51
|
Regulation of sirtuin expression in autoimmune neuroinflammation: Induction of SIRT1 in oligodendrocyte progenitor cells. Neurosci Lett 2019; 704:116-125. [DOI: 10.1016/j.neulet.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022]
|
52
|
Resveratrol (3, 5, 4'-Trihydroxy-trans-Stilbene) Attenuates a Mouse Model of Multiple Sclerosis by Altering the miR-124/Sphingosine Kinase 1 Axis in Encephalitogenic T Cells in the Brain. J Neuroimmune Pharmacol 2019; 14:462-477. [PMID: 30941623 DOI: 10.1007/s11481-019-09842-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) (RES) is a naturally-derived phytoestrogen found in the skins of red grapes and berries and has potential as a novel and effective therapeutic agent. In the current study, we investigated the role of microRNA (miRNA) in RES-mediated attenuation of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. Administration of RES effectively decreased disease severity, including inflammation and central nervous system immune cell infiltration. miRNA microarray analysis revealed an altered miRNA profile in encephalitogenic CD4+ T cells from EAE mice exposed to RES treatment. Additionally, bioinformatics and in silico pathway analysis suggested the involvement of RES-induced miRNA in pathways and processes that regulated cellular proliferation. Additional studies confirmed that RES affected cell cycle progression and apoptosis in activated T cells, specifically in the brain. RES treatment significantly upregulated miR-124 during EAE, while suppressing associated target gene, sphingosine kinase 1 (SK1), and this too was specific to mononuclear cells in the brains of treated mice, as peripheral immune cells remained unaltered upon RES treatment. Collectively, these studies demonstrate that RES treatment leads to amelioration of EAE development through mechanism(s) potentially involving suppression of neuroinflammation via alteration of the miR-124/SK1 axis, thereby halting cell-cycle progression and promoting apoptosis in activated encephalitogenic T cells. Graphical Abstract Resveratrol alters the miR-124/sphingosine kinase 1 (SK1) axis in encephalitogenic T cells, promotes cell-cycle arrest and apoptosis, and decreases neuroinflammation in experiemental autoimmune encephalomyelitis (EAE).
Collapse
|
53
|
Grinblat GA, Khan RS, Dine K, Wessel H, Brown L, Shindler KS. RGC Neuroprotection Following Optic Nerve Trauma Mediated By Intranasal Delivery of Amnion Cell Secretome. Invest Ophthalmol Vis Sci 2019; 59:2470-2477. [PMID: 29847652 PMCID: PMC5959511 DOI: 10.1167/iovs.18-24096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Intranasally delivered ST266, the biological, proteinaceous secretome of amnion-derived multipotent progenitor cells, reduces retinal ganglion cell (RGC) loss, optic nerve inflammation, and demyelination in experimental optic neuritis. This unique therapy and novel administration route delivers numerous cytokines and growth factors to the eye and optic nerve, suggesting a potential to also treat other optic neuropathies. Thus, ST266-mediated neuroprotection was examined following traumatic optic nerve injury. Methods Optic nerve crush injury was surgically induced in C57BL/6J mice. Mice were treated daily with intranasal PBS or ST266. RGC function was assessed by optokinetic responses (OKRs), RGCs were counted, and optic nerve sections were stained with luxol fast blue and anti-neurofilament antibodies to assess myelin and RGC axon damage. Results Intranasal ST266 administered daily for 5 days, beginning at the time that a 1-second optic nerve crush was performed, significantly attenuated OKR decreases. Furthermore, ST266 treatment reduced damage to RGC axons and myelin within optic nerves, and blocked RGC loss. Following a 4-second optic nerve crush, intranasal ST266 increased RGC survival and showed a trend toward reduced RGC axon and myelin damage. Ten days following optic nerve crush, ST266 prevented myelin damage, while also inducing a trend toward increased RGC survival and visual function. Conclusions ST266 significantly attenuates traumatic optic neuropathy. Neuroprotective effects of this unique combination of biologic molecules observed here and previously in optic neuritis suggest potential broad application for preventing neuronal damage in multiple optic nerve disorders. Furthermore, results support intranasal delivery as a novel, noninvasive therapeutic modality for eyes and optic nerves.
Collapse
Affiliation(s)
- Gabriela A Grinblat
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Reas S Khan
- Scheie Eye Institute and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kimberly Dine
- Scheie Eye Institute and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Howard Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, United States
| | - Larry Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, United States
| | - Kenneth S Shindler
- Scheie Eye Institute and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
54
|
Fakan B, Szalardy L, Vecsei L. Exploiting the Therapeutic Potential of Endogenous Immunomodulatory Systems in Multiple Sclerosis-Special Focus on the Peroxisome Proliferator-Activated Receptors (PPARs) and the Kynurenines. Int J Mol Sci 2019; 20:ijms20020426. [PMID: 30669473 PMCID: PMC6358998 DOI: 10.3390/ijms20020426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease, characterized by autoimmune central nervous system (CNS) demyelination attributable to a disturbed balance between encephalitic T helper 1 (Th1) and T helper 17 (Th17) and immunomodulatory regulatory T cell (Treg) and T helper 2 (Th2) cells, and an alternatively activated macrophage (M2) excess. Endogenous molecular systems regulating these inflammatory processes have recently been investigated to identify molecules that can potentially influence the course of the disease. These include the peroxisome proliferator-activated receptors (PPARs), PPARγ coactivator-1alpha (PGC-1α), and kynurenine pathway metabolites. Although all PPARs ameliorate experimental autoimmune encephalomyelitis (EAE), recent evidence suggests that PPARα, PPARβ/δ agonists have less pronounced immunomodulatory effects and, along with PGC-1α, are not biomarkers of neuroinflammation in contrast to PPARγ. Small clinical trials with PPARγ agonists have been published with positive results. Proposed as immunomodulatory and neuroprotective, the therapeutic use of PGC-1α activation needs to be assessed in EAE/MS. The activation of indolamine 2,3-dioxygenase (IDO), the rate-limiting step of the kynurenine pathway of tryptophan (Trp) metabolism, plays crucial immunomodulatory roles. Indeed, Trp metabolites have therapeutic relevance in EAE and drugs with structural analogy to kynurenines, such as teriflunomide, are already approved for MS. Further studies are required to gain deeper knowledge of such endogenous immunomodulatory pathways with potential therapeutic implications in MS.
Collapse
Affiliation(s)
- Bernadett Fakan
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
55
|
Mojaverrostami S, Bojnordi MN, Ghasemi-Kasman M, Ebrahimzadeh MA, Hamidabadi HG. A Review of Herbal Therapy in Multiple Sclerosis. Adv Pharm Bull 2018; 8:575-590. [PMID: 30607330 PMCID: PMC6311642 DOI: 10.15171/apb.2018.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis is a complex autoimmune disorder which characterized by demyelination and axonal loss in the central nervous system (CNS). Several evidences indicate that some new drugs and stem cell therapy have opened a new horizon for multiple sclerosis treatment, but current therapies are partially effective or not safe in the long term. Recently, herbal therapies represent a promising therapeutic approach for multiple sclerosis disease. Here, we consider the potential benefits of some herbal compounds on different aspects of multiple sclerosis disease. The medicinal plants and their derivatives; Ginkgo biloba, Zingiber officinale, Curcuma longa, Hypericum perforatum, Valeriana officinalis, Vaccinium macrocarpon, Nigella sativa,Piper methysticum, Crocus sativus, Panax ginseng, Boswellia papyrifera, Vitis vinifera, Gastrodia elata, Camellia sinensis, Oenothera biennis, MS14 and Cannabis sativa have been informed to have several therapeutic effects in MS patients.
