51
|
Hwaiz R, Rahman M, Zhang E, Thorlacius H. Platelet secretion of CXCL4 is Rac1-dependent and regulates neutrophil infiltration and tissue damage in septic lung damage. Br J Pharmacol 2015; 172:5347-59. [PMID: 26478565 DOI: 10.1111/bph.13325] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Platelets are potent regulators of neutrophil accumulation in septic lung damage. We hypothesized that platelet-derived CXCL4 might support pulmonary neutrophilia in a murine model of abdominal sepsis. EXPERIMENTAL APPROACH Polymicrobial sepsis was triggered by coecal ligation and puncture (CLP) in C57BL/6 mice. Platelet secretion of CXCL4 was studied by using confocal microscopy. Plasma and lung levels of CXCL4, CXCL1 and CXCL2 were determined by elisa. Flow cytometry was used to examine surface expression of Mac-1 on neutrophils. KEY RESULTS CLP increased CXCL4 levels in plasma, and platelet depletion reduced plasma levels of CXCL4 in septic animals. Rac1 inhibitor NSC23766 decreased the CLP-enhanced CXCL4 in plasma by 77%. NSC23766 also abolished PAR4 agonist-induced secretion of CXCL4 from isolated platelets. Inhibition of CXCL4 reduced CLP-evoked neutrophil recruitment, oedema formation and tissue damage in the lung. However, immunoneutralization of CXCL4 had no effect on CLP-induced expression of Mac-1 on neutrophils. Targeting CXCL4 attenuated plasma and lung levels of CXCL1 and CXCL2 in septic mice. CXCL4 had no effect on neutrophil chemotaxis in vitro, indicating it has an indirect effect on pulmonary neutrophilia. Intratracheal CXCL4 enhanced infiltration of neutrophils and formation of CXCL2 in the lung. CXCR2 antagonist SB225002 markedly reduced CXCL4-provoked neutrophil accumulation in the lung. CXCL4 caused secretion of CXCL2 from isolated alveolar macrophages. CONCLUSIONS AND IMPLICATIONS Rac1 controls platelet secretion of CXCL4 and CXCL4 is a potent stimulator of neutrophil accumulation in septic lungs via generation of CXCL2 in alveolar macrophages. Platelet-derived CXCL4 plays an important role in lung inflammation and tissue damage in polymicrobial sepsis.
Collapse
Affiliation(s)
- Rundk Hwaiz
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Enming Zhang
- Islet Pathophysiology, Lund University, Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| |
Collapse
|
52
|
Wang Y, Braun OO, Zhang S, Luo L, Norström E, Thorlacius H. Dynamic changes in thrombin generation in abdominal sepsis in mice. Shock 2015; 42:343-9. [PMID: 24978891 DOI: 10.1097/shk.0000000000000215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Systemic inflammatory response syndrome and severe infections are associated with major derangements in the coagulation system. The purpose of this study was to examine the dynamic alterations in thrombin generation in abdominal sepsis. Abdominal sepsis was induced by cecal ligation and puncture (CLP) in C57/Bl6 mice. Cecal ligation and puncture caused a systemic inflammatory response, with neutrophil recruitment and tissue damage in the lung as well as thrombocytopenia and leukocytopenia. Thrombin generation, coagulation factors, lung histology, and myeloperoxidase activity was determined 1, 3, 6, and 24 h after induction of CLP. It was found that thrombin generation was increased 1 h after CLP and that thrombin generation started to decrease at 3 h and was markedly reduced 6 and 24 h after CLP induction. Platelet-poor plasma from healthy mice could completely reverse the inhibitory effect of CLP on thrombin generation, suggesting that sepsis caused a decrease in the levels of plasma factors regulating thrombin generation in septic animals. Indeed, it was found that CLP markedly decreased plasma levels of prothrombin, factor V, and factor X at 6 and 24 h. Moreover, we observed that CLP increased plasma levels of activated protein C at 6 h, which returned to baseline levels 24 h after CLP induction. Finally, pretreatment with imipenem/cilastatin attenuated the CLP-evoked decrease in thrombin generation and consumption of prothrombin 24 h after CLP induction. Our novel findings suggest that thrombin generation is initially increased and later decreased in abdominal sepsis. Sepsis-induced reduction in thrombin generation is correlated to changes in the plasma levels of coagulation factors and activated protein C. These findings help explain the dynamic changes in global hemostasis in abdominal sepsis.
Collapse
Affiliation(s)
- Yongzhi Wang
- *Department of Clinical Sciences, Malmö, Section of Surgery, †Department of Clinical Sciences, Lund, Section for Cardiology, and ‡Department of Laboratory Medicine, Malmö, Section of Clinical Chemistry, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
53
|
Hwaiz R, Rahman M, Syk I, Zhang E, Thorlacius H. Rac1-dependent secretion of platelet-derived CCL5 regulates neutrophil recruitment via activation of alveolar macrophages in septic lung injury. J Leukoc Biol 2015; 97:975-984. [DOI: 10.1189/jlb.4a1214-603r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Accumulating evidence suggest that platelets play an important role in regulating neutrophil recruitment in septic lung injury. Herein, we hypothesized that platelet-derived CCL5 might facilitate sepsis-induced neutrophil accumulation in the lung. Abdominal sepsis was induced by CLP in C57BL/6 mice. CLP increased plasma levels of CCL5. Platelet depletion and treatment with the Rac1 inhibitor NSC23766 markedly reduced CCL5 in the plasma of septic mice. Moreover, Rac1 inhibition completely inhibited proteasePAR4-induced secretion of CCL5 in isolated platelets. Immunoneutralization of CCL5 decreased CLP-induced neutrophil infiltration, edema formation, and tissue injury in the lung. However, inhibition of CCL5 function had no effect on CLP-induced expression of Mac-1 on neutrophils. The blocking of CCL5 decreased plasma and lung levels of CXCL1 and CXCL2 in septic animals. CCL5 had no effect on neutrophil chemotaxis in vitro, suggesting an indirect effect of CCL5 on neutrophil recruitment. Intratracheal challenge with CCL5 increased accumulation of neutrophils and formation of CXCL2 in the lung. Administration of the CXCR2 antagonist SB225002 abolished CCL5-induced pulmonary recruitment of neutrophils. Isolated alveolar macrophages expressed significant levels of the CCL5 receptors CCR1 and CCR5. In addition, CCL5 triggered significant secretion of CXCL2 from isolated alveolar macrophages. Notably, intratracheal administration of clodronate not only depleted mice of alveolar macrophages but also abolished CCL5-induced formation of CXCL2 in the lung. Taken together, our findings suggest that Rac1 regulates platelet secretion of CCL5 and that CCL5 is a potent inducer of neutrophil recruitment in septic lung injury via formation of CXCL2 in alveolar macrophages.
Collapse
Affiliation(s)
- Rundk Hwaiz
- Department of Clinical Sciences, Malmö, Section for Surgery , Malmö , Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery , Malmö , Sweden
| | - Ingvar Syk
- Department of Clinical Sciences, Malmö, Section for Surgery , Malmö , Sweden
| | - Enming Zhang
- Islet Pathophysiology, Lund University , Malmö , Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery , Malmö , Sweden
| |
Collapse
|
54
|
Schrottmaier WC, Kral JB, Badrnya S, Assinger A. Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb Haemost 2015; 114:478-89. [PMID: 25904241 DOI: 10.1160/th14-11-0943] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/28/2015] [Indexed: 01/19/2023]
Abstract
Platelets are key players in haemostasis and represent a pivotal link between inflammation, immunity and atherogenesis. Depending on the (patho)physiological environment platelets modulate various leukocyte functions via release of inflammatory mediators and direct cell-cell interactions. Elevated levels of circulating platelet-leukocyte aggregates are found in patients suffering from several thrombotic or inflammatory conditions. Platelet-monocyte and platelet-neutrophil interaction can trigger pro- and anti-inflammatory responses and modulate effector functions of all leukocyte subpopulations. These platelet-mediated immune responses have implications for the progression of cardiovascular diseases and also play a crucial role during infections, cancer, transplantations and other inflammatory diseases of several organs. Antiplatelet therapy including the COX inhibitor aspirin and/or ADP receptor P2Y12 inhibitors such as clopidogrel, prasugrel and ticagrelor are the therapy of choice for various cardiovascular complications. Both aspirin and P2Y12 inhibitors attenuate platelet-leukocyte interactions, thereby also modulating immune responses. This may have beneficial effects in some pathological conditions, while it might be detrimental in others. This review aims to summarise the current knowledge on platelet-leukocyte interactions and the impact of aspirin and P2Y12 inhibition on platelet-mediated immune responses and to give an overview on the effects of antiplatelet therapy on platelet-leukocyte interplay in various diseases.
