51
|
Masanneck L, Rolfes L, Regner-Nelke L, Willison A, Räuber S, Steffen F, Bittner S, Zipp F, Albrecht P, Ruck T, Hartung HP, Meuth SG, Pawlitzki M. Detecting ongoing disease activity in mildly affected multiple sclerosis patients under first-line therapies. Mult Scler Relat Disord 2022; 63:103927. [DOI: 10.1016/j.msard.2022.103927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
|
52
|
Kirsty CW, Mary H, Sumner J. Identify the report as a systematic review. Nutr Health 2022; 28:527-542. [PMID: 35254171 DOI: 10.1177/02601060221080240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: To examine the relationship of vitamin B12 and folate concentrations to cognitive function, fatigue measures, physical function, quality of life (patient-centred outcomes) and homocysteine plasma concentrations (intermediate marker of cobalamin and folate deficiency) for patients with Multiple Sclerosis (MS). Methods: Systematic searches for eligible articles of MEDLINE, CINAHL, EMBASE, Scopus, Web of Science and OpenGray databases were conducted from 1983 in March 2021. Heterogeneity, Weighted Mean Difference (WMD) and Confidence Intervals (CI) calculated using Random Effects Model. Results: Sixteen studies were included involving; 616 MS patients and 655 healthy controls. 14 of these had acceptable or better quality but there was high heterogeneity. No difference was found between MS, healthy controls for folate and cobalamin concentrations; WMD 0.00ug/L (95% CI: -0.01, 0.01) and WMD 7.01pmol/L (95% CI: -25.54, 39.55) respectively. MS group showed mild-to-moderate disability WMD was 2.78 (95% CI: 2.00, 3.56). MS may be associated with elevated plasma homocysteine concentrations on average 2.47µmol/L more than healthy controls. Discussion: Physical ability of MS group was worse than healthy controls, but there was no difference in folate and cobalamin concentrations. This suggests folate and cobalamin are not influential factors in worsening physical function. There may be an association between worse cognitive function, and increased homocysteine concentrations. Results were inconclusive due to high heterogeneity and limited number of studies. A core outcome set would enable easier synthesis of future results.
Collapse
Affiliation(s)
- Cummins-Williams Kirsty
- 62641University of Plymouth Faculty of Health and Human Sciences Ringgold standard institution, Peninsula Allied Health Centre Derriford Road, Plymouth PL4 8AA, UK of Great Britain and Northern Ireland
| | - Hickson Mary
- 62641University of Plymouth Faculty of Health and Human Sciences Ringgold standard institution, Peninsula Allied Health Centre Derriford Road, Plymouth PL4 8AA, UK of Great Britain and Northern Ireland
| | - Jonathan Sumner
- 62641University of Plymouth Faculty of Health and Human Sciences Ringgold standard institution, Peninsula Allied Health Centre Derriford Road, Plymouth PL4 8AA, UK of Great Britain and Northern Ireland
| |
Collapse
|
53
|
Xiang B, Brier MR, Kanthamneni M, Wen J, Snyder AZ, Yablonskiy DA, Cross AH. Tissue damage detected by quantitative gradient echo MRI correlates with clinical progression in non-relapsing progressive MS. Mult Scler 2022; 28:1515-1525. [PMID: 35196933 DOI: 10.1177/13524585211073761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Imaging biomarkers of progressive multiple sclerosis (MS) are needed. Quantitative gradient recalled echo (qGRE) magnetic resonance imaging (MRI) evaluates microstructural tissue damage in MS. OBJECTIVE To evaluate qGRE-derived R2t* as an imaging biomarker of MS progression compared with atrophy and lesion burden. METHODS Twenty-three non-relapsing progressive MS (PMS), 22 relapsing-remitting MS (RRMS), and 18 healthy control participants underwent standard MS physical and cognitive neurological assessments and imaging with qGRE, FLAIR, and MPRAGE at 3T. PMS subjects were tested clinically and imaged every 9 months over 45 months. Imaging measures included lesion burden, atrophy, and R2t* in cortical gray matter (GM), deep GM, and normal-appearing white matter (NAWM). Longitudinal analysis of clinical performance and imaging biomarkers in PMS subjects was conducted via linear models with subject as repeated, within-subject factor. Relationship between imaging biomarkers and clinical scores was assessed by Spearman rank correlation. RESULTS R2t* reductions correlated with neurological impairment cross-sectionally and longitudinally. PMS patients with clinically defined disease progression (N = 13) showed faster decrease of R2t* in NAWM and deep GM compared with the clinically stable PMS group (N = 10). Importantly, tissue damage measured by R2t* outperformed lesion burden and atrophy as a biomarker of progression during the study period. CONCLUSION qGRE-derived R2t* is a potential imaging biomarker of MS progression.
Collapse
Affiliation(s)
- Biao Xiang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew R Brier
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Manasa Kanthamneni
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA/School of Medicine, St. George's University, St. George, Grenada
| | - Jie Wen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA/Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Anne H Cross
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
54
|
Emery H, Padgett C, Ownsworth T, Honan CA. A systematic review of self-concept change in multiple sclerosis. Neuropsychol Rehabil 2022; 32:1774-1813. [PMID: 35168496 DOI: 10.1080/09602011.2022.2030367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Self-concept or sense of self is often altered in the context of neurological illness. Yet, these core aspects of subjective experience are poorly understood for people with multiple sclerosis (MS). This systematic review aimed to synthesize the findings of quantitative and qualitative studies investigating self-concept in MS. PsycINFO, MEDLINE (PubMed), CINAHL, Scopus, and Web of Science were last systematically searched in May 2021, with the Mixed Methods Appraisal Tool and Consolidated Criteria for Reporting Qualiatative Research used to appraise the quality of the eligible articles. Articles were included if they measured or explored self-concept in MS populations, were published in English and peer-reviewed. A total of 30 studies (11 quantitative, 19 qualitative) were identified. Quantitative studies were synthesized using a narrative approach, with results suggesting that MS is associated with some degree of self-concept change. Qualitative studies were synthesized using thematic synthesis, with results illustrating a complex process of self-concept change that is catalyzed by MS-related events and characterized by varying degrees of resistance to, or acknowledgement of, such changes. Future prospective longitudinal studies are needed to characterize the nature of self-concept change in MS using validated tools that measure relevant aspects of self-concept for the MS population.
Collapse
Affiliation(s)
- Holly Emery
- School of Psychological Sciences, University of Tasmania, Launceston, Australia
| | - Christine Padgett
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | - Tamara Ownsworth
- School of Applied Psychology, Griffith University, Mount Gravatt, Australia
| | - Cynthia A Honan
- School of Psychological Sciences, University of Tasmania, Launceston, Australia
| |
Collapse
|
55
|
Sabsabi S, Mikhael E, Jalkh G, Macaron G, Rensel M. Clinical Evaluation of Siponimod for the Treatment of Secondary Progressive Multiple Sclerosis: Pathophysiology, Efficacy, Safety, Patient Acceptability and Adherence. Patient Prefer Adherence 2022; 16:1307-1319. [PMID: 35637684 PMCID: PMC9148218 DOI: 10.2147/ppa.s221882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION A number of disease-modifying therapies have been approved for use in relapsing-remitting multiple sclerosis (MS) in the past two decades. However, only few treatment options are available for patients with secondary progressive multiple sclerosis (SPMS). Siponimod has recently been approved for use in patients with active forms of SPMS (who experience clinical relapses or new lesions on MRI superimposed on secondary progression independent of relapse activity). OBJECTIVE The aim of this article is to provide a comprehensive review on the mechanism of action, efficacy, safety, cost effectiveness and patient adherence with siponimod. METHODS We performed a PubMed search using the search terms: "siponimod", "secondary progressive multiple sclerosis", "sphingosine 1-phosphate modulators". Titles and abstract were screened and selected for relevance to the key section of this article. FINDINGS Siponimod is an oral sphingosine-1-phosphate receptor (S1PR) modulator with selectivity to S1PR-1 and 5. Modulation of this receptor on lymphocytes causes its internalization and degradation, preventing their egress from lymphoid tissues to the blood. In the pivotal Phase 3 randomized controlled trial EXPAND, siponimod was superior to placebo in reducing the risk of disability progression confirmed at 3 and 6 months, as well as the development of new MRI lesions and the rate of brain volume loss. Secondary analysis also showed a benefit on measures of cognitive functioning. The risk of lymphopenia and first-dose bradycardia appears to be lower with siponimod compared to non-selective S1P1R modulators. Different CYP2C9 genotypes affect the metabolism of siponimod; hence, genetic testing is required to adapt the titration and final dose accordingly. CONCLUSION Long-term extension and real-world studies will allow further evaluation of efficacy and safety in this population. Future research should focus on better defining SPMS, and identifying biomarkers of progression and outcome measures of treatment response in this category of patients.
Collapse
Affiliation(s)
- Sajida Sabsabi
- Department of Neurology, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Elio Mikhael
- Department of Internal Medicine, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Georges Jalkh
- Department of Neurology, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Gabrielle Macaron
- Department of Neurology, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Mary Rensel
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
- Correspondence: Mary Rensel, Email
| |
Collapse
|
56
|
Allanach JR, Farrell JW, Mésidor M, Karimi-Abdolrezaee S. Current status of neuroprotective and neuroregenerative strategies in multiple sclerosis: A systematic review. Mult Scler 2022; 28:29-48. [PMID: 33870797 PMCID: PMC8688986 DOI: 10.1177/13524585211008760] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Immune-mediated demyelination and consequent degeneration of oligodendrocytes and axons are hallmark features of multiple sclerosis (MS). Remyelination declines in progressive MS, causing permanent axonal loss and irreversible disabilities. Strategies aimed at enhancing remyelination are critical to attenuate disease progression. OBJECTIVE We systematically reviewed recent advances in neuroprotective and regenerative therapies for MS, covering preclinical and clinical studies. METHODS We searched three biomedical databases using defined keywords. Two authors independently reviewed articles for inclusion based on pre-specified criteria. The data were extracted from each study and assessed for risk of bias. RESULTS Our search identified 7351 studies from 2014 to 2020, of which 221 met the defined criteria. These studies reported 262 interventions, wherein 92% were evaluated in animal models. These interventions comprised protein, RNA, lipid and cellular biologics, small molecules, inorganic compounds, and dietary and physiological interventions. Small molecules were the most highly represented strategy, followed by antibody therapies and stem cell transplantation. CONCLUSION While significant strides have been made to develop regenerative treatments for MS, the current evidence illustrates a skewed representation of the types of strategies that advance to clinical trials. Further examination is thus required to address current barriers to implementing experimental treatments in clinical settings.
