51
|
Zhang XW, Li JY, Li L, Hu WQ, Tao Y, Gao WY, Ye ZN, Jia HY, Wang JN, Miao XK, Yang WL, Wang R, Mou LY. Neurokinin-1 receptor drives PKCɑ-AURKA/N-Myc signaling to facilitate the neuroendocrine progression of prostate cancer. Cell Death Dis 2023; 14:384. [PMID: 37385990 PMCID: PMC10310825 DOI: 10.1038/s41419-023-05894-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
The widespread application of antiandrogen therapies has aroused a significant increase in the incidence of NEPC, a lethal form of the disease lacking efficient clinical treatments. Here we identified a cell surface receptor neurokinin-1 (NK1R) as a clinically relevant driver of treatment-related NEPC (tNEPC). NK1R expression increased in prostate cancer patients, particularly higher in metastatic prostate cancer and treatment-related NEPC, implying a relation with the progression from primary luminal adenocarcinoma toward NEPC. High NK1R level was clinically correlated with accelerated tumor recurrence and poor survival. Mechanical studies identified a regulatory element in the NK1R gene transcription ending region that was recognized by AR. AR inhibition enhanced the expression of NK1R, which mediated the PKCα-AURKA/N-Myc pathway in prostate cancer cells. Functional assays demonstrated that activation of NK1R promoted the NE transdifferentiation, cell proliferation, invasion, and enzalutamide resistance in prostate cancer cells. Targeting NK1R abrogated the NE transdifferentiation process and tumorigenicity in vitro and in vivo. These findings collectively characterized the role of NK1R in tNEPC progression and suggested NK1R as a potential therapeutic target.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing-Yi Li
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Departemnt of Biochemistry and Molecular Biology, School of basic medical sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, P. R. China
| | - Lin Li
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wen-Qian Hu
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yan Tao
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Wen-Yan Gao
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zi-Nuo Ye
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hao-Yuan Jia
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jia-Nan Wang
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiao-Kang Miao
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wen-Le Yang
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Rui Wang
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Ling-Yun Mou
- School of Life Science Lanzhou University, 222 TianShui South Road, Lanzhou, 730000, P. R. China.
- Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
52
|
Shu Q, Li X, Chen X, Chen Y, Cai L. 177Lu-DOTATATE Therapy in a Case of Castrate-Resistant Prostate Cancer With Neuroendocrine Differentiation. Clin Nucl Med 2023; Publish Ahead of Print:00003072-990000000-00589. [PMID: 37276491 DOI: 10.1097/rlu.0000000000004735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
ABSTRACT An 84-year-old man with prostate cancer with neuroendocrine differentiation underwent PET/CT for staging. 68Ga-prostate-specific membrane antigen PET/CT did not show significant abnormal tracer accumulation, whereas 18F-OC (18F-AlF-NOTA-octreotide) PET/CT showed elevated tracer uptake at multiple sites throughout the body. Therefore, the patient opted to receive 1 cycle of 177Lu-DOTATATE peptide receptor radionuclide therapy with a dose of 200 mCi. Encouragingly, radiographic tumor remission and improvement of clinical symptoms were observed after only 1 cycle of treatment.
Collapse
Affiliation(s)
| | - Xianjun Li
- Department of Nuclear Medicine, Weifang People's Hospital, Shandong Province, People's Republic of China
| | | | | | | |
Collapse
|
53
|
Le BK, McGarrah P, Paciorek A, Mohamed A, Apolo AB, Chan DL, Reidy-Lagunes D, Hauser H, Rivero JD, Whitman J, Batty K, Zhang L, Raj N, Le T, Bergsland E, Halfdanarson TR. Urinary Neuroendocrine Neoplasms Treated in the "Modern Era": A Multicenter Retrospective Review. Clin Genitourin Cancer 2023; 21:403-414.e5. [PMID: 37031047 PMCID: PMC11296333 DOI: 10.1016/j.clgc.2023.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Primary urinary neuroendocrine neoplasms (U-NENs) are extremely rare thus optimal treatment is unknown. Grading and treatment are typically extrapolated from other primary sites. Since 2010, the clinical landscape for NENs has changed substantially. We performed a retrospective review of U-NENs to assess treatment patterns and oncologic outcomes of patients treated in the recent era of NEN therapy. PATIENTS AND METHODS A multicenter retrospective review of patients diagnosed after 2005 and alive after 2010. Time to treatment failure (TTF) was used to evaluate progression and toxicity for systemic therapy. Tumors were categorized as having either well-differentiated neuroendocrine tumor (WDNET) or poorly differentiated neuroendocrine carcinoma (PDNEC) histology. RESULTS A total of 134 patients from 6 centers were included in our analysis, including 94 (70%) bladder, 32 (24%) kidney, 2 (1.5%) urethra and 4 other urinary primaries (3.0%). Poorly-differentiated neuroendocrine carcinoma was more common in bladder (92%) than non-bladder tumors (8%). Median Ki-67 available in bladder primary was 90% (n = 24), kidney 10% (n = 23), ureter 95% (n = 1), urethra 54% (n = 2), and others 90% (n = 3). Patients received a median of 2 therapies (range 0-10). Median time to death was not reached in locoregional WDNETs versus 8.2 years (95% CI, 3.5-noncalculable) in metastatic WDNETs (predominantly renal primary). Median time to death was 3.6 years (95% CI, 2.2-9.2) in locoregional PDNECs versus 1 year (95% CI, 0.8-1.3) in metastatic PDNECs (predominantly bladder primary). CONCLUSION This is the most extensive series examining treatment patterns in patients with U-NENs in the recent era of NEN therapy. The apparent inferior survival for bladder NENs is likely due to the preponderance of PDNECs in this group. As predicted, treatments for U-NENs mirrored that of other more common NENs. In our retrospective cohort, we observed that patients with WD-UNETs treated with peptide receptor radionuclide therapy (PRRT) and everolimus suggested potential activity for disease control in WD-UNETs. Prospective studies are needed to assess the activity of new oncology drugs in UNENs.
Collapse
Affiliation(s)
- Bryan Khuong Le
- Department of Medicine, University of California, San Francisco, CA
| | | | - Alan Paciorek
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Amr Mohamed
- UH Seidman Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Andrea B Apolo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David L Chan
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW 2065, Sydney, New South Wales, Australia
| | - Diane Reidy-Lagunes
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Haley Hauser
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Jaydira D Rivero
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Kathleen Batty
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW 2065, Sydney, New South Wales, Australia
| | - Li Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Nitya Raj
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Tiffany Le
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Emily Bergsland
- Department of Medicine, University of California, San Francisco, CA.
| | | |
Collapse
|
54
|
Huang Z, Tang Y, Wei Y, Qian J, Kang Y, Wang D, Xu M, Nie L, Chen X, Chen N, Zhou Q. Prognostic Significance of Chromogranin A Expression in the Initial and Second Biopsies in Metastatic Prostate Cancer. J Clin Med 2023; 12:jcm12103362. [PMID: 37240468 DOI: 10.3390/jcm12103362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Neuroendocrine differentiation (NED) characterized by the expression of neuroendocrine markers, such as chromogranin A (CgA), is frequently observed in advanced prostate cancer (PCa), the prognostic significance of which is still controversial. Here we specifically addressed the issue of the potential prognostic value of CgA expression in advanced-stage PCa patients with distant metastases and its change over time from metastatic hormone-sensitive (mHSPC) to metastatic castration-resistant prostate cancer (mCRPC). CgA expression was assessed immunohistochemically in initial biopsies of mHSPC, as well as in second biopsies of mCRPC in sixty-eight patients, and its correlation with prognosis (together with conventional clinicopathologic parameters) was analyzed using the Kaplan-Meier method and Cox proportional hazard model. We found that CgA expression was an independent adverse prognostic factor for both mHSPC (CgA positivity ≥ 1%, HR = 2.16, 95% CI: 1.04-4.26, p = 0.031) and mCRPC (CgA ≥ 10%, HR = 20.19, 95% CI: 3.04-329.9, p = 0.008). CgA positivity generally increased from mHSPC to mCRPC and was a negative prognosticator. The assessment of CgA expression may help with the clinical evaluation of advanced-stage patients with distant metastases.
Collapse
Affiliation(s)
- Zhuo Huang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Tang
- Department of Pathology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yuyan Wei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyu Qian
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yifan Kang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Duohao Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Miao Xu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
55
|
Graham LS, Haffner MC, Sayar E, Gawne A, Schweizer MT, Pritchard CC, Coleman I, Nelson PS, Yu EY. Clinical, pathologic, and molecular features of amphicrine prostate cancer. Prostate 2023; 83:641-648. [PMID: 36779357 PMCID: PMC11023623 DOI: 10.1002/pros.24497] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND Amphicrine prostate carcinoma (AMPC) is a poorly defined subset of prostate cancer in which cells co-express luminal prostate epithelial and neuroendocrine markers. The optimal treatment strategy is unknown. We sought to further characterize the clinical, histomorphologic, and molecular characteristics of AMPC and to identify areas of potential future treatment investigations. METHODS We retrospectively identified 17 cases of AMPC at a single institution, defined as synaptophysin expression in >70% of cells and co-expression of androgen receptor (AR) signaling markers (either AR, PSA, or NKX3.1) in >50% of cells. Clinical and histologic features of AMPC cases as well as response to treatment and clinical outcomes were described. RESULTS Five AMPC cases arose de novo in the absence of prior systemic treatment and behaved distinctly from cases that were treatment-emergent. In these de novo cases, despite expression of neuroendocrine markers, prognosis appeared more favorable than high-grade neuroendocrine carcinoma, with two (40%) patients with de novo metastatic disease, universal response to androgen deprivation therapy, and no deaths at a median follow-up of 12.3 months. Treatment-emergent AMPC arose a median of 41.1 months after androgen deprivation therapy initiation and was associated with poor response to therapy. CONCLUSIONS We show that amphicrine prostate cancer is a unique entity and differs in clinical and molecular features from high-grade neuroendocrine carcinomas of the prostate. Our study highlights the need to recognize AMPC as a unique molecularly defined subgroup of prostate cancer.
Collapse
Affiliation(s)
- Laura S. Graham
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado, Aurora, CO
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Erolcan Sayar
- Divisions of Human Biology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Agnes Gawne
- Divisions of Human Biology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Michael T. Schweizer
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Ilsa Coleman
- Divisions of Human Biology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA
| | - Evan Y. Yu
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
56
|
Bakht MK, Yamada Y, Ku SY, Venkadakrishnan VB, Korsen JA, Kalidindi TM, Mizuno K, Ahn SH, Seo JH, Garcia MM, Khani F, Elemento O, Long HW, Chaglassian A, Pillarsetty N, Lewis JS, Freedman M, Belanger AP, Nguyen QD, Beltran H. Landscape of prostate-specific membrane antigen heterogeneity and regulation in AR-positive and AR-negative metastatic prostate cancer. NATURE CANCER 2023; 4:699-715. [PMID: 37038004 PMCID: PMC10867901 DOI: 10.1038/s43018-023-00539-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Tumor expression of prostate-specific membrane antigen (PSMA) is lost in 15-20% of men with castration-resistant prostate cancer (CRPC), yet the underlying mechanisms remain poorly defined. In androgen receptor (AR)-positive CRPC, we observed lower PSMA expression in liver lesions versus other sites, suggesting a role of the microenvironment in modulating PSMA. PSMA suppression was associated with promoter histone 3 lysine 27 methylation and higher levels of neutral amino acid transporters, correlating with 18F-fluciclovine uptake on positron emission tomography imaging. While PSMA is regulated by AR, we identified a subset of AR-negative CRPC with high PSMA. HOXB13 and AR co-occupancy at the PSMA enhancer and knockout models point to HOXB13 as an upstream regulator of PSMA in AR-positive and AR-negative prostate cancer. These data demonstrate how PSMA expression is differentially regulated across metastatic lesions and in the context of the AR, which may inform selection for PSMA-targeted therapies and development of complementary biomarkers.