Collapse
Affiliation(s)
- Sina Mojaverrostami
- Young Researchers and Elite Club, Behshahr Branch, Islamic Azad University, Behshahr, Iran
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Cellular and Molecular Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
56
|
Fujita Y, Yamashita T. Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Front Neurosci 2018; 12:778. [PMID: 30416425 PMCID: PMC6213750 DOI: 10.3389/fnins.2018.00778] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Silent information regulator 1 (SIRT1) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Sirtuin was originally studied as the lifespan-extending gene, silent information regulator 2 (SIRT2) in budding yeast. There are seven mammalian homologs of sirtuin (SIRT1–7), and SIRT1 is the closest homolog to SIRT2. SIRT1 modulates various key targets via deacetylation. In addition to histones, these targets include transcription factors, such as forkhead box O (FOXO), Ku70, p53, NF-κB, PPAR-gamma co-activator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor γ (PPARγ). SIRT1 has many biological functions, including aging, cell survival, differentiation, and metabolism. Genetic and physiological analyses in animal models have shown beneficial roles for SIRT1 in the brain during both development and adulthood. Evidence from in vivo and in vitro studies have revealed that SIRT1 regulates the cellular fate of neural progenitors, axon elongation, dendritic branching, synaptic plasticity, and endocrine function. In addition to its importance in physiological processes, SIRT1 has also been implicated in protection of neurons from degeneration in models of neurological diseases, such as traumatic brain injury and Alzheimer’s disease. In this review, we focus on the role of SIRT1 in the neuroendocrine system and neurodegenerative diseases. We also discuss the potential therapeutic implications of targeting the sirtuin pathway.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
57
|
Phosphorylated SIRT1 as a biomarker of relapse and response to treatment with glatiramer acetate in multiple sclerosis. Exp Mol Pathol 2018; 105:175-180. [DOI: 10.1016/j.yexmp.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/16/2018] [Indexed: 11/24/2022]
|
58
|
Gholamzad M, Ebtekar M, Ardestani MS, Azimi M, Mahmodi Z, Mousavi MJ, Aslani S. A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflamm Res 2018; 68:25-38. [DOI: 10.1007/s00011-018-1185-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
|
59
|
Colica C, Milanović M, Milić N, Aiello V, De Lorenzo A, Abenavoli L. A Systematic Review on Natural Antioxidant Properties of Resveratrol. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyphenols, including anthocyanins, flavonoids and stilbenes, which constitute one of the most abundant and ubiquitous groups of plant metabolites, are an integral part of the human diet. Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring polyphenol produced by some plants as a self-defence agent, has an antifungal activity. Resveratrol has been found in some plants (such as grapevine, pine and peanuts) and is considered to have beneficial effects also on human health. The number of studies on resveratrol greatly increased in PubMed database since 1997, after the anticancer effect of this molecule was first reported. The interest in resveratrol in grape was originally sparked by epidemiological studies indicating an inverse relationship between long-standing moderate consumption of red wine and the risk of coronary heart disease; this effect has been ascribed to resveratrol, which possesses diverse biochemical and physiological properties, including antiplatelet and anti-inflammatory proprieties, and provides a wide range of health benefits ranging from chemoprevention to cardioprotection. Recently, resveratrol has been described as an anti-aging compound. The consumption of resveratrol (red wine) together with a Mediterranean diet or a fast-food meal (“McDonald'sMeal”) had a positive impact on oxidized (ox-) LDL and on the expression of oxidative and inflammatory genes. Therefore, this review summarized the most important scientific data about healing and preventive potential of resveratrol, acting as cardioprotective, neuroprotective, chemopreventive and antioxidant agent.
Collapse
Affiliation(s)
- Carmela Colica
- CNR, IBFM UOS of Germaneto, University “Magna Graecia” of Catanzaro, Italy
| | - Maja Milanović
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Vincenzo Aiello
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
60
|
Belova AN, Solovieva VS, Boyko AN. [Anemia and dysregulation of iron metabolism in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:10-17. [PMID: 30160662 DOI: 10.17116/jnevro201811808210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anemia is one of the common diseases comorbid with multiple sclerosis (MS). This article reviews the prevalence and types of anemia in MS patients. It has been shown that anemia is often accompanied by a decrease in serum iron level. The authors present the data on iron metabolism in patients with MS and MRI findings concerning deposits of iron in the gray matter of the brain. The causal relationship between abnormalities in iron metabolism and MS remains unclear; this study allows to approach the understanding of the MS pathogenesis and to increase the efficacy of therapy for this disease.
Collapse
Affiliation(s)
- A N Belova
- Privolzskyi Federal Medical Research Center, Nizhny Novgorod, Russia
| | - V S Solovieva
- City Clinical Hospital #3, Regional Center fo Multiple Sclerosis, Nizhny Novgorod, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia; Center for Demyelination Diseases 'Neuroclinic', Moscow, Russia
| |
Collapse
|
61
|
McDougald DS, Dine KE, Zezulin AU, Bennett J, Shindler KS. SIRT1 and NRF2 Gene Transfer Mediate Distinct Neuroprotective Effects Upon Retinal Ganglion Cell Survival and Function in Experimental Optic Neuritis. Invest Ophthalmol Vis Sci 2018; 59:1212-1220. [PMID: 29494741 PMCID: PMC5839257 DOI: 10.1167/iovs.17-22972] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Optic neuritis is a condition defined by autoimmune-mediated demyelination of the optic nerve and death of retinal ganglion cells. SIRT1 and NRF2 stimulate anti-inflammatory mechanisms and have previously demonstrated therapeutic value in preclinical models of neurodegenerative disease. Here we investigated the neuroprotective potential of SIRT1 or NRF2 gene transfer using adeno-associated virus (AAV) vectors in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Methods C57Bl/6J mice were administered intravitreal doses of AAV2 vectors and immunized to induce EAE symptoms. Visual function was examined by recording the optokinetic response (OKR) just prior to EAE induction and once every 7 days postinduction for 7 weeks. Retina and optic nerves were harvested to investigate retinal ganglion cell survival (immunolabeling with Brn3a antibodies); inflammation (hematoxylin and eosin staining); and demyelination (luxol fast blue staining). Results Animals modeling EAE demonstrate reduced visual acuity compared to sham-induced controls. Intravitreal delivery of AAV2-NRF2 did not preserve visual function. However, AAV2-SIRT1 mediated significant preservation of the OKR compared to AAV2-eGFP controls. Treatment with AAV2-NRF2 promoted RGC survival while AAV2-SIRT1 mediated an upward trend in protection compared to vehicle and AAV2-eGFP controls. Neither NRF2 nor SIRT1 gene augmentation was able to suppress optic nerve inflammation or demyelination. Conclusions AAV-mediated overexpression of NRF2 or SIRT1 within RGCs mediates distinct neuroprotective effects upon visual function and RGC survival. This study expands our understanding of SIRT1 and NRF2-mediated neuroprotection in the context of MS pathogenesis and optic neuropathies.
