51
|
Xie J, He M, Zhu W. Acute effects of outdoor air pollution on emergency department visits due to five clinical subtypes of coronary heart diseases in shanghai, china. J Epidemiol 2014; 24:452-9. [PMID: 24998952 PMCID: PMC4213219 DOI: 10.2188/jea.je20140044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Air pollution can be a contributing cause to the development and exacerbation of coronary heart disease (CHD), but there is little knowledge about the acute effects of air pollution on different clinical subtypes of CHD. METHODS We conducted a time-series study to investigate the association of air pollution (particulate matter with an aerodynamic diameter < 10 µm [PM10], sulfur dioxide [SO2], and nitrogen dioxide [NO2]) on emergency department (ED) visits due to five different subtypes of CHD in Shanghai, China, from 2010 to 2012. We applied an over-dispersed Poisson generalized addictive model to analyze the associations after controlling for the seasonality, day of the week, and weather conditions. RESULTS We identified a total of 47 523 ED visits for CHD. A 10-µg/m(3) increase in the present-day concentrations of PM10, SO2, and NO2 was associated with respective increases of 1.10% (95% confidence interval [CI] 0.33%-1.87%), 0.90% (95% CI -0.14%-1.93%), and 1.44% (95% CI 0.63%-2.26%) for total ED visits for CHD. These associations varied greatly by clinical type, with strong effects on sudden cardiac death, moderate effects on acute myocardial infarction and angina, weak effects on ischemic cardiomyopathy, and no effect on occult CHD. The associations were stronger among people aged 65 years or more than in younger individuals and in the cool season versus the warm one. CONCLUSIONS Outdoor air pollution may have different effects of air pollution on 5 subtypes of CHD. Our results might be useful for the primary prevention of various subtypes of CHD exacerbated by air pollution.
Collapse
Affiliation(s)
- Juan Xie
- The Trauma Emergency & Critical Care Medicine Center, the Fifth People's Hospital of Shanghai, Fudan University
| | | | | |
Collapse
|
52
|
Zhao A, Chen R, Kuang X, Kan H. Ambient air pollution and daily outpatient visits for cardiac arrhythmia in Shanghai, China. J Epidemiol 2014; 24:321-6. [PMID: 24835409 PMCID: PMC4074637 DOI: 10.2188/jea.je20140030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Cardiac arrhythmias are cardiac rhythm disorders that comprise an important public health problem. Few prior studies have examined the association between ambient air pollution and arrhythmias in general populations in mainland China. Methods We performed a time-series analysis to investigate the short-term association between air pollution (particulate matter with an aerodynamic diameter less than 10 µm [PM10], sulfur dioxide [SO2], and nitrogen dioxide [NO2]) and outpatient visits for arrhythmia in Shanghai, China. We applied the over-dispersed Poisson generalized additive model to analyze the associations after control for seasonality, day of the week, and weather conditions. We then stratified the analyses by age, gender, and season. Results We identified a total of 56 940 outpatient visits for cardiac arrhythmia. A 10-µg/m3 increase in the present-day concentrations of PM10, SO2, and NO2 corresponded to increases of 0.56% (95% CI 0.42%, 0.70%), 2.07% (95% CI 1.49%, 2.64%), and 2.90% (95% CI 2.53%, 3.27%), respectively, in outpatient arrhythmia visits. The associations were stronger in older people (aged ≥65 years) and in females. This study provides the first evidence that ambient air pollution is significantly associated with increased risk of cardiac arrhythmia in mainland China. Conclusions Our analyses provide evidence that the current air pollution levels have an adverse effect on cardiovascular health and strengthened the rationale for further limiting air pollution levels in the city.