Collapse
Affiliation(s)
| | | | | | - Alice Assinger
- Dr. Alice Assinger, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria, Tel.: +43 1 40160 31405, E-mail:
| |
Collapse
|
55
|
Tsai MJ, Ou SM, Shih CJ, Chao PW, Wang LF, Shih YN, Li SY, Kuo SC, Hsu YT, Chen YT. Association of prior antiplatelet agents with mortality in sepsis patients: a nationwide population-based cohort study. Intensive Care Med 2015; 41:806-13. [PMID: 25829229 DOI: 10.1007/s00134-015-3760-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/16/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Antiplatelet agents are widely used for cardiovascular disea ses, but their pleiotropic effects in sepsis are controversial. OBJECTIVE To investigate the association between antiplatelet agents and the survival benefit for sepsis patients. DESIGN A nationwide population-based cohort and nested case-control study. SETTING Taiwan National Health Insurance database. PARTICIPANTS All patients (age ≥18 years) who were hospitalized for sepsis between January 2000 and December 2010. MEASUREMENTS Conditional logistic regression was used to adjust for confounding. Adjusted odd ratios (ORs) were used to compare the mortality rate due to sepsis in antiplatelet drug users and nonusers. RESULTS Of 683,421 included patients, 229,792 (33.6 %) patients died during hospitalization for sepsis, and the rest (64.4 %) survived to discharge. Use of antiplatelet agents before admission was associated with a lower risk of mortality in sepsis patients (aOR 0.82, 95 % confidence interval [CI] 0.81-0.83, P < 0.001). By using another case-control study design, the beneficial effect was more significant in current users (aOR 0.78, 95 % CI 0.76-0.79) than in recent users (aOR 0.88, 95 % CI 0.85-0.91), but was not significant in past users (aOR 1.00, 95 % CI 0.98-1.02). LIMITATIONS Observational study. CONCLUSIONS Prior use of antiplatelet agents was associated with a survival benefit in sepsis patients.
Collapse
Affiliation(s)
- Min-Juei Tsai
- Department of Internal Medicine, Taipei Veterans General Hospital, Suao Branch, Yilan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Although platelets are traditionally recognized for their central role in hemostasis, many lines of research clearly demonstrate these rather ubiquitous blood components are potent immune modulators and effectors. Platelets have been shown to directly recognize, sequester and kill pathogens, to activated and recruit leukocytes to sites of infection and inflammation, and to modulate leukocyte behavior, enhancing their ability to phagocytose and kill pathogens and inducing unique effector functions, such as the production of Neutrophil Extracellular Traps (NETs). This multifaceted response to infection and inflammation is due, in part, to the huge array of soluble mediators and cell surface molecules expressed by platelets. From their earliest origins as primordial hemocytes in invertebrates to their current form as megakaryocyte-derived cytoplasts, platelets have evolved to be one of the key regulators of host intravascular immunity and inflammation. In this review, we present the diverse roles platelets play in immunity and inflammation associated with autoimmune diseases and infection. Additionally, we highlight recent advances in our understanding of platelet behavior made possible through the use of advanced imaging techniques that allow us to visualize platelets and their interactions, in real-time, within the intact blood vessels of a living host.
Collapse
Affiliation(s)
- Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases and
| | | |
Collapse
|
57
|
Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interactions with bacteria. Front Immunol 2015; 6:82. [PMID: 25767472 PMCID: PMC4341565 DOI: 10.3389/fimmu.2015.00082] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
Abstract
Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb–IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet-bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis, or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of neutrophil extracellular traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet–bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the aggregation response.
Collapse
Affiliation(s)
| | - Pauline Damien
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Adrien Chabert
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Bruno Pozzetto
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France ; Institut National de la Transfusion Sanguine , Paris , France
| |
Collapse
|
58
|
Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72:2627-43. [PMID: 25650236 DOI: 10.1007/s00018-015-1845-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/07/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet-neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet-neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet-neutrophil interactions in thromboinflammatory disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott Ave, E403, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
59
|
The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int J Mol Sci 2014; 15:22342-64. [PMID: 25479079 PMCID: PMC4284712 DOI: 10.3390/ijms151222342] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022] Open
Abstract
The CD40 ligand (CD40L) is a transmembrane molecule of crucial interest in cell signaling in innate and adaptive immunity. It is expressed by a variety of cells, but mainly by activated T-lymphocytes and platelets. CD40L may be cleaved into a soluble form (sCD40L) that has a cytokine-like activity. Both forms bind to several receptors, including CD40. This interaction is necessary for the antigen specific immune response. Furthermore, CD40L and sCD40L are involved in inflammation and a panoply of immune related and vascular pathologies. Soluble CD40L is primarily produced by platelets after activation, degranulation and cleavage, which may present a problem for transfusion. Soluble CD40L is involved in adverse transfusion events including transfusion related acute lung injury (TRALI). Although platelet storage designed for transfusion occurs in sterile conditions, platelets are activated and release sCD40L without known agonists. Recently, proteomic studies identified signaling pathways activated in platelet concentrates. Soluble CD40L is a good candidate for platelet activation in an auto-amplification loop. In this review, we describe the immunomodulatory role of CD40L in physiological and pathological conditions. We will focus on the main signaling pathways activated by CD40L after binding to its different receptors.
Collapse
|
60
|
Luo L, Zhang S, Wang Y, Rahman M, Syk I, Zhang E, Thorlacius H. Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol 2014; 307:L586-96. [DOI: 10.1152/ajplung.00365.2013] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Excessive neutrophil activation is a major component in septic lung injury. Neutrophil-derived DNA may form extracellular traps in response to bacterial invasions. The aim of the present study was to investigate the potential role of neutrophil extracellular traps (NETs) in septic lung injury. Male C57BL/6 mice were treated with recombinant human (rh)DNAse (5 mg/kg) after cecal ligation and puncture (CLP). Extracellular DNA was stained by Sytox green, and NET formation was quantified by confocal microscopy and cell-free DNA in plasma, peritoneal cavity, and lung. Blood, peritoneal fluid, and lung tissue were harvested for analysis of neutrophil infiltration, NET levels, tissue injury, as well as CXC chemokine and cytokine formation. We observed that CLP caused increased formation of NETs in plasma, peritoneal cavity, and lung. Administration of rhDNAse not only eliminated NET formation in plasma, peritoneal cavity, and bronchoalveolar space but also reduced lung edema and tissue damage 24 h after CLP induction. Moreover, treatment with rhDNAse decreased CLP-induced formation of CXC chemokines, IL-6, and high-mobility group box 1 (HMGB1) in plasma, as well as CXC chemokines and IL-6 in the lung. In vitro, we found that neutrophil-derived NETs had the capacity to stimulate secretion of CXCL2, TNF-α, and HMGB1 from alveolar macrophages. Taken together, our findings show that NETs regulate pulmonary infiltration of neutrophils and tissue injury via formation of proinflammatory compounds in abdominal sepsis. Thus we conclude that NETs exert a proinflammatory role in septic lung injury.
Collapse
Affiliation(s)
- Lingtao Luo
- Department of Clinical Sciences Malmö, 1Section for Surgery and
| | - Su Zhang
- Department of Clinical Sciences Malmö, 1Section for Surgery and
| | - Yongzhi Wang
- Department of Clinical Sciences Malmö, 1Section for Surgery and
| | - Milladur Rahman
- Department of Clinical Sciences Malmö, 1Section for Surgery and
| | - Ingvar Syk
- Department of Clinical Sciences Malmö, 1Section for Surgery and
| | - Enming Zhang
- Islet Pathophysiology, Lund University, Malmö, Sweden
| | | |
Collapse
|
61
|
Rac1 regulates platelet shedding of CD40L in abdominal sepsis. J Transl Med 2014; 94:1054-63. [PMID: 25046439 DOI: 10.1038/labinvest.2014.92] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 01/25/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) regulates platelet shedding of CD40L in abdominal sepsis. However, the signaling mechanisms controlling sepsis-induced shedding of CD40L from activated platelets remain elusive. Rac1 has been reported to regulate diverse functions in platelets; we hypothesized herein that Rac1 might regulate platelet shedding of CD40L in sepsis. The specific Rac1 inhibitor NSC23766 (N6-[2-[[4-(diethylamino)-1-methylbutyl] amino]-6-methyl-4-pyrimidinyl]-2 methyl-4, 6-quinolinediamine trihydrochloride) was administered to mice undergoing cecal ligation and puncture (CLP). Levels of CD40L and MMP-9 in plasma, platelets, and neutrophils were determined by use of ELISA, western blot, and confocal microscopy. Platelet depletion abolished the CLP-induced increase in plasma levels of CD40L. Rac1 activity was significantly increased in platelets from septic animals. Administration of NSC23766 abolished the CLP-induced enhancement of soluble CD40L levels in the plasma. Moreover, Rac1 inhibition completely inhibited proteinase-activated receptor-4-induced surface mobilization and secretion of CD40L in isolated platelets. CLP significantly increased plasma levels of MMP-9 and Rac1 activity in neutrophils. Treatment with NSC23766 markedly attenuated MMP-9 levels in the plasma from septic mice. In addition, Rac1 inhibition abolished chemokine-induced secretion of MMP-9 from isolated neutrophils. Finally, platelet shedding of CD40L was significantly reduced in response to stimulation with supernatants from activated MMP-9-deficient neutrophils compared with supernatants from wild-type neutrophils, indicating a direct role of neutrophil-derived MMP-9 in regulating platelet shedding of CD40L. Our novel data suggest that sepsis-induced platelet shedding of CD40L is dependent on Rac1 signaling. Rac1 controls surface mobilization of CD40L on activated platelets and MMP-9 secretion from neutrophils. Thus, our findings indicate that targeting Rac1 signaling might be a useful way to control pathologic elevations of CD40L in the systemic circulation in abdominal sepsis.