Collapse
Affiliation(s)
- Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kimberly E Dine
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra U Zezulin
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kenneth S Shindler
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
62
|
Kamisli S, Ciftci O, Taslidere A, Basak Turkmen N, Ozcan C. The beneficial effects of 18β-glycyrrhetinic acid on the experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mouse model. Immunopharmacol Immunotoxicol 2018; 40:344-352. [PMID: 30052483 DOI: 10.1080/08923973.2018.1490318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM The aim of this study was to investigate the beneficial effects of 18β-glycyrrhetinic acid (GA) on the experimental allergic encephalomyelitis (EAE) in C57BL/6 mice. GA is a natural substance found in the root of licorice and is used in traditional Chinese medicine. It has many pharmacological activities such as antioxidant, anti-inflammatory, and anti-cancer effects. MATERIALS AND METHODS A total of 40 C57BL/6 mice were divided equally into four groups: (1) Control, (2) EAE, (3) GA and (4) GA + EAE. 14 days after induction of EAE with MOG35-55 and pertussis toxin, mice were treated with GA at doses of 100 mg/kg/day for 7 days intraperitoneally. RESULTS To our results, oxidative stress and lipid peroxidations (elevated TBARS levels, decreased GPx, SOD, CAT, and GSH levels) were significantly (p < .01) increased, causing EAE in brain tissue. Also, histopathological damage (Caspase-3 and IL-17 activity, p ≤ .01) and cytokine levels (TNF-α and IL-1β, p < .01) were induced with EAE in mice brain tissue. On the other hand, GA treatment significantly (p < .01) reversed oxidative histological and immunological alterations caused by EAE. CONCLUSIONS In conclusion, the GA treatment can protect the brain tissue against EAE in mice with its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Suat Kamisli
- a Faculty of Medicine, Department of Neurology , University of Inonu , Malatya , Turkey
| | - Osman Ciftci
- b Faculty of Medicine, Department of Pharmacology , University of Pamukkale , Denizli , Turkey
| | - Asli Taslidere
- c Faculty of Medicine, Department of Histology and Embryology , University of Inonu , Malatya , Turkey
| | - Nese Basak Turkmen
- d Faculty of Pharmacy, Department of Pharmaceutical Toxicology , University of Inonu , Malatya , Turkey
| | - Cemal Ozcan
- a Faculty of Medicine, Department of Neurology , University of Inonu , Malatya , Turkey
| |
Collapse
|
63
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
64
|
A novel small-molecule activator of Sirtuin-1 induces autophagic cell death/mitophagy as a potential therapeutic strategy in glioblastoma. Cell Death Dis 2018; 9:767. [PMID: 29991742 PMCID: PMC6039470 DOI: 10.1038/s41419-018-0799-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 01/24/2023]
Abstract
Sirtuin-1 (SIRT1), the mammalian ortholog of yeast Sir2p, is well known to be a highly conserved NAD+-dependent protein deacetylase that has been emerging as a key cancer target. Autophagy, an evolutionarily conserved, multi-step lysosomal degradation process, has been implicated in cancer. Accumulating evidence has recently revealed that SIRT1 may act as a tumor suppressor in several types of cancer, and thus activating SIRT1 would represent a possible therapeutic strategy. Thus, in our study, we identified that SIRT1 was a key prognostic factor in brain cancer based upon The Cancer Genome Atlas and tissue microarray analyses. Subsequently, we screened a series of potential small-molecule activators of SIRT1 from Drugbank, and found the best candidate compound F0911-7667 (hereafter, named Comp 5), which showed a good deacetylase activity for SIRT1 rather than other Sirtuins. In addition, we demonstrated that Comp 5-induced autophagic cell death via the AMPK-mTOR-ULK complex in U87MG and T98G cells. Interestingly, Comp 5-induced mitophagy by the SIRT1–PINK1–Parkin pathway. Further iTRAQ-based proteomics analyses revealed that Comp 5 could induce autophagy/mitophagy by downregulating 14-3-3γ, catalase, profilin-1, and HSP90α. Moreover, we showed that Comp 5 had a therapeutic potential on glioblastoma (GBM) and induced autophagy/mitophagy by activating SIRT1 in vivo. Together, these results demonstrate a novel small-molecule activator of SIRT1 that induces autophagic cell death/mitophagy in GBM cells, which would be utilized to exploit this compound as a leading drug for future cancer therapy.
Collapse
|
65
|
Navarro G, Martínez-Pinilla E, Ortiz R, Noé V, Ciudad CJ, Franco R. Resveratrol and Related Stilbenoids, Nutraceutical/Dietary Complements with Health-Promoting Actions: Industrial Production, Safety, and the Search for Mode of Action. Compr Rev Food Sci Food Saf 2018; 17:808-826. [PMID: 33350112 DOI: 10.1111/1541-4337.12359] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
This paper reviews the potential of stilbenoids as nutraceuticals. Stilbenoid compounds in wine are considered key factors in health-promoting benefits. Resveratrol and resveratrol-related compounds are found in a large diversity of vegetal products. The stilbene composition varies from wine to wine and from one season to another. Therefore, the article also reviews how food science and technology and wine industry may help in providing wines and/or food supplements with efficacious concentrations of stilbenes. The review also presents results from clinical trials and those derived from genomic/transcriptomic studies. The most studied stilbenoid, resveratrol, is a very safe compound. On the other hand, the potential benefits of stilbene intake are multiple and are apparently due to downregulation more than upregulation of gene expression. The field may take advantage from identifying the mechanism of action(s) and from providing useful data to show evidence for specific health benefits in a given tissue or for combating a given disease.
Collapse
Affiliation(s)
- Gemma Navarro
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Inst. de Salud Carlos III, Madrid, Spain.,Inst. of Biomedicine of the Univ. of Barcelona (IBUB), Barcelona, Spain.,Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Dept. of Morphology and Cell Biology, Faculty of Medicine, Univ. of Oviedo, Asturias, Spain.,Inst. de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Psicología, Univ. de Oviedo, Plaza Feijóo s/n, 33003 Oviedo, Asturias, Spain.,Inst. de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Raquel Ortiz
- Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| | - Véronique Noé
- Dept. of Biochemistry and Physiology, School of Pharmacy, Univ. of Barcelona, Barcelona, Spain.,Inst. of Nanotechnology of the Univ. of Barcelona (IN2UB), Barcelona, Spain
| | - Carlos J Ciudad
- Dept. of Biochemistry and Physiology, School of Pharmacy, Univ. of Barcelona, Barcelona, Spain.,Inst. of Nanotechnology of the Univ. of Barcelona (IN2UB), Barcelona, Spain
| | - Rafael Franco
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Inst. de Salud Carlos III, Madrid, Spain.,Inst. of Biomedicine of the Univ. of Barcelona (IBUB), Barcelona, Spain.,Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| |
Collapse
|
66
|
Zhou M, Luo J, Zhang H. Role of Sirtuin 1 in the pathogenesis of ocular disease (Review). Int J Mol Med 2018; 42:13-20. [PMID: 29693113 DOI: 10.3892/ijmm.2018.3623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/29/2018] [Indexed: 11/06/2022] Open
Abstract
Sirtuin (SIRT)1, a member of the SIRT family, is a highly conserved NAD+‑dependent histone deacetylase, which has a regulatory role in numerous physiological and pathological processes by removing acetyl groups from various proteins. SIRT1 controls the activity of numerous transcription factors and cofactors, which impacts the downstream gene expression, and eventually alleviates oxidative stress and associated damage. Numerous studies have revealed that dysfunction of SIRT1 is linked with ocular diseases, including cataract, age‑associated macular degeneration, diabetic retinopathy and glaucoma, while ectopic upregulation of SIRT1 protects against various ocular diseases. In the present review, the significant role of SIRT1 and the potential therapeutic value of modulating SIRT1 expression in ocular development and eye diseases is summarized.