Collapse
Affiliation(s)
- Ang Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Institute of Global Health, Fudan University
| | | | | | | |
Collapse
|
53
|
Bartell SM, Longhurst J, Tjoa T, Sioutas C, Delfino RJ. Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:1135-41. [PMID: 23838152 PMCID: PMC3801451 DOI: 10.1289/ehp.1205914] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 07/08/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Decreased heart rate variability (HRV) has been associated with future cardiac morbidity and mortality and is often used as a marker of altered cardiac autonomic balance in studies of health effects of airborne particulate matter. Fewer studies have evaluated associations between air pollutants and cardiac arrhythmia. OBJECTIVES We examined relationships between cardiac arrhythmias, HRV, and exposures to airborne particulate matter. METHODS We measured HRV and arrhythmia with ambulatory electrocardiograms in a cohort panel study for up to 235 hr per participant among 50 nonsmokers with coronary artery disease who were ≥ 71 years of age and living in four retirement communities in the Los Angeles, California, Air Basin. Exposures included hourly outdoor gases, hourly traffic-related and secondary organic aerosol markers, and daily size-fractionated particle mass. We used repeated measures analyses, adjusting for actigraph-derived physical activity and heart rate, temperature, day of week, season, and community location. RESULTS Ventricular tachycardia was significantly increased in association with increases in markers of traffic-related particles, secondary organic carbon, and ozone. Few consistent associations were observed for supraventricular tachycardia. Particulates were significantly associated with decreased ambulatory HRV only in the 20 participants using ACE (angiotensin I-converting enzyme) inhibitors. CONCLUSIONS Although these data support the hypothesis that particulate exposures may increase the risk of ventricular tachycardia for elderly people with coronary artery disease, HRV was not associated with exposure in most of our participants. These results are consistent with previous findings in this cohort for systemic inflammation, blood pressure, and ST segment depression.
Collapse
Affiliation(s)
- Scott M Bartell
- Program in Public Health, University of California, Irvine, Irvine, California, USA
| | | | | | | | | |
Collapse
|
54
|
Affiliation(s)
- Diane R Gold
- Channing Laboratory, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, 181 Longwood Ave, Boston MA 02115, USA.
| | | |
Collapse
|
55
|
Link MS, Luttmann-Gibson H, Schwartz J, Mittleman MA, Wessler B, Gold DR, Dockery DW, Laden F. Acute exposure to air pollution triggers atrial fibrillation. J Am Coll Cardiol 2013; 62:816-25. [PMID: 23770178 DOI: 10.1016/j.jacc.2013.05.043] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study sought to evaluate the association of air pollution with the onset of atrial fibrillation (AF). BACKGROUND Air pollution in general and more specifically particulate matter has been associated with cardiovascular events. Although ventricular arrhythmias are traditionally thought to convey the increased cardiovascular risk, AF may also contribute. METHODS Patients with dual chamber implantable cardioverter-defibrillators (ICDs) were enrolled and followed prospectively. The association of AF onset with air quality including ambient particulate matter <2.5 μm aerodynamic diameter (PM2.5), black carbon, sulfate, particle number, NO2, SO2, and O3 in the 24 h prior to the arrhythmia was examined utilizing a case-crossover analysis. In sensitivity analyses, associations with air pollution between 2 and 48 h prior to the AF were examined. RESULTS Of 176 patients followed for an average of 1.9 years, 49 patients had 328 episodes of AF lasting ≥ 30 s. Positive but nonsignificant associations were found for PM2.5 in the prior 24 h, but stronger associations were found with shorter exposure windows. The odds of AF increased by 26% (95% confidence interval: 8% to 47%) for each 6.0 μg/m(3) increase in PM2.5 in the 2 h prior to the event (p = 0.004). The odds of AF were highest at the upper quartile of mean PM2.5. CONCLUSIONS PM was associated with increased odds of AF onset within hours following exposure in patients with known cardiac disease. Air pollution is an acute trigger of AF, likely contributing to the pollution-associated adverse cardiac outcomes observed in epidemiological studies.