Collapse
|
62
|
Wang X, Qin W, Sun B. New strategy for sepsis: Targeting a key role of platelet-neutrophil interaction. BURNS & TRAUMA 2014; 2:114-20. [PMID: 27602371 PMCID: PMC5012074 DOI: 10.4103/2321-3868.135487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 04/28/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Neutrophil and platelet are essential arms of the innate immune response. In sepsis, platelet abnormal activation as well as neutrophil paralysis are well recognized. For platelet, it is characterized by the contribution to disseminated intravascular coagulation (DIC) and the enhanced inflammation response. In terms of neutrophil, its dysfunction is manifested by the impaired recruitment and migration to the infectious foci, abnormal sequestration in the remote organs, and the delayed clearance. More recently, it has been apparent that together platelet-neutrophil interaction can induce a faster and harder response during sepsis. This article focuses on the activation of platelet, dysfunction of neutrophil, and the interaction between them during sepsis and profiles some of the molecular mechanisms and outcomes in these cellular dialogues, providing a novel strategy for treatment of sepsis.
Collapse
Affiliation(s)
- Xu Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Weiting Qin
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| |
Collapse
|
63
|
de Stoppelaar SF, van 't Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost 2014; 112:666-77. [PMID: 24966015 DOI: 10.1160/th14-02-0126] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/16/2014] [Indexed: 01/01/2023]
Abstract
Platelets are small circulating anucleate cells that are of crucial importance in haemostasis. Over the last decade, it has become increasingly clear that platelets play an important role in inflammation and can influence both innate and adaptive immunity. Sepsis is a potentially lethal condition caused by detrimental host response to an invading pathogen. Dysbalanced immune response and activation of the coagulation system during sepsis are fundamental events leading to sepsis complications and organ failure. Platelets, being major effector cells in both haemostasis and inflammation, are involved in sepsis pathogenesis and contribute to sepsis complications. Platelets catalyse the development of hyperinflammation, disseminated intravascular coagulation and microthrombosis, and subsequently contribute to multiple organ failure. Inappropriate accumulation and activity of platelets are key events in the development of sepsis-related complications such as acute lung injury and acute kidney injury. Platelet activation readouts could serve as biomarkers for early sepsis recognition; inhibition of platelets in septic patients seems like an important target for immune-modulating therapy and appears promising based on animal models and retrospective human studies.
Collapse
Affiliation(s)
- Sacha F de Stoppelaar
- Sacha F. de Stoppelaar, MD, Academic Medical Centre, Centre of Experimental and Molecular Medicine, Meibergdreef 9, Room G2-130, 1105 AZ Amsterdam, the Netherlands, Tel.: +31 20 5665910, Fax: +31 20 6977192, E-mail:
| | | | | |
Collapse
|
64
|
Davidson DC, Jackson JW, Maggirwar SB. Targeting platelet-derived soluble CD40 ligand: a new treatment strategy for HIV-associated neuroinflammation? J Neuroinflammation 2013; 10:144. [PMID: 24289660 PMCID: PMC3906985 DOI: 10.1186/1742-2094-10-144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/16/2013] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV) continues to be one of the most prevalent global health afflictions to date. The advent and introduction of combined antiretroviral therapy (cART) has made a significant impact on the course of infection. However, as patients are living longer, many HIV-associated illnesses are becoming prevalent among the infected population, especially those associated with chronic inflammation. Consistently, HIV-associated neuroinflammation is believed to be a major catalyst in the development of HIV-associated neurocognitive disorders (HAND), which are estimated to persist in approximately 50% of infected individuals regardless of cART. This dramatically underscores the need to develop effective adjunctive therapies capable of controlling this aspect of the disease, which are currently lacking. We previously demonstrated that the inflammatory mediator soluble CD40 ligand (sCD40L) is elevated in both the plasma and cerebrospinal fluid of cognitively impaired infected individuals compared to their non-impaired infected counterparts. Our group, and others have recently demonstrated that there is an increasing role for this inflammatory mediator in the pathogenesis of HIV-associated neuroinflammation, thereby identifying this molecule as a potential therapeutic target for the management of HAND. Platelets are the major source of circulating sCD40L, and these small cells are increasingly implicated in a multitude of inflammatory disorders, including those common during HIV infection. Thus, antiplatelet therapies that minimize the release of platelet-derived inflammatory mediators such as sCD40L are an innovative, non-traditional approach for the treatment of HIV-associated neuroinflammation, with the potential to benefit other HIV-associated illnesses.
Collapse
Affiliation(s)
| | | | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA.
| |
Collapse
|
65
|
Rahman M, Gustafsson D, Wang Y, Thorlacius H, Braun OÖ. Ticagrelor reduces neutrophil recruitment and lung damage in abdominal sepsis. Platelets 2013; 25:257-63. [PMID: 23855479 DOI: 10.3109/09537104.2013.809520] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Platelets play an important role in abdominal sepsis and P2Y12 receptor antagonists have been reported to exert anti-inflammatory effects. Herein, we assessed the impact of platelet inhibition with the P2Y12 receptor antagonist ticagrelor on pulmonary neutrophil recruitment and tissue damage in a model of abdominal sepsis. Wild-type C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Animals were treated with ticagrelor (100 mg/kg) or vehicle prior to CLP induction. Edema formation and bronchoalveolar neutrophils as well as lung damage were quantified. Flow cytometry was used to determine expression of platelet-neutrophil aggregates, neutrophil activation and CD40L expression on platelets. CLP-induced pulmonary infiltration of neutrophils at 24 hours was reduced by 50% in ticagrelor-treated animals. Moreover, ticagrelor abolished CLP-provoked lung edema and decreased lung damage score by 41%. Notably, ticagrelor completely inhibited formation of platelet-neutrophil aggregates and markedly reduced thrombocytopenia in CLP animals. In addition, ticagrelor reduced platelet shedding of CD40L in septic mice. Our data indicate that ticagrelor can reduce CLP-induced pulmonary neutrophil recruitment and lung damage suggesting a potential role for platelet antagonists, such as ticagrelor, in the management of patients with abdominal sepsis.
Collapse
|
66
|
Rahman M, Zhang S, Chew M, Syk I, Jeppsson B, Thorlacius H. Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis. J Thromb Haemost 2013; 11:1385-98. [PMID: 23617547 DOI: 10.1111/jth.12273] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 04/12/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Platelet-derived CD40L is known to regulate neutrophil recruitment and lung damage in sepsis. However, the mechanism regulating shedding of CD40L from activated platelets is not known. We hypothesized that matrix metalloproteinase (MMP)-9 might cleave surface-expressed CD40L and regulate pulmonary accumulation of neutrophils in sepsis. METHODS Abdominal sepsis was induced by cecal ligation and puncture (CLP) in wild-type and MMP-9-deficient mice. Edema formation, CXC chemokine levels, myeloperoxidase levels, neutrophils in the lung and plasma levels of CD40L and MMP-9 were quantified. RESULTS CLP increased plasma levels of MMP-9 but not MMP-2. The CLP-induced decrease in platelet surface CD40L and increase in soluble CD40L levels were significantly attenuated in MMP-9 gene-deficient mice. Moreover, pulmonary myeloperoxidase (MPO) activity and neutrophil infiltration in the alveolar space, as well as edema formation and lung injury, were markedly decreased in septic mice lacking MMP-9. In vitro studies revealed that inhibition of MMP-9 decreased platelet shedding of CD40L. Moreover, recombinant MMP-9 was capable of cleaving surface-expressed CD40L on activated platelets. In human studies, plasma levels of MMP-9 were significantly increased in patients with septic shock as compared with healthy controls, although MMP-9 levels did not correlate with organ injury score. CONCLUSIONS Our novel data propose a role of MMP-9 in regulating platelet-dependent infiltration of neutrophils and tissue damage in septic lung injury by controlling CD40L shedding from platelets. We conclude that targeting MMP-9 may be a useful strategy to limit acute lung injury in abdominal sepsis.
Collapse
Affiliation(s)
- M Rahman
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
67
|
Page C, Pitchford S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int Immunopharmacol 2013; 17:1176-84. [PMID: 23810443 DOI: 10.1016/j.intimp.2013.06.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/20/2012] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
The manifestation of platelet 'satallitism' around neutrophils in whole blood is a long acknowledged phenomenon [1]. Circulating platelet-neutrophil complexes (PNC) occur in a diverse range of inflammatory disorders and infections that affect numerous organs of the body. Animal models have revealed that the formation of PNC is required for the recruitment of neutrophils to inflamed tissue, since platelets 'prime' neutrophils for efficient adhesion to vascular endothelium via the up-regulation of integrins and enhanced responsiveness to chemokines (Fig. 1). Perhaps surprisingly, the surface contact between platelets and neutrophils additionally enhances other neutrophil functions, such as chemotaxis that is required for migration into tissues, trans-cellular production of eicosanoids, phagocytosis and trapping of pathogens, increased respiratory burst leading to the production of reactive oxygen species (ROS), and modulation of neutrophil apoptosis (Fig. 1). Platelet P-selectin appears to have a particular role in enhancing the majority of these activities, and the influence of platelet P-selectin is not therefore confined to the initial rolling events in the process of neutrophil extravasation.
