid arthritis (RA). The aim of this study was to examine the role of miRNA in the pathogenesis of autoimmune arthritis, using 2 murine models. METHODS Collagen-induced arthritis (CIA) and K/BxN serum-transfer arthritis were induced in wild-type (WT) and miR-155-deficient (miR-155(-/-) ) mice. The severity of arthritis was determined clinically and histologically. Anticollagen antibodies and cytokines were measured by enzyme-linked immunosorbent assay. The cellular composition of the draining lymph nodes after induction of CIA was measured by flow cytometry. RESULTS The miR-155(-/-) mice did not develop CIA. Deficiency in miR-155 prevented the generation of pathogenic autoreactive B and T cells, since anticollagen antibodies and the expression levels of antigen-specific T cells were strongly reduced in miR-155(-/-) mice. Moreover, Th17 polarization of miR-155(-/-) mouse T cells was impaired, as shown by a significant decrease in the levels of interleukin-17 (IL-17) and IL-22. In the K/BxN serum-transfer arthritis model, which only depends on innate effector mechanisms, miR-155(-/-) mice showed significantly reduced local bone destruction, attributed to reduced generation of osteoclasts, although the severity of joint inflammation was similar to that in WT mice. CONCLUSION These results demonstrate that miR-155 is essentially involved in the adaptive and innate immune reactions leading to autoimmune arthritis, and therefore miR-155 might provide a novel target for the treatment of patients with RA.
Collapse
|
73
|
MicroRNAs, the DNA damage response and cancer. Mutat Res 2011; 717:54-66. [PMID: 21477600 DOI: 10.1016/j.mrfmmm.2011.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 12/13/2022]
Abstract
Many carcinogenic agents such as ultra-violet light from the sun and various natural and man-made chemicals act by damaging the DNA. To deal with these potentially detrimental effects of DNA damage, cells induce a complex DNA damage response (DDR) that includes DNA repair, cell cycle checkpoints, damage tolerance systems and apoptosis. This DDR is a potent barrier against carcinogenesis and defects within this response are observed in many, if not all, human tumors. DDR defects fuel the evolution of precancerous cells to malignant tumors, but can also induce sensitivity to DNA damaging agents in cancer cells, which can be therapeutically exploited by the use of DNA damaging treatment modalities. Regulation of and coordination between sub-pathways within the DDR is important for maintaining genome stability. Although regulation of the DDR has been extensively studied at the transcriptional and post-translational level, less is known about post-transcriptional gene regulation by microRNAs, the topic of this review. More specifically, we highlight current knowledge about DNA damage responsive microRNAs and microRNAs that regulate DNA damage response genes. We end by discussing the role of DNA damage response microRNAs in cancer etiology and sensitivity to ionizing radiation and other DNA damaging therapeutic agents.
Collapse
|
74
|
Park JY, Helm J, Coppola D, Kim D, Malafa M, Kim SJ. MicroRNAs in pancreatic ductal adenocarcinoma. World J Gastroenterol 2011; 17:817-27. [PMID: 21412491 PMCID: PMC3051132 DOI: 10.3748/wjg.v17.i7.817] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Ductal adenocarcinoma of the pancreas is a lethal cancer for which the only chance of long-term survival belongs to the patient with localized disease in whom a potentially curative resection can be done. Therefore, biomarkers for early detection and new therapeutic strategies are urgently needed. miRNAs are a recently discovered class of small endogenous non-coding RNAs of about 22 nucleotides that have gained attention for their role in downregulation of mRNA expression at the post-transcriptional level. miRNAs regulate proteins involved in critical cellular processes such as differentiation, proliferation, and apoptosis. Evidence suggests that deregulated miRNA expression is involved in carcinogenesis at many sites, including the pancreas. Aberrant expression of miRNAs may upregulate the expression of oncogenes or downregulate the expression of tumor suppressor genes, as well as play a role in other mechanisms of carcinogenesis. The purpose of this review is to summarize our knowledge of deregulated miRNA expression in pancreatic cancer and discuss the implication for potential translation of this knowledge into clinical practice.
