51
|
Apostolova N, Funes HA, Blas-Garcia A, Galindo MJ, Alvarez A, Esplugues JV. Efavirenz and the CNS: what we already know and questions that need to be answered. J Antimicrob Chemother 2015. [PMID: 26203180 DOI: 10.1093/jac/dkv183] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The NNRTI efavirenz has long been one of the most frequently employed antiretroviral drugs in the multidrug regimens used to treat HIV infection, in accordance with its well-demonstrated antiretroviral efficacy and favourable pharmacokinetics. However, growing concern about its adverse effects has sometimes led to efavirenz being replaced by other drugs in the initial treatment selection or to switching of therapy to efavirenz-free regimens in experienced patients. Neurological and neuropsychiatric reactions are the manifestations most frequently experienced by efavirenz-treated patients and range from transitory effects, such as nightmares, dizziness, insomnia, nervousness and lack of concentration, to more severe symptoms including depression, suicidal ideation or even psychosis. In addition, efavirenz has recently been associated with mild/moderate neurocognitive impairment, which is of specific relevance given that half of the patients receiving ART eventually suffer some form of HIV-associated neurocognitive disorder. The mechanisms responsible for efavirenz-induced neurotoxicity are unclear, although growing evidence points to disturbances in brain mitochondrial function and bioenergetics. This review offers a comprehensive overview of the current evidence on the interaction that efavirenz displays with the CNS, including the penetration and concentration of the drug in the brain. We discuss the prevalence, types and specificities of its side effects and recently uncovered cellular mechanisms that may be involved in their development.
Collapse
Affiliation(s)
- Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón de la Plana, Spain CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Valencia, Spain
| | - Haryes A Funes
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Ana Blas-Garcia
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Valencia, Spain FISABIO-Hospital Universitario Dr Peset, Valencia, Spain
| | - Maria J Galindo
- Unidad de Enfermedades Infecciosas-Medicina Interna, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Angeles Alvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Valencia, Spain FISABIO-Hospital Universitario Dr Peset, Valencia, Spain
| |
Collapse
|
52
|
Sinxadi PZ, Leger PD, McIlleron HM, Smith PJ, Dave JA, Levitt NS, Maartens G, Haas DW. Pharmacogenetics of plasma efavirenz exposure in HIV-infected adults and children in South Africa. Br J Clin Pharmacol 2015; 80:146-56. [PMID: 25611810 DOI: 10.1111/bcp.12590] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 12/09/2014] [Accepted: 01/06/2015] [Indexed: 12/22/2022] Open
Abstract
AIMS Genetic factors, notably CYP2B6 516G→T [rs3745274] and 983T→C [rs28399499], explain much of the interindividual variability in efavirenz pharmacokinetics, but data from Africa are limited. We characterized relationships between genetic polymorphisms and plasma efavirenz concentrations in HIV-infected Black South African adults and children. METHODS Steady-state mid-dosing interval efavirenz concentrations were measured. We genotyped 241 polymorphisms in genes potentially relevant to efavirenz metabolism and transport, including ABCB1, CYP2A6, CYP2B6, CYP3A4, CYP3A5, NR1I2 and NR1I3. RESULTS Among 113 participants (59 adults and 54 children), minor allele frequencies for CYP2B6 516G→T, 983T→C, and 15582C→T [rs4803419] were 0.36, 0.07, and 0.09, respectively. Based on composite CYP2B6 15582/516/983 genotype, there were 33 extensive metabolizer, 62 intermediate metabolizer and 18 slow metabolizer genotypes. Median (IQR) mid-dose efavirenz concentrations were 1.44 (1.21-1.93) µg ml(-1), 2.08 (1.68-2.94) µg ml(-1) and 7.26 (4.82-8.34) µg ml(-1) for extensive, intermediate and slow metabolizers, respectively. In univariate analyses, a model that included composite genotype best predicted efavirenz concentrations (β = 0.28, 95% CI 0.21, 0.35, P = 2.4 × 10(-11)). Among individual CYP2B6 polymorphisms, 516G→T best predicted efavirenz concentrations (β = 0.22, 95% CI 0.13, 0.30, P = 1.27 × 10(-6)). There was also associations with 983T→C (β = 0.27, 95% CI 0.10, 0.44, P = 0.002) and 15582C→T (β = 0.11, 95% CI 0.01, 0.22, P = 0.04). Associations were consistent in adults and children. No other polymorphisms were independently associated with efavirenz concentrations. CONCLUSIONS Composite CYP2B6 genotype based on CYP2B6 516G→T, 983T→C, and 15582C→T best described efavirenz exposure in HIV-infected Black South African adults and children.