Collapse
Affiliation(s)
- Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| | | |
Collapse
|
68
|
Hasan Z, Rahman M, Palani K, Syk I, Jeppsson B, Thorlacius H. Geranylgeranyl transferase regulates CXC chemokine formation in alveolar macrophages and neutrophil recruitment in septic lung injury. Am J Physiol Lung Cell Mol Physiol 2013; 304:L221-9. [DOI: 10.1152/ajplung.00199.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Overwhelming accumulation of neutrophils is a significant component in septic lung damage, although the signaling mechanisms behind neutrophil infiltration in the lung remain elusive. In the present study, we hypothesized that geranylgeranylation might regulate the inflammatory response in abdominal sepsis. Male C57BL/6 mice received the geranylgeranyl transferase inhibitor, GGTI-2133, before cecal ligation and puncture (CLP). Bronchoalveolar lavage fluid and lung tissue were harvested for analysis of neutrophil infiltration, as well as edema and CXC chemokine formation. Blood was collected for analysis of Mac-1 on neutrophils and CD40L on platelets. Gene expression of CXC chemokines, tumor necrosis factor-α (TNF-α), and CCL2 chemokine was determined by quantitative RT-PCR in isolated alveolar macrophages. Administration of GGTI-2133 markedly decreased CLP-induced infiltration of neutrophils, edema, and tissue injury in the lung. CLP triggered clear-cut upregulation of Mac-1 on neutrophils. Inhibition of geranylgeranyl transferase reduced CLP-evoked upregulation of Mac-1 on neutrophils in vivo but had no effect on chemokine-induced expression of Mac-1 on isolated neutrophils in vitro. Notably, GGTI-2133 abolished CLP-induced formation of CXC chemokines, TNF-α, and CCL2 in alveolar macrophages in the lung. Geranylgeranyl transferase inhibition had no effect on sepsis-induced platelet shedding of CD40L. In addition, inhibition of geranylgeranyl transferase markedly decreased CXC chemokine-triggered neutrophil chemotaxis in vitro. Taken together, our findings suggest that geranylgeranyl transferase is an important regulator of CXC chemokine production and neutrophil recruitment in the lung. We conclude that inhibition of geranylgeranyl transferase might be a potent way to attenuate acute lung injury in abdominal sepsis.
Collapse
Affiliation(s)
- Zirak Hasan
- Department of Clinical Sciences, Malmö, Section for Surgery, Malmö, Lund University, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Malmö, Lund University, Sweden
| | - Karzan Palani
- Department of Clinical Sciences, Malmö, Section for Surgery, Malmö, Lund University, Sweden
| | - Ingvar Syk
- Department of Clinical Sciences, Malmö, Section for Surgery, Malmö, Lund University, Sweden
| | - Bengt Jeppsson
- Department of Clinical Sciences, Malmö, Section for Surgery, Malmö, Lund University, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Malmö, Lund University, Sweden
| |
Collapse
|
69
|
Abstract
HMG-CoA reductase inhibitors, or statins, are among the most commonly prescribed pharmaceuticals in the world, especially among the elderly. The remarkable conjuncture of this fact with the rising incidence of severe sepsis among people over age 65 could prove to be of serendipitous benefit, because numerous actions of the statins make them of potential use in the prevention and treatment of severe sepsis. Severe sepsis continues to be a highly lethal condition, for which there are, as yet, no effective pharmacological treatments, save antibiotics. We explore the biological plausibility of statins as prophylaxis agents and as treatment for severe sepsis and thoroughly review the preclinical and clinical studies that have explored the effects of statins in infected and septic patients. Statins remain only promising treatments for severe sepsis, without convincing evidence that they reduce patient mortality. Ongoing randomized trials may provide conclusive evidence, whether positive or negative.
Collapse
|
70
|
Gardiner EE, Andrews RK. Neutrophil extracellular traps (NETs) and infection-related vascular dysfunction. Blood Rev 2012; 26:255-9. [PMID: 23021640 DOI: 10.1016/j.blre.2012.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The innate immune system orchestrated by leukocytes primarily neutrophils, serves to remove dead and dying host cells and to provide protection against invasion by pathogens. Failure of this system results in the onset of sepsis leading to grave consequences for the host. Together with mechanical methods to physically isolate and remove the pathogen, neutrophils also release an important set of proinflammatory biological modulators that mediate recruitment of additional cells to a site of infection and amplify the innate protective response. Additionally, neutrophils release highly charged mixtures of DNA and nuclear proteins named neutrophil extracellular traps (NETs). These electrostatically-charged adhesive networks trigger intrinsic coagulation, limit dispersion and entrap the pathogens. NETs also contain the neutrophil secretary granule-derived serine proteases, neutrophil elastase and cathepsin G, known to regulate the reactivity of both neutrophils and platelets. Since the characterization of NETs in 2004, new studies of their functional effect in vivo continue to expand upon unexpected extracellular roles for DNA, and in doing so renew attention to the haemostatic role of the leukocyte. This review will provide a basic description of NETs and examine current knowledge of this important system of defense, including recent work illustrating a role for NETs in activation of thrombosis.
Collapse
|
71
|
Rossaint J, Berger C, Van Aken H, Scheld HH, Zahn PK, Rukosujew A, Zarbock A. Cardiopulmonary bypass during cardiac surgery modulates systemic inflammation by affecting different steps of the leukocyte recruitment cascade. PLoS One 2012; 7:e45738. [PMID: 23029213 PMCID: PMC3446926 DOI: 10.1371/journal.pone.0045738] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/24/2012] [Indexed: 12/30/2022] Open
Abstract
Background It is known that the use of a cardiopulmonary bypass (CPB) during cardiac surgery leads to leukocyte activation and may, among other causes, induce organ dysfunction due to increased leukocyte recruitment into different organs. Leukocyte extravasation occurs in a cascade-like fashion, including capturing, rolling, adhesion, and transmigration. However, the molecular mechanisms of increased leukocyte recruitment caused by CPB are not known. This clinical study was undertaken in order to investigate which steps of the leukocyte recruitment cascade are affected by the systemic inflammation during CPB. Methods We investigated the effects of CPB on the different steps of the leukocyte recruitment cascade in whole blood from healthy volunteers (n = 9) and patients undergoing cardiac surgery with the use of cardiopulmonary bypass (n = 7) or in off-pump coronary artery bypass-technique (OPCAB, n = 9) by using flow chamber experiments, transmigration assays, and biochemical analysis. Results CPB abrogated selectin-induced slow leukocyte rolling on E-selectin/ICAM-1 and P-selectin/ICAM-1. In contrast, chemokine-induced arrest and transmigration was significantly increased by CPB. Mechanistically, the abolishment of slow leukocyte rolling was due to disturbances in intracellular signaling with reduced phosphorylation of phospholipase C (PLC) γ2, Akt, and p38 MAP kinase. Furthermore, CPB induced an elevated transmigration which was caused by upregulation of Mac-1 on neutrophils. Conclusion These data suggest that CPB abrogates selectin-mediated slow leukocyte rolling by disturbing intracellular signaling, but that the clinically observed increased leukocyte recruitment caused by CPB is due to increased chemokine-induced arrest and transmigration. A better understanding of the underlying molecular mechanisms causing systemic inflammation after CPB may aid in the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Christian Berger
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Hugo Van Aken
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Hans H. Scheld
- Department of Thoracic and Cardiovascular Surgery, University Hospital Münster, Münster, Germany
| | - Peter K. Zahn
- Department of Anesthesiology, Intensive Care Medicine, Palliative Care Medicine and Pain Management, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Andreas Rukosujew
- Department of Thoracic and Cardiovascular Surgery, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
72
|
The involvement of the CD40-CD40L pathway in activated platelet-induced changes in HUVEC COX-2 and PPARα expression. Inflammation 2012; 35:1184-90. [PMID: 22219050 DOI: 10.1007/s10753-011-9427-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We aim to determine the extent of the CD40-CD40L pathway involvement in activated platelet-induced changes in human umbilical endothelial cells (HUVECs). Activated platelets were co-incubated with HUVECs in the presence or absence of CD40LmAb. HUVECs were also directly stimulated with rhCD40L. HUVEC endothelial cyclooxygenase 2 (COX-2) and peroxisome proliferator-activated receptor alpha (PPARα) expression was then assessed. To estimate COX-2 activity, PGE2 concentration was determined. PPARα activity was assessed using a nuclear factor activity kit. Co-incubation with activated platelets increased HUVEC COX-2 and PPARα mRNA expression (P < 0.01). The addition of CD40L mAb significantly attenuated these increases in mRNA and protein (both P < 0.01). Direct stimulation by rhCD40L increased HUVEC COX-2 mRNA and protein (P < 0.05) but did not significantly change the expression of PPARα mRNA and protein. CD40LmAb significantly decreased (P < 0.05) and rhCD40L significantly (P < 0.01) increased COX-2 enzymatic activity, but had almost no effects on PPARα binding activity. Activated platelets may increase HUVEC COX-2 expression and activity partly through the CD40-CD40L pathway.