Collapse
|
75
|
Benigni R, Bossa C. Mechanisms of Chemical Carcinogenicity and Mutagenicity: A Review with Implications for Predictive Toxicology. Chem Rev 2011; 111:2507-36. [PMID: 21265518 DOI: 10.1021/cr100222q] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Romualdo Benigni
- Istituto Superiore di Sanita’, Environment and Health Department, Viale Regina Elena, 299 00161 Rome, Italy
| | - Cecilia Bossa
- Istituto Superiore di Sanita’, Environment and Health Department, Viale Regina Elena, 299 00161 Rome, Italy
| |
Collapse
|
76
|
Korkmaz A, Manchester L, Topal T, Ma S, Tan D, Reiter R. Epigenetic mechanisms in human physiology and diseases. ACTA ACUST UNITED AC 2011. [DOI: 10.5455/jeim.060611.rw.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
77
|
Abstract
The importance of epigenetics in normal development and tissue-specific gene expression, as well as in diseases such as cancer, is well established. DNA methylation is a primary epigenetic modification that is directly linked to the genome itself. Here, we review evidence supporting the promise of DNA methylation-based biomarkers in personalized medicine, discuss standard and emerging technologies for profiling DNA methylation on a genome-wide scale, and forecast how these approaches will be used in parallel to better understand the epigenetics of health and disease and apply that knowledge to advance the field of personalized medicine.
Collapse
|
78
|
Abstract
Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation, development and maintenance of tissue-specific gene expression. These mechanisms also explain how cells with the same DNA content can differentiate into cells with different functions. Changes in epigenetic processes can lead to changes in gene function, cancer formation and progression, as well as other diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer.
Collapse
|
79
|
Wiklund ED, Kjems J, Clark SJ. Epigenetic architecture and miRNA: reciprocal regulators. Epigenomics 2010; 2:823-40. [DOI: 10.2217/epi.10.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Deregulation of epigenetic and miRNA pathways are emerging as key events in carcinogenesis. miRNA genes can be epigenetically regulated and miRNAs can themselves repress key enzymes that drive epigenetic remodeling. Epigenetic and miRNA functions are thus tightly interconnected and crucial for maintaining correct local and global genomic architecture as well as gene-expression patterns, yet the underlying molecular mechanisms and their widespread effects remain poorly understood. Owing to the tissue specificity, versatility and relative stability of miRNAs, these small ncRNAs are considered especially promising in clinical applications, and their biogenesis and function is subject of active research. In this article, the current status of epigenetic miRNA regulation is summarized and future therapeutic prospects in the field are discussed with a focus on cancer.
Collapse
Affiliation(s)
| | - Jørgen Kjems
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Susan J Clark
- Cancer Research Program, Garvan Institute of Medical Research, 2010 Darlinghurst NSW, Australia
| |
Collapse
|
80
|
Deng G, Kakar S, Kim YS. MicroRNA-124a and microRNA-34b/c are frequently methylated in all histological types of colorectal cancer and polyps, and in the adjacent normal mucosa. Oncol Lett 2010; 2:175-180. [PMID: 22870149 DOI: 10.3892/ol.2010.222] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/15/2010] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) are a class of small RNAs that regulate gene expression at the post-transcriptional and/or translational level by interacting with their target mRNAs. miRs are down-regulated or up-regulated in various cancer types, triggering abnormal cell differentiation, proliferation and apoptosis. miR-124a and miR-34b/c have been reported to be expressed at lower levels in colorectal cancer (CRC) due to methylation of these genes. The present study aimed to determine the methylation status of miR-124a and miR-34b/c in CRCs and polyps of various histological types, adjacent normal mucosa and ulcerative colitis. The colon cancer cell line study showed an association of the lower expression of miR-124a and miR-34b/c with the methylation of these genes and induction of the expression of these genes with the treatment by 5-aza-2'-deoxycytidine. Among nine different cancer types examined, CRC showed the highest frequency of methylation of miR-124a (cell lines 88% and tissues 99%) and miR-34b/c (cell lines 89% and tissues 93%). Mucinous and non-mucinous CRCs and all the histological types of colorectal polyps showed a high frequency of methylation of miR-124a and miR-34b/c. Notably, methylation of miR-124a (59%) and miR-34b/c (26%) was observed in the adjacent normal mucosa of CRC patients, but not in colonic mucosa from patients without cancer or with ulcerative colitis. The methylation of miR-124a in the adjacent normal mucosa was associated with the microsatellite instability of CRC, while the methylation of miR-34b/c was associated with an older age at diagnosis of CRC. The results showed that the methylation of miR-124a and miR-34b/c occured early in colorectal carcinogenesis and certain CRCs may arise from a field defect defined by the epigenetic inactivation of miRs.