Collapse
Affiliation(s)
- Mengwen Zhou
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jing Luo
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Huiming Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
67
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alzahrani MZ, Alshammari MA, Alanazi WA, Alasmari AF, Attia SM. Resveratrol attenuates pro-inflammatory cytokines and activation of JAK1-STAT3 in BTBR T + Itpr3 tf/J autistic mice. Eur J Pharmacol 2018; 829:70-78. [PMID: 29654783 DOI: 10.1016/j.ejphar.2018.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by qualitative impairment in communication, social interaction, and repetitive stereotypic behavior. Resveratrol plays a role in several disorders such as neuroimmune, autoimmune, and allergic disorders. BTBR T+ Itpr3tf/J (BTBR) mice, a model for autism, show several behavioral deficits that are physiological characteristics similar to those observed in patients with autism. Previous studies have shown that JAK-STAT signaling pathway is associated with many neurodevelopmental disorders. We investigated the possible role of resveratrol on IL-6+, TNF-α+, IFN-γ+, and STAT3+ in CD4+ T spleen cells in BTBR mice as compared to C57BL/6J mice. We also assessed the effect of resveratrol treatment on IL-6, TNF-α, IFN-γ, JAK1, and STAT3 mRNA expression levels in the brain tissue. We further assessed IL-6, IFN-γ, TNF-α, phosphorylated (p) JAK1, and pSTAT3 (Tyr705) protein expression levels in the brain tissue. Resveratrol (20 and 40 mg/kg)-treated mice had significantly decreased in IL-6+, TNF-α+, IFN-γ+, and STAT3+ in CD4+ spleen cells as compared with BTBR control mice. Resveratrol treatment also decreased IL-6, TNF-α, IFN-γ, JAK1, and STAT3 mRNA expression levels as compared with BTBR control mice in the brain tissue. Moreover, resveratrol treatment resulted in decreased protein expression levels of IL-6, IFN-γ, TNF-α, pJAK1, and pSTAT3 (Tyr705) as compared with BTBR control mice in the brain tissues. Taken together, these results indicate the efficacy of resveratrol in reducing cytokines and JAK-1/STAT3 signaling in BTBR mice, which is a novel and important finding and might be important for future therapies in neuroimmune dysfunction.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Z Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
68
|
Zainabadi K. A brief history of modern aging research. Exp Gerontol 2018; 104:35-42. [DOI: 10.1016/j.exger.2018.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/15/2018] [Indexed: 11/16/2022]
|
69
|
Gregath A, Lu QR. Epigenetic modifications-insight into oligodendrocyte lineage progression, regeneration, and disease. FEBS Lett 2018; 592:1063-1078. [PMID: 29427507 DOI: 10.1002/1873-3468.12999] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Myelination by oligodendrocytes in the central nervous system permits high-fidelity saltatory conduction from neuronal cell bodies to axon terminals. Dysmyelinating and demyelinating disorders impair normal nervous system functions. Consequently, an understanding of oligodendrocyte differentiation that moves beyond the genetic code into the field of epigenetics is essential. Chromatin reprogramming is critical for steering stage-specific differentiation processes during oligodendrocyte development. Fine temporal control of chromatin remodeling through ATP-dependent chromatin remodelers and sequential histone modifiers shapes a chromatin regulatory landscape conducive to oligodendrocyte fate specification, lineage differentiation, and maintenance of cell identity. In this Review, we will focus on the biological functions of ATP-dependent chromatin remodelers and histone deacetylases in myelinating oligodendrocyte development and implications for myelin regeneration in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander Gregath
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Qing Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, OH, USA
| |
Collapse
|
70
|
Ahmad SF, Ansari MA, Nadeem A, Alzahrani MZ, Bakheet SA, Attia SM. Resveratrol Improves Neuroimmune Dysregulation Through the Inhibition of Neuronal Toll-Like Receptors and COX-2 Signaling in BTBR T + Itpr3 tf/J Mice. Neuromolecular Med 2018; 20:133-146. [PMID: 29468499 DOI: 10.1007/s12017-018-8483-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by deficits in qualitative impairments in communication, repetitive and social interaction, restricted, and stereotyped patterns of behavior. Resveratrol has been extensively studied pharmacologically and biologically and has anti-inflammatory, antioxidant, and neuroprotective effects on neuronal damage in neurodegenerative disorders. The BTBR T+ Itpr3tf/J (BTBR) autistic mouse model has been explored for treatment of autism, which shows low reciprocal social interactions, impaired juvenile play, and decreased social approach. Here, we explored whether resveratrol treatment decreases neuroimmune dysregulation mediated through toll-like receptor (TLR4) and nuclear factor-κB (NF-κB) signaling pathway in BTBR mice. We investigated the effect of resveratrol treatment on TLR2, TLR3, TLR4, NF-κB, and inducible nitric oxide synthase (iNOS or NOS2) levels in CD4 spleen cells. We also assessed the effect of resveratrol treatment on TLR2, TLR3, TLR4, NF-κB, iNOS, and cyclooxygenase (COX-2) mRNA expression levels in the brain tissue. We further explored TLR2, TLR4, NF-κB, iNOS, and COX-2 protein expression levels in the brain tissue. Resveratrol treatment on BTBR mice significantly decreased CD4+TLR2+, CD4+TLR3+, CD4+TLR4+ CD4+NF-κB+, and CD4+iNOS+ levels in spleen cells. Resveratrol treatment on BTBR mice decreased TLR2, TLR3, TLR4, NF-κB, iNOS, and COX-2 mRNA expression levels in brain tissue. Moreover, resveratrol treatment resulted in decreased protein expression of TLR2, TLR3, TLR4, NF-κB, iNOS, and COX-2 in brain tissue. Taken together, these results indicate that resveratrol treatment improves neuroimmune dysregulation through the inhibition of proinflammatory mediators and TLRs/NF-κB transcription factor signaling, which might be help devise future therapies for neuroimmune disorders.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Z Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
71
|
Koreman E, Sun X, Lu QR. Chromatin remodeling and epigenetic regulation of oligodendrocyte myelination and myelin repair. Mol Cell Neurosci 2017; 87:18-26. [PMID: 29254827 DOI: 10.1016/j.mcn.2017.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/27/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes are essential for the development, function, and health of the vertebrate central nervous system. These cells maintain axon myelination to ensure saltatory propagation of action potentials. Oligodendrocyte develops from neural progenitor cells, in a step-wise process that involves oligodendrocyte precursor specification, proliferation, and differentiation. The lineage progression requires coordination of transcriptional and epigenetic circuits to mediate the stage-specific intricacies of oligodendrocyte development. Epigenetic mechanisms involve DNA methylation, histone modifications, ATP-dependent chromatin remodeling, and non-coding RNA modulation that regulate the chromatin state over regulatory genes, which must be expressed or repressed to establish oligodendrocyte identity and lineage progression. In this review, we will focus on epigenetic programming associated with histone modification enzymes, chromatin remodeling, and non-coding RNAs that regulate oligodendrocyte lineage progression, and discuss how these mechanisms might be harnessed to induce myelin repair for treatment of demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Elijah Koreman
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowei Sun
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
72
|
Castro OW, Upadhya D, Kodali M, Shetty AK. Resveratrol for Easing Status Epilepticus Induced Brain Injury, Inflammation, Epileptogenesis, and Cognitive and Memory Dysfunction-Are We There Yet? Front Neurol 2017; 8:603. [PMID: 29180982 PMCID: PMC5694141 DOI: 10.3389/fneur.2017.00603] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Status epilepticus (SE) is a medical emergency exemplified by self-sustaining, unceasing seizures or swiftly recurring seizure events with no recovery between seizures. The early phase after SE event is associated with neurodegeneration, neuroinflammation, and abnormal neurogenesis in the hippocampus though the extent of these changes depends on the severity and duration of seizures. In many instances, over a period, the initial precipitating injury caused by SE leads to temporal lobe epilepsy (TLE), typified by spontaneous recurrent seizures, cognitive, memory and mood impairments associated with chronic inflammation, reduced neurogenesis, abnormal synaptic reorganization, and multiple molecular changes in the hippocampus. While antiepileptic drugs are efficacious for terminating or greatly reducing seizures in most cases of SE, they have proved ineffective for easing SE-induced epileptogenesis and TLE. Despite considerable advances in elucidating SE-induced multiple cellular, electrophysiological, and molecular changes in the brain, efficient strategies that prevent SE-induced TLE development are yet to be discovered. This review critically confers the efficacy and promise of resveratrol, a phytoalexin found in the skin of red grapes, for easing SE-induced neurodegeneration, neuroinflammation, aberrant neurogenesis, and for restraining the evolution of SE-induced brain injury into a chronic epileptic state typified by spontaneous recurrent seizures, and learning, memory, and mood impairments.
Collapse
Affiliation(s)
- Olagide W Castro
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States.,Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | - Dinesh Upadhya
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States.,Department of Anatomy, Kasturba Medical College, Manipal University, Manipal, India
| | - Maheedhar Kodali
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States
| | - Ashok K Shetty
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States
| |
Collapse
|
73
|
Effect of Chronic Administration of Resveratrol on Cognitive Performance during Aging Process in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8510761. [PMID: 29163756 PMCID: PMC5661096 DOI: 10.1155/2017/8510761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/27/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
The increase in the elderly population has generated concern to meet health demands. The research efforts to elucidate the mechanisms of damage associated with aging have also been significantly increased, especially in order to avoid the reduction of the cognitive abilities in geriatric patients, resulting from the damage generated mainly at the level of the hippocampus during old age. At present, many studies describe resveratrol as an antiaging component. There are reports that it can activate the Sirt1 gene related to antiaging, emulating the effects obtained by caloric restriction in rodents. The aim of the study was to evaluate the effect of chronic administration of resveratrol (10 mg/kg) on cognitive performance in behavioral tests after 8 months of treatment and on the preservation of cerebral integrity in the cytoarchitecture of regions CA1 and CA2. Results showed that the cytoarchitecture of the CA1 and CA2 regions in the hippocampus retained their integrity over time in rats treated with resveratrol, and the behavioral test performed revealed that chronic resveratrol administration for 8 months showed improvements in cognitive performance. The results indicate that resveratrol may exhibit therapeutic potential for age-related conditions.