Collapse
|
73
|
Zhi L, Chi X, Gelderman MP, Vostal JG. Activation of platelet protein kinase C by ultraviolet light B mediates platelet transfusion-related acute lung injury in a two-event animal model. Transfusion 2012; 53:722-31. [DOI: 10.1111/j.1537-2995.2012.03811.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
74
|
Seeley EJ, Matthay MA, Wolters PJ. Inflection points in sepsis biology: from local defense to systemic organ injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L355-63. [PMID: 22707617 DOI: 10.1152/ajplung.00069.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sepsis and septic shock lead to considerable morbidity and mortality in developed and developing countries. Despite advances in understanding the innate immune events that lead to septic shock, molecular therapies based on these advances have failed to improve sepsis mortality. The clinical failure of laboratory-derived therapies may be, in part, due to the pleiotropic consequences of the acute inflammatory response, which is the focus of this review. A brisk response to infecting organism is essential for pathogen containment and eradication. However, systemic spread of inflammation beyond a single focus leads to organ injury and higher mortality. The primary goal of this article is to discuss recent animal- and human-based scientific advances in understanding the host response to infection and to highlight how these defense mechanisms can be locally beneficial but systemically detrimental. There are other factors that determine the severity of sepsis that are beyond the scope of this review, including the virulence of the pathogen and regulation by Toll-like receptors. Specifically, this review focuses on how the effector mechanisms of platelets, mast cells, neutrophil extracellular traps (NETs), and the endothelium participate in combating local infections yet can induce organ injury during systemic infection.
Collapse
Affiliation(s)
- Eric J Seeley
- Division of Pulmonary, Critical Care and Sleep Medicine, Univ. of California, San Francisco, San Francisco, CA 94143-0111, USA.
| | | | | |
Collapse
|
75
|
Shen J, Wan R, Hu G, Wang F, Shen J, Wang X. Involvement of thrombopoietin in acinar cell necrosis in L-arginine-induced acute pancreatitis in mice. Cytokine 2012; 60:294-301. [PMID: 22698803 DOI: 10.1016/j.cyto.2012.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/14/2012] [Accepted: 05/08/2012] [Indexed: 12/19/2022]
Abstract
Thrombopoietin (TPO) plays an important role in injuries of different tissues. However, the role of TPO in acute pancreatitis (AP) is not yet known. The aim of the study was to determine the involvement of TPO in AP. Serum TPO was assayed in necrotizing pancreatitis induced by L-arginine in mice. Recombinant TPO and anti-TPO antibody were given to mice with necrotizing pancreatitis. Amylase, lipase, lactate dehydrogenase, myeloperoxidase activity and pancreatic water content were assayed in serum and tissue samples. Pancreas and lung tissue samples were also collected for histological evaluation. Immunohistochemistry of amylase α and PCNA were applied for the study of acinar regeneration and TUNEL assay for the detection of apoptosis in the pancreas. Increased levels of serum TPO were found in necrotizing pancreatitis. After TPO administration, more severe acinar necrosis was found and blockade of TPO reduced the acinar necrosis in this AP model. Acinar regeneration and apoptosis in the pancreas were affected by TPO and antibody treatment in necrotizing pancreatitis. The severity of pancreatitis-associated lung injury was worsened after TPO treatment, but attenuated after Anti-TPO antibody treatment. In conclusion, serum TPO is up-regulated in the necrotizing pancreatitis induced by L-arginine in mice and may be a risk factor for the pancreatic acinar necrosis in AP. As a pro-necrotic factor, blockade of TPO can attenuate the acinar necrosis in AP and may be a possible therapeutic intervention for AP.
Collapse
Affiliation(s)
- Jiaqing Shen
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
76
|
Garraud O, Hamzeh-Cognasse H, Cognasse F. Platelets and cytokines: How and why? Transfus Clin Biol 2012; 19:104-8. [PMID: 22682309 DOI: 10.1016/j.tracli.2012.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 12/11/2022]
Abstract
For patients with platelet deficiencies, platelet components are therapeutic products for which there is no substitute. However, transfusion complications are more frequent with this labile blood product than with others. This is attributable to products secreted by the platelets themselves, including a variety of cytokines, chemokines, and biological response modifiers, some of which are secreted in large quantities following platelet activation. Why platelets are activated and prone to releasing these molecules during certain inflammatory and innate immune responses is not yet fully understood, but it could be due to several parameters including incompatibilities between blood donors and recipients, the process of platelet preparation and preservation, and the ability of the donor's immune system to sense danger presented by external stimuli during the blood donation process. This review presents our current knowledge of how the platelets that constitute the platelet component for transfusion are sources of cytokines and biological response modifiers and discusses methods to improve the quality of blood transfusion products and safety for patients.
Collapse
Affiliation(s)
- O Garraud
- Établissement français du sang Auvergne-Loire, 25, boulevard Pasteur, 42023 Saint-Étienne cedex 02, France.
| | | | | |
Collapse
|
77
|
Krajewski S, Kurz J, Geisler T, Peter K, Wendel HP, Straub A. Combined blockade of ADP receptors and PI3-kinase p110β fully prevents platelet and leukocyte activation during hypothermic extracorporeal circulation. PLoS One 2012; 7:e38455. [PMID: 22701645 PMCID: PMC3368839 DOI: 10.1371/journal.pone.0038455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/05/2012] [Indexed: 11/19/2022] Open
Abstract
Extracorporeal circulation (ECC) and hypothermia are used to maintain stable circulatory parameters and improve the ischemia tolerance of patients in cardiac surgery. However, ECC and hypothermia induce activation mechanisms in platelets and leukocytes, which are mediated by the platelet agonist ADP and the phosphoinositide-3-kinase (PI3K) p110β. Under clinical conditions these processes are associated with life-threatening complications including thromboembolism and inflammation. This study analyzes effects of ADP receptor P2Y12 and P2Y1 blockade and PI3K p110β inhibition on platelets and granulocytes during hypothermic ECC. Human blood was treated with the P2Y12 antagonist 2-MeSAMP, the P2Y1 antagonist MRS2179, the PI3K p110β inhibitor TGX-221, combinations thereof, or PBS and propylene glycol (controls). Under static in vitro conditions a concentration-dependent effect regarding the inhibition of ADP-induced platelet activation was found using 2-MeSAMP or TGX-221. Further inhibition of ADP-mediated effects was achieved with MRS2179. Next, blood was circulated in an ex vivo ECC model at 28°C for 30 minutes and various platelet and granulocyte markers were investigated using flow cytometry, ELISA and platelet count analysis. GPIIb/IIIa activation induced by hypothermic ECC was inhibited using TGX-221 alone or in combination with P2Y blockers (p<0.05), while no effect of hypothermic ECC or antiplatelet agents on GPIIb/IIIa and GPIbα expression and von Willebrand factor binding was observed. Sole P2Y and PI3K blockade or a combination thereof inhibited P-selectin expression on platelets and platelet-derived microparticles during hypothermic ECC (p<0.05). P2Y blockade alone or combined with TGX-221 prevented ECC-induced platelet-granulocyte aggregate formation (p<0.05). Platelet adhesion to the ECC surface, platelet loss and Mac-1 expression on granulocytes were inhibited by combined P2Y and PI3K blockade (p<0.05). Combined blockade of P2Y12, P2Y1 and PI3K p110β completely inhibits hypothermic ECC-induced activation processes. This novel finding warrants further studies and the development of suitable pharmacological agents to decrease ECC- and hypothermia-associated complications in clinical applications.
Collapse
Affiliation(s)
- Stefanie Krajewski
- Department of Anesthesiology and Intensive Care Medicine, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
78
|
Abdulla A, Awla D, Hartman H, Weiber H, Jeppsson B, Regnér S, Thorlacius H. Platelets regulate P-selectin expression and leukocyte rolling in inflamed venules of the pancreas. Eur J Pharmacol 2012; 682:153-60. [DOI: 10.1016/j.ejphar.2012.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/31/2012] [Accepted: 02/09/2012] [Indexed: 12/12/2022]
|
79
|
Lapchak PH, Kannan L, Ioannou A, Rani P, Karian P, Dalle Lucca JJ, Tsokos GC. Platelets orchestrate remote tissue damage after mesenteric ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2012; 302:G888-97. [PMID: 22301111 DOI: 10.1152/ajpgi.00499.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a leading cause of morbidity and mortality. A functional role for platelets in tissue damage after mesenteric I/R is largely unknown. The hypothesis that mesenteric I/R local and remote injury are platelet dependent was tested. Using a murine mesenteric I/R model, we demonstrate that platelets orchestrate remote lung tissue damage that follows mesenteric I/R injury and also contribute, albeit to a lesser degree, to local villi damage. While lung damage is delayed compared with villi damage, it increased over time and was characterized by accumulation of platelets in the pulmonary vasculature early, followed by alveolar capillaries and extravasation into the pulmonary space. Both villi and lung tissues displayed complement deposition. We demonstrate that villi and lung damage are reduced in mice made platelet deficient before I/R injury and that platelet transfusion into previously platelet-depleted mice before I/R increased both villi and lung tissue damage. Increased C3 deposition accompanied platelet sequestration in the lung, which was mostly absent in platelet-depleted mice. In contrast, C3 deposition was only minimally reduced on villi of platelet-depleted mice. Our findings position platelets alongside complement as a significant early upstream component that orchestrates remote lung tissue damage after mesenteric I/R and strongly suggest that reperfusion injury mitigating modalities should consider the contribution of platelets.