Collapse
Affiliation(s)
- Jessica R Allanach
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - John W. Farrell
- Department of Health and Human Performance, Texas State University, San Marcos, TX, USA
| | - Miceline Mésidor
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada/Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada/Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
57
|
Alsharidah MM, Uzair M, Alseneidi SS, Alkharan AA, Bunyan RF, Bashir S. The Role of Transcranial Magnetic Stimulation as a Surrogate Marker of Disease Activity in Patients with Multiple Sclerosis: A Literature Review. INNOVATIONS IN CLINICAL NEUROSCIENCE 2022; 19:8-14. [PMID: 35382066 PMCID: PMC8970240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a chronic, immune-mediated inflammatory disease of the central nervous system (CNS) characterized by demyelination, axonal degeneration, and cognitive impairment. It also has an important impact on the quality of life of patients and their family members. We sought to determine if transcranial magnetic stimulation (TMS) is a valid instrument for determining disease progression activity in patients with MS. METHODS A literature search of the PubMed database was conducted using the terms "multiple sclerosis," "transcranial magnetic stimulation," and "neurophysiological parameters." RESULTS Neurophysiological parameters, such as sensitivity to demyelination and the strength of excitatory and inhibitory synaptic interactions in the cerebral cortex, can be identified through TMS in patients affected by MS. These objective parameters can be correlated with the progression of disease and provide reliable indices for the severity of illness and the efficacy of drugs used to treat MS in clinical trials. CONCLUSION The discovery of specific and detailed neurophysiological parameters as surrogate endpoints for disease activity could represent an important step in clinical trials. Changes in cortical connectivity have already been demonstrated in MS, but in clinical practice, other measures are typically used to evaluate disease activity. We speculate that TMS might be more effective in identifying disease progression that leads to long-term disability, compared to standard surrogate markers, since it represents a direct measure of synaptic transmission(s) in MS.
Collapse
Affiliation(s)
- Muhannad M Alsharidah
- Drs. Alsharidah and Alseneidi are with the College of Medicine, King Saud University in Riyadh, Saudi Arabia
- Mr. Uzair is with the Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University in Islamabad, Pakistan
- Dr. Alkharan is with the College of Medicine, Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia
- Drs. Bunyan and Bashir are with the Neuroscience Center, King Fahad Specialist Hospital in Dammam, Saudi Arabia
| | - Mohammad Uzair
- Drs. Alsharidah and Alseneidi are with the College of Medicine, King Saud University in Riyadh, Saudi Arabia
- Mr. Uzair is with the Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University in Islamabad, Pakistan
- Dr. Alkharan is with the College of Medicine, Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia
- Drs. Bunyan and Bashir are with the Neuroscience Center, King Fahad Specialist Hospital in Dammam, Saudi Arabia
| | - Sarah S Alseneidi
- Drs. Alsharidah and Alseneidi are with the College of Medicine, King Saud University in Riyadh, Saudi Arabia
- Mr. Uzair is with the Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University in Islamabad, Pakistan
- Dr. Alkharan is with the College of Medicine, Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia
- Drs. Bunyan and Bashir are with the Neuroscience Center, King Fahad Specialist Hospital in Dammam, Saudi Arabia
| | - Afnan A Alkharan
- Drs. Alsharidah and Alseneidi are with the College of Medicine, King Saud University in Riyadh, Saudi Arabia
- Mr. Uzair is with the Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University in Islamabad, Pakistan
- Dr. Alkharan is with the College of Medicine, Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia
- Drs. Bunyan and Bashir are with the Neuroscience Center, King Fahad Specialist Hospital in Dammam, Saudi Arabia
| | - Reem Fahd Bunyan
- Drs. Alsharidah and Alseneidi are with the College of Medicine, King Saud University in Riyadh, Saudi Arabia
- Mr. Uzair is with the Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University in Islamabad, Pakistan
- Dr. Alkharan is with the College of Medicine, Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia
- Drs. Bunyan and Bashir are with the Neuroscience Center, King Fahad Specialist Hospital in Dammam, Saudi Arabia
| | - Shahid Bashir
- Drs. Alsharidah and Alseneidi are with the College of Medicine, King Saud University in Riyadh, Saudi Arabia
- Mr. Uzair is with the Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University in Islamabad, Pakistan
- Dr. Alkharan is with the College of Medicine, Princess Nourah Bint Abdulrahman University in Riyadh, Saudi Arabia
- Drs. Bunyan and Bashir are with the Neuroscience Center, King Fahad Specialist Hospital in Dammam, Saudi Arabia
| |
Collapse
|
58
|
Chaves AR, Kenny HM, Snow NJ, Pretty RW, Ploughman M. Sex-specific disruption in corticospinal excitability and hemispheric (a)symmetry in multiple sclerosis. Brain Res 2021; 1773:147687. [PMID: 34634288 DOI: 10.1016/j.brainres.2021.147687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a neurodegenerative disease in which pathophysiology and symptom progression presents differently between the sexes. In a cohort of people with MS (n = 110), we used transcranial magnetic stimulation (TMS) to investigate sex differences in corticospinal excitability (CSE) and sex-specific relationships between CSE and cognitive function. Although demographics and disease characteristics did not differ between sexes, males were more likely to have cognitive impairment as measured by the Montreal Cognitive Assessment (MoCA); 53.3% compared to females at 26.3%. Greater CSE asymmetry was noted in females compared to males. Females demonstrated higher active motor thresholds and longer silent periods in the hemisphere corresponding to the weaker hand which was more typical of hand dominance patterns in healthy individuals. Males, but not females, exhibited asymmetry of nerve conduction latency (delayed MEP latency in the hemisphere corresponding to the weaker hand). In males, there was also a relationship between delayed onset of ipsilateral silent period (measured in the hemisphere corresponding to the weaker hand) and MoCA, suggestive of cross-callosal disruption. Our findings support that a sex-specific disruption in CSE exists in MS, pointing to interhemispheric disruption as a potential biomarker of cognitive impairment and target for neuromodulating therapies.
Collapse
Affiliation(s)
- Arthur R Chaves
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Hannah M Kenny
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Nicholas J Snow
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Ryan W Pretty
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
59
|
Rizkallah M, Hefida M, Khalil M, Dawoud RM. Automated quantification of deep grey matter structures and white matter lesions using magnetic resonance imaging in relapsing remission multiple sclerosis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Brain volume loss (BVL) is widespread in MS and occurs throughout the disease course at a rate considerably greater than in the general population. In MS, brain volume correlates with and predicts future disability, making BVL a relevant measure of diffuse CNS damage leading to clinical disease progression, as well as serving as a useful outcome in evaluating MS therapies. The aim of our study was to evaluate the role of automated segmentation and quantification of deep grey matter structures and white matter lesions in Relapsing Remitting Multiple Sclerosis patients using MR images and to correlate the volumetric results with different degrees of disability based on expanded disability status scale (EDSS) scores.
Results
All the patients in our study showed relative atrophy of the thalamus and the putamen bilaterally when compared with the normal control group. Statistical analysis was significant for the thalamus and the putamen atrophy (P value < 0.05). On the other hand, statistical analysis was not significant for the caudate and the hippocampus (P value > 0.05); there was a significant positive correlation between the white matter lesions volume and EDSS scores (correlation coefficient of 0.7505). On the other hand, there was a significant negative correlation between the thalamus and putamen volumes, and EDSS scores (correlation coefficients < − 0.9), while the volumes of the caudate and the hippocampus had a very weak and non-significant correlation with the EDSS scores (correlation coefficients > − 0.35).
Conclusions
The automated segmentation and quantification tools have a great role in the assessment of brain structural changes in RRMS patients, and that it became essential to integrate these tools in the daily medical practice for the great value they add to the current evaluation measures.
Collapse
|
60
|
Walker CS, Berard JA, Walker LAS. Validation of Discrete and Regression-Based Performance and Cognitive Fatigability Normative Data for the Paced Auditory Serial Addition Test in Multiple Sclerosis. Front Neurosci 2021; 15:730817. [PMID: 34867152 PMCID: PMC8634595 DOI: 10.3389/fnins.2021.730817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022] Open
Abstract
Cognitive fatigability is an objective performance decrement that occurs over time during a task requiring sustained cognitive effort. Although cognitive fatigability is a common and debilitating symptom in multiple sclerosis (MS), there is currently no standard for its quantification. The objective of this study was to validate the Paced Auditory Serial Addition Test (PASAT) discrete and regression-based normative data for quantifying performance and cognitive fatigability in an Ontario-based sample of individuals with MS. Healthy controls and individuals with MS completed the 3″ and 2″ versions of the PASAT. PASAT performance was measured with total correct, dyad, and percent dyad scores. Cognitive fatigability scores were calculated by comparing performance on the first half (or third) of the task to the last half (or third). The results revealed that the 3″ PASAT was sufficient to detect impaired performance and cognitive fatigability in individuals with MS given the increased difficulty of the 2″ version. In addition, using halves or thirds for calculating cognitive fatigability scores were equally effective methods for detecting impairment. Finally, both the discrete and regression-based norms classified a similar proportion of individuals with MS as having impaired performance and cognitive fatigability. These newly validated discrete and regression-based PASAT norms provide a new tool for clinicians to document statistically significant cognitive fatigability in their patients.
Collapse
Affiliation(s)
| | | | - Lisa A. S. Walker
- Department of Psychology, Carleton University, Ottawa, ON, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- The University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
61
|
Fairless R, Bading H, Diem R. Pathophysiological Ionotropic Glutamate Signalling in Neuroinflammatory Disease as a Therapeutic Target. Front Neurosci 2021; 15:741280. [PMID: 34744612 PMCID: PMC8567076 DOI: 10.3389/fnins.2021.741280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Glutamate signalling is an essential aspect of neuronal communication involving many different glutamate receptors, and underlies the processes of memory, learning and synaptic plasticity. Despite neuroinflammatory diseases covering a range of maladies with very different biological causes and pathophysiologies, a central role for dysfunctional glutamate signalling is becoming apparent. This is not just restricted to the well-described role of glutamate in mediating neurodegeneration, but also includes a myriad of other influences that glutamate can exert on the vasculature, as well as immune cell and glial regulation, reflecting the ability of neurons to communicate with these compartments in order to couple their activity with neuronal requirements. Here, we discuss the role of pathophysiological glutamate signalling in neuroinflammatory disease, using both multiple sclerosis and Alzheimer's disease as examples, and how current steps are being made to harness our growing understanding of these processes in the development of neuroprotective strategies. This review focuses in particular on N-methyl-D-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methylisooxazol-4-yl) propionate (AMPA) type ionotropic glutamate receptors, although metabotropic, G-protein-coupled glutamate receptors may also contribute to neuroinflammatory processes. Given the indispensable roles of glutamate-gated ion channels in synaptic communication, means of pharmacologically distinguishing between physiological and pathophysiological actions of glutamate will be discussed that allow deleterious signalling to be inhibited whilst minimising the disturbance of essential neuronal function.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
62
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
63
|
Tripathi A, Pandit I, Perles A, Zhou Y, Cheng F, Dutta R. Identifying miRNAs in multiple sclerosis gray matter lesions that correlate with atrophy measures. Ann Clin Transl Neurol 2021; 8:1279-1291. [PMID: 33978322 PMCID: PMC8164853 DOI: 10.1002/acn3.51365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 03/27/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS). Though MS was initially considered to be a white matter demyelinating disease, myelin loss in cortical gray matter has been reported in all disease stages. We previously identified microRNAs (miRNAs) in white matter lesions (WMLs) that are detected in serum from MS patients. However, miRNA expression profiles in gray matter lesions (GMLs) from progressive MS brains are understudied. METHODS We used a combination of global miRNAs and gene expression profiling of GMLs and independent validation using real-time quantitative polymerase chain reaction (RT-qPCR), immuno-in situ hybridization, and immunohistochemistry. RESULTS Compared to matched myelinated gray matter (GM) regions, we identified 82 miRNAs in GMLs, of which 10 were significantly upregulated and 17 were significantly downregulated. Among these 82 miRNAs, 13 were also detected in serum and importantly were associated with brain atrophy in MS patients. The predicted target mRNAs of these miRNAs belonged to pathways associated with axonal guidance, TGF-β signaling, and FOXO signaling. Further, using state-of-the-art human protein-protein interactome network analysis, we mapped the four key GM atrophy-associated miRNAs (hsa-miR-149*, hsa-miR-20a, hsa-miR-29c, and hsa-miR-25) to their target mRNAs that were also changed in GMLs. INTERPRETATION Our study identifies miRNAs altered in GMLs in progressive MS brains that correlate with atrophy measures. As these miRNAs were also detected in sera of MS patients, these could act as markers of GML demyelination in MS.