Collapse
Affiliation(s)
- Mark S Link
- Cardiac Arrhythmia Service, Division of Cardiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02459, USA.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Unosson J, Blomberg A, Sandström T, Muala A, Boman C, Nyström R, Westerholm R, Mills NL, Newby DE, Langrish JP, Bosson JA. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Part Fibre Toxicol 2013; 10:20. [PMID: 23742058 PMCID: PMC3685524 DOI: 10.1186/1743-8977-10-20] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/23/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Emissions from biomass combustion are a major source of indoor and outdoor air pollution, and are estimated to cause millions of premature deaths worldwide annually. Whilst adverse respiratory health effects of biomass exposure are well established, less is known about its effects on the cardiovascular system. In this study we assessed the effect of exposure to wood smoke on heart rate, blood pressure, central arterial stiffness and heart rate variability in otherwise healthy persons. METHODS Fourteen healthy non-smoking subjects participated in a randomized, double-blind crossover study. Subjects were exposed to dilute wood smoke (mean particle concentration of 314±38 μg/m3) or filtered air for three hours during intermittent exercise. Heart rate, blood pressure, central arterial stiffness and heart rate variability were measured at baseline and for one hour post-exposure. RESULTS Central arterial stiffness, measured as augmentation index, augmentation pressure and pulse wave velocity, was higher after wood smoke exposure as compared to filtered air (p < 0.01 for all), and heart rate was increased (p < 0.01) although there was no effect on blood pressure. Heart rate variability (SDNN, RMSSD and pNN50; p = 0.003, p < 0.001 and p < 0.001 respectively) was decreased one hour following exposure to wood smoke compared to filtered air. CONCLUSIONS Acute exposure to wood smoke as a model of exposure to biomass combustion is associated with an immediate increase in central arterial stiffness and a simultaneous reduction in heart rate variability. As biomass is used for cooking and heating by a large fraction of the global population and is currently advocated as a sustainable alternative energy source, further studies are required to establish its likely impact on cardiovascular disease. TRIAL REGISTRATION ClinicalTrials.gov, NCT01488500.
Collapse
|
57
|
Shields KN, Cavallari JM, Hunt MJO, Lazo M, Molina M, Molina L, Holguin F. Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: a panel study. Environ Health 2013; 12:7. [PMID: 23327098 PMCID: PMC3639920 DOI: 10.1186/1476-069x-12-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/10/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND While air pollution exposures have been linked to cardiovascular outcomes, the contribution from acute gas and particle traffic-related pollutants remains unclear. Using a panel study design with repeated measures, we examined associations between personal exposures to traffic-related air pollutants in Mexico City and changes in heart rate variability (HRV) in a population of researchers aged 22 to 56 years. METHODS Participants were monitored for approximately 9.5 hours for eight days while operating a mobile laboratory van designed to characterize traffic pollutants while driving in traffic and "chasing" diesel buses. We examined the association between HRV parameters (standard deviation of normal-to-normal intervals (SDNN), power in high frequency (HF) and low frequency (LF), and the LF/HF ratio) and the 5-minute maximum (or average in the case of PM(2.5)) and 30-, 60-, and 90-minute moving averages of air pollutants (PM(2.5), O(3), CO, CO(2), NO(2), NO(x), and formaldehyde) using single- and two-pollutant linear mixed-effects models. RESULTS Short-term exposure to traffic-related emissions was associated with statistically significant acute changes in HRV. Gaseous pollutants - particularly ozone - were associated with reductions in time and frequency domain components (α = 0.05), while significant positive associations were observed between PM(2.5) and SDNN, HF, and LF. For ozone and formaldehyde, negative associations typically increased in magnitude and significance with increasing averaging periods. The associations for CO, CO(2), NO(2), and NO(x) were similar with statistically significant associations observed for SDNN, but not HF or LF. In contrast, PM(2.5) increased these HRV parameters. CONCLUSIONS Results revealed an association between traffic-related PM exposures and acute changes in HRV in a middle-aged population when PM exposures were relatively low (14 μg/m(3)) and demonstrate heterogeneity in the effects of different pollutants, with declines in HRV - especially HF - with ozone and formaldehyde exposures, and increases in HRV with PM(2.5) exposure. Given that exposure to traffic-related emissions is associated with increased risk of cardiovascular morbidity and mortality, understanding the mechanisms by which traffic-related emissions can cause cardiovascular disease has significant public health relevance.