Collapse
Affiliation(s)
- Peter H Lapchak
- Rheumatology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Rho-Kinase Signaling Regulates Pulmonary Infiltration of Neutrophils in Abdominal Sepsis Via Attenuation of CXC Chemokine Formation and Mac-1 Expression on Neutrophils. Shock 2012; 37:282-8. [DOI: 10.1097/shk.0b013e3182426be4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
81
|
Lapchak PH, Ioannou A, Kannan L, Rani P, Dalle Lucca JJ, Tsokos GC. Platelet-associated CD40/CD154 mediates remote tissue damage after mesenteric ischemia/reperfusion injury. PLoS One 2012; 7:e32260. [PMID: 22384195 PMCID: PMC3288090 DOI: 10.1371/journal.pone.0032260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/21/2012] [Indexed: 01/08/2023] Open
Abstract
Several innate and adaptive immune cell types participate in ischemia/reperfusion induced tissue injury. Amongst them, platelets have received little attention as contributors in the process of tissue damage after ischemia reperfusion (I/R) injury. It is currently unknown whether platelets participate through the immunologically important molecules including, CD40 and when activated, CD154 (CD40L), in the pathogenesis of I/R injury. We hypothesized that constitutive expression of CD40 and activation-induced expression of CD154 on platelets mediate local mesenteric and remote lung tissue damage after I/R injury. Wild type (WT; C57BL/6J), CD40 and CD154 deficient mice underwent mesenteric ischemia for 30 minutes followed by reperfusion for 3 hours. WT mice subjected to mesenteric I/R injury displayed both local intestinal and remote lung damage. In contrast, there was significantly less intestinal damage and no remote lung injury in CD40 and CD154 deficient mice when compared to WT mice. Platelet-depleted WT mice transfused with platelets from CD40 or CD154 deficient mice failed to reconstitute remote lung damage. In contrast, when CD40 or CD154 deficient mice were transfused with WT platelets lung tissue damage was re-established. Together, these findings suggest that multiple mechanisms are involved in local and remote tissue injury and also identify platelet-expressed CD40 and/or CD154 as mediators of remote tissue damage.
Collapse
Affiliation(s)
- Peter H. Lapchak
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Antonis Ioannou
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GCT); (AI)
| | - Lakshmi Kannan
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Poonam Rani
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jurandir J. Dalle Lucca
- The United States Army Institute of Surgical Research, San Antonio, Texas, United States of America
| | - George C. Tsokos
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GCT); (AI)
| |
Collapse
|
82
|
Rahman M, Roller J, Zhang S, Syk I, Menger MD, Jeppsson B, Thorlacius H. Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis. Inflamm Res 2012; 61:571-9. [DOI: 10.1007/s00011-012-0446-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/28/2012] [Indexed: 11/30/2022] Open
|
83
|
Chew MS, Linder A, Santen S, Ersson A, Herwald H, Thorlacius H. Increased plasma levels of heparin-binding protein in patients with shock: a prospective, cohort study. Inflamm Res 2011; 61:375-9. [PMID: 22207392 DOI: 10.1007/s00011-011-0422-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/19/2011] [Accepted: 12/19/2011] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Heparin-binding protein (HBP) is a potent inducer of increased vascular permeability. The purpose of this study was to examine plasma levels of HBP in patients with shock. DESIGN Fifty-three consecutive patients with septic and non-septic shock at a mixed-bed intensive care unit were included, as well as 20 age-matched controls. Patients with local infections but without signs of shock served as infectious controls. Enzyme-linked immunosorbent assay was used to determine plasma levels of HBP. RESULTS There were no differences in serum HBP levels between healthy controls and those with local infections, including urinary tract infections, pneumonia and gastroenteritis, without shock. Levels of HBP were higher in patients with non-septic shock and septic shock than healthy controls. However, there was no difference in serum HBP levels between patients with septic shock and those with non-septic shock. Moreover, HBP levels were not different between patients with low and high APACHE II scores. Plasma levels of HBP were similar in surviving and non-surviving patients with shock. CONCLUSIONS HBP is elevated in patients with shock from septic and non-septic etiologies. Future investigations are required to define the functional role of HBP in patients with shock.
Collapse
Affiliation(s)
- Michelle S Chew
- Section of Intensive Care, Department of Clinical Sciences, Malmö, Skåne University Hospital, Lund University, 20502 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
84
|
Bercovitz RS, Kelher MR, Khan SY, Land KJ, Berry TH, Silliman CC. The pro-inflammatory effects of platelet contamination in plasma and mitigation strategies for avoidance. Vox Sang 2011; 102:345-53. [PMID: 22092073 DOI: 10.1111/j.1423-0410.2011.01559.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Plasma and platelet concentrates are disproportionately implicated in transfusion-related acute lung injury (TRALI). Platelet-derived pro-inflammatory mediators, including soluble CD40 ligand (sCD40L), accumulate during storage. We hypothesized that platelet contamination induces sCD40L generation that causes neutrophil [polymorphonuclear leucocyte (PMN)] priming and PMN-mediated cytotoxicity. MATERIALS AND METHODS Plasma was untreated, centrifuged (12,500 g) or separated from leucoreduced whole blood (WBLR) prior to freezing. Platelet counts and sCD40L concentrations were measured 1-5 days post-thaw. The plasma was assayed for PMN priming activity and was used in a two-event in vitro model of PMN-mediated human pulmonary microvascular endothelial cell (HMVEC) cytotoxicity. RESULTS Untreated plasma contained 42±4·2×10(3)/μl platelets, which generated sCD40L accumulation (1·6-eight-fold vs. controls). Priming activity and HMVEC cytotoxicity were directly proportional to sCD40L concentration. WBLR and centrifugation reduced platelet and sCD40L contamination, abrogating the pro-inflammatory potential. CONCLUSION Platelet contamination causes sCD40L accumulation in stored plasma that may contribute to TRALI. Platelet reduction is potentially the first TRALI mitigation effort in plasma manufacturing.
Collapse
|
85
|
Abstract
Neutrophil infiltration is an insidious feature in septic lung injury, although the specific adhesive mechanisms regulating pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. The aim of this present study was to define the role of CD44 in sepsis-induced neutrophil infiltration and lung damage. Mice were treated with a monoclonal antibody against CD44 before cecal ligation and puncture (CLP) induction. Edema formation, bronchoalveolar accumulation of neutrophils, myeloperoxidase activity, and macrophage inflammatory protein 2 (MIP-2) levels in the lung were determined after CLP. Expression of Mac-1 and CD44 on neutrophils was quantified by using flow cytometry. In separate experiments, fluorescent-labeled neutrophils coincubated with an anti-CD44 antibody were adoptively transferred to CLP mice. Cecal ligation and puncture triggered clear-cut lung damage characterized by edema formation, neutrophil infiltration, and increased levels of MIP-2 in the lung. Notably, immunoneutralization of CD44 reduced CLP-induced pulmonary accumulation of neutrophils. In addition, functional inhibition of CD44 decreased CLP-induced lung damage and edema. However, formation of MIP-2 in the lung and neutrophil expression of Mac-1 were intact in septic mice pretreated with the anti-CD44 antibody. Adoptive transfer experiments revealed that neutrophil rather than lung CD44 mediates neutrophil accumulation in septic lung injury. Moreover, administration of hyaluronidase had no effect on CLP-induced neutrophil recruitment and tissue damage in the lung. Our data demonstrate that CD44 contributes to pulmonary infiltration of neutrophils and lung damage associated with abdominal sepsis. Thus, these novel findings suggest that CD44 may serve as a target to protect against lung injury in polymicrobial sepsis.
Collapse
|
86
|
Chew MS, Thorlacius H. Soluble CD40 ligand is not solely related to the presence and severity of sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:438; author reply 438. [PMID: 21892978 PMCID: PMC3387612 DOI: 10.1186/cc10316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
87
|
Awla D, Hartman H, Abdulla A, Zhang S, Rahman M, Regnér S, Thorlacius H. Rho-kinase signalling regulates trypsinogen activation and tissue damage in severe acute pancreatitis. Br J Pharmacol 2011; 162:648-58. [PMID: 20942858 DOI: 10.1111/j.1476-5381.2010.01060.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Severe acute pancreatitis (SAP) is characterized by trypsinogen activation, infiltration of leucocytes and tissue necrosis but the intracellular signalling mechanisms regulating organ injury in the pancreas remain elusive. Rho-kinase is a potent regulator of specific cellular processes effecting several pro-inflammatory activities. Herein, we examined the role of Rho-kinase signalling in acute pancreatitis. EXPERIMENTAL APPROACH Pancreatitis was induced by infusion of taurocholate into the pancreatic duct in C57BL/6 mice. Animals were treated with a Rho-kinase inhibitor Y-27632 (0.5-5 mg·kg⁻¹) before induction of pancreatitis. KEY RESULTS Taurocholate infusion caused a clear-cut increase in blood amylase, pancreatic neutrophil infiltration, acinar cell necrosis and oedema formation in the pancreas. Levels of pancreatic myeloperoxidase (MPO), macrophage inflammatory protein-2 (MIP-2), trypsinogen activation peptide (TAP) and lung MPO were significantly increased, indicating local and systemic disease. Inhibition of Rho-kinase activity dose-dependently protected against pancreatitis. For example, 5 mg·kg⁻¹ Y-27632 reduced acinar cell necrosis, leucocyte infiltration and pancreatic oedema by 90%, 89% and 58%, respectively, as well as tissue levels of MPO by 75% and MIP-2 by 84%. Moreover, Rho-kinase inhibition decreased lung MPO by 75% and blood amylase by 83%. Pancreatitis-induced TAP levels were reduced by 61% in Y-27632-treated mice. Inhibition of Rho-kinase abolished secretagogue-induced activation of trypsinogen in pancreatic acinar cells in vitro. CONCLUSIONS AND IMPLICATIONS Our novel data suggest that Rho-kinase signalling plays an important role in acute pancreatitis by regulating trypsinogen activation and subsequent CXC chemokine formation, neutrophil infiltration and tissue injury. Thus, these results indicate that Rho-kinase may constitute a novel target in the management of SAP.