Collapse
|
74
|
Are Astrocytes the Predominant Cell Type for Activation of Nrf2 in Aging and Neurodegeneration? Antioxidants (Basel) 2017; 6:antiox6030065. [PMID: 28820437 PMCID: PMC5618093 DOI: 10.3390/antiox6030065] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates hundreds of antioxidant genes, and is activated in response to oxidative stress. Given that many neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease and multiple sclerosis are characterised by oxidative stress, Nrf2 is commonly activated in these diseases. Evidence demonstrates that Nrf2 activity is repressed in neurons in vitro, and only cultured astrocytes respond strongly to Nrf2 inducers, leading to the interpretation that Nrf2 signalling is largely restricted to astrocytes. However, Nrf2 activity can be observed in neurons in post-mortem brain tissue and animal models of disease. Thus this interpretation may be false, and a detailed analysis of the cell type expression of Nrf2 in neurodegenerative diseases is required. This review describes the evidence for Nrf2 activation in each cell type in prominent neurodegenerative diseases and normal aging in human brain and animal models of neurodegeneration, the response to pharmacological and genetic modulation of Nrf2, and clinical trials involving Nrf2-modifying drugs.
Collapse
|
75
|
Mitochondrial Uncoupler Prodrug of 2,4-Dinitrophenol, MP201, Prevents Neuronal Damage and Preserves Vision in Experimental Optic Neuritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7180632. [PMID: 28680531 PMCID: PMC5478871 DOI: 10.1155/2017/7180632] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/30/2017] [Indexed: 11/18/2022]
Abstract
The ability of novel mitochondrial uncoupler prodrug of 2,4-dinitrophenol (DNP), MP201, to prevent neuronal damage and preserve visual function in an experimental autoimmune encephalomyelitis (EAE) model of optic neuritis was evaluated. Optic nerve inflammation, demyelination, and axonal loss are prominent features of optic neuritis, an inflammatory optic neuropathy often associated with the central nervous system demyelinating disease multiple sclerosis. Currently, optic neuritis is frequently treated with high-dose corticosteroids, but treatment fails to prevent permanent neuronal damage and associated vision changes that occur as optic neuritis resolves, thus suggesting that additional therapies are required. MP201 administered orally, once per day, attenuated visual dysfunction, preserved retinal ganglion cells (RGCs), and reduced RGC axonal loss and demyelination in the optic nerves of EAE mice, with limited effects on inflammation. The prominent mild mitochondrial uncoupling properties of MP201, with slow elimination of DNP, may contribute to the neuroprotective effect by modulating the entire mitochondria's physiology directly. Results suggest that MP201 is a potential novel treatment for optic neuritis.
Collapse
|
76
|
Szalardy L, Zadori D, Bencsik K, Vecsei L, Klivenyi P. Unlike PPARgamma, neither other PPARs nor PGC-1alpha is elevated in the cerebrospinal fluid of patients with multiple sclerosis. Neurosci Lett 2017; 651:128-133. [PMID: 28483651 DOI: 10.1016/j.neulet.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Corroborating with prior experimental findings, we recently reported the pronounced elevation of peroxisome proliferator-activated receptor gamma (PPARγ) protein concentration in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS), in association with neuroinflammatory markers and clinical severity. Based on subsequent reports on the possible involvement of other PPARs and PPARγ coactivator-1alpha (PGC-1α) in neuroinflammation in MS, we analyzed the protein levels of PPARα, PPARβ/δ, and PGC-1α in a subset of CSF samples from the same cohort of relapsing-remitting MS patients. Unlike PPARγ, none of these proteins were found elevated in MS patients (n=25) compared to non-inflammatory controls (n=16), with the levels of PPARα and PPARβ/δ found generally below the limit of detection, and that of PGC-1α being detectable but comparable in both groups. The clinical and laboratory associations previously reported with PPARγ were however significant even in this smaller subset. The potential underlying causes of these differential alterations are discussed. The findings suggest that despite their proposed involvement in the regulation of inflammatory processes in MS, PPARα, PPARβ/δ, and PGC-1α proteins are not potential biomarkers of neuroinflammation in MS, and indicate a preferential role of PPARγ in the endogenous regulation of autoimmune response in the human CNS within its receptor family.
Collapse
Affiliation(s)
- Levente Szalardy
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Denes Zadori
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Krisztina Bencsik
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Laszlo Vecsei
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary; MTA-SZTE Neuroscience Research Group, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Peter Klivenyi
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
77
|
Hewes D, Tatomir A, Kruszewski AM, Rao G, Tegla CA, Ciriello J, Nguyen V, Royal W, Bever C, Rus V, Rus H. SIRT1 as a potential biomarker of response to treatment with glatiramer acetate in multiple sclerosis. Exp Mol Pathol 2017; 102:191-197. [DOI: 10.1016/j.yexmp.2017.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 11/30/2022]
|
78
|
Rajda C, Pukoli D, Bende Z, Majláth Z, Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020353. [PMID: 28208701 PMCID: PMC5343888 DOI: 10.3390/ijms18020353] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). There is increasing evidence that MS is not only characterized by immune mediated inflammatory reactions, but also by neurodegenerative processes. There is cumulating evidence that neurodegenerative processes, for example mitochondrial dysfunction, oxidative stress, and glutamate (Glu) excitotoxicity, seem to play an important role in the pathogenesis of MS. The alteration of mitochondrial homeostasis leads to the formation of excitotoxins and redox disturbances. Mitochondrial dysfunction (energy disposal failure, apoptosis, etc.), redox disturbances (oxidative stress and enhanced reactive oxygen and nitrogen species production), and excitotoxicity (Glu mediated toxicity) may play an important role in the progression of the disease, causing axonal and neuronal damage. This review focuses on the mechanisms of mitochondrial dysfunction (including mitochondrial DNA (mtDNA) defects and mitochondrial structural/functional changes), oxidative stress (including reactive oxygen and nitric species), and excitotoxicity that are involved in MS and also discusses the potential targets and tools for therapeutic approaches in the future.
Collapse
Affiliation(s)
- Cecilia Rajda
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Dániel Pukoli
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- Department of Neurology, Vaszary Kolos Hospital, 2500 Esztergom, Hungary.
| | - Zsuzsanna Bende
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, 6725 Szeged, Hungary.
| |
Collapse
|
79
|
Khan RS, Dine K, Bauman B, Lorentsen M, Lin L, Brown H, Hanson LR, Svitak AL, Wessel H, Brown L, Shindler KS. Intranasal Delivery of A Novel Amnion Cell Secretome Prevents Neuronal Damage and Preserves Function In A Mouse Multiple Sclerosis Model. Sci Rep 2017; 7:41768. [PMID: 28139754 PMCID: PMC5282572 DOI: 10.1038/srep41768] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
The ability of a novel intranasally delivered amnion cell derived biologic to suppress inflammation, prevent neuronal damage and preserve neurologic function in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis was assessed. Currently, there are no existing optic nerve treatment methods for disease or trauma that result in permanent vision loss. Demyelinating optic nerve inflammation, termed optic neuritis, induces permanent visual dysfunction due to retinal ganglion cell damage in multiple sclerosis and experimental autoimmune encephalomyelitis. ST266, the biological secretome of Amnion-derived Multipotent Progenitor cells, contains multiple anti-inflammatory cytokines and growth factors. Intranasally administered ST266 accumulated in rodent eyes and optic nerves, attenuated visual dysfunction, and prevented retinal ganglion cell loss in experimental optic neuritis, with reduced inflammation and demyelination. Additionally, ST266 reduced retinal ganglion cell death in vitro. Neuroprotective effects involved oxidative stress reduction, SIRT1-mediated mitochondrial function promotion, and pAKT signaling. Intranasal delivery of neuroprotective ST266 is a potential novel, noninvasive therapeutic modality for the eyes, optic nerves and brain. The unique combination of biologic molecules in ST266 provides an innovative approach with broad implications for suppressing inflammation in autoimmune diseases, and for preventing neuronal damage in acute neuronal injury and chronic neurodegenerative diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Reas S Khan
- Scheie Eye Institute and FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kimberly Dine
- Scheie Eye Institute and FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bailey Bauman
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Lorentsen
- Drexel University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisa Lin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helayna Brown
- Drexel University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Howard Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | - Larry Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | - Kenneth S Shindler
- Scheie Eye Institute and FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
80
|
Sirtuins Expression and Their Role in Retinal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3187594. [PMID: 28197299 PMCID: PMC5288547 DOI: 10.1155/2017/3187594] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023]
Abstract
Sirtuins have received considerable attention since the discovery that silent information regulator 2 (Sir2) extends the lifespan of yeast. Sir2, a nicotinamide adenine dinucleotide- (NAD-) dependent histone deacetylase, serves as both a transcriptional effector and energy sensor. Oxidative stress and apoptosis are implicated in the pathogenesis of neurodegenerative eye diseases. Sirtuins confer protection against oxidative stress and retinal degeneration. In mammals, the sirtuin (SIRT) family consists of seven proteins (SIRT1–SIRT7). These vary in tissue specificity, subcellular localization, and enzymatic activity and targets. In this review, we present the current knowledge of the sirtuin family and discuss their structure, cellular location, and biological function with a primary focus on their role in different neuroophthalmic diseases including glaucoma, optic neuritis, and age-related macular degeneration. The potential role of certain therapeutic targets is also described.