Collapse
Affiliation(s)
- Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Ishani Pandit
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Aaron Perles
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Feixiong Cheng
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
64
|
Nishri Y, Fainstein N, Goldfarb S, Hampton D, Macrini C, Meinl E, Chandran S, Ben-Hur T. Modeling compartmentalized chronic immune-mediated demyelinating CNS disease in the Biozzi ABH mouse. J Neuroimmunol 2021; 356:577582. [PMID: 33910137 DOI: 10.1016/j.jneuroim.2021.577582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
We explored whether experimental autoimmune encephalomyelitis (EAE) in Biozzi mice recapitulates temporal dynamics of tissue injury, immune-pathogenesis and CNS compartmentalization occurring in progressive multiple sclerosis (MS). Chronic EAE exhibited relapsing and progressing disease, partial closure of BBB, reduced tissue inflammatory activity, and development of meningeal ectopic lymphoid tissue, directly opposing (potentially driving) spinal subpial demyelinated plaques. A T cell predominant disease during relapses transformed into a B cell predominant disease in late chronic EAE, with high serum anti-MOG reactivity. Thus, late chronic Biozzi EAE recapitulates essential features of progressive MS, and is suitable for developing disease modifying and regenerative therapies.
Collapse
Affiliation(s)
- Yossi Nishri
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nina Fainstein
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Smadar Goldfarb
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - David Hampton
- Centre for Clinical Brain Sciences, MS Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Caterina Macrini
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, MS Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Tamir Ben-Hur
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
65
|
Mosarrezaii Aghdam A, Rezaei S, Zarza Nalivan F, Babaie F, Amiri Nikpour MR, Torkamandi S. Downregulation of miR-125a-5p and miR-218-5p in Peripheral Blood Mononuclear Cells of Patients with Relapsing-Remitting Multiple Sclerosis. Immunol Invest 2021; 51:1149-1161. [PMID: 33866949 DOI: 10.1080/08820139.2021.1909616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the brain and spinal cord. Evidences have demonstrated that microRNAs (miRNAs) are involved in the pathological process of MS that may confer a valuable diagnostic biomarker for disease diagnosis, prognosis, and treatment. Hence, we assessed the expression pattern of miR-125a-5p and miR-218-5p in the peripheral blood mononuclear cells (PBMCs) of subjects with relapsing-remitting multiple sclerosis (RRMS). We recruited 50 RRMS patients and 50 age- and sex-matched healthy control subjects. PBMCs were isolated from the peripheral blood samples, RNA content was extracted, cDNA was synthesized, and finally expression level of miRNAs was determined using quantitative real-time PCR. Our data indicate significant downregulation of both miR-125a-5p and miR-218-5p in RRMS patients compared to healthy controls (P< .0001). The levels of both miRNAs were significantly downregulated in an age-dependent manner compared with consistent healthy control groups (30-40 years old P< .0001). Expression level of miR-218-5p was significantly changed in only female patients (Female group P< .0001; Male group P= .12). Receiver operating characteristic (ROC) curve data indicated that the expression levels of both miRNAs were able to discriminate RRMS patients from healthy subjects (P< .05). Moreover, bioinformatic enrichment analysis revealed that the target genes of these miRNAs had cardinal roles in the regulation of key biological pathways involved in the clinical course and pathogenesis of MS. Collectively, our results suggested that miR-125a-5p and miR-218-5p play a role in RRMS pathogenesis and have an age- and sex-dependent expression pattern in these patients.
Collapse
Affiliation(s)
- Arash Mosarrezaii Aghdam
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.,Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Fariba Zarza Nalivan
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.,Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Amiri Nikpour
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Torkamandi
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.,Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
66
|
Chaves AR, Snow NJ, Alcock LR, Ploughman M. Probing the Brain-Body Connection Using Transcranial Magnetic Stimulation (TMS): Validating a Promising Tool to Provide Biomarkers of Neuroplasticity and Central Nervous System Function. Brain Sci 2021; 11:384. [PMID: 33803028 PMCID: PMC8002717 DOI: 10.3390/brainsci11030384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method used to investigate neurophysiological integrity of the human neuromotor system. We describe in detail, the methodology of a single pulse TMS protocol that was performed in a large cohort of people (n = 110) with multiple sclerosis (MS). The aim was to establish and validate a core-set of TMS variables that predicted typical MS clinical outcomes: walking speed, hand dexterity, fatigue, and cognitive processing speed. We provide a brief and simple methodological pipeline to examine excitatory and inhibitory corticospinal mechanisms in MS that map to clinical status. Delayed and longer ipsilateral silent period (a measure of transcallosal inhibition; the influence of one brain hemisphere's activity over the other), longer cortical silent period (suggestive of greater corticospinal inhibition via GABA) and higher resting motor threshold (lower corticospinal excitability) most strongly related to clinical outcomes, especially when measured in the hemisphere corresponding to the weaker hand. Greater interhemispheric asymmetry (imbalance between hemispheres) correlated with poorer performance in the greatest number of clinical outcomes. We also show, not surprisingly, that TMS variables related more strongly to motor outcomes than non-motor outcomes. As it was validated in a large sample of patients with varying severities of central nervous system dysfunction, the protocol described herein can be used by investigators and clinicians alike to investigate the role of TMS as a biomarker in MS and other central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Michelle Ploughman
- L.A. Miller Centre, Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1A 1E5, Canada; (A.R.C.); (N.J.S.); (L.R.A.)
| |
Collapse
|
67
|
Yamazaki R, Ohno N, Huang JK. Acute motor deficit and subsequent remyelination-associated recovery following internal capsule demyelination in mice. J Neurochem 2021; 156:917-928. [PMID: 32750162 PMCID: PMC8048697 DOI: 10.1111/jnc.15142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by accumulated motor disability. However, whether remyelination promotes motor recovery following demyelinating injury remains unclear. Damage to the internal capsule (IC) is known to result in motor impairment in multiple sclerosis and stroke. Here, we induced focal IC demyelination in mice by lysophosphatidylcholine (LPC) injection, and examined its effect on motor behavior. We also compared the effect of LPC-induced IC damage to that produced by endothelin-1 (ET1), a potent vasoconstrictor used in experimental stroke lesions. We found that LPC or ET1 injections induced asymmetric motor deficit at 7 days post-lesion (dpl), and that both lesion types displayed increased microglia/macrophage density, myelin loss, and axonal dystrophy. The motor deficit and lesion pathology remained in ET1-injected mice at 28 dpl. In contrast, LPC-injected mice regained motor function by 28 dpl, with corresponding reduction in activated microglia/macrophage density, and recovery of myelin staining and axonal integrity in lesions. These results suggest that LPC-induced IC demyelination results in acute motor deficit and subsequent recovery through remyelination, and may be used to complement future drug screens to identify drugs for promoting remyelination.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Biology and Center for Cell ReprogrammingGeorgetown UniversityWashingtonDCUSA
- Division of Histology and Cell BiologyDepartment of AnatomySchool of MedicineJichi Medical UniversityShimotsukeJapan
| | - Nobuhiko Ohno
- Division of Histology and Cell BiologyDepartment of AnatomySchool of MedicineJichi Medical UniversityShimotsukeJapan
| | - Jeffrey K. Huang
- Department of Biology and Center for Cell ReprogrammingGeorgetown UniversityWashingtonDCUSA
| |
Collapse
|
68
|
Gan JH, Santorelli LA. Acupuncture in Post-Stroke Shoulder Pain Syndrome with Multiple Sclerosis: A Case Study. J Acupunct Meridian Stud 2021; 14:27-31. [DOI: 10.51507/j.jams.2021.14.1.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/04/2020] [Accepted: 12/28/2020] [Indexed: 11/03/2022] Open
Affiliation(s)
- Jia Hui Gan
- Haslemere Hospital, Royal Surrey NHS Foundation Trust, Surrey, United Kingdom
| | | |
Collapse
|
69
|
Khatri IA, Aljwair S, Alammar H, Altariq A, Masud N, Al Malik Y, Kojan S. Social Anxiety and Obsessive-Compulsive Disorder Are Common Among Persons With Multiple Sclerosis at King Abdulaziz Medical City, Riyadh. Cureus 2021; 13:e13619. [PMID: 33816018 PMCID: PMC8010157 DOI: 10.7759/cureus.13619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Multiple sclerosis (MS) is associated with a physical disability and disturbed psychosocial functioning in young people. Many psychological and psychiatric comorbidities have been reported in MS. Objective To determine the frequency of social anxiety disorder (SAD) and obsessive-compulsive disorder (OCD) among MS patients and their relation to MS severity. Methods A cross-sectional survey was conducted in an adult MS cohort. Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and Social Phobia Inventory (SPIN) were used to determine the presence and severity of OCD and SAD. The Statistical Package for the Social Sciences (SPSS) version 22 (IBM Corp., Armonk, NY) was used for statistical analysis. The Mann-Whitney U test and logistic regression were used to assess the association of the two diseases with the severity of MS. Results A total of 145 persons with MS (pwMS) were studied. The mean age was 33.5 (±8.5) years; the mean duration of MS was 7.2 (± 5.1) years. The majority (74.1%) were women; 57.3% were married; 63% had a college education; 50% belonged to the higher middle-class socioeconomic strata. Relapsing-remitting multiple sclerosis was the most common type of MS (92.2%). The mean Expanded Disability Status Scale (EDSS) score was 2.24 (±2.19). SAD was reported by 26.9%, and OCD was reported by 31% of the cohort. PwMS with walking difficulty but not wheelchair-bound had a statistically significant increased risk of SAD (p = 0.036). There was no direct association between MS-related disability and OCD. However, pwMS with SAD were more likely to have concomitant OCD (t=4.68, p-value <0.001, 95% CI: 0.47-1.16). Increasing disability was associated with higher chances of developing social anxiety and, in turn, OCD (t=3.39, p-value <0.001, 95% CI: 0.66-2.52). Conclusions Social anxiety and obsessive-compulsive disorders were present in nearly one-third of pwMS. Impaired walking but not wheelchair dependence was associated with social anxiety. PwMS with SAD were more likely to have obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Ismail A Khatri
- Neurology, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU.,Neurology, King Abdullah International Medical Research Center, Riyadh, SAU.,Division of Neurology, Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, SAU
| | - Sarah Aljwair
- Neurology, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | - Hajar Alammar
- Neurology, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | - Amjad Altariq
- Neurology, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | - Nazish Masud
- Medical Education, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Yaser Al Malik
- Neurology, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | - Suleiman Kojan
- Neurology, Oakland University William Beaumont School of Medicine, Royal Oak, USA
| |
Collapse
|
70
|
Alvarez E, Nair KV, Gorritz M, Bartolome L, Maloney H, Ding Y, Golan T, Wade RL, Kumar R, Su W, Shah R, Russo P. Identification and diagnosis of Secondary Progressive Multiple Sclerosis during the clinical encounter: Results from a physician survey. Mult Scler Relat Disord 2021; 50:102858. [PMID: 33799068 DOI: 10.1016/j.msard.2021.102858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/09/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND It is difficult to characterize the transition from relapsing-remitting multiple sclerosis (RRMS) to secondary progressive MS (SPMS), due to symptomatic variability across patients. Diagnosis of SPMS is prolonged and often established retrospectively, as it is based on patient clinical history and symptoms. This cross-sectional study aimed to identify MS neurologist reported clinical indicators deemed important in diagnosing SPMS in clinical practice. METHODS A web-based quantitative survey was conducted among MS-treating neurologists across the United States in January 2019. The questionnaire comprised of 17 questions evaluating primary clinical indicators used by neurologists in assessing patient progression to SPMS. Treatment approach and factors influencing treatment decision-making following SPMS diagnosis were also analyzed in the survey. RESULTS Overall, 300 neurologists completed the survey; most of the respondents were general MS-treating neurologists (63%) and from private care setting (58%). The overall respondents as well as MS-focused neurologists ranked patient history (45% and 42%, respectively) and patients' neurological exam (39% and 44%, respectively) as -primary clinical indicators of SPMS diagnosis. 57% of neurologists always or mostly switched disease modifying therapies after progression to SPMS, and mostly considered 3-6 months' assessment interval to diagnose SPMS. CONCLUSION The survey indicated that neurologists are able to recognize signs of SPMS within six months of symptomatic assessment. The diagnosis is primarily based on patient history among MS-treating neurologists. Therefore, continued education to neurologists may facilitate early diagnosis and timely introduction of effective treatment to manage the progression of SPMS.