Collapse
Affiliation(s)
- Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Joshua A Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Teja M Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shin Hye Ahn
- Harvard Medical School, Boston, MA, USA
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maria Mica Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anthony P Belanger
- Harvard Medical School, Boston, MA, USA
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quang-De Nguyen
- Harvard Medical School, Boston, MA, USA
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
57
|
Han H, Li H, Ma Y, Zhao Z, An Q, Zhao J, Shi C. Monoamine oxidase A (MAOA): A promising target for prostate cancer therapy. Cancer Lett 2023; 563:216188. [PMID: 37076041 DOI: 10.1016/j.canlet.2023.216188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Monoamine oxidase A (MAOA) is a mitochondrial enzyme that catalyzes the oxidative deamination of monoamine neurotransmitters and dietary amines. Previous studies have shown that MAOA is clinically associated with prostate cancer (PCa) progression and plays a key role in almost each stage of PCa, including castrate-resistant prostate cancer, neuroendocrine prostate cancer, metastasis, drug resistance, stemness, and perineural invasion. Moreover, MAOA expression is upregulated not only in cancer cells but also in stromal cells, intratumoral T cells, and tumor-associated macrophages; thus, targeting MAOA can be a multi-pronged approach to disrupt tumor promoting interactions between PCa cells and tumor microenvironment. Furthermore, targeting MAOA can disrupt the crosstalk between MAOA and the androgen receptor (AR) to restore enzalutamide sensitivity, blocks glucocorticoid receptor (GR)- and AR-dependent PCa cell growth, and is a potential strategy for immune checkpoint inhibition, thereby alleviating immune suppression and enhancing T cell immunity-based cancer immunotherapy. MAOA is a promising target for PCa therapy, which deserves further exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Hao Han
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yan'an, Shaanxi, 716000, China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yan'an, Shaanxi, 716000, China
| | - Yifan Ma
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, 730030, China
| | - Zhite Zhao
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yan'an, Shaanxi, 716000, China.
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
58
|
Congregado Ruiz B, Rivero Belenchón I, Lendínez Cano G, Medina López RA. Strategies to Re-Sensitize Castration-Resistant Prostate Cancer to Antiandrogen Therapy. Biomedicines 2023; 11:biomedicines11041105. [PMID: 37189723 DOI: 10.3390/biomedicines11041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Since prostate cancer (PCa) was described as androgen-dependent, the androgen receptor (AR) has become the mainstay of its systemic treatment: androgen deprivation therapy (ADT). Although, through recent years, more potent drugs have been incorporated, this chronic AR signaling inhibition inevitably led the tumor to an incurable phase of castration resistance. However, in the castration-resistant status, PCa cells remain highly dependent on the AR signaling axis, and proof of it is that many men with castration-resistant prostate cancer (CRPC) still respond to newer-generation AR signaling inhibitors (ARSis). Nevertheless, this response is limited in time, and soon, the tumor develops adaptive mechanisms that make it again nonresponsive to these treatments. For this reason, researchers are focused on searching for new alternatives to control these nonresponsive tumors, such as: (1) drugs with a different mechanism of action, (2) combination therapies to boost synergies, and (3) agents or strategies to resensitize tumors to previously addressed targets. Taking advantage of the wide variety of mechanisms that promote persistent or reactivated AR signaling in CRPC, many drugs explore this last interesting behavior. In this article, we will review those strategies and drugs that are able to resensitize cancer cells to previously used treatments through the use of "hinge" treatments with the objective of obtaining an oncological benefit. Some examples are: bipolar androgen therapy (BAT) and drugs such as indomethacin, niclosamide, lapatinib, panobinostat, clomipramine, metformin, and antisense oligonucleotides. All of them have shown, in addition to an inhibitory effect on PCa, the rewarding ability to overcome acquired resistance to antiandrogenic agents in CRPC, resensitizing the tumor cells to previously used ARSis.
Collapse
Affiliation(s)
- Belén Congregado Ruiz
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Inés Rivero Belenchón
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Lendínez Cano
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Rafael Antonio Medina López
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| |
Collapse
|
59
|
Chen WY, Thuy Dung PV, Yeh HL, Chen WH, Jiang KC, Li HR, Chen ZQ, Hsiao M, Huang J, Wen YC, Liu YN. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer. Redox Biol 2023; 62:102686. [PMID: 36963289 PMCID: PMC10060381 DOI: 10.1016/j.redox.2023.102686] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023] Open
Abstract
Conventional treatment of prostate cancer (PCa) uses androgen-deprivation therapy (ADT) to inhibit androgen receptor (AR) signaling-driven tumor progression. ADT-induced PCa recurrence may progress to an AR-negative phenotype with neuroendocrine (NE) histologic features, which are associated with metabolic disturbances and poor prognoses. However, the metabolic pathways that regulate NE differentiation (NED) in PCa remain unclear. Herein, we show a regulatory mechanism in NED-associated metabolism dysfunction induced by ADT, whereby overexpression of pyruvate kinase L/R (PKLR) mediates oxidative stress through upregulation of reactive oxygen species modulator 1 (ROMO1), thereby promoting NED and aggressiveness. ADT mediates the nuclear translocation of PKLR, which binds to the MYCN/MAX complex to upregulate ROMO1 and NE-related genes, leading to altered mitochondrial function and NED of PCa. Targeting nuclear PKLR/MYCN using bromodomain and extra-terminal motif (BET) inhibitors has the potential to reduce PKLR/MYCN-driven NED. Abundant ROMO1 in serum samples may provide prognostic information in patients with ADT. Our results suggest that ADT resistance leads to upregulation of PKLR/MYCN/ROMO1 signaling, which may drive metabolic reprogramming and NED in PCa. We further show that increased abundance of serum ROMO1 may be associated with the development of NE-like PCa.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zi-Qing Chen
- Division of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan.
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
60
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
61
|
Blanc C, Moktefi A, Jolly A, de la Grange P, Gay D, Nicolaiew N, Semprez F, Maillé P, Soyeux P, Firlej V, Vacherot F, Destouches D, Amiche M, Terry S, de la Taille A, Londoño-Vallejo A, Allory Y, Delbé J, Hamma-Kourbali Y. The Neuropilin-1/PKC axis promotes neuroendocrine differentiation and drug resistance of prostate cancer. Br J Cancer 2023; 128:918-927. [PMID: 36550208 PMCID: PMC9977768 DOI: 10.1038/s41416-022-02114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Neuroendocrine prostate cancer (NEPC) is a multi-resistant variant of prostate cancer (PCa) that has become a major challenge in clinics. Understanding the neuroendocrine differentiation (NED) process at the molecular level is therefore critical to define therapeutic strategies that can prevent multi-drug resistance. METHODS Using RNA expression profiling and immunohistochemistry, we have identified and characterised a gene expression signature associated with the emergence of NED in a large PCa cohort, including 169 hormone-naïve PCa (HNPC) and 48 castration-resistance PCa (CRPC) patients. In vitro and preclinical in vivo NED models were used to explore the cellular mechanism and to characterise the effects of castration on PCa progression. RESULTS We show for the first time that Neuropilin-1 (NRP1) is a key component of NED in PCa cells. NRP1 is upregulated in response to androgen deprivation therapies (ADT) and elicits cell survival through induction of the PKC pathway. Downmodulation of either NRP1 protein expression or PKC activation suppresses NED, prevents tumour evolution toward castration resistance and increases the efficacy of docetaxel-based chemotherapy in preclinical models in vivo. CONCLUSIONS This study reveals the NRP1/PKC axis as a promising therapeutic target for the prevention of neuroendocrine castration-resistant variants of PCa and indicates NRP1 as an early transitional biomarker.
Collapse
Affiliation(s)
- Charly Blanc
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | - Anissa Moktefi
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.,AP-HP, Hôpital H. Mondor, Department of Pathology, 94010, Creteil, France
| | - Ariane Jolly
- Genosplice®, IM, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | - Fannie Semprez
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.,SPPIN-Saints-Pères Paris Institute for the Neurosciences, Université de Paris, CNRS, 75006, Paris, France
| | - Pascale Maillé
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.,AP-HP, Hôpital H. Mondor, Department of Pathology, 94010, Creteil, France
| | - Pascale Soyeux
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.,Univ Paris Est Creteil, UR TRePCa, 94010, Creteil, France
| | - Virginie Firlej
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.,Univ Paris Est Creteil, UR TRePCa, 94010, Creteil, France.,AP-HP, Hôpital H. Mondor, Plateforme de Ressources Biologiques, 94010, Creteil, France
| | - Francis Vacherot
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.,Univ Paris Est Creteil, UR TRePCa, 94010, Creteil, France
| | - Damien Destouches
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.,Univ Paris Est Creteil, UR TRePCa, 94010, Creteil, France
| | - Mohamed Amiche
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.,Sorbonne University-CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biogenèse des Signaux Peptidiques (BioSiPe), F-75252, Paris, France
| | - Stéphane Terry
- Faculty of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,Research Department, Inovarion, Paris, France
| | - Alexandre de la Taille
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.,Univ Paris Est Creteil, UR TRePCa, 94010, Creteil, France.,AP-HP, Hôpital Mondor, Department of Urology, 94010, Créteil, France
| | | | - Yves Allory
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.,Department of Pathology, Institut Curie, 92210, Saint-Cloud, France.,Institut Curie, PSL Research University, CNRS UMR 144, 75005, Paris, France
| | - Jean Delbé
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | | |
Collapse
|
62
|
Guo C, Figueiredo I, Gurel B, Neeb A, Seed G, Crespo M, Carreira S, Rekowski J, Buroni L, Welti J, Bogdan D, Gallagher L, Sharp A, Fenor de la Maza MD, Rescigno P, Westaby D, Chandran K, Riisnaes R, Ferreira A, Miranda S, Calì B, Alimonti A, Bressan S, Nguyen AHT, Shen MM, Hawley JE, Obradovic A, Drake CG, Bertan C, Baker C, Tunariu N, Yuan W, de Bono JS. B7-H3 as a Therapeutic Target in Advanced Prostate Cancer. Eur Urol 2023; 83:224-238. [PMID: 36114082 DOI: 10.1016/j.eururo.2022.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND B7-H3 is a cell surface immunomodulatory glycoprotein overexpressed in prostate cancers (PCs). Understanding its longitudinal expression at emergence of castration resistance and association with tumour genomics are critical to the development of and patient selection for B7-H3 targeted therapies. OBJECTIVE To characterise B7-H3 expression in same-patient hormone-sensitive (HSPC) and castration-resistant (CRPC) PC biopsies, associating this with PC genomics, and to evaluate the antitumour activity of an anti-B7-H3 antibody-drug conjugate (ADC) in human CRPC in vitro and in vivo. DESIGN, SETTING, AND PARTICIPANTS We performed immunohistochemistry and next-generation sequencing on a cohort of 98 clinically annotated CRPC biopsies, including 72 patients who also had HSPC biopsies for analyses. We analysed two CRPC transcriptome and exome datasets, and PC scRNASeq datasets. PC organoids (patient-derived xenograft [PDX]-derived organoids [PDX-Os]) were derived from PDXs generated from human CRPC biopsies. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We evaluated B7-H3 mRNA expression in relation to a panel of 770 immune-related genes, compared B7-H3 protein expression between same-patient HSPC and CRPC biopsies, determined associations with PC genomic alterations, and evaluated the antitumour activity of DS-7300a, a topoisomerase-1 inhibitor payload anti-B7-H3 ADC, in human PC cell lines, organoids (PDX-Os), and xenografts (PDXs) of different histologies, B7-H3 expressions, and genomics. RESULTS AND LIMITATIONS B7-H3 was among the most highly expressed immunomodulatory genes in CRPCs. Most CRPCs (93%) expressed B7-H3, and in patients who developed CRPC, B7-H3 expression was frequently expressed at the time of HSPC diagnosis (97%). Conversion from B7-H3 positive to negative, or vice versa, during progression from HSPC to CRPC was uncommon. CRPC with neuroendocrine features were more likely to be B7-H3 negative (28%) than adenocarcinomas. B7-H3 is overexpressed in tumours with defective DNA repair gene (ATM and BRCA2) alterations and is associated with ERG expression, androgen receptor (AR) expression, and AR activity signature. DS7300a had antitumour activity against B7-H3 expressing human PC models including cell lines, PDX-Os, and PDXs of adenocarcinoma and neuroendocrine histology. CONCLUSIONS The frequent overexpression of B7-H3 in CRPC compared with normal tissue and other B7 family members implicates it as a highly relevant therapeutic target in these diseases. Mechanisms driving differences in B7-H3 expression across genomic subsets warrant investigation for understanding the role of B7-H3 in cancer growth and for the clinical development of B7-H3 targeted therapies. PATIENT SUMMARY B7-H3, a protein expressed on the surface of the most lethal prostate cancers, in particular those with specific mutations, can be targeted using drugs that bind B7-H3. These findings are relevant for the development of such drugs and for deciding which patients to treat with these new drugs.