Collapse
Affiliation(s)
- Kyra Naumoff Shields
- Department of Environmental and Occupational Health, University of Pittsburgh, Bridgeside Point I, 100 Technology Drive, Suite 350, Pittsburgh, PA, 15219, USA
| | - Jennifer M Cavallari
- Division of Occupational and Environmental Medicine, University of Connecticut Health Center, 270 Farmington Ave., The Exchange, Suite 262, Farmington, Ct. 06032-6210, USA
| | - Megan J Olson Hunt
- Department of Biostatistics, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, 15261, USA
| | - Mariana Lazo
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, W6508, Baltimore, Maryland, 21205, USA
| | - Mario Molina
- Department of Chemistry and Biochemistry, University of San Diego, Science & Technology 374, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Luisa Molina
- Department of Earth, Atmospheric and Planetary Sciences Cambridge, Massachusetts Institute of Technology, MA 02139, 9500 Gilman Dr., MCO332, La Jolla, CA, 92093-0332, USA
| | - Fernando Holguin
- Montefiore Hospital, University of Pittsburgh Medical Center, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
58
|
Wold LE, Ying Z, Hutchinson KR, Velten M, Gorr MW, Velten C, Youtz DJ, Wang A, Lucchesi PA, Sun Q, Rajagopalan S. Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ Heart Fail 2012; 5:452-61. [PMID: 22661498 DOI: 10.1161/circheartfailure.112.966580] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Air pollution is a pervasive environmental health hazard that occurs over a lifetime of exposure in individuals from many industrialized societies. However, studies have focused primarily on exposure durations that correspond to only a portion of the lifespan. We therefore tested the hypothesis that exposure over a considerable portion of the lifespan would induce maladaptive cardiovascular responses. METHODS AND RESULTS C57BL/6 male mice were exposed to concentrated ambient particles <2.5 µm (particulate matter, PM or PM(2.5)) or filtered air (FA), 6 h/d, 5 d/wk, for 9 months. Assessment of cardiac contractile function, coronary arterial flow reserve, isolated cardiomyocyte function, expression of hypertrophic markers, calcium handling proteins, and cardiac fibrosis were then performed. Mean daily concentrations of PM(2.5) in the exposure chamber versus ambient daily PM(2.5) concentration at the study site were 85.3 versus 10.6 µg/m(3) (7.8-fold concentration), respectively. PM(2.5) exposure resulted in increased hypertrophic markers leading to adverse ventricular remodeling characterized by myosin heavy chain (MHC) isoform switch and fibrosis, decreased fractional shortening (39.8 ± 1.4 FA versus 27.9 ± 1.3 PM, FS%), and mitral inflow patterns consistent with diastolic dysfunction (1.95 ± 0.05 FA versus 1.52 ± 0.07 PM, E/A ratio). Contractile reserve to dobutamine was depressed (62.3 ± 0.9 FA versus 49.2 ± 1.5 PM, FS%) in response to PM(2.5) without significant alterations in maximal vasodilator flow reserve. In vitro cardiomyocyte function revealed depressed peak shortening (8.7 ± 0.6 FA versus 7.0 ± 0.4 PM, %PS) and increased time-to-90% shortening (72.5 ± 3.2 FA versus 82.8 ± 3.2 PM, ms) and re-lengthening (253.1 ± 7.9 FA versus 282.8 ± 9.3 PM, ms), which were associated with upregulation of profibrotic markers and decreased total antioxidant capacity. Whole-heart SERCA2a levels and the ratio of α/β-MHC were both significantly decreased (P<0.05) in PM(2.5)-exposed animals, suggesting a switch to fetal programming. CONCLUSIONS Long-term exposure to environmentally relevant concentrations of PM(2.5) resulted in a cardiac phenotype consistent with incipient heart failure.
Collapse
Affiliation(s)
- Loren E Wold
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics/Physiology and Cell Biology, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Di Ciaula A. Emergency visits and hospital admissions in aged people living close to a gas-fired power plant. Eur J Intern Med 2012; 23:e53-8. [PMID: 22284257 DOI: 10.1016/j.ejim.2011.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/31/2011] [Accepted: 09/26/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Combustion of natural gas for energy generation produces less pollutants than coke/oil. However, little is known about the short-term effect of pollution generated by gas-fired power plants on the health of elderly people. METHODS During three months, daily emergency visits/hospital admissions of subjects living within 3 km from a gas-fueled power plant were counted and related to ambient concentrations of nitrogen dioxide (NO(2)) and particulate matter of median aerometric diameter <10 μm (PM10). A generalized additive model served to correlate visits/hospital admissions to pollutants, controlling for meteorological confounders. RESULTS Mean air concentrations of PM10 and NO(2) were higher after-than before the start of operation of the plant, with the highest concentrations recorded within 1 km. Although pollutants were below the limits set by the European legislation, in elderly people there was a positive correlation between the number of emergency visits and daily air concentrations of PM10 and NO(2), as measured at 1 and 3 km from the plant. In subjects aged 70 years or more, the number of hospital admissions was positively correlated with PM10 levels measured within 3 km from the power plant, whereas in older subjects (≥80 year) it was also significantly linked with the lowest air concentration of PM10 (measured at 6 km from the plant). DISCUSSION Combustion of natural gas for energy generation produces a rise in air concentration of PM10 and NO(2) close to the plant, with a concentration-dependent increment of daily emergency visits and hospital admissions in elderly people, and with an age-dependent susceptibility.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Section of Internal Medicine, Hospital of Bisceglie, Via Bovio, 70057 Bisceglie (BAT), Italy.