Collapse
Affiliation(s)
- D Awla
- Department of Surgery, Malmö University Hospital, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
88
|
Tuinman PR, Juffermans NP. Soluble CD40 ligand, a mediator of sepsis or of transfusion-related adverse effects? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:429; author reply 429. [PMID: 21639957 PMCID: PMC3218990 DOI: 10.1186/cc10237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
89
|
Abstract
Streptococcus pyogenes of the M1 serotype is frequently associated with severe streptococcal infections. M1 protein challenge can cause widespread microthrombosis, suggesting a role of platelets in streptococcal sepsis. Herein, we hypothesized that platelets may play a role in M1 protein-induced lung inflammation and injury. M1 protein was injected intravenously in C57Bl/6 mice. For platelet and neutrophil depletion, an anti-GP1bα antibody and an anti-Gr-1 antibody, respectively, were administered before M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for analysis of neutrophil infiltration, edema, and macrophage inflammatory protein 2 (MIP-2) formation. Blood was collected for analysis of membrane-activated complex 1 (Mac-1) and CD40 ligand (CD40L) expression on neutrophils and platelets as well as soluble CD40L in plasma. M1 protein caused significant pulmonary damage characterized by neutrophil infiltration, increased formation of edema and MIP-2 in the lung, and enhanced Mac-1 expression on neutrophils. However, M1 protein challenge had no effect on platelet surface expression of CD40L or soluble CD40L levels in plasma. Interestingly, platelet depletion had no influence on M1 protein-induced neutrophil recruitment, MIP-2 production, and tissue damage in the lung or Mac-1 expression on neutrophils. Moreover, we observed that M1 protein could bind to neutrophils but not to platelets. On the other hand, neutrophil depletion abolished M1 protein-induced edema formation and tissue damage in the lung. Our data suggest that neutrophils but not platelets are involved in the pathophysiology of M1 protein-provoked pulmonary damage. Thus, neutrophils may constitute a key target in infections caused by S. pyogenes of the M1 serotype.
Collapse
|
90
|
Gelderman MP, Chi X, Zhi L, Vostal JG. Ultraviolet B light-exposed human platelets mediate acute lung injury in a two-event mouse model of transfusion. Transfusion 2011; 51:2343-57. [DOI: 10.1111/j.1537-2995.2011.03135.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
91
|
|
92
|
Zhang S, Rahman M, Zhang S, Qi Z, Herwald H, Thorlacius H. Simvastatin regulates CXC chemokine formation in streptococcal M1 protein-induced neutrophil infiltration in the lung. Am J Physiol Lung Cell Mol Physiol 2011; 300:L930-9. [PMID: 21441352 DOI: 10.1152/ajplung.00422.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Streptococcus pyogenes of the M1 serotype can cause streptococcal toxic shock syndrome and acute lung injury. Statins exert beneficial effects in septic patients although the mechanisms remain elusive. This study examined effects of simvastatin on M1 protein-provoked pulmonary inflammation and tissue injury. Male C57BL/6 mice were pretreated with simvastatin or a CXCR2 antagonist before M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for determination of neutrophil infiltration, formation of edema, and CXC chemokines. Flow cytometry was used to determine Mac-1 expression on neutrophils. Gene expression of CXC chemokines was determined in alveolar macrophages by using quantitative RT-PCR. M1 protein challenge caused massive infiltration of neutrophils, edema formation, and production of CXC chemokines in the lung as well as upregulation of Mac-1 on circulating neutrophils. Simvastatin reduced M1 protein-induced infiltration of neutrophils and edema in the lung. In addition, M1 protein-induced Mac-1 expression on neutrophils was abolished by simvastatin. Furthermore, simvastatin markedly decreased pulmonary formation of CXC chemokines and gene expression of CXC chemokines in alveolar macrophages. Moreover, the CXCR2 antagonist reduced M1 protein-induced neutrophil expression of Mac-1 and accumulation of neutrophils as well as edema formation in the lung. These novel findings indicate that simvastatin is a powerful inhibitor of neutrophil infiltration in acute lung damage triggered by streptococcal M1 protein. The inhibitory effect of simvastatin on M1 protein-induced neutrophil recruitment appears related to reduced pulmonary generation of CXC chemokines. Thus, simvastatin may be a useful tool to ameliorate acute lung injury in streptococcal infections.
Collapse
Affiliation(s)
- Songen Zhang
- Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
93
|
Abdulla A, Awla D, Jeppsson B, Regnér S, Thorlacius H. CD40L is not involved in acute experimental pancreatitis. Eur J Pharmacol 2011; 659:85-8. [PMID: 21419763 DOI: 10.1016/j.ejphar.2011.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/17/2011] [Accepted: 03/08/2011] [Indexed: 01/02/2023]
Abstract
Recent data suggest that platelets not only control thrombosis and hemostasis but may also regulate inflammatory processes such as acute pancreatitis. However, the specific role of platelet-derived mediators in the pathophysiology of acute pancreatitis is not known. Herein, we examined the role of CD40 ligand (CD40L, CD154) in different models of acute pancreatitis. Acute pancreatitis was induced by repetitive caerulein administration (50μg/kg, i.p.) or infusion of sodium taurocholate (5%-10μl) into the pancreatic duct in wild-type C57BL/6 and CD40L-deficient mice. Neutrophil infiltration, myeloperoxidase (MPO), macrophage inflammatory protein-2 (MIP-2) levels, acinar cell necrosis, edema and hemorrhage in the pancreas as well as serum amylase activity and lung levels of MPO were quantified 24h after induction of acute pancreatitis. Caerulein and taurocholate challenge caused a clear-cut pancreatic damage characterized by increased acinar cell necrosis, neutrophil infiltration, focal hemorrhage, edema formation as well as increased levels of serum amylase and MIP-2 in the pancreas and lung MPO and histological damage. Notably, CD40L gene-deficient animals exhibited a similar phenotype as wild-type mice after challenge with caerulein and taurocholate. Similarly, administration of an antibody directed against CD40L had no effect against acute pancreatitis. Our data suggest that CD40L does not play a functional role in experimental acute pancreatitis. Thus, other candidates than CD40L needs to be explored in order to identify platelet-derived mediators in the pathophysiology of acute pancreatitis.
