51
|
Therapeutic Potential of Cerium Oxide Nanoparticles for the Treatment of Peritonitis Induced by Polymicrobial Insult in Sprague-Dawley Rats. Crit Care Med 2016; 43:e477-89. [PMID: 26327202 DOI: 10.1097/ccm.0000000000001258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Peritonitis is a life-threatening disease that is associated with high mortality. The purpose of this study was to determine if cerium oxide nanoparticles can be used to diminish intra-abdominal infection-induced mortality and systemic inflammatory response syndrome in the laboratory rat. DESIGN Randomized, controlled animal study and cell culture study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats aged 12 weeks, RAW 246.7 macrophage cell line. INTERVENTIONS Intra-abdominal infection or peritonitis was induced by intraperitoneal injection of cecal material (600 mg/kg in 5% sterile dextrose water at a dosage of 5 mL/kg) obtained from healthy donors. Rats in control and peritonitis groups received 200 μL of sterile deionized water IV via the tail vein, whereas rats in cerium oxide-only group and peritonitis+cerium oxide group received cerium oxide nanoparticles (0.5 mg/kg) IV at the time of polymicrobial injection. Survival rate was monitored for 14 days, while in other experiments, animals were killed at 3 and 18 hours after induction of peritonitis for biochemical analysis. MEASUREMENTS AND MAIN RESULTS Administration of a single dose (0.5 mg/kg) of cerium oxide nanoparticles IV to rats in the peritonitis group significantly improved survival rates and functioned to restore core body temperature toward baseline. Treatment-induced increases in animal survivability were associated with reduced systemic and hepatic oxidative stress, diminished serum cytokines, and chemokine levels. Changes in serum inflammatory markers with treatment were accompanied by decreased monocyte and lymphocyte extravasation into the peritoneal cavity along with decreased infiltration of macrophages into liver. In the heart, treatment diminished extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase-Stat-3 signaling and attenuated endothelial expression of P-selectin and vascular cell adhesion molecule-1. CONCLUSIONS Cerium oxide nanoparticles attenuate the systemic inflammatory response associated with peritonitis, suggesting potential use as a novel therapeutic agent for the treatment of severe intra-abdominal infection.
Collapse
|
52
|
Abstract
Hepatocytes are targeted for infection by a number of major human pathogens, including hepatitis B virus, hepatitis C virus, and malaria. However, hepatocytes are also immunological agents in their own right. In systemic immunity, they are central in the acute-phase response, which floods the circulation with defensive proteins during diverse stresses, including ischemia, physical trauma, and sepsis. Hepatocytes express a variety of innate immune receptors and, when challenged with pathogen- or damage-associated molecular patterns, can deliver cell-autonomous innate immune responses that may result in host defense or in immunopathology. Important human pathogens have evolved mechanisms to subvert these responses. Finally, hepatocytes talk directly to T cells, resulting in a bias toward immune tolerance.
Collapse
Affiliation(s)
- Ian N Crispe
- Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
53
|
Dizier S, Forel JM, Ayzac L, Richard JC, Hraiech S, Lehingue S, Loundou A, Roch A, Guerin C, Papazian L. Early Hepatic Dysfunction Is Associated with a Worse Outcome in Patients Presenting with Acute Respiratory Distress Syndrome: A Post-Hoc Analysis of the ACURASYS and PROSEVA Studies. PLoS One 2015; 10:e0144278. [PMID: 26636318 PMCID: PMC4670098 DOI: 10.1371/journal.pone.0144278] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/14/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction Bilirubin is well-recognized marker of hepatic dysfunction in intensive care unit (ICU) patients. Multiple organ failure often complicates acute respiratory distress syndrome (ARDS) evolution and is associated with high mortality. The effect of early hepatic dysfunction on ARDS mortality has been poorly investigated. We evaluated the incidence and the prognostic significance of increased serum bilirubin levels in the initial phase of ARDS. Methods The data of 805 patients with ARDS were retrospectively analysed. This population was extracted from two recent multicenter, prospective and randomised trials. Patients presenting with ARDS with a ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen < 150 mmHg measured with a PEEP ≥ 5 cm of water were included. The total serum bilirubin was measured at inclusion and at days 2, 4, 7 and 14. The primary objective was to analyse the bilirubin at inclusion according to the 90-day mortality rate. Results The 90-day mortality rate was 33.8% (n = 272). The non-survivors were older, had higher Sepsis-related Organ Failure Assessment (SOFA) score and were more likely to have a medical diagnosis on admission than the survivors. At inclusion, the SOFA score without the liver score (10.3±2.9 vs. 9.0±3.0, p<0.0001) and the serum bilirubin levels (36.1±57.0 vs. 20.5±31.5 μmol/L, p<0.0001) were significantly higher in the non-survivors than in the survivors. Age, the hepatic SOFA score, the coagulation SOFA score, the arterial pH level, and the plateau pressure were independently associated with 90-day mortality in patients with ARDS. Conclusion Bilirubin used as a surrogate marker of hepatic dysfunction and measured early in the course of ARDS was associated with the 90-day mortality rate.