Collapse
Affiliation(s)
- Guoren Deng
- Department of Medicine, Veterans Affairs Medical Center, University of California at San Francisco, San Francisco, CA 94121, USA
| | | | | |
Collapse
|
81
|
Abstract
DNA methylation is one of the most intensely studied epigenetic modifications in mammals. In normal cells, it assures the proper regulation of gene expression and stable gene silencing. DNA methylation is associated with histone modifications and the interplay of these epigenetic modifications is crucial to regulate the functioning of the genome by changing chromatin architecture. The covalent addition of a methyl group occurs generally in cytosine within CpG dinucleotides which are concentrated in large clusters called CpG islands. DNA methyltransferases are responsible for establishing and maintenance of methylation pattern. It is commonly known that inactivation of certain tumor-suppressor genes occurs as a consequence of hypermethylation within the promoter regions and a numerous studies have demonstrated a broad range of genes silenced by DNA methylation in different cancer types. On the other hand, global hypomethylation, inducing genomic instability, also contributes to cell transformation. Apart from DNA methylation alterations in promoter regions and repetitive DNA sequences, this phenomenon is associated also with regulation of expression of noncoding RNAs such as microRNAs that may play role in tumor suppression. DNA methylation seems to be promising in putative translational use in patients and hypermethylated promoters may serve as biomarkers. Moreover, unlike genetic alterations, DNA methylation is reversible what makes it extremely interesting for therapy approaches. The importance of DNA methylation alterations in tumorigenesis encourages us to decode the human epigenome. Different DNA methylome mapping techniques are indispensable to realize this project in the future.
Collapse
Affiliation(s)
- Marta Kulis
- The Bellvitge Institute forBiomedical Research , L'Hospitalet de Llobregat, Barcelona,Catalonia, Spain
| | | |
Collapse
|
82
|
Abstract
Epigenetics refers to stable alterations in gene expression with no underlying modifications in the genetic sequence and is best exemplified by differentiation, in which multiple cell types diverge physiologically despite a common genetic code. Interest in this area of science has grown over the past decades, especially since it was found to play a major role in physiologic phenomena such as embryogenesis, imprinting, and X chromosome inactivation, and in disease states such as cancer. The latter had been previously thought of as a disease with an exclusive genetic etiology. However, recent data have demonstrated that the complexity of human carcinogenesis cannot be accounted for by genetic alterations alone, but also involves epigenetic changes in processes such as DNA methylation, histone modifications, and microRNA expression. In turn, these molecular alterations lead to permanent changes in the expression of genes that regulate the neoplastic phenotype, such as cellular growth and invasiveness. Targeting epigenetic modifiers has been referred to as epigenetic therapy. The success of this approach in hematopoietic malignancies validates the importance of epigenetic alterations in cancer, not only at the therapeutic level but also with regard to prevention, diagnosis, risk stratification, and prognosis.