Collapse
Affiliation(s)
- Christina Guo
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | - George Seed
- The Institute of Cancer Research, London, UK
| | | | | | | | | | - Jon Welti
- The Institute of Cancer Research, London, UK
| | | | | | - Adam Sharp
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Maria D Fenor de la Maza
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Daniel Westaby
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Khobe Chandran
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | | | | | - Bianca Calì
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Alimonti
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Silvia Bressan
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Michael M Shen
- Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica E Hawley
- Columbia University Irving Medical Center, New York, NY, USA; University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Charles G Drake
- Columbia University Irving Medical Center, New York, NY, USA; Janssen Research, Spring House, PA, USA
| | | | - Chloe Baker
- The Institute of Cancer Research, London, UK
| | - Nina Tunariu
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK.
| |
Collapse
|
63
|
De Sarkar N, Patton RD, Doebley AL, Hanratty B, Adil M, Kreitzman AJ, Sarthy JF, Ko M, Brahma S, Meers MP, Janssens DH, Ang LS, Coleman IM, Bose A, Dumpit RF, Lucas JM, Nunez TA, Nguyen HM, McClure HM, Pritchard CC, Schweizer MT, Morrissey C, Choudhury AD, Baca SC, Berchuck JE, Freedman ML, Ahmad K, Haffner MC, Montgomery RB, Corey E, Henikoff S, Nelson PS, Ha G. Nucleosome Patterns in Circulating Tumor DNA Reveal Transcriptional Regulation of Advanced Prostate Cancer Phenotypes. Cancer Discov 2023; 13:632-653. [PMID: 36399432 PMCID: PMC9976992 DOI: 10.1158/2159-8290.cd-22-0692] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classification is typically assessed by IHC or transcriptome profiling from tumor biopsies, we demonstrate that ctDNA provides comparable results with diagnostic advantages for precision oncology. SIGNIFICANCE This study provides insights into the dynamics of nucleosome positioning and gene regulation associated with cancer phenotypes that can be ascertained from ctDNA. New methods for classification in phenotype mixtures extend the utility of ctDNA beyond assessments of somatic DNA alterations with important implications for molecular classification and precision oncology. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Navonil De Sarkar
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Pathology and Prostate Cancer Center of Excellence, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert D. Patton
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Anna-Lisa Doebley
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington
- Medical Scientist Training Program, University of Washington, Seattle, Washington
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Mohamed Adil
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Adam J. Kreitzman
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jay F. Sarthy
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Minjeong Ko
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sandipan Brahma
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Michael P. Meers
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lisa S. Ang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Arnab Bose
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ruth F. Dumpit
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jared M. Lucas
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Talina A. Nunez
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Holly M. Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | | | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Michael T. Schweizer
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Atish D. Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sylvan C. Baca
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Matthew L. Freedman
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - R. Bruce Montgomery
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Corresponding Authors: Gavin Ha, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-2802; E-mail: ; and Peter S. Nelson, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-3377; E-mail:
| | - Gavin Ha
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Corresponding Authors: Gavin Ha, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-2802; E-mail: ; and Peter S. Nelson, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-3377; E-mail:
| |
Collapse
|
64
|
Abdulfatah E, Fine SW, Lotan TL, Mehra R. Reprint of: de novo neuroendocrine features in prostate cancer. Hum Pathol 2023; 133:115-125. [PMID: 36894369 DOI: 10.1016/j.humpath.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 03/09/2023]
Abstract
Neuroendocrine tumors of the prostate are rare and encompass a group of entities that are classified based on a combination of morphological and immunohistochemical features. Despite the 2016 World Health Organization classification of prostatic neuroendocrine tumors, variants have been reported that do not fit well in the categorization scheme. While the majority of these tumors arise in the setting of castration-resistant prostate cancer (postandrogen deprivation therapy), de novo cases may occur. In this review, we highlight the most significant pathological and immunohistochemical features, emerging biomarkers, and molecular features of such tumors.
Collapse
Affiliation(s)
- Eman Abdulfatah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21211, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, 48109, USA; Michigan Center for Translational Pathology, Ann Arbor, MI, 48104, USA.
| |
Collapse
|
65
|
Kufe D. Dependence on MUC1-C in Progression of Neuroendocrine Prostate Cancer. Int J Mol Sci 2023; 24:3719. [PMID: 36835130 PMCID: PMC9967814 DOI: 10.3390/ijms24043719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Castration resistant prostate cancer (CRPC) is responsive to androgen receptor (AR) axis targeted agents; however, patients invariably relapse with resistant disease that often progresses to neuroendocrine prostate cancer (NEPC). Treatment-related NEPC (t-NEPC) is highly aggressive with limited therapeutic options and poor survival outcomes. The molecular basis for NEPC progression remains incompletely understood. The MUC1 gene evolved in mammals to protect barrier tissues from loss of homeostasis. MUC1 encodes the transmembrane MUC1-C subunit, which is activated by inflammation and contributes to wound repair. However, chronic activation of MUC1-C contributes to lineage plasticity and carcinogenesis. Studies in human NEPC cell models have demonstrated that MUC1-C suppresses the AR axis and induces the Yamanaka OSKM pluripotency factors. MUC1-C interacts directly with MYC and activates the expression of the BRN2 neural transcription factor (TF) and other effectors, such as ASCL1, of the NE phenotype. MUC1-C also induces the NOTCH1 stemness TF in promoting the NEPC cancer stem cell (CSC) state. These MUC1-C-driven pathways are coupled with activation of the SWI/SNF embryonic stem BAF (esBAF) and polybromo-BAF (PBAF) chromatin remodeling complexes and global changes in chromatin architecture. The effects of MUC1-C on chromatin accessibility integrate the CSC state with the control of redox balance and induction of self-renewal capacity. Importantly, targeting MUC1-C inhibits NEPC self-renewal, tumorigenicity and therapeutic resistance. This dependence on MUC1-C extends to other NE carcinomas, such as SCLC and MCC, and identify MUC1-C as a target for the treatment of these aggressive malignancies with the anti-MUC1 agents now under clinical and preclinical development.
Collapse
Affiliation(s)
- Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
66
|
Kemble J, Kwon ED, Karnes RJ. Addressing the need for more therapeutic options in neuroendocrine prostate cancer. Expert Rev Anticancer Ther 2023; 23:177-185. [PMID: 36698089 DOI: 10.1080/14737140.2023.2173174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer frequently seen after prolonged treatment of castration resistant prostate cancer (CRPC). NEPC has become increasingly prevalent over the last 20 years, with a poor prognosis caused by a late diagnosis and limited treatment options. Recent advances in PET/CT imaging and targeted radioimmunotherapy are promising, but more research into additional treatment options is needed. AREAS COVERED The aim of this review is to analyze the current imaging and treatment options for NEPC, and to highlight future potential treatment strategies. A Pubmed search for 'Neuroendocrine Prostate Cancer' was performed and relevant articles were reviewed. EXPERT OPINION The recent FDA approval and success of 177 PSMA Lutetium in CRPC is promising, as 177 Lutetium could potentially be paired with a NEPC specific biomarker for targeted therapy. Recent laboratory studies pairing DLL3, which is overexpressed in NEPC, with 177 Lutetium and new PET agents have showed good efficacy in identifying and treating NEPC. The success of future development of NEPC therapies may depend on the availability of 177 Lutetium, as current supplies are limited. Further research into additional imaging and treatment options for NEPC is warranted.
Collapse
Affiliation(s)
- Jayson Kemble
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Eugene D Kwon
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
67
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
68
|
Broderick A, Labriola MK, Shore N, Armstrong AJ. Foreign accent syndrome as a heralding manifestation of transformation to small cell neuroendocrine prostate cancer. BMJ Case Rep 2023; 16:e251655. [PMID: 36717160 PMCID: PMC9887694 DOI: 10.1136/bcr-2022-251655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A man in his 50s with metastatic hormone-sensitive prostate cancer, receiving androgen deprivation therapy and abiraterone acetate/prednisone, presented with an uncontrollable 'Irish brogue' accent despite no Irish background, consistent with foreign accent syndrome (FAS). He had no neurological examination abnormalities, psychiatric history or MRI of the brain abnormalities at symptom onset. Imaging revealed progression of his prostate cancer, despite undetectable prostate-specific antigen levels. Biopsy confirmed transformation to small cell neuroendocrine prostate cancer (NEPC). Despite chemotherapy, his NEPC progressed resulting in multifocal brain metastases and a likely paraneoplastic ascending paralysis leading to his death. We report FAS as the presenting manifestation of transformation to small cell NEPC, a previously undescribed phenomenon. His presentation was most consistent with an underlying paraneoplastic neurological disorder (PND), despite a negative serum paraneoplastic panel. This report enhances the minimal existing literature on FAS and PNDs associated with transformed NEPC.
Collapse
Affiliation(s)
- Amanda Broderick
- Department of Internal Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Matthew K Labriola
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Neal Shore
- Carolina Urologic Research Center, Myrtle Beach, South Carolina, USA
| | - Andrew J Armstrong
- Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
| |
Collapse
|
69
|
Qi X, Zhang ZF, Gao XS, Qin SB, Bai Y, Yu W, He Q, Fan Y, Zhang JH, Jiang Y, He ZS, Li HZ. Treatment-related neuroendocrine prostate cancer managed with partial stereotactic ablative radiotherapy (P-SABR) for long-term survival: a case series. Transl Androl Urol 2023; 12:128-138. [PMID: 36760876 PMCID: PMC9906108 DOI: 10.21037/tau-22-867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Background The amount of treatment-related neuroendocrine prostate cancer (t-NEPC) increases after hormonal therapy, especially novel androgen receptor pathway inhibitors (ARPIs). T-NEPC is considered a hormone refractory [androgen receptor (AR)-negative] subtype of prostate cancer. Although tumors are initially responsive to platinum-based chemotherapy, the drugs are only effective for a short time. Therefore, whether or not local treatment can prolong survival is of great concern. Case Description In this case series, we discuss 4 t-NEPC cases who were treated with partial stereotactic ablative radiotherapy (P-SABR) for bulky tumors. P-SABR is a radiotherapy regimen that is used in a SABR boost [such as 6 Gy × 4 fractions (f), 8 Gy × 3 f] prior to conventional radiotherapy to enhance the tumor biological effective dose (BED) without increasing the dose to organs at risk. All patients achieved good local control after P-SABR. For patient 1, P-SABR was used for the prostate tumor. After radiotherapy, pathological complete remission (pCR) was achieved, and the prostate lesion remained stable thus far. As of this writing, the patient has been in remission for 3 years after initial t-NEPC diagnosis. Conclusions We describe 4 cases and indicate that P-SABR is safe and effective in the treatment of a large prostate mass and may prolong the survival of these patients.