Collapse
|
94
|
Lorente L, Martín MM, Varo N, Borreguero-León JM, Solé-Violán J, Blanquer J, Labarta L, Díaz C, Jiménez A, Pastor E, Belmonte F, Orbe J, Rodríguez JA, Gómez-Melini E, Ferrer-Agüero JM, Ferreres J, LLimiñana MC, Páramo JA. Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis. Crit Care 2011; 15:R97. [PMID: 21406105 PMCID: PMC3219362 DOI: 10.1186/cc10104] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/17/2011] [Accepted: 03/15/2011] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION CD40 Ligand (CD40L) and its soluble counterpart (sCD40L) are proteins that exhibit prothrombotic and proinflammatory properties on binding to their cell surface receptor CD40. The results of small clinical studies suggest that sCD40L levels could play a role in sepsis; however, there are no data on the association between sCD40L levels and mortality of septic patients. Thus, the aim of this study was to determine whether circulating sCD40L levels could be a marker of adverse outcome in a large cohort of patients with severe sepsis. METHODS This was a multicenter, observational and prospective study carried out in six Spanish intensive care units. Serum levels of sCD40L, tumour necrosis factor-alpha and interleukin-10, and plasma levels of tissue factor were measured in 186 patients with severe sepsis at the time of diagnosis. Serum sCD40L was also measured in 50 age- and sex-matched controls. Survival at 30 days was used as the endpoint. RESULTS Circulating sCD40L levels were significantly higher in septic patients than in controls (P = 0.01), and in non-survivors (n = 62) compared to survivors (n = 124) (P = 0.04). However, the levels of CD40L were not different regarding sepsis severity. Logistic regression analysis showed that sCD40L levels >3.5 ng/mL were associated with higher mortality at 30 days (odds ratio = 2.89; 95% confidence interval = 1.37 to 6.07; P = 0.005). The area under the curve of sCD40L levels >3.5 ng/mL as predictor of mortality at 30 days was 0.58 (95% CI = 0.51 to 0.65; P = 0.03). CONCLUSIONS In conclusion, circulating sCD40L levels are increased in septic patients and are independently associated with mortality in these patients; thus, its modulation could represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna - 38320, Santa Cruz de Tenerife, Spain
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife - 38010, Spain
| | - Nerea Varo
- Biochemistry Deparment, Clínica Universidad de Navarra, Avda Pío XII n°55, Pamplona - 31008, Spain
| | - Juan María Borreguero-León
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna - 38320, Santa Cruz de Tenerife, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, Las Palmas de Gran Canaria - 35010, Spain
| | - José Blanquer
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez no. 17-19, Valencia - 46004, Spain
| | - Lorenzo Labarta
- Intensive Care Unit, Hospital San Jorge de Huesca, Avenida Martínez de Velasco n°36, Huesca - 22004, Spain
| | - César Díaz
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria - 35016, Spain
| | - Alejandro Jiménez
- Mixed Research Unit HUC-ULL, Hospital Universitario de Canarias, Ofra, s/n, La Laguna - 38320, Santa Cruz de Tenerife, Spain
| | - Eduardo Pastor
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna - 38320, Santa Cruz de Tenerife, Spain
| | - Felipe Belmonte
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife - 38010, Spain
| | - Josune Orbe
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII no. 55, Pamplona - 31008, Spain
| | - José A Rodríguez
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII no. 55, Pamplona - 31008, Spain
| | - Eduardo Gómez-Melini
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna - 38320, Santa Cruz de Tenerife, Spain
| | - José M Ferrer-Agüero
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, Las Palmas de Gran Canaria - 35010, Spain
| | - José Ferreres
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez no. 17-19, Valencia - 46004, Spain
| | - María C LLimiñana
- Laboratory Department, Hospital San Jorge de Huesca, Avenida Martínez de Velasco no. 36, Huesca - 22004, Spain
| | - José A Páramo
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII no. 55, Pamplona - 31008, Spain
| |
Collapse
|
95
|
Zhang S, Rahman M, Zhang S, Qi Z, Thorlacius H. Simvastatin antagonizes CD40L secretion, CXC chemokine formation, and pulmonary infiltration of neutrophils in abdominal sepsis. J Leukoc Biol 2011; 89:735-742. [DOI: 10.1189/jlb.0510279] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
ABSTRACTStatins have been reported to exert anti-inflammatory actions and protect against septic organ dysfunction. Herein, we hypothesized that simvastatin may attenuate neutrophil activation and lung damage in abdominal sepsis. Male C57BL/6 mice were pretreated with simvastatin (0.5 or 10 mg/kg) before CLP. In separate groups, mice received an anti-CD40L antibody or a CXCR2 antagonist (SB225002) prior to CLP. BALF and lung tissue were harvested for analysis of neutrophil infiltration, as well as edema and CXC chemokine formation. Blood was collected for analysis of Mac-1 and CD40L expression on neutrophils and platelets, as well as soluble CD40L in plasma. Simvastatin decreased CLP-induced neutrophil infiltration and edema formation in the lung. Moreover, Mac-1 expression increased on septic neutrophils, which was significantly attenuated by simvastatin. Inhibition of CD40L reduced CLP-induced up-regulation of Mac-1 on neutrophils. Simvastatin prevented CD40L shedding from the surface of platelets and reduced circulating levels of CD40L in septic mice. CXC chemokine-induced migration of neutrophils in vitro was decreased greatly by simvastatin. Moreover, simvastatin abolished CLP-evoked formation of CXC chemokines in the lung, and a CXCR2 antagonist attenuated pulmonary accumulation of neutrophils. Our data suggest that the inhibitory effect of simvastatin on pulmonary accumulation of neutrophils may be related to a reduction of CD40L secretion into the circulation, as well as a decrease in CXC chemokine formation in the lung. Thus, these protective mechanisms help to explain the beneficial actions exerted by statins, such as simvastatin, in sepsis.
Collapse
Affiliation(s)
- Su Zhang
- Department of Surgery, Skåne University Hospital, Lund University , Malmö, Sweden
| | - Milladur Rahman
- Department of Surgery, Skåne University Hospital, Lund University , Malmö, Sweden
| | - Songen Zhang
- Department of Surgery, Skåne University Hospital, Lund University , Malmö, Sweden
| | - Zhongquan Qi
- Department of Surgery, Skåne University Hospital, Lund University , Malmö, Sweden
| | - Henrik Thorlacius
- Department of Surgery, Skåne University Hospital, Lund University , Malmö, Sweden
| |
Collapse
|
96
|
Refractory Postinjury Thrombocytopenia Is Associated With Multiple Organ Failure and Adverse Outcomes. ACTA ACUST UNITED AC 2011; 70:401-6; discussion 406-7. [DOI: 10.1097/ta.0b013e31820b5c85] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Kowalewska PM, Patrick AL, Fox-Robichaud AE. Innate immunity of the liver microcirculation. Cell Tissue Res 2010; 343:85-96. [PMID: 21049273 DOI: 10.1007/s00441-010-1058-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/10/2010] [Indexed: 12/30/2022]
Abstract
The liver is a complex organ with a unique microcirculation and both synthetic and immune functions. Innate immune responses have been studied in response to single inflammatory mediators and several clinically relevant models of infection and injury. While standard histological techniques have been used in many models, the liver microcirculation is also amenable to in vivo examination using epifluorescent, confocal and transillumination intravital microscopy. These techniques have begun to clarify not only the molecular mechanisms but also the specific cell populations involved in the liver inflammation. In this review, we discuss the cells and mediators involved in hepatic innate immunity in simple and complex models of injury and infection, and present the view that the liver microcirculation utilizes non-classical pathways for leukocyte recruitment.
Collapse
|
98
|
Abdulla A, Awla D, Hartman H, Rahman M, Jeppsson B, Regnér S, Thorlacius H. Role of platelets in experimental acute pancreatitis. Br J Surg 2010; 98:93-103. [PMID: 20882560 DOI: 10.1002/bjs.7271] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND Platelets not only control thrombosis and haemostasis but may also regulate inflammatory processes. Acute pancreatitis (AP) is characterized by changes in both coagulation and proinflammatory activities. The role of platelets in AP is not yet known. METHODS AP was induced in C57BL/6 mice by repeated caerulein administration (50 µg/kg intraperitoneally). Mice received a platelet-depleting or control antibody before caerulein challenge. Neutrophil infiltration, myeloperoxidase (MPO) and macrophage inflammatory protein (MIP) 2 levels, acinar cell necrosis and haemorrhage in the pancreas, as well as serum amylase activity, were determined 24 h after caerulein injection. In an alternative model of pancreatitis, L-arginine (4 g/kg intraperitoneally) was given twice with an interval of 1 h and tissue samples were taken after 72 h [Correction added after online publication 29 September 2010: in the preceding sentence, 4 mg/kg was corrected to 4 g/kg]. RESULTS Caerulein administration increased acinar cell necrosis, neutrophil infiltration, focal haemorrhage and serum amylase levels. Platelet depletion reduced acinar cell necrosis, haemorrhage and serum amylase levels in AP. Depletion of platelets decreased caerulein-induced MPO levels and neutrophil recruitment in the pancreas. Platelet depletion abolished caerulein-induced MIP-2 generation in the pancreas and circulation. The effects of platelet depletion on necrosis, neutrophils and MPO levels were confirmed in L-arginine-induced pancreatitis. CONCLUSION Platelets play a crucial role in AP by regulating neutrophil infiltration, most likely mediated by MIP-2 production in the pancreas.
Collapse
Affiliation(s)
- A Abdulla
- Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Lund University, S-205 02 Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
99
|
Chew M, Rahman M, Ihrman L, Erson A, Zhang S, Thorlacius H. Soluble CD40L (CD154) is increased in patients with shock. Inflamm Res 2010; 59:979-82. [PMID: 20490890 DOI: 10.1007/s00011-010-0213-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 05/03/2010] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Recent data suggest that soluble CD40L (sCD40L) plays an important role in murine sepsis. The aim of the present study was to determine plasma levels of CD40L in critically ill patients with systemic inflammatory response syndrome (SIRS) and shock, with and without sepsis. DESIGN A prospective observational one-centre cohort study in a mixed-bed ICU of an university hospital. Fifty-three consecutive patients fulfilling the criteria for SIRS with shock as well as seven age-matched controls were included. ELISA was used to determine sCD40L in the plasma. RESULTS The level of sCD40L in plasma from healthy controls was 0.18 ± 0.03 ng/ml. It was found that sCD40L levels were significantly higher in patients with non-septic shock (0.72 ± 0.18 ng/ml) and septic shock (0.50 ± 0.1 ng/ml). However, the levels of sCD40L were not different between these two groups of patients, or in those with low and high APACHE scores. CONCLUSION Our data show that sCD40L is increased in patients with shock from septic and non-septic etiologies. However, further studies are needed to delineate the functional significance of sCD40L in the clinical outcome in shock patients.
Collapse
Affiliation(s)
- M Chew
- Department of Intensive Care Medicine, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|