Collapse
Affiliation(s)
- Rodolphe Taby
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
83
|
Xi S, Yang M, Tao Y, Xu H, Shan J, Inchauste S, Zhang M, Mercedes L, Hong JA, Rao M, Schrump DS. Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS One 2010; 5:e13764. [PMID: 21048943 PMCID: PMC2966442 DOI: 10.1371/journal.pone.0013764] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/04/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Limited information is available regarding mechanisms by which miRNAs contribute to pulmonary carcinogenesis. The present study was undertaken to examine expression and function of miRNAs induced by cigarette smoke condensate (CSC) in normal human respiratory epithelia and lung cancer cells. METHODOLOGY Micro-array and quantitative RT-PCR (qRT-PCR) techniques were used to assess miRNA and host gene expression in cultured cells, and surgical specimens. Software-guided analysis, RNA cross-link immunoprecipitation (CLIP), 3' UTR luciferase reporter assays, qRT-PCR, focused super-arrays and western blot techniques were used to identify and confirm targets of miR-31. Chromatin immunoprecipitation (ChIP) techniques were used to evaluate histone marks and transcription factors within the LOC554202 promoter. Cell count and xenograft experiments were used to assess effects of miR-31 on proliferation and tumorigenicity of lung cancer cells. RESULTS CSC significantly increased miR-31 expression and activated LOC554202 in normal respiratory epithelia and lung cancer cells; miR-31 and LOC554202 expression persisted following discontinuation of CSC exposure. miR-31 and LOC554202 expression levels were significantly elevated in lung cancer specimens relative to adjacent normal lung tissues. CLIP and reporter assays demonstrated direct interaction of miR-31 with Dickkopf-1 (Dkk-1) and DACT-3. Over-expression of miR-31 markedly diminished Dkk-1 and DACT3 expression levels in normal respiratory epithelia and lung cancer cells. Knock-down of miR-31 increased Dkk-1 and DACT3 levels, and abrogated CSC-mediated decreases in Dkk-1 and DACT-3 expression. Furthermore, over-expression of miR-31 diminished SFRP1, SFRP4, and WIF-1, and increased Wnt-5a expression. CSC increased H3K4Me3, H3K9/14Ac and C/EBP-β levels within the LOC554202 promoter. Knock-down of C/EBP-β abrogated CSC-mediated activation of LOC554202. Over-expression of miR-31 significantly enhanced proliferation and tumorigenicity of lung cancer cells; knock-down of miR-31 inhibited growth of these cells. CONCLUSIONS Cigarette smoke induces expression of miR-31 targeting several antagonists of cancer stem cell signaling in normal respiratory epithelia and lung cancer cells. miR-31 functions as an oncomir during human pulmonary carcinogenesis.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maocheng Yang
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yongguang Tao
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, United States of America
| | - Hong Xu
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, United States of America
| | - Jigui Shan
- Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Suzanne Inchauste
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mary Zhang
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Leandro Mercedes
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Julie A. Hong
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mahadev Rao
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David S. Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
84
|
Urdinguio RG, Fernandez AF, Lopez-Nieva P, Rossi S, Huertas D, Kulis M, Liu CG, Croce CM, Calin GA, Esteller M. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics 2010; 5:656-63. [PMID: 20716963 DOI: 10.4161/epi.5.7.13055] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate post-transcriptional gene expression. They influence a wide range of physiological functions, including neuronal processes, and are regulated by various mechanisms, such as DNA methylation. This epigenetic mark is recognized by transcriptional regulators such as the methyl CpG binding protein Mecp2. Rett syndrome is a complex neurological disorder that has been associated with mutations in the gene coding for Mecp2. Thus, we examined the possible miRNA misregulation caused by Mecp2 absence in a mouse model of Rett syndrome. Using miRNA expression microarrays, we observed that the brain of Rett syndrome mice undergoes a disruption of the expression profiles of miRNAs. Among the significantly altered miRNAs (26%, 65 of 245), overall downregulation of these transcripts was the most common feature (71%), whilst the remaining 30% were upregulated. Further validation by quantitative RT-PCR demonstrated that the most commonly disrupted miRNAs were miR-146a, miR-146b, miR-130, miR-122a, miR-342 and miR-409 (downregulated), and miR-29b, miR329, miR-199b, miR-382, miR-296, miR-221 and miR-92 (upregulated). Most importantly, transfection of miR-146a in a neuroblastoma cell line caused the downregulation of IL-1 receptor-associated kinase 1 (Irak1) levels, suggesting that the identified defect of miR-146a in Rett syndrome mice brains might be responsible for the observed upregulation of Irak1 in this model of the human disease. Overall, we provide another level of molecular deregulation occurring in Rett syndrome that might be useful for understanding the disease and for designing targeted therapies.