Collapse
Affiliation(s)
- Xin Qi
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Zhuo-Fei Zhang
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Shang-Bin Qin
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Yun Bai
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Qun He
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Jian-Hua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Peking University, Beijing, China
| | - Yuan Jiang
- Department of Medical Imaging, Peking University First Hospital, Peking University, Beijing, China
| | - Zhi-Song He
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Hong-Zhen Li
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
70
|
Sreekumar A, Saini S. Role of transcription factors and chromatin modifiers in driving lineage reprogramming in treatment-induced neuroendocrine prostate cancer. Front Cell Dev Biol 2023; 11:1075707. [PMID: 36711033 PMCID: PMC9879360 DOI: 10.3389/fcell.2023.1075707] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (NEPC) is a highly lethal variant of prostate cancer that is increasing in incidence with the increased use of next-generation of androgen receptor (AR) pathway inhibitors. It arises via a reversible trans-differentiation process, referred to as neuroendocrine differentiation (NED), wherein prostate cancer cells show decreased expression of AR and increased expression of neuroendocrine (NE) lineage markers including enolase 2 (ENO2), chromogranin A (CHGA) and synaptophysin (SYP). NEPC is associated with poor survival rates as these tumors are aggressive and often metastasize to soft tissues such as liver, lung and central nervous system despite low serum PSA levels relative to disease burden. It has been recognized that therapy-induced NED involves a series of genetic and epigenetic alterations that act in a highly concerted manner in orchestrating lineage switching. In the recent years, we have seen a spurt in research in this area that has implicated a host of transcription factors and epigenetic modifiers that play a role in driving this lineage switching. In this article, we review the role of important transcription factors and chromatin modifiers that are instrumental in lineage reprogramming of prostate adenocarcinomas to NEPC under the selective pressure of various AR-targeted therapies. With an increased understanding of the temporal and spatial interplay of transcription factors and chromatin modifiers and their associated gene expression programs in NEPC, better therapeutic strategies are being tested for targeting NEPC effectively.
Collapse
|
71
|
Lin J, Cai Y, Wang Z, Ma Y, Pan J, Liu Y, Zhao Z. Novel biomarkers predict prognosis and drug-induced neuroendocrine differentiation in patients with prostate cancer. Front Endocrinol (Lausanne) 2023; 13:1005916. [PMID: 36686485 PMCID: PMC9849576 DOI: 10.3389/fendo.2022.1005916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Background A huge focus is being placed on the development of novel signatures in the form of new combinatorial regimens to distinguish the neuroendocrine (NE) characteristics from castration resistant prostate cancer (CRPC) timely and accurately, as well as predict the disease-free survival (DFS) and progression-free survival (PFS) of prostate cancer (PCa) patients. Methods Single cell data of 4 normal samples, 3 CRPC samples and 3 CRPC-NE samples were obtained from GEO database, and CellChatDB was used for potential intercellular communication, Secondly, using the "limma" package (v3.52.0), we obtained the differential expressed genes between CRPC and CRPC-NE both in single-cell RNA seq and bulk RNA seq samples, and discovered 12 differential genes characterized by CRPC-NE. Then, on the one hand, the diagnosis model of CRPC-NE is developed by random forest algorithm and artificial neural network (ANN) through Cbioportal database; On the other hand, using the data in Cbioportal and GEO database, the DFS and PFS prognostic model of PCa was established and verified through univariate Cox analysis, least absolute shrinkage and selection operator (Lasso) regression and multivariate Cox regression in R software. Finally, somatic mutation and immune infiltration were also discussed. Results Our research shows that there exists specific intercellular communication in classified clusters. Secondly, a CRPC-NE diagnostic model of six genes (HMGN2, MLLT11, SOX4, PCSK1N, RGS16 and PTMA) has been established and verified, the area under the ROC curve (AUC) is as high as 0.952 (95% CI: 0.882-0.994). The mutation landscape shows that these six genes are rarely mutated in the CRPC and NEPC samples. In addition, NE-DFS signature (STMN1 and PCSK1N) and NE-PFS signature (STMN1, UBE2S and HMGN2) are good predictors of DFS and PFS in PCa patients and better than other clinical features. Lastly, the infiltration levels of plasma cells, T cells CD4 naive, Eosinophils and Monocytes were significantly different between the CRPC and NEPC groups. Conclusions This study revealed the heterogeneity between CRPC and CRPC-NE from different perspectives, and developed a reliable diagnostic model of CRPC-NE and robust prognostic models for PCa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
72
|
Gan Y, He Q, Li C, Alsharafi BLM, Zhou H, Long Z. A bibliometric study of the top 100 most-cited papers in neuroendocrine prostate cancer. Front Oncol 2023; 13:1146515. [PMID: 36959803 PMCID: PMC10027713 DOI: 10.3389/fonc.2023.1146515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Background This study used bibliometrics to define and analyze the characteristics of the first 100 most cited papers on the topic of neuroendocrine prostate cancer (NEPC). Methods We explored the Web of Science Core Collection database, and screened the top 100 most frequently cited articles and reviews with the title NEPC or small cell prostate cancer (SCPC). We conducted bibliometrics research on the screening results to identify the most influential journals and authors in the field of NEPC. Results The first 100 most cited papers have been cited a total of 14,795 times, from 73 to 833 times (mean ± standard deviation, 147.95 ± 101.68). All top 100 most cited papers were published from 1984 to 2019, and the total number of citations for papers published in 2016 was significantly higher than that for papers published in other years. The journal with the largest number of published papers is "Prostate" (n=8). "Neuroendocrine differentiation" has become the most frequently used author keyword. "Oncology" is the most popular topic in the field of NEPC. Conclusion We analyzed the first 100 most cited papers in the NEPC field by collecting detailed information, which provide guiding opinions for finding the most influential journals and authors in NEPC-related fields. We hope to help researchers and readers in this field improve their understanding of NEPC research trends and provide ideas for future research from a unique perspective.
Collapse
Affiliation(s)
- Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiangrong He
- Andrology Center, Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Li
- Andrology Center, Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Hengfeng Zhou
- Andrology Center, Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Hengfeng Zhou, ; Zhi Long,
| | - Zhi Long
- Andrology Center, Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Hengfeng Zhou, ; Zhi Long,
| |
Collapse
|
73
|
Low JY, Ko M, Hanratty B, Patel RA, Bhamidipati A, Heaphy CM, Sayar E, Lee JK, Li S, De Marzo AM, Nelson WG, Gupta A, Yegnasubramanian S, Ha G, Epstein JI, Haffner MC. Genomic Characterization of Prostatic Basal Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:4-10. [PMID: 36309102 PMCID: PMC9768679 DOI: 10.1016/j.ajpath.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Basal cell carcinoma (BCC) of the prostate is a rare tumor. Compared with the more common acinar adenocarcinoma (AAC) of the prostate, BCCs show features of basal cell differentiation and are thought to be biologically distinct from AAC. The spectrum of molecular alterations of BCC has not been comprehensively described, and genomic studies are lacking. Herein, whole genome sequencing was performed on archival formalin-fixed, paraffin-embedded specimens of two cases with BCC. Prostatic BCCs were characterized by an overall low copy number and mutational burden. Recurrent copy number loss of chromosome 16 was observed. In addition, putative driver gene alterations in KIT, DENND3, PTPRU, MGA, and CYLD were identified. Mechanistically, depletion of the CYLD protein resulted in increased proliferation of prostatic basal cells in vitro. Collectively, these studies show that prostatic BCC displays distinct genomic alterations from AAC and highlight a potential role for loss of chromosome 16 in the pathogenesis of this rare tumor type.
Collapse
Affiliation(s)
- Jin-Yih Low
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Minjeong Ko
- Division of Public Health Science, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Akshay Bhamidipati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M Heaphy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Shan Li
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anuj Gupta
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gavin Ha
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; Division of Public Health Science, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jonathan I Epstein
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
74
|
Huang G, Zhang H, Shi H, Zhang W, Wang T, Wang Z, Chen Q, Lian B, Li J, Yang G. Clinicopathological and immunological profiles of prostate adenocarcinoma and neuroendocrine prostate cancer. World J Surg Oncol 2022; 20:407. [PMID: 36572885 PMCID: PMC9793563 DOI: 10.1186/s12957-022-02841-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/20/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Biomarkers of DNA damage repair deficiency provide opportunities for personalized treatment with immunotherapy. However, there is limited research on the immune microenvironment of adeno-neuroendocrine prostate cancer (NEPC). In this study, we aimed to assess and describe the comprehensive clinicopathological manifestations of NEPC to improve diagnosis and predict prognosis. METHODS A retrospective medical record review of 66 patients with prostate cancer (PCa) was performed. PCa samples from the 66 patients were analyzed using immunohistochemical staining for the detection of chromogranin, neural cell adhesion molecule 1, and synaptophysin. For tumor-associated immune microenvironment analysis, PD-L1, CD3, and CD8 were labeled in tissue slides. The effect of clinicopathological factors on the survival of patients with Adeno-NEPC was analyzed. RESULTS Twenty patients presented with adeno-NEPC, whereas 46 presented with adeno-PCa. The median age of patients at PCa diagnosis was 67.86 ± 7.05 years (68.65 ± 7.23 years, adeno-NEPC; 67.52 ± 7.02 years, adeno-PCa). Eleven patients with adeno-NEPC underwent prostatectomy, whereas nine received primary androgen deprivation therapy (ADT). Additionally, 30 patients with adeno-PCa underwent prostatectomy, whereas 16 (34.8%) received primary ADT. There was a significant difference in overall survival between patients with adeno-NEPC and those with adeno-PCa (46.0 months vs. 65.0 months). There was also a significant difference in time from prostatectomy to biochemical recurrence between the groups of patients who underwent prostatectomy. Prostatectomy and normal lactate dehydrogenase levels were clinical factors that were significantly associated with better outcomes in patients with adeno-NEPC. Metastatic adeno-NEPC was associated with a higher programmed death ligand 1 (PD-L1) score (2-4) than localized PCa. The data showed that PD-L1 expression in adeno-NEPC may be negatively associated with that in CD8+ T cells. CONCLUSIONS Our study revealed clinicopathological manifestations of adeno-NEPC and some possible predictive factors significantly associated with better outcomes in patients with adeno-NEPC. These findings might be beneficial in the development of diagnostic strategies and customized treatment plans.