Collapse
|
81
|
Figueira I, Menezes R, Macedo D, Costa I, Nunes dos Santos C. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr Neuropharmacol 2017; 15:562-594. [PMID: 27784225 PMCID: PMC5543676 DOI: 10.2174/1570159x14666161026151545] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ageing can be simply defined as the process of becoming older, which is genetically determined but also environmentally modulated. With the continuous increase of life expectancy, quality of life during ageing has become one of the biggest challenges of developed countries. The quest for a healthy ageing has led to the extensive study of plant polyphenols with the aim to prevent age-associated deterioration and diseases, including neurodegenerative diseases. The world of polyphenols has fascinated researchers over the past decades, and in vitro, cell-based, animal and human studies have attempted to unravel the mechanisms behind dietary polyphenols neuroprotection. METHODS In this review, we compiled some of the extensive and ever-growing research in the field, highlighting some of the most recent trends in the area. RESULTS The main findings regarding polypolyphenols neuroprotective potential performed using in vitro, cellular and animal studies, as well as human trials are covered in this review. Concepts like bioavailability, polyphenols biotransformation, transport of dietary polyphenols across barriers, including the blood-brain barrier, are here explored. CONCLUSION The diversity and holistic properties of polypolyphenol present them as an attractive alternative for the treatment of multifactorial diseases, where a multitude of cellular pathways are disrupted. The underlying mechanisms of polypolyphenols for nutrition or therapeutic applications must be further consolidated, however there is strong evidence of their beneficial impact on brain function during ageing. Nevertheless, only the tip of the iceberg of nutritional and pharmacological potential of dietary polyphenols is hitherto understood and further research needs to be done to fill the gaps in pursuing a healthy ageing.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
| | - Regina Menezes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Diana Macedo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Inês Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Cláudia Nunes dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| |
Collapse
|
82
|
|
83
|
Wang J, Zhao C, Kong P, Bian G, Sun Z, Sun Y, Guo L, Li B. Methylene blue alleviates experimental autoimmune encephalomyelitis by modulating AMPK/SIRT1 signaling pathway and Th17/Treg immune response. J Neuroimmunol 2016; 299:45-52. [DOI: 10.1016/j.jneuroim.2016.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
|
84
|
Wang D, Li SP, Fu JS, Zhang S, Bai L, Guo L. Resveratrol defends blood-brain barrier integrity in experimental autoimmune encephalomyelitis mice. J Neurophysiol 2016; 116:2173-2179. [PMID: 27535376 DOI: 10.1152/jn.00510.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022] Open
Abstract
The mouse autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS), is primarily characterized as dysfunction of the blood-brain barrier (BBB). Resveratrol exhibits anti-inflammatory, antioxidative, and neuroprotective activities. We investigated the beneficial effects of resveratrol in protecting the integrity of the BBB in EAE mice and observed improved clinical outcome in the EAE mice after resveratrol treatment. Evans blue (EB) extravasation was used to detect the disruption of BBB. Western blot were used to detected the tight junction proteins and adhesion molecules zonula occludens-1 (ZO-1), occludin, ICAM-1, and VCAM-1. Inflammatory factors inducible nitric oxide synthase (iNOS), IL-1β, and arginase 1 were evaluated by quantitative RT-PCR (qPCR) and IL-10 by ELISA. NADPH oxidase (NOX) levels were evaluated by qPCR, and its activity was analyzed by lucigenin-derived chemiluminescence. Resveratrol at doses of 25 and 50 mg/kg produced a dose-dependent decrease in EAE paralysis and EB leakage, ameliorated EAE-induced loss of tight junction proteins ZO-1, occludin, and claudin-5, as well as repressed the EAE-induced increase in adhesion proteins ICAM-1 and VCAM-1. In addition, resveratrol suppressed the EAE-induced overexpression of proinflammatory transcripts iNOS and IL-1β and upregulated the expression of anti-inflammatory transcripts arginase 1 and IL-10 cytokine in the brain. Furthermore, resveratrol downregulated the overexpressed NOX2 and NOX4 in the brain and suppressed NADPH activity. Resveratrol ameliorates the clinical severity of MS through maintaining the BBB integrity in EAE mice.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; and
| | - Shi-Ping Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; and
| | - Jin-Sheng Fu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; and
| | - Sheng Zhang
- Department of Emergency, Xingtai People's Hospital, Xingtai, Hebei, People's Republic of China
| | - Lin Bai
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; and
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; and
| |
Collapse
|
85
|
Zhang K, Guo Y, Ge Z, Zhang Z, Da Y, Li W, Zhang Z, Xue Z, Li Y, Ren Y, Jia L, Chan KH, Yang F, Yan J, Yao Z, Xu A, Zhang R. Adiponectin Suppresses T Helper 17 Cell Differentiation and Limits Autoimmune CNS Inflammation via the SIRT1/PPARγ/RORγt Pathway. Mol Neurobiol 2016; 54:4908-4920. [PMID: 27514756 DOI: 10.1007/s12035-016-0036-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
T helper 17 (Th17) cells are vital components of the adaptive immune system involved in the pathogenesis of most autoimmune and inflammatory syndromes, and adiponectin(ADN) is correlated with inflammatory diseases such as multiple sclerosis (MS) and type II diabetes. However, the regulatory effects of adiponectin on pathogenic Th17 cell and Th17-mediated autoimmune central nervous system (CNS) inflammation are not fully understood. In this study, we demonstrated that ADN could inhibit Th1 and Th17 but not Th2 cells differentiation in vitro. In the in vivo study, we demonstrated that ADN deficiency promoted CNS inflammation and demyelination and exacerbated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. Furthermore, ADN deficiency increased the Th1 and Th17 cell cytokines of both the peripheral immune system and CNS in mice suffering from EAE. It is worth mentioning that ADN deficiency predominantly promoted the antigen-specific Th17 cells response in autoimmune encephalomyelitis. In addition, in vitro and in vivo, ADN upregulated sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ (PPARγ) and inhibited retinoid-related orphan receptor-γt (RORγt); the key transcription factor during Th17 cell differentiation. These results systematically uncovered the role and mechanism of adiponectin on pathogenic Th17 cells and suggested that adiponectin could inhibit Th17 cell-mediated autoimmune CNS inflammation.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Yawei Guo
- Department of Family Medicine and Primary Care, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhenzhen Ge
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Zhihui Zhang
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yurong Da
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Wen Li
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Zimu Zhang
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenyi Xue
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Li
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yinghui Ren
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Long Jia
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Koon-Ho Chan
- State Key laboratory of Pharmaceutical Biotechnology, and Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fengrui Yang
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Jun Yan
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, 300381, China
| | - Zhi Yao
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Aimin Xu
- State Key laboratory of Pharmaceutical Biotechnology, and Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rongxin Zhang
- Department of Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
86
|
Wang J, Zhao C, Kong P, Sun H, Sun Z, Bian G, Sun Y, Guo L. Treatment with NAD(+) inhibited experimental autoimmune encephalomyelitis by activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice. Int Immunopharmacol 2016; 39:287-294. [PMID: 27500459 DOI: 10.1016/j.intimp.2016.07.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 10/21/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) plays vital roles in mitochondrial functions, cellular energy metabolism and calcium homeostasis. In this study, we investigated the effect of NAD(+) administration for the treatment of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. EAE, a classical animal model of multiple sclerosis (MS), was induced by subcutaneous injection of myelin oligodendrocyteglycoprotein (MOG). The mice were treated with 250mg/kg (body weight) NAD(+) in PBS administered intraperitoneally once daily. We observed that NAD(+) treatment could lessen the severity of EAE. Additionally, NAD(+) treatment attenuated pathological injuries of EAE mice. We also found that the AMP-activated protein kinase (AMPK)/silent mating-type information regulation 2 homolog 1(SIRT1) pathway was activated in the NAD(+)-treated mice and NAD(+) treatment suppressed pro-inflammatory T cell responses. Our findings demonstrated that NAD(+) could be an effective and promising agent to treat multiple sclerosis and its effects on other autoimmune diseases should be explored.