Collapse
Affiliation(s)
- Stéphanie Dizier
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
| | - Jean-Marie Forel
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
| | - Louis Ayzac
- Hospices Civils de Lyon, Hôpital Henri Gabrielle, CClin Sud Est, 69230, Saint Genis Aval, France
| | - Jean-Christophe Richard
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Réanimation médicale et Surveillance Continue, 69004, Lyon, France
| | - Sami Hraiech
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
| | - Samuel Lehingue
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
| | - Anderson Loundou
- Unité d'Aide Méthodologique à la Recherche clinique DRRC/AP-HM, Laboratoire de Santé Publique Faculté de Médecine, 13005, Marseille, France
| | - Antoine Roch
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
| | - Claude Guerin
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Réanimation médicale et Surveillance Continue, 69004, Lyon, France
| | - Laurent Papazian
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
- * E-mail:
| | | | | |
Collapse
|
54
|
Blasco-Algora S, Masegosa-Ataz J, Gutiérrez-García ML, Alonso-López S, Fernández-Rodríguez CM. Acute-on-chronic liver failure: Pathogenesis, prognostic factors and management. World J Gastroenterol 2015; 21:12125-40. [PMID: 26576097 PMCID: PMC4641130 DOI: 10.3748/wjg.v21.i42.12125] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is increasingly recognized as a complex syndrome that is reversible in many cases. It is characterized by an acute deterioration of liver function in the background of a pre-existing chronic liver disease often associated with a high short-term mortality rate. Organ failure (OF) is always associated, and plays a key role in determining the course, and the outcome of the disease. The definition of ACLF remains controversial due to its overall ambiguity, with several disparate criteria among various associations dedicated to the study of liver diseases. Although the precise pathogenesis needs to be clarified, it appears that an altered host response to injury might be a contributing factor caused by immune dysfunction, ultimately leading to a pro-inflammatory status, and eventually to OF. The PIRO concept (Predisposition, Insult, Response and Organ Failure) has been proposed to better approach the underlying mechanisms. It is accepted that ACLF is a different and specific form of liver failure, where a precipitating event is always involved, even though it cannot always be ascertained. According to several studies, infections and active alcoholism often trigger ACLF. Viral hepatitis, gastrointestinal haemorrhage, or drug induced liver injury, which can also provoke the syndrome. This review mainly focuses on the physiopathology and prognostic aspects. We believe these features are essential to further understanding and providing the rationale for improveddisease management strategies.
Collapse
|
55
|
Wessels I, Cousins RJ. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation. Am J Physiol Gastrointest Liver Physiol 2015; 309:G768-78. [PMID: 26272258 PMCID: PMC4628964 DOI: 10.1152/ajpgi.00179.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/15/2015] [Indexed: 01/31/2023]
Abstract
Integrity of the immune system is particularly dependent on the availability of zinc. Recent data suggest that zinc is involved in the development of sepsis, a life-threatening systemic inflammation with high death rates, but with limited therapeutic options. Altered cell zinc transport mechanisms could contribute to the inflammatory effects of sepsis. Zip14, a zinc importer induced by proinflammatory stimuli, could influence zinc metabolism during sepsis and serve as a target for therapy. Using cecal ligation-and-puncture (CLP) to model polymicrobial sepsis, we narrowed the function of ZIP14 to regulation of zinc homeostasis in hepatocytes, while hepatic leukocytes were mostly responsible for driving inflammation, as shown by higher expression of IL-1β, TNFα, S100A8, and matrix metalloproteinase-8. Using Zip14 knockout (KO) mice as a novel approach, we found that ablation of Zip14 produced a delay in development of leukocytosis, prevented zinc accumulation in the liver, altered the kinetics of hypozincemia, and drastically increased serum IL-6, TNFα, and IL-10 concentrations following CLP. Hence, this model revealed that the zinc transporter ZIP14 is a component of the pathway for zinc redistribution that contributes to zinc dyshomeostasis during polymicrobial sepsis. In contrast, using the identical CLP model, we found that supplemental dietary zinc reduced the severity of sepsis, as shown by amelioration of cytokines, calprotectins, and blood bacterial loads. We conclude that the zinc transporter ZIP14 influences aspects of the pathophysiology of nonlethal polymicrobial murine sepsis induced by CLP through zinc delivery. The results are promising for the use of zinc and its transporters as targets for future sepsis therapy.