Collapse
Affiliation(s)
- Gang Huang
- grid.24516.340000000123704535Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120 China
| | - Huaru Zhang
- grid.24516.340000000123704535Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120 China
| | - Haoqing Shi
- grid.73113.370000 0004 0369 1660Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenhui Zhang
- grid.73113.370000 0004 0369 1660Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tao Wang
- grid.412633.10000 0004 1799 0733Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Ziwei Wang
- grid.73113.370000 0004 0369 1660Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qing Chen
- grid.73113.370000 0004 0369 1660Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bijun Lian
- Department of Urology, the 903th PLA Hospital, Hangzhou, Zhejiang China
| | - Jing Li
- grid.73113.370000 0004 0369 1660Department of Bioinformatics, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433 China
| | - Guosheng Yang
- grid.24516.340000000123704535Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120 China
| |
Collapse
|
75
|
Ha S, Luo G, Xiang H. A Comprehensive Overview of Small-Molecule Androgen Receptor Degraders: Recent Progress and Future Perspectives. J Med Chem 2022; 65:16128-16154. [PMID: 36459083 DOI: 10.1021/acs.jmedchem.2c01487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Prostate cancer (PC), the second most prevalent malignancy in men worldwide, has been proven to depend on the aberrant activation of androgen receptor (AR) signaling. Long-term androgen deprivation for the treatment of PC inevitably leads to castration-resistant prostate cancer (CRPC) in which AR remains a crucial oncogenic driver. Thus, there is an urgent need to develop new strategies to address this unmet medical need. Targeting AR for degradation has recently been in a vigorous development stage, and accumulating clinical studies have highlighted the benefits of AR degraders in CRPC patients. Herein, we provide a comprehensive summary of small-molecule AR degraders with diverse mechanisms of action including proteolysis-targeting chimeras (PROTACs), selective AR degraders (SARDs), hydrophobic tags (HyT), and other AR degraders with distinct mechanisms. Accordingly, their structure-activity relationships, biomedical applications, and therapeutic values are also dissected to provide insights into the future development of promising AR degradation-based therapeutics for CRPC.
Collapse
Affiliation(s)
- Si Ha
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
76
|
Liaw BC, Tsao CK, Seng S, Jun T, Gong Y, Galsky MD, Oh WK. Biomarker Development Trial of Satraplatin in Patients with Metastatic Castration–Resistant Prostate Cancer. Oncologist 2022; 28:366-e224. [PMID: 36519763 PMCID: PMC10078918 DOI: 10.1093/oncolo/oyac224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
In the phase III SPARC trial, satraplatin, an oral platinum analogue, demonstrated anticancer activity in men with metastatic castration–resistant prostate cancer (mCRPC). Repeat biopsies are uncommon in mCRPC, limiting the feasibility of tissue–based biomarkers. This phase II study sought to evaluate the feasibility and utility of blood–based biomarkers to identify platinum–sensitive mCRPC.
Methods
Patients with mCRPC who had progressed on docetaxel were enrolled at a single center from 2011 to 2013. Subjects received satraplatin 80 mg/m2 by mouth daily on days 1-5 and prednisone 5 mg PO twice daily, on a 35-day cycle. Serial peripheral blood samples were collected for biomarker assessment.
Results
Thirteen docetaxel-refractory mCRPC patients were enrolled, with a median age of 69 years (range 54-77 years) and median PSA of 71.7 ng/mL (range 0.04-3057). Four of 13 patients (31%) responded to satraplatin (defined as a PSA decline of ≥30%). Responders demonstrated improved time to disease progression (206 vs. 35 days, HR 0.26, 95% CI, 0.02-0.24, P = .003). A 6-gene peripheral blood RNA signature and serum tissue inhibitor of metalloproteinase-1 (TIMP-1) levels were assessed as biomarkers, but neither was significantly associated with response to satraplatin.
Conclusion
In this small series, one-third of mCRPC patients responded to platinum–based chemotherapy. Peripheral blood biomarker measurement is feasible in mCRPC, though the biomarkers we investigated were not associated with platinum response. Other biomarkers, such as DNA damage repair mutations, should be evaluated.
Collapse
Affiliation(s)
- Bobby C Liaw
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Che-Kai Tsao
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Sonia Seng
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | | | - Yixuan Gong
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - William K Oh
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
77
|
Abstract
The Gleason scoring system and Grade Group systems facilitate accurate grading and reporting of prostate cancer, which are essential tasks for surgical pathologists. Gleason Pattern 4 is critical to recognize because it signifies a risk for more aggressive behavior than Gleason Pattern 3 carcinoma. Prostatic adenocarcinoma with radiation or androgen therapy effect, with aberrant P63 expression, or with Paneth cell-like differentiation represent pitfalls in prostate cancer grading because although they display architecture associated with aggressive behavior in usual prostatic adenocarcinoma, they do not behave aggressively and using conventional Gleason scoring in these tumors would significantly overstate their biologic potential.
Collapse
Affiliation(s)
- Ezra Baraban
- Department of Pathology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA.
| | - Jonathan Epstein
- Department of Pathology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA.
| |
Collapse
|
78
|
Fenor de la Maza MD, Chandran K, Rekowski J, Shui IM, Gurel B, Cross E, Carreira S, Yuan W, Westaby D, Miranda S, Ferreira A, Seed G, Crespo M, Figueiredo I, Bertan C, Gil V, Riisnaes R, Sharp A, Rodrigues DN, Rescigno P, Tunariu N, Liu XQ, Cristescu R, Schloss C, Yap C, de Bono JS. Immune Biomarkers in Metastatic Castration-resistant Prostate Cancer. Eur Urol Oncol 2022; 5:659-667. [PMID: 35491356 DOI: 10.1016/j.euo.2022.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease in which molecular stratification is needed to improve clinical outcomes. The identification of predictive biomarkers can have a major impact on the care of these patients, but the availability of metastatic tissue samples for research in this setting is limited. OBJECTIVE To study the prevalence of immune biomarkers of potential clinical utility to immunotherapy in mCRPC and to determine their association with overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS From 100 patients, mCRPC biopsies were assayed by whole exome sequencing, targeted next-generation sequencing, RNA sequencing, tumor mutational burden, T-cell-inflamed gene expression profile (TcellinfGEP) score (Nanostring), and immunohistochemistry for programmed cell death 1 ligand 1 (PD-L1), ataxia-telangiectasia mutated (ATM), phosphatase and tensin homolog (PTEN), SRY homology box 2 (SOX2), and the presence of neuroendocrine features. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The phi coefficient determined correlations between biomarkers of interest. OS was assessed using Kaplan-Meier curves and adjusted hazard ratios (aHRs) from Cox regression. RESULTS AND LIMITATIONS PD-L1 and SOX2 protein expression was detected by immunohistochemistry (combined positive score ≥1 and >5% cells, respectively) in 24 (33%) and 27 (27%) mCRPC biopsies, respectively; 23 (26%) mCRPC biopsies had high TcellinfGEP scores (>-0.318). PD-L1 protein expression and TcellinfGEP scores were positively correlated (phi 0.63 [0.45; 0.76]). PD-L1 protein expression (aHR: 1.90 [1.05; 3.45]), high TcellinfGEP score (aHR: 1.86 [1.04; 3.31]), and SOX2 expression (aHR: 2.09 [1.20; 3.64]) were associated with worse OS. CONCLUSIONS PD-L1, TcellinfGEP score, and SOX2 are prognostic of outcome from the mCRPC setting. If validated, predictive biomarker studies incorporating survival endpoints need to take these findings into consideration. PATIENT SUMMARY This study presents an analysis of immune biomarkers in biopsies from patients with metastatic prostate cancer. We describe tumor alterations that predict prognosis that can impact future studies.
Collapse
Affiliation(s)
| | - Khobe Chandran
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | | | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | - Emily Cross
- The Institute of Cancer Research, London, UK
| | | | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | - Daniel Westaby
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | - Susana Miranda
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | - George Seed
- The Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Adam Sharp
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | | | - Nina Tunariu
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | | | | | | | - Johann S de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK.
| |
Collapse
|
79
|
Wasim S, Lee SY, Kim J. Complexities of Prostate Cancer. Int J Mol Sci 2022; 23:14257. [PMID: 36430730 PMCID: PMC9696501 DOI: 10.3390/ijms232214257] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer has a long disease history and a wide variety and uncertainty in individual patients' clinical progress. In recent years, we have seen a revolutionary advance in both prostate cancer patient care and in the research field. The power of deep sequencing has provided cistromic and transcriptomic knowledge of prostate cancer that has not discovered before. Our understanding of prostate cancer biology, from bedside and molecular imaging techniques, has also been greatly advanced. It is important that our current theragnostic schemes, including our diagnostic modalities, therapeutic responses, and the drugs available to target non-AR signaling should be improved. This review article discusses the current progress in the understanding of prostate cancer biology and the recent advances in diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sobia Wasim
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang-Yoon Lee
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
80
|
Yao J, Bergsland E, Aggarwal R, Aparicio A, Beltran H, Crabtree JS, Hann CL, Ibrahim T, Byers LA, Sasano H, Umejiego J, Pavel M. DLL3 as an Emerging Target for the Treatment of Neuroendocrine Neoplasms. Oncologist 2022; 27:940-951. [PMID: 35983951 PMCID: PMC9632312 DOI: 10.1093/oncolo/oyac161] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Neuroendocrine neoplasms (NEN) are heterogeneous malignancies that can arise at almost any anatomical site and are classified as biologically distinct well-differentiated neuroendocrine tumors (NET) and poorly differentiated neuroendocrine carcinomas (NEC). Current systemic therapies for advanced disease, including targeted therapies, chemotherapy, and immunotherapy, are associated with limited duration of response. New therapeutic targets are needed. One promising target is delta-like ligand 3 (DLL3), an inhibitory ligand of the Notch receptor whose overexpression on the surface of NEN is associated with tumorigenesis. METHODS This article is a narrative review that highlights the role of DLL3 in NEN progression and prognosis, the potential for therapeutic targeting of DLL3, and ongoing studies of DLL3-targeting therapies. Classification, incidence, pathogenesis, and current management of NEN are reviewed to provide biological context and illustrate the unmet clinical needs. DISCUSSION DLL3 is overexpressed in many NENs, implicated in tumor progression, and is typically associated with poor clinical outcomes, particularly in patients with NEC. Targeted therapies using DLL3 as a homing beacon for cytotoxic activity mediated via several different mechanisms (eg, antibody-drug conjugates, T-cell engager molecules, CAR-Ts) have shown promising clinical activity in small-cell lung cancer (SCLC). DLL3 may be a clinically actionable target across NEN. CONCLUSIONS Current treatment options for NEN do not provide sustained responses. DLL3 is expressed on the cell surface of many NEN types and is associated with poor clinical outcomes. Initial clinical studies targeting DLL3 therapeutically in SCLC have been promising, and additional studies are expanding this approach to the broader group of NEN.
Collapse
Affiliation(s)
- James Yao
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Bergsland
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Rahul Aggarwal
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Ana Aparicio
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Himisha Beltran
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCSS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lauren A Byers
- Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | - Marianne Pavel
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
81
|
Liu S, Alabi BR, Yin Q, Stoyanova T. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Semin Cancer Biol 2022; 86:57-68. [PMID: 35597438 DOI: 10.1016/j.semcancer.2022.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023]
Abstract
Prostate cancer is the most common non-cutaneous cancer and the second leading cause of cancer-associated deaths among men in the United States. Androgen deprivation therapy (ADT) is the standard of care for advanced prostate cancer. While patients with advanced prostate cancer initially respond to ADT, the disease frequently progresses to a lethal metastatic form, defined as castration-resistant prostate cancer (CRPC). After multiple rounds of anti-androgen therapies, 20-25% of metastatic CRPCs develop a neuroendocrine (NE) phenotype. These tumors are classified as neuroendocrine prostate cancer (NEPC). De novo NEPC is rare and accounts for less than 2% of all prostate cancers at diagnosis. NEPC is commonly characterized by the expression of NE markers and the absence of androgen receptor (AR) expression. NEPC is usually associated with tumor aggressiveness, hormone therapy resistance, and poor clinical outcome. Here, we review the molecular mechanisms underlying the emergence of NEPC and provide insights into the future perspectives on potential therapeutic strategies for NEPC.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Busola Ruth Alabi
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Qingqing Yin
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
82
|
Netto GJ, Amin MB, Berney DM, Compérat EM, Gill AJ, Hartmann A, Menon S, Raspollini MR, Rubin MA, Srigley JR, Hoon Tan P, Tickoo SK, Tsuzuki T, Turajlic S, Cree I, Moch H. The 2022 World Health Organization Classification of Tumors of the Urinary System and Male Genital Organs-Part B: Prostate and Urinary Tract Tumors. Eur Urol 2022; 82:469-482. [PMID: 35965208 DOI: 10.1016/j.eururo.2022.07.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022]
Abstract
The 2022 World Health Organization (WHO) classification of the urinary and male genital tumors was recently published by the International Agency for Research on Cancer. This fifth edition of the WHO "Blue Book" offers a comprehensive update on the terminology, epidemiology, pathogenesis, histopathology, diagnostic molecular pathology, and prognostic and predictive progress in genitourinary tumors. In this review, the editors of the fifth series volume on urologic and male genital neoplasms present a summary of the salient changes introduced to the classification of tumors of the prostate and the urinary tract.