Collapse
Affiliation(s)
- E Alvarez
- Rocky Mountain Multiple Sclerosis Center at the University of Colorado, Aurora, CO, USA
| | - K V Nair
- Rocky Mountain Multiple Sclerosis Center at the University of Colorado, Aurora, CO, USA
| | - M Gorritz
- IQVIA, Inc, Plymouth Meeting, PA, USA
| | - L Bartolome
- Thomas Jefferson University, Philadelphia, PA, USA
| | - H Maloney
- IQVIA, Inc, Plymouth Meeting, PA, USA
| | - Y Ding
- IQVIA, Inc, Plymouth Meeting, PA, USA
| | - T Golan
- IQVIA, Inc, Plymouth Meeting, PA, USA
| | - R L Wade
- IQVIA, Inc, Plymouth Meeting, PA, USA
| | - R Kumar
- IQVIA, Inc, Plymouth Meeting, PA, USA
| | - W Su
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - R Shah
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - P Russo
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
71
|
Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. U.S. FDA Approved Drugs from 2015-June 2020: A Perspective. J Med Chem 2021; 64:2339-2381. [PMID: 33617716 DOI: 10.1021/acs.jmedchem.0c01786] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present work, we report compilation and analysis of 245 drugs, including small and macromolecules approved by the U.S. FDA from 2015 until June 2020. Nearly 29% of the drugs were approved for the treatment of various types of cancers. Other major therapeutic areas of focus were infectious diseases (14%); neurological conditions (12%); and genetic, metabolic, and cardiovascular disorders (7-8% each). Itemization of the approved drugs according to the year of approval, sponsor, target, chemical class, major drug-metabolizing enzyme(s), route of administration/elimination, and drug-drug interaction liability (perpetrator or/and victim) is presented and discussed. An effort has been made to analyze the pharmacophores to identify the structural (e.g., aromatic, heterocycle, and aliphatic), elemental (e.g., boron, sulfur, fluorine, phosphorus, and deuterium), and functional group (e.g., nitro drugs) diversity among the approved drugs. Further, descriptor-based chemical space analysis of FDA approved drugs and several strategies utilized for optimizing metabolism leading to their discoveries have been emphasized. Finally, an analysis of drug-likeness for the approved drugs is presented.
Collapse
Affiliation(s)
- Priyadeep Bhutani
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre, Syngene International Limited, Bangalore 560099, India.,Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, India
| | - Nivethitha Raja
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre, Syngene International Limited, Bangalore 560099, India
| | - Namrata Bachhav
- 1015 E Cozza Drive # 12, Spokane Washington 99208, United States
| | - Prabhakar K Rajanna
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre, Syngene International Limited, Bangalore 560099, India
| | - Hemant Bhutani
- Pharmaceutical Development, Biocon Bristol-Myers Squibb R&D Centre, Bristol-Myers Squibb India Private Limited, Bangalore 560099, India
| | - Atish T Paul
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, India
| |
Collapse
|
72
|
Motor Sequence Learning across Multiple Sessions Is Not Facilitated by Targeting Consolidation with Posttraining tDCS in Patients with Progressive Multiple Sclerosis. Neural Plast 2021; 2021:6696341. [PMID: 33790962 PMCID: PMC7984928 DOI: 10.1155/2021/6696341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Compared to relapsing-remitting multiple sclerosis (MS), progressive MS is characterized by a lack of spontaneous recovery and a poor response to pharmaceutical immunomodulatory treatment. These patients may, therefore, particularly benefit from interventions that augment training-induced plasticity of the central nervous system. In this cross-sectional double-blind cross-over pilot study, effects of transcranial direct current stimulation (tDCS) on motor sequence learning were examined across four sessions on days 1, 3, 5, and 8 in 16 patients with progressive MS. Active or sham anodal tDCS of the primary motor cortex was applied immediately after each training session. Participants took part in two experiments separated by at least four weeks, which differed with respect to the type of posttraining tDCS (active or sham). While task performance across blocks of training and across sessions improved significantly in both the active and sham tDCS experiment, neither online nor offline motor learning was modulated by the type of tDCS. Accordingly, the primary endpoint (task performance on day 8) did not differ between stimulation conditions. In sum, patients with progressive MS are able to improve performance in an ecologically valid motor sequence learning task through training. However, even multisession posttraining tDCS fails to promote motor learning in progressive MS.
Collapse
|
73
|
Activation of FXR by ganoderic acid A promotes remyelination in multiple sclerosis via anti-inflammation and regeneration mechanism. Biochem Pharmacol 2021; 185:114422. [PMID: 33482151 DOI: 10.1016/j.bcp.2021.114422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS), as an inflammatory demyelinating disorder of central nervous system, is the leading cause of non-traumatic neurologic disability in young adults. The pathogenesis of MS remains unknown, however, a dysregulation of glia-neuroimmune signaling plays a key role during progressive disease stage. Most of the existing drugs are aimed at the immune system, but there is no approved drug by promoting remyelination after demyelination so far. There is a great interest in identifying novel agents for treating MS bytargeting to switch the immune imbalance from pro-inflammation and apoptosis to anti-inflammation and regeneration during remyelination phase. Here, we reported that ganoderic acid A (GAA) significantly enhanced the remyelination and rescued motor deficiency in two animal models of MS, including cuprizone-induced demyelination and myelin oligodendrocyte glycoprotein (MOG) 35-55-induced experimental autoimmune encephalomyelitis model. In these two independent MS animal models, GAA modulated neuroimmune to enhance the anti-inflammatory and regeneration markers IL-4 and BDNF, inhibited inflammatory markers IL-1β and IL-6, followed by down-regulation of microglia activation and astrocyte proliferation. Pharmacological and genetic ablation of farnesoid-X-receptor (FXR) abolished GAA-induced remyelination and restoration of motor deficiency in MS mice. Thus, GAA is a novel and potential therapeutic agent that can rescue MS neuroimmune imbalance and remyelination through an FXR receptor-dependent mechanism. Clinical investigation on the therapeutic effect of GAA in improving remyelination of the MS patients to rescue the motor function is warranted.
Collapse
|
74
|
Sex differences in EAE reveal common and distinct cellular and molecular components. Cell Immunol 2021; 359:104242. [PMID: 33190849 PMCID: PMC7770093 DOI: 10.1016/j.cellimm.2020.104242] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is commonly used as an animal model for evaluating clinical, histological and immunological processes potentially relevant to the human disease multiple sclerosis (MS), for which the mode of disease induction remains largely unknown. An important caveat for interpreting EAE processes in mice is the inflammatory effect of immunization with myelin peptides emulsified in Complete Freund's Adjuvant (CFA), often followed by additional injections of pertussis toxin (Ptx) in some strains to induce EAE. The current study evaluated clinical, histological, cellular (spleen), and chemokine-driven processes in spinal cords of male vs. female C57BL/6 mice that were immunized with mouse (m)MOG-35-55/CFA/Ptx to induce EAE; immunized with saline/CFA/Ptx only (CFA, no EAE); or were untreated (Naïve, no EAE). Analysis of response curves utilized a rigorous and sophisticated methodology to parse and characterize the effects of EAE and adjuvant alone vs. the Naive baseline responses. The results demonstrated stronger pro-inflammatory responses of immune cells and their associated cytokines, chemokines, and receptors in male vs. female CFA and EAE mice that appeared to be offset partially by increased percentages of male anti-inflammatory, regulatory and checkpoint T cell, B cell, and monocyte/macrophage subsets. These sex differences in peripheral immune responses may explain the reduced cellular infiltration and differing chemokine profiles in the Central Nervous System (CNS) of male vs. female CFA immunized mice and the reduced CNS infiltration and demyelination observed in male vs. female EAE groups of mice that ultimately resulted in the same clinical EAE disease severity in both sexes. Our findings suggest EAE disease severity is governed not only by the degree of CNS infiltration and demyelination, but also by the balance of pro-inflammatory vs. regulatory cell types and their secreted cytokines and chemokines.