Collapse
Affiliation(s)
- Rocio G Urdinguio
- Cancer Epigenetics and Biology Program (PEBC); Bellvitge Biomedical Research Institute, L’Hospitalet, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
MicroRNA (miRNA) modules are built in genetic networks as a complex regulatory layer directing post-transcriptional gene regulation. miRNAs coordinate a broad spectra of gene expression programs mainly through modulation of mRNA metabolism. Perturbations of miRNA networks are linked to a wide variety of pathological processes, including cardiovascular diseases and cancer. While the mechanisms regulating miRNA biogenesis were previously poorly understood, recent findings have shed light on the regulatory mechanisms of miRNAs themselves, especially their biogenesis. Multiple steps of miRNA maturation could potentially provide a variety of regulatory options to generate mature miRNAs differentially and produce gradation in miRNA processing efficiency. Several studies have demonstrated that miRNA maturation pathways crosstalk with intracellular signalling molecules, including p53, Smad proteins and estrogen receptor. Other lines of evidence have demonstrated the involvement of multiple RNA binding proteins in biased processing of different miRNA species. This review summarizes accumulating evidence for the emerging complexity and dynamics of regulated miRNA processing. These findings will lead to better understanding of miRNA dynamics in various pathogenetic pathways and provide the molecular basis for diagnostic and therapeutic strategies based on small RNA biology.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
86
|
Mechelli R, Annibali V, Ristori G, Vittori D, Coarelli G, Salvetti M. Multiple sclerosis etiology: beyond genes and environment. Expert Rev Clin Immunol 2010; 6:481-90. [PMID: 20441432 DOI: 10.1586/eci.10.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a disorder of the CNS with inflammatory and neurodegenerative components. The etiology is unknown, but there is evidence for a role of both genetic and environmental factors. Among the heritable factors, MHC class II genes are strongly involved, as well as genes coding for others molecules of immunological relevance, genes controlling neurobiological pathways and genes of unknown function. Among nonheritable factors, many infectious agents (mainly viruses) and environmental factors (e.g., smoke, sun exposition and diet) seem to be of etiologic importance. Here, we report and discuss recent findings in MS on largely unexplored fields: the alternative splicing of mRNAs and regulatory noncoding RNAs, the major sources of transcriptome diversity; and epigenetic changes with special attention paid to DNA methylation and histone acetylation, the main regulators of gene expression.
Collapse
Affiliation(s)
- Rosella Mechelli
- Neurology and Center for Experimental Neurological Therapies, S. Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | | | | | | | | | | |
Collapse
|
87
|
CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 2010; 29:6390-401. [PMID: 20802525 PMCID: PMC3007676 DOI: 10.1038/onc.2010.361] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although only 1.5% of the human genome appears to code for proteins, much effort in cancer research has been devoted to this minimal fraction of our DNA. However, the last few years have witnessed the realization that a large class of non-coding RNAs (ncRNAs), named microRNAs, contribute to cancer development and progression by acting as oncogenes or tumor suppressor genes. Recent studies have also shown that epigenetic silencing of microRNAs with tumor suppressor features by CpG island hypermethylation is a common hallmark of human tumors. Thus, we wondered whether there were other ncRNAs undergoing aberrant DNA methylation-associated silencing in transformed cells. We focused on the transcribed-ultraconserved regions (T-UCRs), a subset of DNA sequences that are absolutely conserved between orthologous regions of the human, rat and mouse genomes and that are located in both intra- and intergenic regions. We used a pharmacological and genomic approach to reveal the possible existence of an aberrant epigenetic silencing pattern of T-UCRs by treating cancer cells with a DNA-demethylating agent followed by hybridization to an expression microarray containing these sequences. We observed that DNA hypomethylation induces release of T-UCR silencing in cancer cells. Among the T-UCRs that were reactivated upon drug treatment, Uc.160+, Uc283+A and Uc.346+ were found to undergo specific CpG island hypermethylation-associated silencing in cancer cells compared with normal tissues. The analysis of a large set of primary human tumors (n=283) demonstrated that hypermethylation of the described T-UCR CpG islands was a common event among the various tumor types. Our finding that, in addition to microRNAs, another class of ncRNAs (T-UCRs) undergoes DNA methylation-associated inactivation in transformed cells supports a model in which epigenetic and genetic alterations in coding and non-coding sequences cooperate in human tumorigenesis.