Collapse
Affiliation(s)
- George J Netto
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Urology, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Daniel M Berney
- Barts Cancer Institute, Queen Mary University of London, London, UK; Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Eva M Compérat
- Department of Pathology, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Anthony J Gill
- Sydney Medical School, University of Sydney, Sydney, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital St Leonards, Sydney, Australia; Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards, Sydney, Australia
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Santosh Menon
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Maria R Raspollini
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Italy
| | - Mark A Rubin
- Department for BioMedical Research (DBMR), Bern Center for Precision Medicine (BCPM), University of Bern and Inselspital, Bern, Switzerland
| | - John R Srigley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, AichiMedicalUniversity Hospital, Nagakut, Japan
| | - Samra Turajlic
- The Francis Crick Institute and The Royal Marsden NHS Foundation Trust, London, UK
| | - Ian Cree
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
83
|
Current and emerging therapies for neuroendocrine prostate cancer. Pharmacol Ther 2022; 238:108255. [DOI: 10.1016/j.pharmthera.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
|
84
|
Kench JG, Amin MB, Berney DM, Compérat EM, Cree IA, Gill AJ, Hartmann A, Menon S, Moch H, Netto GJ, Raspollini MR, Rubin MA, Tan PH, Tsuzuki T, Turjalic S, van der Kwast TH, Zhou M, Srigley JR. WHO Classification of Tumours fifth edition: evolving issues in the classification, diagnosis, and prognostication of prostate cancer. Histopathology 2022; 81:447-458. [PMID: 35758185 PMCID: PMC9542779 DOI: 10.1111/his.14711] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
The fifth edition of the WHO Classification of Tumours of the Urinary and Male Genital Systems encompasses several updates to the classification and diagnosis of prostatic carcinoma as well as incorporating advancements in the assessment of its prognosis, including recent grading modifications. Some of the salient aspects include: (1) recognition that prostatic intraepithelial neoplasia (PIN)-like carcinoma is not synonymous with a pattern of ductal carcinoma, but better classified as a subtype of acinar adenocarcinoma; (2) a specific section on treatment-related neuroendocrine prostatic carcinoma in view of the tight correlation between androgen deprivation therapy and the development of prostatic carcinoma with neuroendocrine morphology, and the emerging data on lineage plasticity; (3) a terminology change of basal cell carcinoma to "adenoid cystic (basal cell) cell carcinoma" given the presence of an underlying MYB::NFIB gene fusion in many cases; (4) discussion of the current issues in the grading of acinar adenocarcinoma and the prognostic significance of cribriform growth patterns; and (5) more detailed coverage of intraductal carcinoma of prostate (IDC-P) reflecting our increased knowledge of this entity, while recommending the descriptive term atypical intraductal proliferation (AIP) for lesions falling short of IDC-P but containing more atypia than typically seen in high-grade prostatic intraepithelial neoplasia (HGPIN). Lesions previously regarded as cribriform patterns of HGPIN are now included in the AIP category. This review discusses these developments, summarising the existing literature, as well as the emerging morphological and molecular data that underpins the classification and prognostication of prostatic carcinoma.
Collapse
Affiliation(s)
- James G Kench
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred Hospital, NSW Health PathologyCamperdownNew South WalesAustralia
- The University of SydneyCamperdownNew South WalesAustralia
| | - Mahul B Amin
- The University of Tennessee Health Science CenterMemphisTNUSA
| | - Daniel M Berney
- Department of Cellular Pathology, Bartshealth NHS TrustRoyal London HospitalLondonUK
| | - Eva M Compérat
- Department of PathologyUniversity of ViennaViennaAustria
| | - Ian A Cree
- International Agency for Research on CancerLyonFrance
| | - Anthony J Gill
- The University of SydneyCamperdownNew South WalesAustralia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Pacific HighwaySt LeonardsNew South WalesAustralia
| | - Arndt Hartmann
- Institute of PathologyUniversity Hospital Erlangen, Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Santosh Menon
- Department of PathologyTata Memorial Centre, Homi Bhabha National InstituteMumbaiIndia
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - George J Netto
- Heersink School of MedicineThe University of Alabama at BirminghamBirminghamALUSA
| | - Maria R Raspollini
- Histopathology and Molecular DiagnosticsUniversity Hospital CareggiFlorenceItaly
| | - Mark A Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Puay Hoon Tan
- Division of Pathology, Singapore General HospitalSingaporeSingapore
| | - Toyonori Tsuzuki
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Samra Turjalic
- Skin and Renal UnitsRoyal Marsden NHS Foundation TrustLondonUK
- Cancer Dynamics LaboratoryThe Francis Crick InstituteLondonUK
| | - Theo H van der Kwast
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming Zhou
- Pathology and Laboratory MedicineTufts Medical CenterBostonMAUSA
| | - John R Srigley
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
85
|
Ning S, Zhao J, Lombard AP, D’Abronzo LS, Leslie AR, Sharifi M, Lou W, Liu C, Yang JC, Evans CP, Corey E, Chen HW, Yu A, Ghosh PM, Gao AC. Activation of neural lineage networks and ARHGEF2 in enzalutamide-resistant and neuroendocrine prostate cancer and association with patient outcomes. COMMUNICATIONS MEDICINE 2022; 2:118. [PMID: 36159187 PMCID: PMC9492734 DOI: 10.1038/s43856-022-00182-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/05/2022] [Indexed: 01/26/2023] Open
Abstract
Background Treatment-emergent neuroendocrine prostate cancer (NEPC) after androgen receptor (AR) targeted therapies is an aggressive variant of prostate cancer with an unfavorable prognosis. The underlying mechanisms for early neuroendocrine differentiation are poorly defined and diagnostic and prognostic biomarkers are needed. Methods We performed transcriptomic analysis on the enzalutamide-resistant prostate cancer cell line C4-2B MDVR and NEPC patient databases to identify neural lineage signature (NLS) genes. Correlation of NLS genes with clinicopathologic features was determined. Cell viability was determined in C4-2B MDVR and H660 cells after knocking down ARHGEF2 using siRNA. Organoid viability of patient-derived xenografts was measured after knocking down ARHGEF2. Results We identify a 95-gene NLS representing the molecular landscape of neural precursor cell proliferation, embryonic stem cell pluripotency, and neural stem cell differentiation, which may indicate an early or intermediate stage of neuroendocrine differentiation. These NLS genes positively correlate with conventional neuroendocrine markers such as chromogranin and synaptophysin, and negatively correlate with AR and AR target genes in advanced prostate cancer. Differentially expressed NLS genes stratify small-cell NEPC from prostate adenocarcinoma, which are closely associated with clinicopathologic features such as Gleason Score and metastasis status. Higher ARGHEF2, LHX2, and EPHB2 levels among the 95 NLS genes correlate with a shortened survival time in NEPC patients. Furthermore, downregulation of ARHGEF2 gene expression suppresses cell viability and markers of neuroendocrine differentiation in enzalutamide-resistant and neuroendocrine cells. Conclusions The 95 neural lineage gene signatures capture an early molecular shift toward neuroendocrine differentiation, which could stratify advanced prostate cancer patients to optimize clinical treatment and serve as a source of potential therapeutic targets in advanced prostate cancer.
Collapse
Affiliation(s)
- Shu Ning
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Jinge Zhao
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA ,grid.13291.380000 0001 0807 1581Present Address: Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Alan P. Lombard
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Leandro S. D’Abronzo
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Amy R. Leslie
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Masuda Sharifi
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Wei Lou
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Chengfei Liu
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA
| | - Joy C. Yang
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Christopher P. Evans
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA
| | - Eva Corey
- grid.34477.330000000122986657Department of Urology, University of Washington, Seattle, WA USA
| | - Hong-Wu Chen
- grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA USA
| | - Aiming Yu
- grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA USA
| | - Paramita M. Ghosh
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA USA ,grid.413933.f0000 0004 0419 2847VA Northern California Health Care System, Sacramento, CA USA
| | - Allen C. Gao
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA ,grid.413933.f0000 0004 0419 2847VA Northern California Health Care System, Sacramento, CA USA
| |
Collapse
|
86
|
Wang Q, Chen J, Singh S, Xie Z, Qin F, Shi X, Cornelison R, Li H, Huang H. Profile of chimeric RNAs and TMPRSS2-ERG e2e4 isoform in neuroendocrine prostate cancer. Cell Biosci 2022; 12:153. [PMID: 36088396 PMCID: PMC9463804 DOI: 10.1186/s13578-022-00893-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose Specific gene fusions and their fusion products (chimeric RNA and protein) have served as ideal diagnostic markers and therapeutic targets for cancer. However, few systematic studies for chimeric RNAs have been conducted in neuroendocrine prostate cancer (NEPC). In this study, we explored the landscape of chimeric RNAs in different types of prostate cancer (PCa) cell lines and aimed to identify chimeric RNAs specifically expressed in NEPC. Methods To do so, we employed the RNA-seq data of eight prostate related cell lines from Cancer Cell Line Encyclopedia (CCLE) for chimeric RNA identification. Multiple filtering criteria were used and the candidate chimeric RNAs were characterized at multiple levels and from various angles. We then performed experimental validation on all 80 candidates, and focused on the ones that are specific to NEPC. Lastly, we studied the clinical relevance and effect of one chimera in neuroendocrine process. Results Out of 80 candidates, 15 were confirmed to be expressed preferentially in NEPC lines. Among them, 13 of the 15 were found to be specifically expressed in NEPC, and four were further validated in another NEPC cell line. Importantly, in silico analysis showed that tumor malignancy may be correlated to the level of these chimeric RNAs. Clinically, the expression of TMPRSS2-ERG (e2e4) was elevated in tumor tissues and indicated poor clinical prognosis, whereas the parental wild type transcripts had no such association. Furthermore, compared to the most frequently detected TMPRSS2-ERG form (e1e4), e2e4 encodes 31 more amino acids and accelerated neuroendocrine process of prostate cancer. Conclusions In summary, these findings painted the landscape of chimeric RNA in NEPC and supported the idea that some chimeric RNAs may represent additional biomarkers and/or treatment targets independent of parental gene transcripts. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00893-5.
Collapse
|
87
|
Chen Q, Gu Y, Tan C, Sundararajan B, Li Z, Wang D, Zhou Z. Comparative effects of five polymethoxyflavones purified from Citrus tangerina on inflammation and cancer. Front Nutr 2022; 9:963662. [PMID: 36159482 PMCID: PMC9493082 DOI: 10.3389/fnut.2022.963662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Although the Citrus tangerina cultivar “Dahongpao” (CTD) has been established as a rich source of polymethoxyflavones (PMFs) with anti-inflammatory and anti-cancer properties, their individual effects on cellular signaling remain to be elucidated. In this study, five major PMFs from the peel of CTD were isolated, including sinensetin, tetramethyl-O-scutellarin (5,6,7,4′-tetramethoxyflavone), nobiletin (5,6,7,8,3′, 4′-hexamethoxyflavone), tangeretin (5,6,7,8,4′-pentamethoxyflavone), and 5-demethylnobiletin (5-OH-6,7,8,3′,4′-pentamethoxyflavone). These PMFs were found to significantly (p < 0.05) inhibit the production of NO and biomarkers of chronic inflammation (TNF-α and IL-6). Additionally, they effectively suppressed mRNA biomarkers of acute inflammation (Cox-2 and iNOS), and to varying degrees promoted the activation of anti-inflammatory cytokines (IL-4, IL-13, TNF-β, and IL-10). Among the five PMFs, tangeretin was found to have a considerable anti-proliferative effect on tumor cell lines (PC-3 and DU145) and synergistically enhanced the cytotoxicity of mitoxantrone, partially via activation of the PTEN/AKT pathway. The findings of this study provide valuable insights into the activity of different PMF monomers and advance the understanding of the roles of PMFs in promoting apoptotic and anti-cancer effects.