Collapse
|
75
|
Sá MJ, Soares Dos Reis R, Altintas A, Celius EG, Chien C, Comi G, Graus F, Hillert J, Hobart J, Khan G, Kissani N, Langdon D, Leite MI, Okuda DT, Palace J, Papais-Alvarenga RM, Mendes-Pinto I, Shi FD. State of the Art and Future Challenges in Multiple Sclerosis Research and Medical Management: An Insight into the 5th International Porto Congress of Multiple Sclerosis. Neurol Ther 2020; 9:281-300. [PMID: 32666470 PMCID: PMC7606370 DOI: 10.1007/s40120-020-00202-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
The 5th International Porto Congress of Multiple Sclerosis took place between the 14th and 16th of February 2019 in Porto, Portugal. Its intensive programme covered a wide-range of themes-including many of the hot topics, challenges, pitfalls and yet unmet needs in the field of multiple sclerosis (MS)-led by a number of well-acknowledged world experts. This meeting review summarizes the talks that took place during the congress, which focussed on issues in MS as diverse as the development and challenges of progressive MS, epidemiology, differential diagnosis, medical management, molecular research and imaging tools.
Collapse
Affiliation(s)
- María José Sá
- Department of Neurology, Centro Hospitalar Universitário de São João, Alameda Prof. Hernáni Monteiro, Porto, Portugal.
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, Porto, Portugal.
| | - Ricardo Soares Dos Reis
- Department of Neurology, Centro Hospitalar Universitário de São João, Alameda Prof. Hernáni Monteiro, Porto, Portugal.
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Ayse Altintas
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| | - Elisabeth Gulowsen Celius
- Department of Neurology, Oslo University Hospital, Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Claudia Chien
- NeuroCure Clinical Research Center, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giancarlo Comi
- Department of Neurology, University Vita-Salute San Raffaele, Milan, Italy
| | - Francesc Graus
- Department of Neurology, August Pi i Sunyer Biomedical Research Institute (IDIBAPS) Hospital Clínic, Barcelona, Spain
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jeremy Hobart
- Department of Neurology, University Hospitals Plymouth, Plymouth, UK
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Najib Kissani
- Neurology Department, Marrakech University Hospital Mohammed VI, Marrakech, Morocco
- Neuroscience Research Laboratory, Marrakesh Medical School, Cadi Ayyad University, Marrakech, Morocco
| | - Dawn Langdon
- Department of Psychology, Royal Holloway, University of London, London, UK
| | - Maria Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | | | - Fu-Dong Shi
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
76
|
Sun Y, Yang Y, Wang Z, Jiang F, Chen Z, Wang Z. Ozanimod for Treatment of Relapsing-Remitting Multiple Sclerosis in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2020; 11:589146. [PMID: 33658933 PMCID: PMC7919188 DOI: 10.3389/fphar.2020.589146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Ozanimod has been approved for use in the treatment of relapsing forms of multiple sclerosis by the United States FDA. As a novel, orally available sphingosine 1-phosphate receptor modulator, ozanimod selectively binds to S1P1 and S1P5 receptor with high affinity, minimizing safety concerns caused by S1P3 receptor activation. Methods: e systematically searched PUBMED, EMBASE database, and Cochrane Library database to identify randomized controlled trials (RCTs) from inception to June 28, 2020. Trials were considered eligible if they 1) were randomized clinical trials (RCTs); 2) enrolled adult participants diagnosed with Relapsing-remitting MS; 3) compared ozanimod with placebo or any other approved DMDs that evaluated in phase III or phase II clinical trials; 4) enrolled over 100 participants; 5) provided any available information for predefined primary or secondary outcomes. Results: 2917 participants from three high-quality, multi-centered randomized clinical trials were pooled in our analysis. We found that using ozanimod was significantly associated with the reduction of the annualized relapse rate during the treatment period (RR, −0.10 [95% CI, −0.15, −0.06]). Also, the decreased number of gadolinium-enhancing lesions at the end of the trial was relative to the treatment of ozanimod (ozanimod, 0.29; control, 0.65; RR, −0.20 [95% CI, −0.34, −0.06]). Compared with patients in the control group, the number of new or enlarging T2 lesions over the treatment period decreased in patients treated with ozanimod (ozanimod, 1.82; control, 3.55; RR, −1.12 [95% CI, −1.52, −0.71]). As to the safety endpoints, patients in the ozanimod group reported a lower rate of adverse events (ozanimod, 66.03%; control, 77.07%; RR, 0.64 [95% CI, 0.43, 0.95]). Similar incidence of infection-related TEAEs was found across treatment groups (nasopharyngitis: ozanimod, 11.19%; control, 9.83%; RR, 1.10 [95% CI, 0.77–1.57]; urinary-tract infection: ozanimod, 3.81%; control, 2.97%; RR, 1.29 [95% CI, 0.83–2.00]). No case of macular edema was noted as well as second-degree, type 2, or third-degree atrioventricular block. As for the subgroup analysis, compared with 0.5 mg ozanimod, 1 mg ozanimod is related with a significant reduction of the annualized relapse rate during the treatment period (1 mg ozanimod, 0.18; 0.5 mg ozanimod, 0.24; RR, 0.05 [95% CI, 0.01, 0.09])and a decreased number of new or enlarging T2 lesions over the treatment period (1 mg ozanimod,1.58; 0.5 mg ozanimod, 2.05; RR, 0.49 [95% CI, 0.19, 0.79]). No significant difference in causing adverse events between 1 and 0.5 mg was found. Conclusions: Our meta-analysis found that, with favorable safety performance, the use of ozanimod as a treatment of relapsing-remitting multiple sclerosis in adults was associated with a significant reduction of the annualized relapse rate during the treatment period, decreased number of gadolinium-enhancing lesions at the end of the trial, and lowered number of new or enlarging T2 lesions over the treatment period. Ozanimod 1 mg outperformed 0.5 mg dose in efficacy without increasing the risk of adverse events.
Collapse
Affiliation(s)
- Yue Sun
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Yanbo Yang
- First Clinical Medical School of Soochow University, Suzhou, China
| | - Zilan Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fan Jiang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
77
|
Misrielal C, Mauthe M, Reggiori F, Eggen BJL. Autophagy in Multiple Sclerosis: Two Sides of the Same Coin. Front Cell Neurosci 2020; 14:603710. [PMID: 33328897 PMCID: PMC7714924 DOI: 10.3389/fncel.2020.603710] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex auto-immune disorder of the central nervous system (CNS) that involves a range of CNS and immune cells. MS is characterized by chronic neuroinflammation, demyelination, and neuronal loss, but the molecular causes of this disease remain poorly understood. One cellular process that could provide insight into MS pathophysiology and also be a possible therapeutic avenue, is autophagy. Autophagy is an intracellular degradative pathway essential to maintain cellular homeostasis, particularly in neurons as defects in autophagy lead to neurodegeneration. One of the functions of autophagy is to maintain cellular homeostasis by eliminating defective or superfluous proteins, complexes, and organelles, preventing the accumulation of potentially cytotoxic damage. Importantly, there is also an intimate and intricate interplay between autophagy and multiple aspects of both innate and adaptive immunity. Thus, autophagy is implicated in two of the main hallmarks of MS, neurodegeneration, and inflammation, making it especially important to understand how this pathway contributes to MS manifestation and progression. This review summarizes the current knowledge about autophagy in MS, in particular how it contributes to our understanding of MS pathology and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Chairi Misrielal
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mario Mauthe
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Fulvio Reggiori
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J L Eggen
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
78
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Harisa GI, Al-Hamamah MA, Mahmoud MA, Bakheet SA. The MAP kinase inhibitor PD98059 reduces chromosomal instability in the autoimmune encephalomyelitis SJL/J-mouse model of multiple sclerosis. Mutat Res 2020; 861-862:503278. [PMID: 33551096 DOI: 10.1016/j.mrgentox.2020.503278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS), a disease in which the immune system attacks nerve cells, has been associated with both genetic and environmental risk factors. We observed increased micronucleus (MN) formation in SJL/J mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Most of these MN were due to chromosomal loss. Increased activation of MAP kinases, which leads to disruption of the mitotic spindle and improper segregation of chromosomes, is associated with MS. MAP kinase inhibitors, such as PD98059, may therefore be beneficial for MS. In the EAE model, PD98059 treatment reduced adverse effects, including MN formation, lipid peroxidation, and GSH oxidation. Interventions that mitigate chromosomal instability may have therapeutic value in MS.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, Saudi Arabia.
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, Saudi Arabia
| | | | | | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
79
|
Rahmani S, Noorolyai S, Ayromlou H, Khaze Shahgoli V, Shanehbandi D, Baghbani E, Abdoli Shadbad M, Jigari-Asl F, Khamiriyan M, Safaralizadeh R, Baradaran B. The expression analyses of RMRP, DDX5, and RORC in RRMS patients treated with different drugs versus naïve patients and healthy controls. Gene 2020; 769:145236. [PMID: 33068674 DOI: 10.1016/j.gene.2020.145236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/22/2023]
Abstract
Although T helper 17 (Th17) lymphocytes protect mucosal barriers against infections, they have been implicated in the development of multiple sclerosis (MS). RORC and DDX5 can regulate Th17 differentiation and the development of MS. Since RMRP, as a long non-coding RNA (lncRNA), can mediate the RORC-DDX5 complex, this lncRNA can be involved in developing MS. This study investigated the expression levels of RORC, DDX5, and RMRP in treatment-naïve relapsing-remitting multiple sclerosis (RRMS) patients, healthy controls, and RRMS patients treated with IFNβ-1α or fingolimod, or dimethyl fumarate (DMF), or glatiramer acetate (GA). There was substantial up-regulation in the expression of RORC, DDX5, and RMRP in treatment-naïve RRMS patients compared to healthy controls. Among the comparisons of their expressions in the different groups of treated patients with treatment-naïve patients, only the down-regulation of the RMRP expression level was significant in IFNβ-1α-treated patients. Also, these changes were more pronounced in female patient groups. Our analyses have highlighted the high diagnostic value of RORC, DDX5, and RMRP in treatment-naïve RRMS patients. Furthermore, RMRP has demonstrated moderate positive correlations with the expression of DDX5 and RORC in treated RRMS patients.