Collapse
|
88
|
Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 2010; 585:2087-99. [PMID: 20708002 DOI: 10.1016/j.febslet.2010.08.009] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022]
Abstract
MicroRNAs have emerged as key post-transcriptional regulators of gene expression, involved in various physiological and pathological processes. It was found that several miRNAs are directly involved in human cancers, including lung, breast, brain, liver, colon cancer and leukemia. In addition, some miRNAs may function as oncogenes or tumor suppressors in tumor development. Furthermore, a widespread down-regulation of miRNAs is commonly observed in human cancers and promotes cellular transformation and tumorigenesis. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, frequently amplified or deleted in human cancer, suggesting an important role in malignant transformation. A better understanding of the miRNA regulation and misexpression in cancer may ultimately yield further insight into the molecular mechanisms of tumorigenesis and new therapeutic strategies may arise against cancer. Here, we discuss the occurrence of the deregulated expression of miRNAs in human cancers and their importance in the tumorigenic process.
Collapse
Affiliation(s)
- Sonia A Melo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | | |
Collapse
|
89
|
Szarc vel Szic K, Ndlovu MN, Haegeman G, Vanden Berghe W. Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol 2010; 80:1816-32. [PMID: 20688047 DOI: 10.1016/j.bcp.2010.07.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/19/2010] [Accepted: 07/23/2010] [Indexed: 01/05/2023]
Abstract
Numerous clinical, physiopathological and epidemiological studies have underlined the detrimental or beneficial role of nutritional factors in complex inflammation related disorders such as allergy, asthma, obesity, type 2 diabetes, cardiovascular disease, rheumatoid arthritis and cancer. Today, nutritional research has shifted from alleviating nutrient deficiencies to chronic disease prevention. It is known that lifestyle, environmental conditions and nutritional compounds influence gene expression. Gene expression states are set by transcriptional activators and repressors and are often locked in by cell-heritable chromatin states. Only recently, it has been observed that the environmental conditions and daily diet can affect transgenerational gene expression via "reversible" heritable epigenetic mechanisms. Epigenetic changes in DNA methylation patterns at CpG sites (epimutations) or corrupt chromatin states of key inflammatory genes and noncoding RNAs, recently emerged as major governing factors in cancer, chronic inflammatory and metabolic disorders. Reciprocally, inflammation, metabolic stress and diet composition can also change activities of the epigenetic machinery and indirectly or directly change chromatin marks. This has recently launched re-exploration of anti-inflammatory bioactive food components for characterization of their effects on epigenome modifying enzymatic activities (acetylation, methylation, phosphorylation, ribosylation, oxidation, ubiquitination, sumoylation). This may allow to improve healthy aging by reversing disease prone epimutations involved in chronic inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, Gent, Belgium
| | | | | | | |
Collapse
|
90
|
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11:597-610. [PMID: 20661255 DOI: 10.1038/nrg2843] [Citation(s) in RCA: 3541] [Impact Index Per Article: 252.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.
Collapse
Affiliation(s)
- Jacek Krol
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | | | | |
Collapse
|
91
|
Huang THM, Esteller M. Chromatin remodeling in mammary gland differentiation and breast tumorigenesis. Cold Spring Harb Perspect Biol 2010; 2:a004515. [PMID: 20610549 DOI: 10.1101/cshperspect.a004515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA methylation and histone modifications have essential roles in remodeling chromatin structure of genes necessary for multi-lineage differentiation of mammary stem/progenitor cells. The role of this well-defined epigenetic programming is to heritably maintain transcriptional plasticity of these loci over multiple cell divisions in the differentiated progeny. Epigenetic events can be deregulated in progenitor cells chronically exposed to xenoestrogen or inflammatory microenvironment. In addition, epigenetically mediated silencing of genes associated with tumor suppression can take place, resulting in clonal proliferation of undifferentiated or semidifferentiated cells. Alternatively, microRNAs that negatively regulate the expression of their protein-coding targets may become epigenetically repressed, leading to oncogenic expression of these genes. Here we further discuss interactions between DNA methylation and histone modifications that have significant contributions to the differentiation of mammary stem/progenitor cells and to tumor initiation and progression.