Collapse
Affiliation(s)
- Inga Wessels
- Food Science and Human Nutrition Department, Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Robert J. Cousins
- Food Science and Human Nutrition Department, Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
56
|
Guo K, Ren J, Wang G, Gu G, Li G, Wu X, Chen J, Ren H, Hong Z, Wu L, Chen G, Youming D, Li J. Early Liver Dysfunction in Patients With Intra-Abdominal Infections. Medicine (Baltimore) 2015; 94:e1782. [PMID: 26496306 PMCID: PMC4620769 DOI: 10.1097/md.0000000000001782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Liver dysfunction is commonly seen in patients with severe sepsis; however, few studies were reported in intra-abdominal infections (IAIs). This study was performed to assess the risk factors for early liver dysfunction (ELD) in patients with IAIs and to determine the effects of ELD on outcomes of these patients.From January 2011 to November 2014, a retrospective study that screened 421 patients with IAIs was performed. ELD was defined as an increase in serum total bilirubin (TB) >2 mg/dL or aminotransferases levels greater than twice the normal value within 48 hours after IAIs' onset. Patients with pre-existing liver disease or major hepatobiliary injury were excluded. Risk factors for ELD and outcomes were compared by univariate and multivariate analyses. Subgroup analysis was performed for ELD patients within 24 to 48 hours.Of 353 enrolled patients admitted with IAIs, 147 (41.6%) developed ELD. Significant independent risk factors for ELD were trauma (odds ratio [OR] 1.770, 95% confidential interval [CI] 1.126-2.783, P = 0.01) and abdominal compartment syndrome (ACS) (OR 3.199, 95% CI 1.184-8.640, P = 0.02). Successful source control <24 hours was shown to exert protection against ELD after 24 hours during IAIs (OR 0.193, 95% CI 0.091-0.409, P < 0.001). ELD was associated with significantly worse outcomes, including longer ICU length of stay and higher in-hospital mortality. Multivariate analysis also showed that development of ELD was a predisposing factor of mortality in IAIs patients (P < 0.001).ELD was a common complication in patients with IAIs associated with worse outcomes. Trauma and ACS were relevant risk factors. Early successful source control appeared to be an important method to prevent and/or reduce ELD in patients with IAIs.
Collapse
Affiliation(s)
- Kun Guo
- From the Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Tarasenko TN, Singh LN, Chatterji-Len M, Zerfas PM, Cusmano-Ozog K, McGuire PJ. Kupffer cells modulate hepatic fatty acid oxidation during infection with PR8 influenza. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2391-401. [PMID: 26319418 DOI: 10.1016/j.bbadis.2015.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
In response to infection, patients with inborn errors of metabolism may develop a functional deterioration termed metabolic decompensation. The biochemical hallmarks of this disruption of metabolic homeostasis are disease specific and may include acidosis, hyperammonemia or hypoglycemia. In a model system previously published by our group, we noted that during influenza infection, mice displayed a depression in hepatic mitochondrial enzymes involved in nitrogen metabolism. Based on these findings, we hypothesized that this normal adaptation may extend to other metabolic pathways, and as such, may impact various inborn errors of metabolism. Since the liver is a critical organ in inborn errors of metabolism, we carried out untargeted metabolomic profiling of livers using mass spectrometry in C57Bl/6 mice infected with influenza to characterize metabolic adaptation. Pathway analysis of metabolomic data revealed reductions in CoA synthesis, and long chain fatty acyl CoA and carnitine species. These metabolic adaptations coincided with a depression in hepatic long chain β-oxidation mRNA and protein. To our surprise, the metabolic changes observed occurred in conjunction with a hepatic innate immune response, as demonstrated by transcriptional profiling and flow cytometry. By employing an immunomodulation strategy to deplete Kupffer cells, we were able to improve the expression of multiple genes involved in β-oxidation. Based on these findings, we are the first to suggest that the role of the liver as an immunologic organ is central in the pathophysiology of hepatic metabolic decompensation in inborn errors of metabolism due to respiratory viral infection.