Collapse
Affiliation(s)
- Shima Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farinaz Jigari-Asl
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Khamiriyan
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
80
|
Esmaeil Amini M, Shomali N, Bakhshi A, Rezaei S, Hemmatzadeh M, Hosseinzadeh R, Eslami S, Babaie F, Aslani S, Torkamandi S, Mohammadi H. Gut microbiome and multiple sclerosis: New insights and perspective. Int Immunopharmacol 2020; 88:107024. [PMID: 33182024 DOI: 10.1016/j.intimp.2020.107024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The human gastrointestinal microbiota, also known as the gut microbiota living in the human gastrointestinal tract, has been shown to have a significant impact on several human disorders including rheumatoid arthritis, diabetes, obesity, and multiple sclerosis (MS). MS is an inflammatory disease characterized by the destruction of the spinal cord and nerve cells in the brain due to an attack of immune cells, causing a wide range of harmful symptoms related to inflammation in the central nervous system (CNS). Despite extensive studies on MS that have shown that many external and genetic factors are involved in its pathogenesis, the exact role of external factors in the pathophysiology of MS is still unclear. Recent studies on MS and experimental autoimmune encephalomyelitis (EAE), an animal model of encephalitis, have shown that intestinal microbiota may play a key role in the pathogenesis of MS. Therefore, modification of the intestinal microbiome could be a promising strategy for the future treatment of MS. In this study, the characteristics of intestinal microbiota, the relationship between intestine and brain despite the blood-brain barrier, various factors involved in intestinal microbiota modification, changes in intestinal microbial composition in MS, intestinal microbiome modification strategies, and possible use of intestinal microbiome and factors affecting it have been discussed.
Collapse
Affiliation(s)
- Mohammad Esmaeil Amini
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Bakhshi
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements & Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Babaie
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
81
|
Bianchi VE, Rizzi L, Bresciani E, Omeljaniuk RJ, Torsello A. Androgen Therapy in Neurodegenerative Diseases. J Endocr Soc 2020; 4:bvaa120. [PMID: 33094209 PMCID: PMC7568521 DOI: 10.1210/jendso/bvaa120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington disease, are characterized by the loss of neurons as well as neuronal function in multiple regions of the central and peripheral nervous systems. Several studies in animal models have shown that androgens have neuroprotective effects in the brain and stimulate axonal regeneration. The presence of neuronal androgen receptors in the peripheral and central nervous system suggests that androgen therapy might be useful in the treatment of neurodegenerative diseases. To illustrate, androgen therapy reduced inflammation, amyloid-β deposition, and cognitive impairment in patients with AD. As well, improvements in remyelination in MS have been reported; by comparison, only variable results are observed in androgen treatment of PD. In ALS, androgen administration stimulated motoneuron recovery from progressive damage and regenerated both axons and dendrites. Only a few clinical studies are available in human individuals despite the safety and low cost of androgen therapy. Clinical evaluations of the effects of androgen therapy on these devastating diseases using large populations of patients are strongly needed.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, Falciano, San Marino
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
82
|
Salavisa M, Paixão P, Ladeira AF, Mendes A, Correia AS, Viana JF, Viana-Baptista M. Prognostic value of kappa free light chains determination in first-ever multiple sclerosis relapse. J Neuroimmunol 2020; 347:577355. [PMID: 32795735 DOI: 10.1016/j.jneuroim.2020.577355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 02/02/2023]
Abstract
Given its highly variable clinical course, an unmet need for objective prognostic assessment in Multiple Sclerosis (MS) persists. In this work, we suggest that CSF kappa free light chains (KFLC) determination at first relapse may provide insight into future disease activity and disability worsening. We quantified KFLC by nephelometry in paired CSF/serum samples of 28 patients, collected within one month of first-ever MS relapse, and explored correlations with clinical data on disease activity, retrospectively registered across a median follow-up time of 79 months. We documented KFLC ratio (CSF-FKLC/Serum-KFLC) as an independent predictor of second relapse occurrence and disability worsening at follow-up, in this cohort.
Collapse
Affiliation(s)
- Manuel Salavisa
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Portugal.
| | - Pedro Paixão
- Clinical Pathology Department, Hospital São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, Portugal
| | - Ana Filipa Ladeira
- Neurology Department, Hospital dos Capuchos, Centro Hospitalar Lisboa Central, Portugal
| | - Alexandra Mendes
- Clinical Pathology Department, Hospital São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, Portugal
| | - Ana Sofia Correia
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Portugal; NOVA Medical School, Universidade Nova de Lisboa, Portugal
| | - João Faro Viana
- Clinical Pathology Department, Hospital São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, Portugal; NOVA Medical School, Universidade Nova de Lisboa, Portugal
| | - Miguel Viana-Baptista
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Portugal; NOVA Medical School, Universidade Nova de Lisboa, Portugal
| |
Collapse
|
83
|
Gilli F, DiSano KD, Pachner AR. SeXX Matters in Multiple Sclerosis. Front Neurol 2020; 11:616. [PMID: 32719651 PMCID: PMC7347971 DOI: 10.3389/fneur.2020.00616] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). An interesting feature that this debilitating disease shares with many other inflammatory disorders is that susceptibility is higher in females than in males, with the risk of MS being three times higher in women compared to men. Nonetheless, while men have a decreased risk of developing MS, many studies suggest that males have a worse clinical outcome. MS exhibits an apparent sexual dimorphism in both the immune response and the pathophysiology of the CNS damage, ultimately affecting disease susceptibility and progression differently. Overall, women are predisposed to higher rates of inflammatory relapses than men, but men are more likely to manifest signs of disease progression and worse CNS damage. The observed sexual dimorphism in MS may be due to sex hormones and sex chromosomes, acting in parallel or combination. In this review, we outline current knowledge on the sexual dimorphism in MS and discuss the interplay of sex chromosomes, sex hormones, and the immune system in driving MS disease susceptibility and progression.
Collapse
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | | | | |
Collapse
|
84
|
Xie Y, Tian Z, Han F, Liang S, Gao Y, Wu D. Factors associated with relapses in relapsing-remitting multiple sclerosis: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20885. [PMID: 32629678 PMCID: PMC7337585 DOI: 10.1097/md.0000000000020885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The relapse is character of relapsing-remitting multiple sclerosis. The therapeutic goal is to reduce the risk of relapse. Factors associated with relapses can help to manage and prevent relapses. In addition, patients and doctors all pay attention to it. However, there are differences between studies. Our aim is to summarize factors associated with relapses in relapsing-remitting multiple sclerosis (RRMS). METHODS PubMed, EMBASE, Web of science, Cochrane library, CNKI, Wanfang, SinoMed, and VIP were searched to identify risk factors about relapses in RRMS, which should be in cohort or case-control studies. This article was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The quality of studies was evaluated by the Newcastle-Ottawa Scale (NOS). Meta-analysis, subgroup and sensitivity analyses, and publication bias were all performed with Stata. This research has been registered on the international prospective register of systematic reviews (PROSPERO, CRD42019120502). RESULTS 43 articles were included. Infection, postpartum period, risk gene, stress, and vitamin D were risk factors for relapses in RRMS. Pregnancy period was the protective factor. Among those, infection increased the risk of relapses in infection period (relative risk [RR], 2.07 [confidence interval (CI), 1.64 to 2.60]). Women in the postpartum period increased the risk of relapses compared with women before pregnancy (RR, 1.43 [CI, 1.19 to 1.72]), or women in pregnancy period (RR, 2.07 [CI, 1.49 to 2.88]). Women in the pregnancy period decreased the risk of relapses (RR, 0.56 [CI, 0.37 to 0.84]) compared with women before pregnancy. However, fewer studies, heterogeneity, and sample size were the limitations. CONCLUSION It is reliable to adopt results about infection, pregnancy period, and postpartum period.
Collapse
Affiliation(s)
- Yao Xie
- Department of Neurology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha
- Department of Neurology, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine
| | - Ziyu Tian
- Department of Neurology, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine
| | - Fang Han
- Office of Academic Research, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing
| | - Shibing Liang
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine
- College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine
| | - Dahua Wu
- Department of Neurology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha
| |
Collapse
|
85
|
Chrobok NL, Bol JGJM, Wilhelmus MMM, Drukarch B, van Dam AM. Tissue Transglutaminase Appears in Monocytes and Macrophages but Not in Lymphocytes in White Matter Multiple Sclerosis Lesions. J Neuropathol Exp Neurol 2020; 78:492-500. [PMID: 31058279 PMCID: PMC6524631 DOI: 10.1093/jnen/nlz030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Leukocyte infiltration is an important pathological hallmark of multiple sclerosis (MS) and is therefore targeted by current MS therapies. The enzyme tissue transglutaminase (TG2) contributes to monocyte/macrophage migration and is present in MS lesions and could be a potential therapeutic target. We examined the cellular identity of TG2-expressing cells by immunohistochemistry in white matter lesions of 13 MS patients; 9 active and chronic active lesions from 4 patients were analyzed in detail. In these active MS lesions, TG2 is predominantly expressed in leukocytes (CD45+) but not in cells of the lymphocyte lineage, that is, T cells (CD3+) and B cells (CD20+). In general, cells of the monocyte/macrophage lineage (CD11b+ or CD68+) are TG2+ but no further distinction could be made regarding pro- or anti-inflammatory macrophage subtypes. In conclusion, TG2 is abundantly present in cells of the monocyte/macrophage lineage in active white matter MS lesions. We consider that TG2 can play a role in MS as it is associated with macrophage infiltration into the CNS. As such, TG2 potentially presents a novel target for therapeutic intervention that can support available MS therapies targeting lymphocyte infiltration.
Collapse
Affiliation(s)
- Navina L Chrobok
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - John G J M Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Benjamin Drukarch
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
86
|
Chaves AR, Devasahayam AJ, Riemenschneider M, Pretty RW, Ploughman M. Walking Training Enhances Corticospinal Excitability in Progressive Multiple Sclerosis-A Pilot Study. Front Neurol 2020; 11:422. [PMID: 32581998 PMCID: PMC7287174 DOI: 10.3389/fneur.2020.00422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Inflammatory lesions and neurodegeneration lead to motor, cognitive, and sensory impairments in people with multiple sclerosis (MS). Accumulation of disability is at least partially due to diminished capacity for neuroplasticity within the central nervous system. Aerobic exercise is a potentially important intervention to enhance neuroplasticity since it causes upregulation of neurotrophins and enhances corticospinal excitability, which can be probed using single-pulse transcranial magnetic stimulation (TMS). Whether people with progressive MS who have accumulated substantial disability could benefit from walking rehabilitative training to enhance neuroplasticity is not known. Objective: We aimed to determine whether 10 weeks of task-specific walking training would affect corticospinal excitability over time (pre, post, and 3-month follow-up) among people with progressive MS who required walking aids. Results: Eight people with progressive MS (seven female; 29–74 years old) with an Expanded Disability Status Scale of 6–6.5 underwent harness-supported treadmill walking training in a temperature controlled room at 16°C (10 weeks; three times/week; 40 min at 40–65% heart rate reserve). After training, there was significantly higher corticospinal excitability in both brain hemispheres, reductions in TMS active motor thresholds, and increases in motor-evoked potential amplitudes and slope of the recruitment curve (REC). Decreased intracortical inhibition (shorter cortical silent period) after training was noted in the hemisphere corresponding to the stronger hand only. These effects were not sustained at follow-up. There was a significant relationship between increases in corticospinal excitability (REC, area under the curve) in the hemisphere corresponding to the stronger hand and lessening of both intensity and impact of fatigue on activities of daily living (Fatigue Severity Scale and Modified Fatigue Impact Scale, respectively). Conclusion: Our pilot results support that vigorous treadmill training can potentially improve neuroplastic potential and mitigate symptoms of the disease even among people who have accumulated substantial disability due to MS.