Collapse
Affiliation(s)
- Phumla Z Sinxadi
- Division of Clinical of Pharmacology, Division of Exercise and Endocrine Metabolism, University of Cape Town, Cape Town, South Africa
| | - Paul D Leger
- Vanderbilt University Medical Center, Department of Medicine, Nashville, Tennessee, United States of America
| | - Helen M McIlleron
- Division of Clinical of Pharmacology, Division of Exercise and Endocrine Metabolism, University of Cape Town, Cape Town, South Africa
| | - Peter J Smith
- Division of Clinical of Pharmacology, Division of Exercise and Endocrine Metabolism, University of Cape Town, Cape Town, South Africa
| | - Joel A Dave
- Division of Exercise and Endocrine Metabolism, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Naomi S Levitt
- Division of Exercise and Endocrine Metabolism, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical of Pharmacology, Division of Exercise and Endocrine Metabolism, University of Cape Town, Cape Town, South Africa
| | - David W Haas
- Vanderbilt University School of Medicine, Department of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
53
|
Olagunju A, Bolaji O, Amara A, Else L, Okafor O, Adejuyigbe E, Oyigboja J, Back D, Khoo S, Owen A. Pharmacogenetics of pregnancy-induced changes in efavirenz pharmacokinetics. Clin Pharmacol Ther 2015; 97:298-306. [PMID: 25669165 DOI: 10.1002/cpt.43] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023]
Abstract
Pregnancy-induced physiological changes alter many drugs' pharmacokinetics. We investigated pregnancy-induced changes in efavirenz pharmacokinetics in 25 pregnant and 19 different postpartum women stratified from 211 HIV-positive women in whom a preliminary pharmacogenetic study had been undertaken. Despite significant changes in CL/F during pregnancy (42.6% increase; P = 0.023), median (range) Cmin was 1,000 ng/mL (429-5,190) with no significant change in Cmax (P = 0.072). However, when stratified for CYP2B6 516G>T (rs3745274) genotype, efavirenz AUC0-24 , Cmax and Cmin were 50.6% (P = 0.0013), 17.2% (P = 0.14), and 61.6% (P = 0.0027) lower during pregnancy (n = 8) compared with postpartum (n = 6) in 516G homozygotes, with values of 25,900 ng.h/mL (21,700-32,600), 2,640 ng/mL (1,260-3,490), and 592 ng/mL (429-917), respectively, and CL/F was 100% higher (P = 0.0013). No changes were apparent in CYP2B6 516 heterozygotes (14 pregnant vs. 7 postpartum). The clinical implications of these findings warrant further investigation.