Collapse
Affiliation(s)
- Tatyana N Tarasenko
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Milani Chatterji-Len
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Kristina Cusmano-Ozog
- Biochemical Genetics and Metabolism Laboratory, Children's National Medical Center, Washington, DC, USA
| | - Peter J McGuire
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
58
|
Tansley G, Hall R. Pharmacokinetic considerations for drugs administered in the critically ill. Br J Hosp Med (Lond) 2015; 76:89-94. [PMID: 25671473 DOI: 10.12968/hmed.2015.76.2.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Significant physiological changes are common among critically ill patients. This case-based review describes the consequences of these changes on the selection and dosing of medications.
Collapse
Affiliation(s)
- Gavin Tansley
- Resident in the Department of General Surgery and Department of Critical Care Medicine, Dalhousie University, Halifax NS, Canada B3H 3A7
| | | |
Collapse
|
59
|
Boylan JM, Salomon AR, Tantravahi U, Gruppuso PA. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit. Exp Cell Res 2015; 335:224-37. [PMID: 25999147 DOI: 10.1016/j.yexcr.2015.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
Abstract
Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders.
Collapse
Affiliation(s)
- Joan M Boylan
- Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA; Department of Chemistry, Brown University, Providence, RI, USA
| | - Umadevi Tantravahi
- Division of Genetics, Department of Pathology, Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Philip A Gruppuso
- Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
60
|
Hepatic hepcidin protects against polymicrobial sepsis in mice by regulating host iron status. Anesthesiology 2015; 122:374-86. [PMID: 25264597 DOI: 10.1097/aln.0000000000000466] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hepcidin is a master regulator of iron metabolism primarily produced by the liver. Markedly increased hepcidin levels have been observed in septic individuals, while decreased hepatic hepcidin expression has been demonstrated in liver diseases that tend to develop into sepsis. However, the role of liver hepcidin in sepsis remains unknown. METHODS Mouse hepatic hepcidin expression was silenced using adenovirus-mediated hepcidin-specific short hairpin RNA injected via the tail vein. Sepsis was induced by cecal ligation and puncture, and the outcome (n = 23 for hepcidin knockdown mice, n = 15 for controls) and pathogenic changes (n = 5) related to sepsis were evaluated. The impact of alteration of iron status on the survival rate of hepatic hepcidin knockdown mice (n = 18 to 19) was also investigated. RESULTS Disruption of liver hepcidin expression increased serum iron level (537.8 ± 28.1 μg/dl [mean ± SD] vs. 235.9 ± 62.2 μg/dl; P < 0.05) and reduced iron content in the spleen macrophages at the steady state. Hepatic hepcidin knockdown mice not only showed increased 7-day mortality (73.9% vs. 46.7%; P < 0.05), but also had exacerbated organ damage and oxidative stress, as well as compromised host inflammatory responses and bacterial clearance at 24 h after polymicrobial sepsis. Treating the hepatic hepcidin knockdown mice with low-iron diet plus iron chelation decreased systemic iron content (serum level: 324.0 ± 67.4 μg/dl vs. 517.4 ± 13.4 μg/dl; P < 0.05) and rescued the mice from lethal sepsis (7-day survival: 36.8% vs. 83.3%; P < 0.01). CONCLUSIONS Hepatic hepcidin plays an important role in sepsis through regulation of iron metabolism. The findings may have potential therapeutic implications for liver diseases in which hepcidin expression is decreased.
Collapse
|
61
|
Acute phase proteins and stress hormone responses in patients with newly diagnosed active pulmonary tuberculosis. Lung 2014; 193:13-8. [PMID: 25549893 DOI: 10.1007/s00408-014-9680-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/21/2014] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Despite the high burden of disease, there have been surprisingly few studies of the acute phase and plasma catecholamine/cortisol stress hormone responses in patients with active pulmonary tuberculosis. We wished to document acute phase reactant and stress hormone responses in patients with newly diagnosed, active pulmonary tuberculosis and to compare these responses to those of a group of surgical/medical cases with conditions other than tuberculosis. METHODS This was a prospective study of consecutive patients with newly diagnosed pulmonary tuberculosis, admitted to a tertiary hospital in Johannesburg, South Africa, documenting demographic, clinical, routine laboratory, acute phase protein and stress hormone responses relative to those of the control group. RESULTS TB patients had a higher body temperature and pulse rate, as well as a platelet counts, ferritin, CRP and dopamine levels, with a tendency to higher cortisol levels compared to the control group. Conversely, they had a lower BMI, haemoglobin, leucocyte count, MCV and epinephrine levels than the control group. CONCLUSIONS Patients with active pulmonary tuberculosis were documented to mount an acute stress response which was more intense than that of a control group of patients with surgical/medical conditions other than tuberculosis.