Collapse
Affiliation(s)
- Jueqiong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Congying Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Peng Kong
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, Hebei 050000, China
| | - Zhe Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Guanyun Bian
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
87
|
Nimmagadda VKC, Makar TK, Chandrasekaran K, Sagi AR, Ray J, Russell JW, Bever CT. SIRT1 and NAD+ precursors: Therapeutic targets in multiple sclerosis a review. J Neuroimmunol 2016; 304:29-34. [PMID: 27474445 DOI: 10.1016/j.jneuroim.2016.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
Abstract
Neurodegeneration is an important determinant of disability in multiple sclerosis (MS) but while currently approved treatments reduce inflammation, they have not been shown to reduce neurodegeneration. SIRT1, a NAD dependent protein deacetylase, has been implicated in the pathogenesis of neurodegeneration in neurological diseases including MS. We have studied the role of SIRT1 in experimental autoimmune encephalomyelitis (EAE) and found evidence for a neuroprotective role. In this review we summarize the most recent findings from the use of SIRT1 activators and SIRT1 overexpression in transgenic mice. These data support provide a rational for the use of SIRT1 activators in MS.
Collapse
Affiliation(s)
- Vamshi K C Nimmagadda
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Tapas K Makar
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA; VA Multiple Sclerosis Center of Excellence East, Baltimore, MD 21201, USA
| | | | - Avinash Rao Sagi
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA
| | - Jayanta Ray
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA
| | - James W Russell
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Christopher T Bever
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA; VA Multiple Sclerosis Center of Excellence East, Baltimore, MD 21201, USA.
| |
Collapse
|
88
|
Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M. Epigenetic Modifications and Therapy in Multiple Sclerosis. Neuromolecular Med 2016; 19:11-23. [PMID: 27382982 DOI: 10.1007/s12017-016-8422-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Breakthroughs in genetic studies, like whole human genome sequencing and genome-wide association studies (GWAS), have richened our knowledge of etiopathology of autoimmune diseases (AID) through discovery of genetic patterns. Nonetheless, the precise etiology of autoimmune diseases remains largely unknown. The lack of complete concordance of autoimmune disease in identical twins suggests that non-genetic factors also play a major role in determining disease susceptibility. Although there is no certain definition, epigenetics has been known as heritable alterations in gene function without changes in the nucleotide sequence. DNA methylation, histone modifications, and microRNA-associated gene expression suppression are the central mechanisms for epigenetic regulations. Multiple sclerosis (MS) is a disorder of the central nervous system (CNS), characterized by both inflammatory and neurodegenerative features. Although studies on epigenetic alterations in MS only began in the past decade, a mounting number of surveys suggest that epigenetic changes may be involved in the initiation and development of MS, probably through bridging the effects of environmental risk factors to genetics. Arming with clear understanding of epigenetic dysregulations underpins development of epigenetic therapies. Identifying agents inhibiting the enzymes controlling epigenetic modifications, particularly DNA methyltransferases and histone deacetylases, will be promising therapeutic tool toward MS. In the article underway, it is aimed to go through the recent progresses, attempting to disclose how epigenetics associates with the pathogenesis of MS and how can be used as therapeutic approach.
Collapse
Affiliation(s)
- Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Jafari
- Markey Cancer Center, University of Kentucky, 741 South Limestone St. Biomedical Biological Research Building (BBSRB), 378D, Lexington, KY, 40506, USA.
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Jafarnejad
- Department of Pharmacology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| |
Collapse
|
89
|
Resveratrol Promotes Remyelination in Cuprizone Model of Multiple Sclerosis: Biochemical and Histological Study. Mol Neurobiol 2016; 54:3219-3229. [PMID: 27067589 DOI: 10.1007/s12035-016-9891-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating neurodegenerative disease, representing a major cause of neurological disability in young adults. Resveratrol is a stilbenoid polyphenol, known to pass blood brain barrier and exhibit antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. Cuprizone model of MS is particularly beneficial in studying demyelination/remyelination. Our study examined the potential neuroprotective and pro-remyelination effects of resveratrol in cuprizone-intoxicated C57Bl/6 mice. Mice were fed with chow containing 0.7 % cuprizone for 7 days, followed by 3 weeks on 0.2 % cuprizone diet. Resveratrol (250 mg/kg/day, p.o.) was given for 3 weeks starting from the second week. At the end of the experiment, animals were tested on rotarod to evaluate changes in balance and motor coordination. Mice were then sacrificed to measure the brain content of glutathione, lipid peroxidation products, adenosine triphosphate, and phospho-inhibitory subunit of nuclear factor κB-α. The activities of cytochrome oxidase and superoxide dismutase were also assessed. The gene expression of myelin basic protein, 2',3'-cyclic nucleotide 3' phosphodiesterase, oligodendrocyte transcription factor-1 (Olig1), NF-κB p65 subunit, and tumor necrosis factor-α was also estimated. Luxol fast blue/periodic acid-Schiff stained brain sections were blindly scored to assess the myelin status. Resveratrol effectively enhanced motor coordination and balance, reversed cuprizone-induced demyelination, improved mitochondrial function, alleviated oxidative stress, and inhibited NF-κB signaling. Interestingly, resveratrol increased Olig1 expression that is positively correlated to active remyelination. The present study may be the first to indicate a pro-remyelinative effect for resveratrol which might represent a potential additive benefit in treating MS.