Collapse
Affiliation(s)
- Qiyang Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yue Gu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chun Tan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Balasubramani Sundararajan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhenqing Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- *Correspondence: Dan Wang
| | - Zhiqin Zhou
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- The Southwest Institute of Fruits Nutrition, Chongqing, China
- Zhiqin Zhou
| |
Collapse
|
88
|
Fanciulli G, Modica R, La Salvia A, Campolo F, Florio T, Mikovic N, Plebani A, Di Vito V, Colao A, Faggiano A. Immunotherapy of Neuroendocrine Neoplasms: Any Role for the Chimeric Antigen Receptor T Cells? Cancers (Basel) 2022; 14:cancers14163991. [PMID: 36010987 PMCID: PMC9406675 DOI: 10.3390/cancers14163991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of tumors arising in different organs whose clinical course is variable according to histological differentiation and metastatic spread. Therapeutic options have recently expanded, but there is a need for new effective therapies, especially in less differentiated forms. Chimeric antigen receptor T cells (CAR-T) have shown efficacy in several cancers, mainly hematological, but data on NENs are scattered. We aimed to analyze the available preclinical and clinical data about CAR-T in NENs, to highlight their potential role in clinical practice. A significant therapeutic effect of CAR-T cells in NENs emerges from preclinical studies. Results from clinical trials are expected in order to define their effective role in these cancers. Abstract Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumors with variable clinical presentation and prognosis. Surgery, when feasible, is the most effective and often curative treatment. However, NENs are frequently locally advanced or already metastatic at diagnosis. Consequently, additional local or systemic therapeutic approaches are required. Immunotherapy, based on chimeric antigen receptor T cells (CAR-T), is showing impressive results in several cancer treatments. The aim of this narrative review is to analyze the available data about the use of CAR-T in NENs, including studies in both preclinical and clinical settings. We performed an extensive search for relevant data sources, comprising full-published articles, abstracts from international meetings, and worldwide registered clinical trials. Preclinical studies performed on both cell lines and animal models indicate a significant therapeutic effect of CAR-T cells in NENs. Ongoing and future clinical trials will clarify the possible role of these drugs in patients with highly aggressive NENs.
Collapse
Affiliation(s)
- Giuseppe Fanciulli
- Neuroendocrine Tumour Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari—Endocrine Unit, AOU Sassari, 07100 Sassari, Italy
- Correspondence:
| | - Roberta Modica
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy
| | - Anna La Salvia
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Tullio Florio
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- Scientific Institute for Research, Hospitalisation and Healthcare Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Nevena Mikovic
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Rome, Italy
| | - Alice Plebani
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095 Milan, Italy
| | - Valentina Di Vito
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy
- UNESCO Chair, Education for Health and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
89
|
Su R, Chen L, Jiang Z, Yu M, Zhang W, Ma Z, Ji Y, Shen K, Xin Z, Qi J, Xue W, Wang Q. Comprehensive analysis of androgen receptor status in prostate cancer with neuroendocrine differentiation. Front Oncol 2022; 12:955166. [PMID: 36033483 PMCID: PMC9413533 DOI: 10.3389/fonc.2022.955166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The androgen receptor (AR) signaling is a key contributor to tumorigenesis and the progression of prostate cancer. A subset of patients may develop neuroendocrine (NE) features, resulting in resistance to androgen deprivation therapy and poor prognosis. In this study, we combined immunostaining and bulk and single-cell transcriptome analyses to better characterize the status of AR in prostate cancer with neuroendocrine differentiation. The exploration of online datasets indicated the existence of ARHIGH/NEHIGH prostate cancer and revealed that these double-high cases are majorly present in castration-resistant prostate cancer with a less neuroendocrine-transdifferentiated state. We then reviewed 8,194 prostate cancer cases with available immunohistochemistry reports and found 2.3% cases (n = 189) that showed at least one of the NE markers (chromogranin A, synaptophysin, and neural cell adhesion molecule 1) being positive in at least 5% of epithelial cells. Within these 189 cases, we observed that 81.0% cases (n = 153) showed AR positive and 19.0% (n = 36) showed AR negative. Patients with AR loss tumors demonstrated a correlation with adverse clinical stages, indicating a trade-off between AR and advanced disease in neuroendocrine differentiation. Using multiplex immunofluorescence staining, we observed the co-localization of AR and NE markers in prostate cancer cells. In addition, data mining of single-cell transcriptome further confirmed the existence of ARHIGH/NEHIGH prostate cancer cells in castration-resistant samples and suggested that AR still exerts its androgen response and anti-apoptotic effect in these double-high cells. Thus, our study provides a better understanding of AR signaling in the cellular plasticity of prostate cancer with neuroendocrine differentiation and allows new insights into the therapeutic development.
Collapse
Affiliation(s)
- Ruopeng Su
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Jiang
- Department of Pathology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Yu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Zhang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zehua Ma
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Ji
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Shen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiang Xin
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Qi
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qi Wang, ; Wei Xue,
| | - Qi Wang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Qi Wang, ; Wei Xue,
| |
Collapse
|
90
|
Schneider A, Bulafka J, Arisi MF, Li L, Mann M, Chandrasekar T. Case of the month from the Thomas Jefferson Sidney Kimmel medical college, Philadelphia, USA. Prostatic abscess and advanced prostate cancer: considering malignancy in the differential diagnosis. BJU Int 2022; 130:181-185. [PMID: 35839131 DOI: 10.1111/bju.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam Schneider
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Jessica Bulafka
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Maria F Arisi
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Pathology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Li Li
- Department of Pathology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Mark Mann
- Department of Urology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | | |
Collapse
|
91
|
Dynamic plasticity of prostate cancer intermediate cells during androgen receptor-targeted therapy. Cell Rep 2022; 40:111123. [PMID: 35905714 DOI: 10.1016/j.celrep.2022.111123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Treatment-emergent small cell neuroendocrine prostate cancer (t-SCNC) is associated with an epithelial lineage switch from an androgen receptor (AR)-positive to neuroendocrine (NE)-marker-positive status. Understanding the potential for reversibility of this aggressive disease state has been hampered by the paucity of models suitable for studying rate-limiting, transitional, or intermediate tumor cell subpopulations. We define a dual reporter model that measures acute transcriptional changes in response to castration or AR targeting agents. We identify steady-state transcriptional heterogeneity in AR and NE biomarkers, including intermediate subpopulations that are coordinately high for prostate-specific antigen (PSA) and neuron-specific enoclase (NSE) promoter activity. In the presence of castration or AR inhibitors, intermediate cells were necessary and sufficient for therapy-induced conversion of human PC cells to an NSE-high transcriptional status. Using hormone add-back studies, treatment-induced PSA-NSE transcriptional plasticity was reversible in PTEN-deficient PC cells but not in the presence of secondary genetic driver genes, including MYCN.
Collapse
|
92
|
Bergamini M, Dalla Volta A, Caramella I, Bercich L, Fisogni S, Bertoli M, Valcamonico F, Grisanti S, Poliani PL, Bertagna F, Berruti A. Case Report: 18F-PSMA PET/CT Scan in Castration Resistant Prostate Cancer With Aggressive Neuroendocrine Differentiation. Front Oncol 2022; 12:937713. [PMID: 35936689 PMCID: PMC9354022 DOI: 10.3389/fonc.2022.937713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The development of a neuroendocrine phenotype as a mechanism of resistance to hormonal treatment is observed in up to 20% of advanced prostate cancer patients. High grade neuroendocrine prostate cancer (NEPC) is associated to poor prognosis and the therapeutic armamentarium is restricted to platinum-based chemotherapy. Prostate-specific membrane antigen (PSMA)-based positron emission tomography (PET)/computed tomography (CT) imaging has recently emerged as a potential new standard for the staging of prostate cancer and PSMA-based radioligand therapy (RLT) as a therapeutic option in advanced metastatic castration resistant prostate cancer (mCRPC). PSMA-based theranostic is not currently applied in the staging and treatment of NEPC since PSMA expression on neuroendocrine differentiated cells was shown to be lost. In this case series, we present 3 consecutive mCRPC patients with histologically proven high grade neuroendocrine differentiation who underwent PSMA-PET/CT and surprisingly showed high tracer uptake. This observation stimulates further research on the use of PSMA-based theranostic in the management of NEPC.
Collapse
Affiliation(s)
- Marco Bergamini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alberto Dalla Volta
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- *Correspondence: Alberto Dalla Volta, alberto.
| | - Irene Caramella
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Luisa Bercich
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Simona Fisogni
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Mattia Bertoli
- Nuclear Medicine Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Francesca Valcamonico
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Francesco Bertagna
- Nuclear Medicine Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
93
|
Genetics of neuroendocrine prostate cancer: recent progress in genetic understanding is translating into therapeutic opportunities. Curr Opin Urol 2022; 32:462-465. [DOI: 10.1097/mou.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Abdulfatah E, Fine SW, Lotan T, Mehra R. De Novo Neuroendocrine Features in Prostate Cancer. Hum Pathol 2022; 127:112-122. [PMID: 35810832 DOI: 10.1016/j.humpath.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 12/22/2022]
Abstract
Neuroendocrine tumors of the prostate are rare and encompass a group of entities that are classified based on a combination of morphological and immunohistochemical features. Despite the 2016 World Health Organization classification of prostatic neuroendocrine tumors, variants have been reported that do not fit well in the categorization scheme. While the majority of these tumors arise in the setting of castration-resistant prostate cancer (postandrogen deprivation therapy), de novo cases may occur. In this review, we highlight the most significant pathological and immunohistochemical features, emerging biomarkers, and molecular features of such tumors.