Collapse
|
62
|
Behnes M, Bertsch T, Lepiorz D, Lang S, Trinkmann F, Brueckmann M, Borggrefe M, Hoffmann U. Diagnostic and prognostic utility of soluble CD 14 subtype (presepsin) for severe sepsis and septic shock during the first week of intensive care treatment. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:507. [PMID: 25190134 PMCID: PMC4174283 DOI: 10.1186/s13054-014-0507-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022]
Abstract
Introduction The aim of this study was to evaluate the diagnostic and prognostic value of presepsin in patients with severe sepsis and septic shock during the first week of ICU treatment. Methods In total, 116 patients with suspected severe sepsis or septic shock were included during the first 24 hours of ICU treatment. Blood samples for biomarker measurements of presepsin, procalcitonin (PCT), interleukin 6 (IL-6), C reactive protein (CRP) and white blood cells (WBC) were drawn at days 1, 3 and 8. All patients were followed up for six months. Biomarkers were tested for diagnosis of sepsis, severe sepsis, septic shock and for prognosis of 30-days and 6-months all-cause mortality at days 1, 3 and 8. Diagnostic and prognostic utilities were tested by determining diagnostic cutoff levels, goodness criteria, C-statistics and multivariable Cox regression models. Results Presepsin increased significantly from the lowest to most severe sepsis groups at days 1, 3 and 8 (test for linear trend P <0.03). Presepsin levels revealed valuable diagnostic capacity to diagnose severe sepsis and septic shock at days 1, 3 and 8 (range of diagnostic area under the curves (AUC) 0.72 to 0.84, P = 0.0001) compared to IL-6, PCT, CRP and WBC. Goodness criteria for diagnosis of sepsis severity were analyzed (≥sepsis, cutoff = 530 pg/ml; ≥severe sepsis, cutoff = 600 pg/ml; ≥septic shock, cutoff = 700 pg/ml; P <0.03). Presepsin levels revealed significant prognostic value for 30 days and 6 months all-cause mortality (presepsin: range of AUC 0.64 to 0.71, P <0.02). Patients with presepsin levels of the 4th quartile were 5 to 7 times more likely to die after six months than patients with lower levels. The prognostic value for all-cause mortality of presepsin was comparable to that of IL-6 and better than that of PCT, CRP or WBC. Conclusions In patients with suspected severe sepsis and septic shock, precipices reveals valuable diagnostic capacity to differentiate sepsis severity compared to PCT, IL-6, CRP, WBC. Additionally, presepsin and IL-6 reveal prognostic value with respect to 30 days and 6 months all-cause mortality throughout the first week of ICU treatment. Trial registration ClinicalTrials.gov NCT01535534. Registered 14 February 2012.
Collapse
|
63
|
Cao Z, Robinson RAS. The role of proteomics in understanding biological mechanisms of sepsis. Proteomics Clin Appl 2014; 8:35-52. [PMID: 24339042 DOI: 10.1002/prca.201300101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 11/10/2022]
Abstract
Sepsis is a systemic inflammatory state caused by infection. Complications of this infection with multiple organ failure lead to more lethal conditions, such as severe sepsis and septic shock. Sepsis is one of the leading causes of US deaths. Novel biomarkers with high sensitivity and specificity may be helpful for early diagnosis of sepsis and for improvement of patient outcomes through the development of new therapies. Mass spectrometry-based proteomics offers powerful tools to identify such biomarkers and furthermore to give insight to fundamental mechanisms of this clinical condition. In this review, we summarize findings from proteomics studies of sepsis and how their applications have provided more understanding into the pathogenesis of septic infection. Literatures related to "proteomics", "sepsis", "systemic inflammatory response syndrome", "severe sepsis", "septic infection", and "multiple organ dysfunction syndrome" were searched using PubMed. Findings about neonatal and adult sepsis are discussed separately. Within the adult sepsis studies, results are grouped based on the models (e.g., human or animal). Across investigations in clinical populations and in rodent and mammalian animal models, biological pathways, such as inflammatory and acute phase response, coagulation, complement, mitochondrial energy metabolism, chaperones, and oxidative stress, are altered at the protein level. These proteomics studies have discovered many novel biomarker candidates of septic infection. Validation the clinical use of these biomarker candidates may significantly impact the diagnosis and prognosis of sepsis. In addition, the molecular mechanisms revealed by these studies may also guide the development of more effective treatments.