Collapse
Affiliation(s)
- Arthur R Chaves
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Augustine J Devasahayam
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Morten Riemenschneider
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ryan W Pretty
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
87
|
Al Turaiki AM, Al Ammari MA, Alabdulkarim DA, Althemery AU. Assessment of safety and effectiveness of oral multiple sclerosis medication. Saudi Med J 2020; 40:1116-1122. [PMID: 31707408 PMCID: PMC6901776 DOI: 10.15537/smj.2019.11.24630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To assess the effectiveness and safety profile of the new disease modifying drugs (fingolimod, teriflunomide, and dimethyl fumarate) at a local hospital in Riyadh, Saudi Arabia. METHODS This is a retrospective cohort, where institutional review board approval was granted in December 2015. The study was conducted at King Abdulaziz Medical City Research Center, Riyadh, Saudi Arabia. Demographic variables (age, gender, disease onset, and duration on medication), clinical variables (medication side effects and radiological findings), in addition to relapse frequency per year was collected. RESULTS Fifty-seven patients' records were retrieved from the pharmacy and included in the analysis. Eight patients were on teriflunomide, 5 patients on dimethyl fumarate and 44 patients on fingolimod were enrolled. The patients' average age was 32.5 years with female gender representing 63% the study population. Annual relapse rates were 0.24, 0.34, and 0.5 per patient per year for those taking fingolimod, dimethyl fumarate, and teriflunomide, correspondingly, lymphopenia (91.4%), neutropenia (23%), and bradycardia (16%) were the most reported side effects for fingolimod therapy. CONCLUSION The study results were able to capture the effectiveness rate for the targeted treatment in the studied population, with the frequency of incidence of side effects. However, as these results cannot be generalized for the entire Saudi population.
Collapse
Affiliation(s)
- Abdulrahman M Al Turaiki
- Pharmaceutical Care Services, Ministry of the National Guard- Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | |
Collapse
|
88
|
Uzdil Z, Kaya S, Sökülmez Kaya P, Terzi M, Dünder E. The Effectiveness of New Adiposity Indices on Plasma Lipid Profile in Patients with Multiple Sclerosis: A Cross-Sectional Study with A Body Shape Index, Body Roundness Index, and Visceral Adiposity Index. Mult Scler Relat Disord 2020; 43:102214. [PMID: 32470861 DOI: 10.1016/j.msard.2020.102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This study aimed to determine the effectiveness of three different indices used to identify the effect of visceral adiposity on lipid profile markers in patients with multiple sclerosis. METHODS The study consisted of a total of 152 patients with relapsing-remitting multiple sclerosis who were aged 18 years and older. High-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), total cholesterol (TC), and triglyceride (TG) were accessed from the patient system. Patients' height, body weight, waist circumference, and hip circumference measurements were also obtained. The effects of three different adiposity indices, including A Body Shape Index (ABSI), the Body Roundness Index (BRI), and the Visceral Adiposity Index (VAI), on plasma lipid profile in multiple sclerosis patients were evaluated. The data were analyzed using the R software and SPSS 21 statistical software package. RESULTS HDL-c was impacted by ABSI and VAI in males and only VAI in females (p < 0.05). An increase of 0.01 units of ABSI in males led to an increase of 5.88 mg/dL in plasma HDL-c level. In male patients with multiple sclerosis, LDL-c was positively affected by BRI and VAI changes (p < 0.05). One unit increase in BRI in males increased LDL-c level by 5.56 mg/dL, whereas 1 unit increase in VAI increased LDL-c level by 3.52 mg/dL (p < 0.05). CONCLUSION This study indicated that these three different indices employed to evaluate adiposity were associated with plasma lipid profile. The effect of VAI on plasma lipids is higher than that of the other indices. In patients with multiple sclerosis, the use of these practical and non-invasive indices will be useful in assessing plasma lipid profile.
Collapse
Affiliation(s)
- Zeynep Uzdil
- Ondokuz Mayıs University, Faculty of Health Sciences, Department of Nutrition and Dietetics.
| | - Seda Kaya
- Ankara University, Faculty of Health Sciences, Department of Nutrition and Dietetics
| | - Pınar Sökülmez Kaya
- Ondokuz Mayıs University, Faculty of Health Sciences, Department of Nutrition and Dietetics
| | - Murat Terzi
- Ondokuz Mayıs University, Faculty of Medicine, Department of Neurology
| | - Emre Dünder
- Ondokuz Mayıs University, Faculty of Science, Department of Statistics
| |
Collapse
|
89
|
Okolicsanyi RK, Bluhm J, Miller C, Griffiths LR, Haupt LM. An investigation of genetic polymorphisms in heparan sulfate proteoglycan core proteins and key modification enzymes in an Australian Caucasian multiple sclerosis population. Hum Genomics 2020; 14:18. [PMID: 32398079 PMCID: PMC7218574 DOI: 10.1186/s40246-020-00264-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system in young adults. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to the cell surface and the extracellular matrix. HSPG biosynthesis is a complex process involving enzymatic attachment of heparan sulfate (HS) chains to a core protein. HS side chains mediate specific ligand and growth factor interactions directing cellular processes including cell adhesion, migration and differentiation. Two main families of HSPGs exist, the syndecans (SDC1-4) and glypicans (GPC1-6). The SDCs are transmembrane proteins, while the GPC family are GPI linked to the cell surface. SDC1 has well-documented interactions with numerous signalling pathways. Genome-wide association studies (GWAS) have identified regions of the genome associated with MS including a region on chromosome 13 containing GPC5 and GPC6. International studies have revealed significant associations between this region and disease development. The exostosin-1 (EXT1) and sulfatase-1 (SULF1) are key enzymes contributing to the generation of HS chains. EXT1, with documented tumour suppressor properties, is involved in the initiation and polymerisation of the growing HS chain. SULF1 removes 6-O-sulfate groups from HS chains, affecting protein-ligand interactions and subsequent downstream signalling with HS modification potentially having significant effects on MS progression. In this study, we identified significant associations between single nucleotide polymorphisms in SDC1, GPC5 and GPC6 and MS in an Australian Caucasian case-control population. Further significant associations in these genes were identified when the population was stratified by sex and disease subtype. No association was found for EXT1 or SULF1.
Collapse
Affiliation(s)
- Rachel K Okolicsanyi
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Julia Bluhm
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Cassandra Miller
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia.
| | - Larisa M Haupt
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia.
| |
Collapse
|
90
|
Gharibi T, Babaloo Z, Hosseini A, Marofi F, Ebrahimi-Kalan A, Jahandideh S, Baradaran B. The role of B cells in the immunopathogenesis of multiple sclerosis. Immunology 2020; 160:325-335. [PMID: 32249925 DOI: 10.1111/imm.13198] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is ongoing debate on how B cells contribute to the pathogenesis of multiple sclerosis (MS). The success of B-cell targeting therapies in MS highlighted the role of B cells, particularly the antibody-independent functions of these cells such as antigen presentation to T cells and modulation of the function of T cells and myeloid cells by secreting pathogenic and/or protective cytokines in the central nervous system. Here, we discuss the role of different antibody-dependent and antibody-independent functions of B cells in MS disease activity and progression proposing new therapeutic strategies for the optimization of B-cell targeting treatments.
Collapse
Affiliation(s)
- Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Jahandideh
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
91
|
Giatti S, Rigolio R, Diviccaro S, Falvo E, Caruso D, Garcia-Segura LM, Cavaletti G, Melcangi RC. Sex dimorphism in an animal model of multiple sclerosis: Focus on pregnenolone synthesis. J Steroid Biochem Mol Biol 2020; 199:105596. [PMID: 31958635 DOI: 10.1016/j.jsbmb.2020.105596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Neuroactive steroids, molecules produced from cholesterol in steroidogenic cells (i.e., peripheral glands and nervous system) are physiological modulators and protective agents of nervous function. A possible role for neuroactive steroids in the sex-dimorphic clinical manifestation, onset and progression of Multiple Sclerosis (MS) has been recently suggested. To explore this possibility, we assessed the synthesis of the first steroidogenic product (pregnenolone; PREG) in the spinal cord of experimental autoimmune encephalomyelitis rats, a MS model. Data obtained indicate that the synthesis of PREG in the spinal cord is altered by the pathology in a sex-dimorphic way and depending on the pathological progression. Indeed, in male spinal cord the synthesis was already decreased at the acute phase of the disease (i.e., 14 days post induction - dpi) and maintained low during the chronic phase (i.e., 45 dpi), while in females this effect was observed only at the chronic phase. Substrate availability had also a role in the sex-dimorphic kinetics. Indeed, at the chronic phase, male animals showed a reduction in the levels of free cholesterol coupled to alteration of cholesterol metabolism into oxysterols; these effects were not observed in female animals. These findings suggest that the comprehension of the neurosteroidogenic processes could be relevant to better understand the sexual dimorphism of MS and to possibly design sex-oriented therapeutic strategies based on neuroactive steroids.
Collapse
Affiliation(s)
- S Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - R Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - S Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - D Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
92
|
Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review. Brain Sci 2020; 10:brainsci10040232. [PMID: 32290481 PMCID: PMC7226274 DOI: 10.3390/brainsci10040232] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The accumulation of abnormal protein aggregates represents a universal hallmark of neurodegenerative diseases (NDDs). Post-translational modifications (PTMs) regulate protein structure and function. Dysregulated PTMs may influence the propensity for protein aggregation in NDD-proteinopathies. To investigate this, we systematically reviewed the literature to evaluate effects of PTMs on aggregation propensity for major proteins linked to the pathogenesis and/or progression of NDDs. A search of PubMed, MEDLINE, EMBASE, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between PTMs and protein aggregation in seven NDDs: Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxias, transmissible spongiform encephalopathy, and multiple sclerosis. Together, 1222 studies were identified, of which 69 met eligibility criteria. We identified that the following PTMs, in isolation or combination, potentially act as modulators of proteinopathy in NDDs: isoaspartate formation in Aβ, phosphorylation of Aβ or tau in AD; acetylation, 4-hydroxy-2-neonal modification, O-GlcNAcylation or phosphorylation of α-synuclein in PD; acetylation or phosphorylation of TAR DNA-binding protein-43 in ALS, and SUMOylation of superoxide dismutase-1 in ALS; and phosphorylation of huntingtin in HD. The potential pharmacological manipulation of these aggregation-modulating PTMs represents an as-yet untapped source of therapy to treat NDDs.