Collapse
Affiliation(s)
- Tim H-M Huang
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43220, USA.
| | | |
Collapse
|
92
|
Abstract
Aging is a multifaceted process characterized by genetic and epigenetic changes in the genome. The genetic component of aging received initially all of the attention. Telomere attrition and accumulation of mutations due to a progressive deficiency in the repair of DNA damage with age remain leading causes of genomic instability. However, epigenetic mechanisms have now emerged as key contributors to the alterations of genome structure and function that accompany aging. The three pillars of epigenetic regulation are DNA methylation, histone modifications, and noncoding RNA species. Alterations of these epigenetic mechanisms affect the vast majority of nuclear processes, including gene transcription and silencing, DNA replication and repair, cell cycle progression, and telomere and centromere structure and function. Here, we summarize the lines of evidence indicating that these epigenetic defects might represent a major factor in the pathophysiology of aging and aging-related diseases, especially cancer.
Collapse
Affiliation(s)
- Susana Gonzalo
- Radiation and Cancer Biology Division, Dept. of Radiation Oncology, Washington Univ. School of Medicine, 4511 Forest Park, St. Louis, MO 63108, USA.
| |
Collapse
|
93
|
Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors. Nat Rev Urol 2010; 7:286-97. [PMID: 20368743 DOI: 10.1038/nrurol.2010.45] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that have an important role in the regulation of carcinogenic pathways. The observations that miRNAs are differentially expressed in tumor versus corresponding normal tissue, and that they regulate important breakpoints during carcinogenesis, are of interest for urologic oncologists. As biomarkers, they might be helpful tools for diagnostic, prognostic and monitoring purposes. Furthermore, miRNAs might be potential targets for novel therapeutic strategies, especially in patients with tumor subtypes that do not respond to currently available therapies. In this Review, we will focus on the current proceedings of miRNA research in urologic tumors. In the past decade, the number of published articles related to miRNAs in urologic oncology has increased, highlighting the ongoing importance of miRNAs in this field. Current studies support the hypothesis that miRNA will gain influence in clinical practice. Here, therefore, we illustrate the current knowledge of miRNA function in urologic tumors and draw the attention of urologists to the future opportunities and challenges of this research field.
Collapse
|
94
|
Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel) 2010; 2:128-62. [PMID: 22069551 PMCID: PMC3206621 DOI: 10.3390/toxins2010128] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 02/07/2023] Open
Abstract
As cancer is a multifactor disease, it may require treatment with compounds able to target multiple intracellular components. We summarize here how curcumin is able to modulate many components of intracellular signaling pathways implicated in inflammation, cell proliferation and invasion and to induce genetic modulations eventually leading to tumor cell death. Clinical applications of this natural compound were initially limited by its low solubility and bioavailability in both plasma and tissues but combination with adjuvant and delivery vehicles was reported to largely improve bio-availability of curcumin. Moreover, curcumin was reported to act in synergism with several natural compounds or synthetic agents commonly used in chemotherapy. Based on this, curcumin could thus be considered as a good candidate for cancer prevention and treatment when used alone or in combination with other conventional treatments.
Collapse
|
95
|
Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. ADVANCES IN GENETICS 2010; 70:277-308. [PMID: 20920752 DOI: 10.1016/b978-0-12-380866-0.60010-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human cancer genomes are characterized by widespread aberrations in DNA methylation patterns including DNA hypomethylation of mostly repetitive sequences and hypermethylation of numerous CpG islands. The analysis of DNA methylation patterns in cancer has progressed from single gene studies examining potentially important candidate genes to a more global analysis where all or almost all promoter and CpG island sequences can be analyzed. We provide a brief overview of these genome-scale methylation-profiling techniques, summarize some of the information that has been obtained with these approaches, and discuss what we have learned about the specificity of methylation aberrations in cancer at a genome-wide level. The challenge is now to identify those methylation changes that are thought to be crucial for the processes of tumor initiation, tumor progression, or metastasis and distinguish these from methylation changes that are merely passenger events that accompany the transformation process but have no effect per se on the process of carcinogenesis.
Collapse
Affiliation(s)
- Satish Kalari
- Department of Cancer Biology, Beckman Research Institute of the Cityof Hope, Duarte, CA, USA
| | | |
Collapse
|