Collapse
Affiliation(s)
- A Olagunju
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK; Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
CYP2B6 516G>T (rs3745274) and Smoking Status Are Associated With Efavirenz Plasma Concentration in a Serbian Cohort of HIV Patients. Ther Drug Monit 2014; 36:734-8. [DOI: 10.1097/ftd.0000000000000098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
55
|
Čolić A, Alessandrini M, Pepper MS. Pharmacogenetics of CYP2B6, CYP2A6 and UGT2B7 in HIV treatment in African populations: focus on efavirenz and nevirapine. Drug Metab Rev 2014; 47:111-23. [PMID: 25391641 DOI: 10.3109/03602532.2014.982864] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The CYP450 and UGT enzymes are involved in phase I and phase II metabolism of the majority of clinically prescribed drugs, including the non-nucleoside reverse transcriptase inhibitors, efavirenz and nevirapine, used in the treatment of HIV/AIDS. Variations in the activity of these enzymes due to gene polymorphisms can affect an individual's drug response or may lead to adverse drug reactions. There is an inter-ethnic distribution in the frequency of these polymorphisms, with African populations exhibiting higher genetic diversity compared to other populations. African specific alleles with clinical relevance have also emerged. Given the high prevalence of HIV/AIDS in sub-Saharan Africa, understanding the frequency of pharmacogenetically relevant alleles in populations of African origin, and their impact on efavirenz and nevirapine metabolism, is becoming increasingly critical. This review aims to investigate ethnic variation of CYP2B6, CYP2A6 and UGT2B7, and to understand the pharmacogenetic relevance when comparing frequencies in African populations to other populations worldwide.
Collapse
Affiliation(s)
- Antoinette Čolić
- Department of Biochemistry, Faculty of Natural and Agricultural SciencesSchool of Biological Science, University of Pretoria , Pretoria , South Africa and
| | | | | |
Collapse
|
56
|
Swart M, Dandara C. Genetic variation in the 3'-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7: potential effects on regulation by microRNA and pharmacogenomics relevance. Front Genet 2014; 5:167. [PMID: 24926315 PMCID: PMC4044583 DOI: 10.3389/fgene.2014.00167] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/19/2014] [Indexed: 01/07/2023] Open
Abstract
Introduction: Pharmacogenomics research has concentrated on variation in genes coding for drug metabolizing enzymes, transporters and nuclear receptors. However, variation affecting microRNA could also play a role in drug response. This project set out to investigate potential microRNA target sites in 11 genes and the extent of variation in the 3′-UTR of six selected genes; CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7. Methods: Fifteen microRNA target prediction algorithms were used to identify microRNAs predicted to regulate 11 genes. The 3′-UTR of the 6 genes which topped the list of potential microRNA targets was sequenced in 30 black South Africans. In addition, genetic variants within these genes were investigated for interference with mRNA-microRNA interactions. Potential effects of observed variants were determined using in silico prediction tools. Results: The 11 genes coding for DMEs, transporters and nuclear receptors were predicted to be targets of microRNAs with CYP2B6, NR1I2 (PXR), CYP3A4, and CYP1A2, interacting with the most microRNAs. The majority of identified genetic variants were predicted to interfere with microRNA regulation. For example, the variant, rs1054190C in NR1I2 was predicted to result in the presence of a binding site for the microRNA miR-1250-5p, while the variant rs1054191G was predicted to result in the absence of a recognition site for miR-371b-3p, miR-4258 and miR-4707-3p. Fifteen of the seventeen, novel variants occurred within microRNA target sequences. Conclusion: The 3′-UTR harbors variation that is likely to influence regulation of specific genes by microRNA. In silico prediction followed by functional validation could aid in decoding the contribution of variation in the 3′-UTR, to some unexplained heritability that affects drug response. Understanding the specific role of each microRNA may lead to identification of markers for targeted therapy and therefore improve personalized drug treatment.