Collapse
Affiliation(s)
- Eman Abdulfatah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tamara Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, Ann Arbor, MI, USA.
| |
Collapse
|
95
|
Wang Z, Wang T, Hong D, Dong B, Wang Y, Huang H, Zhang W, Lian B, Ji B, Shi H, Qu M, Gao X, Li D, Collins C, Wei G, Xu C, Lee HJ, Huang J, Li J. Single-cell transcriptional regulation and genetic evolution of neuroendocrine prostate cancer. iScience 2022; 25:104576. [PMID: 35789834 PMCID: PMC9250006 DOI: 10.1016/j.isci.2022.104576] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer, with a 10% five-year survival rate. However, little is known about its origin and the mechanisms governing its emergence. Our study characterized ADPC and NEPC in prostate tumors from 7 patients using scRNA-seq. First, we identified two NEPC gene expression signatures representing different phases of trans-differentiation. New marker genes we identified may be used for clinical diagnosis. Second, integrative analyses combining expression and subclonal architecture revealed different paths by which NEPC diverges from the original ADPC, either directly from treatment-naïve tumor cells or from specific intermediate states of treatment-resistance. Third, we inferred a hierarchical transcription factor (TF) network underlying the progression, which involves constitutive regulation by ASCL1, FOXA2, and selective regulation by NKX2-2, POU3F2, and SOX2. Together, these results defined the complex expression profiles and advanced our understanding of the genetic and transcriptomic mechanisms leading to NEPC differentiation. Single-cell RNA sequencing revealed two distinct transcriptional programs of NEPC Cell-level clonal evolution analysis extended the divergent model of ADPC to NEPC Screening of NEPC-specific transcription factors through network-based approaches
Collapse
|
96
|
Symonds L, Konnick E, Vakar-Lopez F, Cheng HH, Schweizer MT, Nelson PS, Pritchard CC, Montgomery B. BRCA2 Alterations in Neuroendocrine/Small-Cell Carcinoma Prostate Cancer: A Case Series. JCO Precis Oncol 2022; 6:e2200091. [PMID: 35834759 DOI: 10.1200/po.22.00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Lynn Symonds
- Division of Medical Oncology, University of Washington, Seattle, WA
| | - Erik Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Funda Vakar-Lopez
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Heather H Cheng
- Division of Medical Oncology, University of Washington, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Michael T Schweizer
- Division of Medical Oncology, University of Washington, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Peter S Nelson
- Division of Medical Oncology, University of Washington, Seattle, WA.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA.,Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Bruce Montgomery
- Division of Medical Oncology, University of Washington, Seattle, WA.,VA Puget Sound and Precision Oncology Program for Cancer of the Prostate, Seattle, WA
| |
Collapse
|
97
|
Naiki T, Naiki‐Ito A, Kawai T, Komatsu H, Nishikawa R, Gonda M, Aoki M, Sugiyama Y, Tasaki Y, Yasui T. A case of metastatic treatment‐emergent small cell/neuroendocrine prostate cancer with
BRCA2
mutation diagnosed by liver biopsy. IJU Case Rep 2022; 5:431-435. [PMID: 36341200 PMCID: PMC9626340 DOI: 10.1002/iju5.12501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 12/21/2022] Open
Abstract
Introduction Treatment‐emergent small cell/neuroendocrine prostate cancer occurs predominantly in advanced or metastatic castration‐resistant prostate cancer that arises when prostate adenocarcinoma is transformed after androgen deprivation therapy. The clinical course for the pathogenesis involved or associated genetic information have not been clearly elucidated. Case presentation A Japanese male, 63‐year‐old, underwent a para‐aortic lymph biopsy due to sudden severe bilateral leg edema, with a final diagnosis of stage IV prostate adenocarcinoma. He was initially responsive to upfront abiraterone with androgen deprivation therapy; however, relapse occurred in the liver and bone 10 months after initial treatment, with serum neuron‐specific enolase elevation and without prostate‐specific antigen elevation. Pathological findings of liver tumor revealed treatment‐emergent small cell/neuroendocrine prostate cancer. FoundationOne® CDx was used for cancer‐related gene profiling of liver tumor specimen; a BRCA2 mutation was identified. Conclusion Early detection of this transformation and pathological diagnosis can improve patient survival when genetic mutations, including BRCA 1/2.
Collapse
Affiliation(s)
- Taku Naiki
- Department of Nephro‐urology Nagoya City University, Graduate School of Medical Sciences Nagoya Japan
| | - Aya Naiki‐Ito
- Department of Experimental Pathology and Tumor Biology Nagoya City University, Graduate School of Medical Sciences Nagoya Japan
| | - Tatsuya Kawai
- Department of Radiology Nagoya City University, Graduate School of Medical Sciences Nagoya Japan
| | - Hirokazu Komatsu
- Department of Hematology and Oncology Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Ryutaro Nishikawa
- Department of Obstetrics and Gynecology Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Masakazu Gonda
- Department of Nephro‐urology Nagoya City University, Graduate School of Medical Sciences Nagoya Japan
| | - Maria Aoki
- Department of Nephro‐urology Nagoya City University, Graduate School of Medical Sciences Nagoya Japan
| | - Yosuke Sugiyama
- Department of Pharmacy Nagoya City University Hospital Nagoya Japan
| | - Yoshihiko Tasaki
- Department of Pharmacy Nagoya City University Hospital Nagoya Japan
| | - Takahiro Yasui
- Department of Nephro‐urology Nagoya City University, Graduate School of Medical Sciences Nagoya Japan
| |
Collapse
|
98
|
Linder S, Hoogstraat M, Stelloo S, Eickhoff N, Schuurman K, de Barros H, Alkemade M, Bekers EM, Severson TM, Sanders J, Huang CCF, Morova T, Altintas UB, Hoekman L, Kim Y, Baca SC, Sjostrom M, Zaalberg A, Hintzen DC, de Jong J, Kluin RJC, de Rink I, Giambartolomei C, Seo JH, Pasaniuc B, Altelaar M, Medema RH, Feng FY, Zoubeidi A, Freedman ML, Wessels LFA, Butler LM, Lack NA, van der Poel H, Bergman AM, Zwart W. Drug-induced epigenomic plasticity reprograms circadian rhythm regulation to drive prostate cancer towards androgen-independence. Cancer Discov 2022; 12:2074-2097. [PMID: 35754340 PMCID: PMC7613567 DOI: 10.1158/2159-8290.cd-21-0576] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
In prostate cancer, androgen receptor (AR)-targeting agents are very effective in various disease stages. However, therapy resistance inevitably occurs and little is known about how tumor cells adapt to bypass AR suppression. Here, we performed integrative multi-omics analyses on tissues isolated before and after 3 months of AR-targeting enzalutamide monotherapy from high-risk prostate cancer patients enrolled in a neoadjuvant clinical trial. Transcriptomic analyses demonstrated that AR inhibition drove tumors towards a neuroendocrine-like disease state. Additionally, epigenomic profiling revealed massive enzalutamide-induced reprogramming of pioneer factor FOXA1 - from inactive chromatin sites towards active cis-regulatory elements that dictate pro-survival signals. Notably, treatment-induced FOXA1 sites were enriched for circadian clock component ARNTL. Post-treatment ARNTL levels associated with poor outcome, and ARNTL knockout strongly decreased prostate cancer cell growth. Our data highlight a remarkable cistromic plasticity of FOXA1 following AR-targeted therapy, and revealed an acquired dependency on circadian regulator ARNTL, a novel candidate therapeutic target.
Collapse
Affiliation(s)
- Simon Linder
- The Netherlands Cancer Institute, Amsterdam, North Holland, Netherlands
| | | | - Suzan Stelloo
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Nils Eickhoff
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | - Elise M Bekers
- The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Joyce Sanders
- The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Tunc Morova
- University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Sylvan C Baca
- Hungarian Academy of Sciences, Boston, United States
| | - Martin Sjostrom
- University of California, San Francisco, San Francisco, United States
| | | | | | | | - Roelof J C Kluin
- The Netherlands Cancer Institute, Amsterdam, Noord-Holland, Netherlands
| | | | | | - Ji-Heui Seo
- Dana-Farber Cancer Institute, BOSTON, Massachusetts, United States
| | - Bogdan Pasaniuc
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | | | - Rene H Medema
- University Medical Center Utrecht, Amsterdam, Netherlands
| | - Felix Y Feng
- University of California, San Francisco, San Francisco, CA, United States
| | - Amina Zoubeidi
- University of British Columbia, Vancouver, British Colombia, Canada
| | | | | | - Lisa M Butler
- University of Adelaide, School of Medicine and Freemasons Foundation Centre for Men's Health, Adelaide, SA, Australia
| | - Nathan A Lack
- University of British Columbia, Vancouver, BC, Canada
| | | | | | - Wilbert Zwart
- Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
99
|
Gopalan A, Al-Ahmadie H, Chen YB, Sarungbam J, Sirintrapun SJ, Tickoo SK, Reuter VE, Fine SW. Neuroendocrine Differentiation in the Setting of Prostatic Carcinoma: Contemporary Assessment of a Consecutive Series. Histopathology 2022; 81:246-254. [PMID: 35758203 PMCID: PMC9327588 DOI: 10.1111/his.14707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
AIM Clinicopathologic characterization of contemporary series of neuroendocrine (NE) differentiation in the setting of prostatic carcinoma (PCa). METHODS & RESULTS We reviewed institutional databases for in-house cases with history of PCa and histopathologic evidence of NE differentiation during the disease course. 79 cases identified: 32 primary and 47 metastases. Metastatic lesions were in liver [n=15], lymph node [n=9], bone [n=6], lung [n=3], brain [n=1], other sites [n=13]. 63 of 76 (82%) cases with NE differentiation and available history were post-therapy: 6 post-radiation therapy (RT), 24 post- androgen-deprivation therapy (ADT) and 33 post-RT+ADT. Morphologic assessment [n=79]: a. 23 pure small cell/high-grade NE carcinoma (HGNEC): 20/23 metastatic; b. 10 combined high-grade PCa and small cell/HGNEC: 9/10 primary; c. 15 PCa with diffuse NE immunohistochemistry (IHC) marker positivity/differentiation, associated with nested to sheet-like growth of cells with abundant cytoplasm and prominent nucleoli, yet diffuse positivity for at least one prostatic and one NE IHC marker: all metastatic; d. 11 PCa with patchy NE differentiation, displaying more than single cell positivity for NE IHC: 5 primary / 6 metastatic; e. 9 PCa with focal NE marker positive cells: 4 primary / 5 metastatic; f. 11 PCa with 'Paneth cell-like' change: all primary. CONCLUSIONS In this contemporary series, the majority of NE differentiation in the setting of PCa was seen post-therapy. We highlight tendencies of small cell/HGNEC and PCa with diffuse NE differentiation by IHC to occur in metastatic settings, while morphologically combined high grade PCa+small cell/HGNEC and 'Paneth cell-like' change occur in primary disease.
Collapse
Affiliation(s)
- Anuradha Gopalan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Judy Sarungbam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Joseph Sirintrapun
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Satish K Tickoo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victor E Reuter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samson W Fine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
100
|
Iravani A, Parihar AS, Akhurst T, Hicks RJ. Molecular imaging phenotyping for selecting and monitoring radioligand therapy of neuroendocrine neoplasms. Cancer Imaging 2022; 22:25. [PMID: 35659779 PMCID: PMC9164531 DOI: 10.1186/s40644-022-00465-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neuroendocrine neoplasia (NEN) is an umbrella term that includes a widely heterogeneous disease group including well-differentiated neuroendocrine tumours (NETs), and aggressive neuroendocrine carcinomas (NECs). The site of origin of the NENs is linked to the intrinsic tumour biology and is predictive of the disease course. It is understood that NENs demonstrate significant biologic heterogeneity which ultimately translates to widely varying clinical presentations, disease course and prognosis. Thus, significant emphasis is laid on the pre-therapy evaluation of markers that can help predict tumour behavior and dynamically monitors the response during and after treatment. Most well-differentiated NENs express somatostatin receptors (SSTRs) which make them appropriate for peptide receptor radionuclide therapy (PRRT). However, the treatment outcomes of PRRT depend heavily on the adequacy of patient selection by molecular imaging phenotyping not only utilizing pre-treatment SSTR PET but 18F-Fluorodeoxyglucose (18F-FDG) PET to provide insights into the intra- or inter-tumoural heterogeneity of the metastatic disease. Molecular imaging phenotyping may go beyond patient selection and provide useful information during and post-treatment for monitoring of temporal heterogeneity of the disease and dynamically risk-stratify patients. In addition, advances in the understanding of genomic-phenotypic classifications of pheochromocytomas and paragangliomas led to an archetypical example in precision medicine by utilizing molecular imaging phenotyping to guide radioligand therapy. Novel non-SSTR based peptide receptors have also been explored diagnostically and therapeutically to overcome the tumour heterogeneity. In this paper, we review the current molecular imaging modalities that are being utilized for the characterization of the NENs with special emphasis on their role in patient selection for radioligand therapy.
Collapse
|