Collapse
Affiliation(s)
- Zhiyun Cao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
64
|
Aguilar G, Azanza JR, Carbonell JA, Ferrando C, Badenes R, Parra MA, Sadaba B, Navarro D, Puig J, Miñana A, Garcia-Marquez C, Gencheva G, Gutierrez A, Marti FJ, Belda FJ. Anidulafungin dosing in critically ill patients with continuous venovenous haemodiafiltration. J Antimicrob Chemother 2014; 69:1620-3. [DOI: 10.1093/jac/dkt542] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
65
|
Guo Y, Zhang Y, Hong K, Luo F, Gu Q, Lu N, Bai A. AMPK inhibition blocks ROS-NFκB signaling and attenuates endotoxemia-induced liver injury. PLoS One 2014; 9:e86881. [PMID: 24475189 PMCID: PMC3901729 DOI: 10.1371/journal.pone.0086881] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/16/2013] [Indexed: 11/28/2022] Open
Abstract
Background AMP-activated protein kinase (AMPK) is an important enzyme in regulation of cellular energy homeostasis. We have previously shown that AMPK activation by 5-aminoimidazole-4-carboxamide (AICAR) results in suppression of immune responses, indicating the pivotal role of AMPK in immune regulation. However, the cellular mechanism underpinning AMPK inhibition on immune response remains largely to be elucidated. The study aimed to investigate the effects of AMPK inhibition on reactive oxygen species (ROS)-nuclear factor κB (NFκB) signaling and endotoxemia-induced liver injury. Methodology/Principal Findings RAW 264.7 cells were pretreated with AMPK activator or inhibitor, followed by LPS challenge. In addition, LPS was injected intraperitoneally into mice to induce systemic inflammation. The parameters of liver injury and immune responses were determined, and survival of mice was monitored respectively. LPS challenge in RAW 264.7 cells resulted in AMPK activation which was then inhibited by compound C treatment. Both AMPK activation by AICAR or inhibition by compound C diminished LPS-induced ROS generation, inhibited phosphorylation of IKK, IκB, and NFκB p65, and consequently, decreased TNF production of RAW 264.7 cells. AICAR or compound C treatment decreased ALT, AST, and TNF levels in serum, reduced CD68 expression and MPO activity in liver tissue of mice with endotoxemia. Moreover, AICAR or compound C treatment improved survival of endotoxemic mice. Conclusions AICAR or compound C treatment attenuates LPS-induced ROS-NFκB signaling, immune responses and liver injury. Strategies to activate or inhibit AMPK signaling may provide alternatives to the current clinical approaches to inhibit immune responses of endotoxemia.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Hong
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fengyan Luo
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiuping Gu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nonghua Lu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Aiping Bai
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
- * E-mail:
| |
Collapse
|
66
|
Chiarla C, Giovannini I, Ardito F, Vellone M, Nuzzo G, Giuliante F. Impairment of hepatocellular excretory function, sepsis and liver insufficiency after liver resection. Crit Care 2014; 18:419. [PMID: 25029352 PMCID: PMC4056617 DOI: 10.1186/cc13792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/17/2014] [Indexed: 11/10/2022] Open
|
67
|
PD-L1 blockade attenuated sepsis-induced liver injury in a mouse cecal ligation and puncture model. Mediators Inflamm 2013; 2013:361501. [PMID: 24324295 PMCID: PMC3844221 DOI: 10.1155/2013/361501] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/17/2013] [Accepted: 10/10/2013] [Indexed: 12/30/2022] Open
Abstract
Liver plays a major role in hypermetabolism and produces acute phase proteins during systemic inflammatory response syndrome and it is of vital importance in host defense and bacteria clearance. Our previous studies indicated that programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) are crucial modulators of host immune responses during sepsis. Our current study was designed to investigate the role of PD-L1 in sepsis-induced liver injury by a mouse cecal ligation and puncture (CLP) model. Our results indicated that there was a significant increase of PD-L1 expression in liver after CLP challenge compared to sham-operated controls, in terms of levels of mRNA transcription and immunohistochemistry. Anti-PD-L1 antibody significantly alleviated the morphology of liver injury in CLP mice. Anti-PD-L1 antibody administration decreased ALT and AST release in CLP mice, decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 mRNA in liver after sepsis challenge. Thus, anti-PD-L1 antibody might have a therapeutic potential in attenuating liver injury in sepsis.
Collapse
|