Collapse
Affiliation(s)
- Marelize Swart
- Pharmacogenetics and Cancer Research Group, Division of Human Genetics, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenetics and Cancer Research Group, Division of Human Genetics, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town Cape Town, South Africa
| |
Collapse
|
57
|
Dandara C, Swart M, Mpeta B, Wonkam A, Masimirembwa C. Cytochrome P450 pharmacogenetics in African populations: implications for public health. Expert Opin Drug Metab Toxicol 2014; 10:769-85. [PMID: 24588448 DOI: 10.1517/17425255.2014.894020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Africa harbors a disproportionate burden of disease when taking into account the triple challenge caused by HIV/AIDS, tuberculosis (TB) and malaria, against a backdrop of an increasing burden of noncommunicable diseases. More than 80% of therapeutic drugs used in the management of these diseases/conditions are metabolized by CYP enzymes that exhibit genetic polymorphisms. AREAS COVERED There is variability in the expression and activities of CYPs resulting in interindividual differences in the response to standard doses of therapeutic drugs, due to genetic polymorphisms, which exhibit both quantitative and qualitative differences between racial and between ethnic groups. The review aims to evaluate the implications of the genetic variation in CYPs on the public health of Africans. The CYPs reviewed here metabolize most of the commonly used therapeutic drugs and include CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4 and 3A5. Allele frequencies are compared between African ethnic groups and among populations of African, Asian and European origin. Data are obtained from our own studies and literature. EXPERT OPINION The variability in the pattern of genetic variation between populations translates into differences in drug response. Understanding CYP variability improves rational drug use and has public health significance.
Collapse
Affiliation(s)
- Collet Dandara
- University of Cape Town, Faculty of Health Sciences, Pharmacogenetics and Cancer Research Group, Division of Human Genetics, Department of Clinical Laboratory Sciences , Anzio Road Observatory, 7925, Cape Town , South Africa +27 21 406 6506 ;
| | | | | | | | | |
Collapse
|
58
|
Bienvenu E, Swart M, Dandara C, Ashton M. The role of genetic polymorphisms in cytochrome P450 and effects of tuberculosis co-treatment on the predictive value of CYP2B6 SNPs and on efavirenz plasma levels in adult HIV patients. Antiviral Res 2014; 102:44-53. [DOI: 10.1016/j.antiviral.2013.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/21/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
|
59
|
Naidoo P, Chetty VV, Chetty M. Impact of CYP polymorphisms, ethnicity and sex differences in metabolism on dosing strategies: the case of efavirenz. Eur J Clin Pharmacol 2014; 70:379-89. [PMID: 24390631 DOI: 10.1007/s00228-013-1634-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/18/2013] [Indexed: 01/11/2023]
Abstract
PURPOSE Differences in drug metabolism due to cytochrome P450 (CYP) polymorphisms may be significant enough to warrant different dosing strategies in carriers of specific cytochrome P450 (CYP) polymorphisms, especially for drugs with a narrow therapeutic index. The impact of such polymorphisms on drug plasma concentrations and the resulting dosing strategies are presented in this review, using the example of efavirenz (EFV). METHODS A structured literature search was performed to extract information pertaining to EFV metabolism and the influence of polymorphisms of CYP2B6, ethnicity, sex and drug interactions on plasma concentrations of EFV. The corresponding dosing strategies developed for carriers of specific CYP2B6 genotypes were also reviewed. RESULTS The polymorphic CYP2B6 enzyme, which is the major enzyme in the EFV metabolic pathway, is a key determinant for the significant inter-individual differences seen in EFV pharmacokinetics and pharmacodynamics (PKPD). Ethnic differences and the associated prevalence of CYP2B6 polymorphisms result in significant differences in the PKPD associated with a standard 600 mg per day dose of EFV, warranting dosage reduction in carriers of specific CYP2B6 polymorphisms. Drug interactions and auto-induction also influence EFV PKPD significantly. CONCLUSION Using EFV as an example of a drug with a narrow therapeutic index and a high inter-patient variability in plasma concentrations corresponding to a standard dose of the drug, this review demonstrates how genotyping of the primary metabolising enzyme can be useful for appropriate dosage adjustments in individuals. However, other variables such as drug interactions and auto-induction may necessitate plasma concentration measurements as well, prior to personalising the dose.
Collapse
Affiliation(s)
- Panjasaram Naidoo
- University of KwaZulu Natal, School of Health Science, Discipline of Pharmaceutical Sciences, Private Bag X54001, Durban, 4001, KZN, South Africa,
| | | | | |
Collapse
|