Collapse
|
93
|
Exercise-Induced Brain Excitability Changes in Progressive Multiple Sclerosis: A Pilot Study. J Neurol Phys Ther 2020; 44:132-144. [DOI: 10.1097/npt.0000000000000308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
94
|
Dziedzic A, Miller E, Saluk-Bijak J, Bijak M. The GPR17 Receptor-A Promising Goal for Therapy and a Potential Marker of the Neurodegenerative Process in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21051852. [PMID: 32182666 PMCID: PMC7084627 DOI: 10.3390/ijms21051852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
One of the most important goals in the treatment of demyelinating diseases such as multiple sclerosis (MS) is, in addition to immunomodulation, reconstruction of the lost myelin sheath. The modulator of the central nervous system myelination is the metabotropic receptor coupled to the G-protein: GPR17. GPR17 receptors are considered to be sensors of local damage to the myelin sheath, and play a role in the reconstruction and repair of demyelinating plaques caused by ongoing inflammatory processes. GPR17 receptors are present on nerve cells and precursor oligodendrocyte cells. Under physiological conditions, they are responsible for the differentiation and subsequent maturation of oligodendrocytes, while under pathological conditions (during damage to nerve cells), their expression increases to become mediators in the demyelinating processes. Moreover, they are essential not only in both the processes of inducing damage and the death of neurons, but also in the local repair of the damaged myelin sheath. Therefore, GPR17 receptors may be recognized as the potential goal in creating innovative therapies for the treatment of the neurodegenerative process in MS, based on the acceleration of the remyelination processes. This review examines the role of GRP17 in pathomechanisms of MS development.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (J.S.-B.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (J.S.-B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-42-635-4336
| |
Collapse
|
95
|
Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol 2020; 186:101746. [PMID: 31931031 PMCID: PMC7024016 DOI: 10.1016/j.pneurobio.2020.101746] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
In mammals, many classes of noncoding RNAs (ncRNAs) are expressed at a much higher level in the brain than in other organs. Recent studies have identified a new class of ncRNAs called circular RNAs (circRNAs), which are produced by back-splicing and fusion of either exons, introns, or both exon-intron into covalently closed loops. The circRNAs are also highly enriched in the brain and increase continuously from the embryonic to the adult stage. Although the functional significance and mechanism of action of circRNAs are still being actively explored, they are thought to regulate the transcription of their host genes and sequestration of miRNAs and RNA binding proteins. Some circRNAs are also shown to have translation potential to form peptides. The expression and abundance of circRNAs seem to be spatiotemporally maintained in a normal brain. Altered expression of circRNAs is also thought to mediate several disorders, including brain-tumor growth, and acute and chronic neurodegenerative disorders by affecting mechanisms such as angiogenesis, neuronal plasticity, autophagy, apoptosis, and inflammation. This review discusses the involvement of various circRNAs in brain development and CNS diseases. A better understanding of the circRNA function will help to develop novel therapeutic strategies to treat CNS complications.
Collapse
Affiliation(s)
- Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, United States
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, United States
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, United States; William S. Middleton Veterans Hospital, Madison, WI, United States.
| |
Collapse
|
96
|
Paricalcitol improves experimental autoimmune encephalomyelitis (EAE) by suppressing inflammation via NF-κB signaling. Biomed Pharmacother 2020; 125:109528. [PMID: 32106388 DOI: 10.1016/j.biopha.2019.109528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is known as an autoimmune disease in the central nervous system (CNS) characterized by motor deficits, pain, fatigue, cognitive impairment, and sensory and visual dysfunction. MS is considered to be resulted from significant inflammatory response. Paricalcitol (Pari) is a vitamin D2 analogue, which has been indicated to show anti-inflammatory activities in kidney and heart diseases. In the present study, if Pari could ameliorate the experimental autoimmune encephalomyelitis (EAE) was investigated. Here, the C57BL/6 mice were immunized using myelin oligodendrocyte glycoprotein 35-55 (MOG35-55). Subsequently, Pari was intraperitoneally injected into the mice. As for in vitro analysis, RAW264.7 and Jurkat cells were incubated with Pari together with corresponding stimulus. The results indicated that Pari administration reduced the paralytic severity, neuropathology and apoptosis in MOG-treated mice compared to the MOG single group. Pari also exhibited a significantly inhibitory effect on immune cell infiltration, glial cell activation, expression of pro-inflammatory factors and the activation of nuclear factor κB (NF-κB). The expression of pro-inflammatory regulators and the translocation of NF-κB from cytoplasm into nuclear in RAW264.7 and Jurkat cells under specific stimulation was clearly down-regulated by Pari incubation. Furthermore, we found that suppressing NF-κB with its inhibitor combined with Pari could further reduce the expression of pro-inflammatory factors and associated proteins. These data illustrated that Pari could diminish MOG-triggered EAE, as well as macrophages and T cells activation through blocking NF-κB activation. Collectively, Pari might have therapeutic effects in mouse models with MS.
Collapse
|
97
|
Rodríguez-Lorenzo S, Konings J, van der Pol S, Kamermans A, Amor S, van Horssen J, Witte ME, Kooij G, de Vries HE. Inflammation of the choroid plexus in progressive multiple sclerosis: accumulation of granulocytes and T cells. Acta Neuropathol Commun 2020; 8:9. [PMID: 32014066 PMCID: PMC6998074 DOI: 10.1186/s40478-020-0885-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/24/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) is strategically located between the peripheral blood and the cerebrospinal fluid, and is involved in the regulation of central nervous system (CNS) homeostasis. In multiple sclerosis (MS), demyelination and inflammation occur in the CNS. While experimental animal models of MS pointed to the CP as a key route for immune cell invasion of the CNS, little is known about the distribution of immune cells in the human CP during progressive phases of MS. Here, we use immunohistochemistry and confocal microscopy to explore the main immune cell populations in the CP of progressive MS patients and non-neuroinflammatory controls, in terms of abundance and location within the distinct CP compartments. We show for the first time that the CP stromal density of granulocytes and CD8+ T cells is higher in progressive MS patients compared to controls. In line with previous studies, the CP of both controls and progressive MS patients contains relatively high numbers of macrophages and dendritic cells. Moreover, we found virtually no B cells or plasma cells in the CP. MHCII+ antigen-presenting cells were often found in close proximity to T cells, suggesting constitutive CNS immune monitoring functions of the CP. Together, our data highlights the role of the CP in immune homeostasis and indicates the occurrence of mild inflammatory processes in the CP of progressive MS patients. However, our findings suggest that the CP is only marginally involved in immune cell migration into the CNS in chronic MS.
Collapse
|
98
|
Extrinsic Factors Driving Oligodendrocyte Lineage Cell Progression in CNS Development and Injury. Neurochem Res 2020; 45:630-642. [PMID: 31997102 PMCID: PMC7058689 DOI: 10.1007/s11064-020-02967-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes (OLs) generate myelin membranes for the rapid propagation of electrical signals along axons in the central nervous system (CNS) and provide metabolites to support axonal integrity and function. Differentiation of OLs from oligodendrocyte progenitor cells (OPCs) is orchestrated by a multitude of intrinsic and extrinsic factors in the CNS. Disruption of this process, or OL loss in the developing or adult brain, as observed in various neurological conditions including hypoxia/ischemia, stroke, and demyelination, results in axonal dystrophy, neuronal dysfunction, and severe neurological impairments. While much is known regarding the intrinsic regulatory signals required for OL lineage cell progression in development, studies from pathological conditions highlight the importance of the CNS environment and external signals in regulating OL genesis and maturation. Here, we review the recent findings in OL biology in the context of the CNS physiological and pathological conditions, focusing on extrinsic factors that facilitate OL development and regeneration.
Collapse
|
99
|
Vaughn CB, Jakimovski D, Kavak KS, Ramanathan M, Benedict RHB, Zivadinov R, Weinstock-Guttman B. Epidemiology and treatment of multiple sclerosis in elderly populations. Nat Rev Neurol 2020; 15:329-342. [PMID: 31000816 DOI: 10.1038/s41582-019-0183-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prevalence of multiple sclerosis (MS) and the age of affected patients are increasing owing to increased longevity of the general population and the availability of effective disease-modifying therapies. However, ageing presents unique challenges in patients with MS largely as a result of their increased frequency of age-related and MS-related comorbidities as well as transition of the disease course from an inflammatory to a neurodegenerative phenotype. Immunosenescence (the weakening of the immune system associated with natural ageing) might be at least partly responsible for this transition, which further complicates disease management. Currently approved therapies for MS are effective in preventing relapse but are not as effective in preventing the accumulation of disability associated with ageing and disease progression. Thus, ageing patients with MS represent a uniquely challenging population that is currently underserved by existing therapeutic regimens. This Review focuses on the epidemiology of MS in ageing patients. Unique considerations relevant to this population are discussed, including the immunology and pathobiology of the complex relationship between ageing and MS, the safety and efficacy of disease-modifying therapies, when discontinuation of treatment might be appropriate and the important role of approaches to support wellness and cognition.
Collapse
Affiliation(s)
- Caila B Vaughn
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Katelyn S Kavak
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Ralph H B Benedict
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA.,Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York (SUNY), Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA.
| |
Collapse
|
100
|
Grgić S, Dominović-Kovačević A, Đajić V, Vukojević Z, Tadić D, Račić D, Vujković Z. Prognostic significance of intrathecal oligoclonal immunoglobulin G in multiple sclerosis. SCRIPTA MEDICA 2020. [DOI: 10.5937/scriptamed51-27558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction/Aim: Detection of intrathecal oligoclonal bands of immunoglobulin G (OB IgG), in addition to diagnostic, has a predictive significance in multiple sclerosis (MS). The aim of the study was to determine the prognostic significance of OB IgG and to correlate the presence of OB IgG with the progression of disability in MS patients. Methods: A retrospective-prospective cohort study included 177 MS patients examined at the Centre for MS, Clinic of Neurology, University Clinical Centre of the Republic of Srpska. In all patients, demographic data, clinical parameters, Expanded Disability Status Scale (EDSS) score, isoelectric focusing (IEF) of cerebrospinal fluid (CSF), cyto-biochemical analysis of CSF, evoked potentials (EP) and magnetic resonance (MR) of the head were analysed. MS patients were divided in two groups: with and without intrathecal synthesis of oligoclonal IgG. According to the EDSS determined in both groups, the relation between the degree of functional disability and the presence of OB in the CSF and also with characteristics of the cyto-biochemical profile were analysed. Methods of descriptive and analytical statistics, analysis of variance, chi-square test, Bonferroni's post hoc test, correlation and regression analysis were used in the analysis of the results. Results: In the examined cohort of MS patients, the sensitivity of IEF was 96.6 %. There was a statistically significant association between the detectability of intrathecally synthesised IgG and EDSS score (p = 0.004) so that individuals who do not have intrathecally synthesised IgG had lower EDSS scores. MS patients with a CSF protein concentration > 0.40 g/L were 2.45 times more likely to enter secondary progression and 2.51 times more likely to achieve EDSS 4.0. Conclusion: IEF is a very sensitive diagnostic and prognostic method for MS patients, which indicates a more benign course of MS in patients without oligoclonal bands in the CSF.
Collapse
|