| |
Collapse
|
60
|
Ghio AJ, Bassett M, Montilla T, Chung EH, Smith CB, Cascio WE, Carraway MS. Case report: supraventricular arrhythmia after exposure to concentrated ambient air pollution particles. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:275-7. [PMID: 21896397 PMCID: PMC3279446 DOI: 10.1289/ehp.1103877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/06/2011] [Indexed: 05/15/2023]
Abstract
CONTEXT Exposure to air pollution can result in the onset of arrhythmias. CASE PRESENTATION We present a case of a 58-year-old woman who volunteered to participate in a controlled exposure to concentrated ambient particles. Twenty minutes into the exposure, telemetry revealed new onset of atrial fibrillation. The exposure was discontinued, and she reverted to normal sinus rhythm approximately 2 hr later. No abnormality was evident on the volunteer's laboratory examination or echocardiography that could explain an increased risk for supraventricular arrhythmia. DISCUSSION Epidemiologic evidence strongly supports a relationship between exposure to air pollutants and cardiovascular disease, but population-level data are not directly relevant to the clinical presentation of individual cases. To our knowledge, this is the only case report of an individual suffering an episode of atrial fibrillation after exposure to an air pollutant. The resolution of the arrhythmia with termination of the particle exposure further supports a causal relationship between the two. RELEVANCE TO CLINICAL PRACTICE Exposure to air pollution, including particulate matter, may cause supraventricular arrhythmias.
Collapse
Affiliation(s)
- Andrew J Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Hazari MS, Haykal-Coates N, Winsett DW, Krantz QT, King C, Costa DL, Farraj AK. TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:951-7. [PMID: 21377951 PMCID: PMC3223009 DOI: 10.1289/ehp.1003200] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/04/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Diesel exhaust (DE), which is emitted from on- and off-road sources, is a complex mixture of toxic gaseous and particulate components that leads to triggered adverse cardiovascular effects such as arrhythmias. OBJECTIVE We hypothesized that increased risk of triggered arrhythmias 1 day after DE exposure is mediated by airway sensory nerves bearing transient receptor potential (TRP) channels [e.g., transient receptor potential cation channel, member A1 (TRPA1)] that, when activated by noxious chemicals, can cause a centrally mediated autonomic imbalance and heightened risk of arrhythmia. METHODS Spontaneously hypertensive rats implanted with radiotelemeters were whole-body exposed to either 500 μg/m³ (high) or 150 μg/m³ (low) whole DE (wDE) or filtered DE (fDE), or to filtered air (controls), for 4 hr. Arrhythmogenesis was assessed 24 hr later by continuous intravenous infusion of aconitine, an arrhythmogenic drug, while heart rate (HR) and electrocardiogram (ECG) were monitored. RESULTS Rats exposed to wDE or fDE had slightly higher HRs and increased low-frequency:high-frequency ratios (sympathetic modulation) than did controls; ECG showed prolonged ventricular depolarization and shortened repolarization periods. Rats exposed to wDE developed arrhythmia at lower doses of aconitine than did controls; the dose was even lower in rats exposed to fDE. Pretreatment of low wDE-exposed rats with a TRPA1 antagonist or sympathetic blockade prevented the heightened sensitivity to arrhythmia. CONCLUSIONS These findings suggest that a single exposure to DE increases the sensitivity of the heart to triggered arrhythmias. The gaseous components appear to play an important role in the proarrhythmic response, which may be mediated by activation of TRPA1, and subsequent sympathetic modulation. As such, toxic inhalants may partly exhibit their toxicity by lowering the threshold for secondary triggers, complicating assessment of their risk.
Collapse
Affiliation(s)
- Mehdi S Hazari
- Environmental Public Health Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | |
Collapse
|