Collapse
|
90
|
Monserrat Hernández-Hernández E, Serrano-García C, Antonio Vázquez-Roque R, Díaz A, Monroy E, Rodríguez-Moreno A, Florán B, Flores G. Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats. Synapse 2016; 70:206-17. [DOI: 10.1002/syn.21888] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 12/27/2022]
Affiliation(s)
| | - Carolina Serrano-García
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; México
| | | | - Alfonso Díaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Elibeth Monroy
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; México
| | | | - Benjamin Florán
- Departamento de Fisiología; Biofísica y Neurociencias, Centro de Investigaciones y Estudios Avanzados IPN; DF México
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; México
| |
Collapse
|
91
|
Yoon H, Kleven A, Paulsen A, Kleppe L, Wu J, Ying Z, Gomez-Pinilla F, Scarisbrick IA. Interplay between exercise and dietary fat modulates myelinogenesis in the central nervous system. Biochim Biophys Acta Mol Basis Dis 2016; 1862:545-555. [PMID: 26826016 DOI: 10.1016/j.bbadis.2016.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/15/2015] [Accepted: 01/14/2016] [Indexed: 12/14/2022]
Abstract
Here we show that the interplay between exercise training and dietary fat regulates myelinogenesis in the adult central nervous system. Mice consuming high fat with coordinate voluntary running wheel exercise for 7weeks showed increases in the abundance of the major myelin membrane proteins, proteolipid (PLP) and myelin basic protein (MBP), in the lumbosacral spinal cord. Expression of MBP and PLP RNA, as well that for Myrf1, a transcription factor driving oligodendrocyte differentiation were also differentially increased under each condition. Furthermore, expression of IGF-1 and its receptor IGF-1R, known to promote myelinogenesis, were also increased in the spinal cord in response to high dietary fat or exercise training. Parallel increases in AKT signaling, a pro-myelination signaling intermediate activated by IGF-1, were also observed in the spinal cord of mice consuming high fat alone or in combination with exercise. Despite the pro-myelinogenic effects of high dietary fat in the context of exercise, high fat consumption in the setting of a sedentary lifestyle reduced OPCs and mature oligodendroglia. Whereas 7weeks of exercise training alone did not alter OPC or oligodendrocyte numbers, it did reverse reductions seen with high fat. Evidence is presented suggesting that the interplay between exercise and high dietary fat increase SIRT1, PGC-1α and antioxidant enzymes which may permit oligodendroglia to take advantage of diet and exercise-related increases in mitochondrial activity to yield increases in myelination despite higher levels of reactive oxygen species.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew Kleven
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Alex Paulsen
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Laurel Kleppe
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | | | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
92
|
Martin A, Tegla CA, Cudrici CD, Kruszewski AM, Azimzadeh P, Boodhoo D, Mekala AP, Rus V, Rus H. Role of SIRT1 in autoimmune demyelination and neurodegeneration. Immunol Res 2015; 61:187-97. [PMID: 25281273 DOI: 10.1007/s12026-014-8557-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by chronic inflammation of the central nervous system, in which many factors can act together to influence disease susceptibility and progression. SIRT1 is a member of the histone deacetylase class III family of proteins and is an NAD(+)-dependent histone and protein deacetylase. SIRT1 can induce chromatin silencing through the deacetylation of histones and plays an important role as a key regulator of a wide variety of cellular and physiological processes including DNA damage, cell survival, metabolism, aging, and neurodegeneration. It has gained a lot of attention recently because many studies in animal models of demyelinating and neurodegenerative diseases have shown that SIRT1 induction can ameliorate the course of the disease. SIRT1 expression was found to be decreased in the peripheral blood mononuclear cells of MS patients during relapses. SIRT1 represents a possible biomarker of relapses and a potential new target for therapeutic intervention in MS. Modulation of SIRT1 may be a valuable strategy for treating or preventing MS and neurodegenerative central nervous system disorders.
Collapse
Affiliation(s)
- Alvaro Martin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
The role and potential mechanism of resveratrol in the prevention and control of epilepsy. Future Med Chem 2015; 7:2005-18. [PMID: 26505553 DOI: 10.4155/fmc.15.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epilepsy is one of the most common diseases affecting the nervous system, with more than 50 million patients suffering from epilepsy worldwide. Although epilepsy has been prevalent for thousands of years, it is still not possible to completely control the disease. Despite an increase in the number of available antiepileptic drugs, the incidence of epilepsy and its cure rate have not been substantially improved; thus, there is an urgent need to identify new drugs that treat, cure or protect against epilepsy. Resveratrol is a polyphenol compound with a broad range of biological activity; not only it has considerable antiepileptic effects, but it is also neuroprotective and has functions to counter epileptic depression. Resveratrol has the potential to be a new antiepileptic drug, thus further studies are needed to better investigate its potential.
Collapse
|
94
|
Poulose N, Raju R. Sirtuin regulation in aging and injury. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2442-55. [PMID: 26303641 DOI: 10.1016/j.bbadis.2015.08.017] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
Sirtuins or Sir2 family of proteins are a class of NAD(+) dependent protein deacetylases which are evolutionarily conserved from bacteria to humans. Some sirtuins also exhibit mono-ADP ribosyl transferase, demalonylation and desuccinylation activities. Originally identified in the yeast, these proteins regulate key cellular processes like cell cycle, apoptosis, metabolic regulation and inflammation. Humans encode seven sirtuin isoforms SIRT1-SIRT7 with varying intracellular distribution. Apart from their classic role as histone deacetylases regulating transcription, a number of cytoplasmic and mitochondrial targets of sirtuins have also been identified. Sirtuins have been implicated in longevity and accumulating evidence indicate their role in a spectrum of diseases like cancer, diabetes, obesity and neurodegenerative diseases. A number of studies have reported profound changes in SIRT1 expression and activity linked to mitochondrial functional alterations following hypoxic-ischemic conditions and following reoxygenation injury. The SIRT1 mediated deacetylation of targets such as PGC-1α, FOXO3, p53 and NF-κb has profound effect on mitochondrial function, apoptosis and inflammation. These biological processes and functions are critical in life-span determination and outcome following injury. Aging is reported to be characterized by declining SIRT1 activity, and its increased expression or activation demonstrated prolonged life-span in lower forms of animals. A pseudohypoxic state due to declining NAD(+) has also been implicated in aging. In this review we provide an overview of studies on the role of sirtuins in aging and injury.
Collapse
Affiliation(s)
- Ninu Poulose
- Georgia Regents University, Augusta, GA 30912, United States
| | - Raghavan Raju
- Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
95
|
Plemel JR, Juzwik CA, Benson CA, Monks M, Harris C, Ploughman M. Over-the-counter anti-oxidant therapies for use in multiple sclerosis: A systematic review. Mult Scler 2015; 21:1485-95. [PMID: 26286700 DOI: 10.1177/1352458515601513] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/27/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Anti-oxidant compounds that are found in over-the-counter (OTC) supplements and foods are gaining interest as treatments for multiple sclerosis (MS). They are widely used by patients, sometimes without a clear evidence base. OBJECTIVE We conducted a systematic review of animal and clinical research to determine the evidence for the benefits of OTC anti-oxidants in MS. METHODS Using predefined criteria, we searched key databases. Two authors scrutinized all studies against inclusion/exclusion criteria, assessed study risk-of-bias and extracted results. RESULTS Of the 3507 titles, 145 met criteria and included compounds, α(alpha)-lipoic acid (ALA), anti-oxidant vitamins, Ginkgo biloba, quercetin, resveratrol and epigallocatechin-3-gallate (ECGC). The strongest evidence to support OTC anti-oxidants was for compounds EGCG and ALA in animal models; both consistently showed anti-inflammatory/anti-oxidant effects and reduced neurological impairment. Only vitamin E, Ginkgo biloba and ALA were examined for efficacy in pilot clinical trials with either conflicting evidence or evidence of no benefit. CONCLUSION OTC anti-oxidants EGCG and ALA show the most consistent benefit, however only in preclinical studies. There is no evidence that they alter MS relapses or progression. Future work should focus on testing more of these therapies for clinical efficacy before recommending them to MS patients.
Collapse
Affiliation(s)
- Jason R Plemel
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Canada
| | - Camille A Juzwik
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, Canada
| | - Curtis A Benson
- Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - Michael Monks
- Recovery & Performance Laboratory, Memorial University, Canada
| | - Chelsea Harris
- Recovery & Performance Laboratory, Memorial University, Canada
| | | |
Collapse
|
96
|
Yu SH, Liu LJ, Lv B, Che CL, Fan DP, Wang LF, Zhang YM. Inhibition of bleomycin-induced pulmonary fibrosis by bone marrow-derived mesenchymal stem cells might be mediated by decreasing MMP9, TIMP-1, INF-γ and TGF-β. Cell Biochem Funct 2015; 33:356-66. [PMID: 26178702 DOI: 10.1002/cbf.3118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/08/2022]
Abstract
The study was aimed to investigate the mechanism and administration timing of bone marrow-derived mesenchymal stem cells (BMSCs) in bleomycin (BLM)-induced pulmonary fibrosis mice. Thirty-six mice were divided into six groups: control group (saline), model group (intratracheal administration of BLM), day 1, day 3 and day 6 BMSCs treatment groups and hormone group (hydrocortisone after BLM treatment). BMSCs treatment groups received BMSCs at day 1, 3 or 6 following BLM treatment, respectively. Haematoxylin and eosin and Masson staining were conducted to measure lung injury and fibrosis, respectively. Matrix metalloproteinase (MMP9), tissue inhibitor of metalloproteinase-1 (TIMP-1), γ-interferon (INF-γ) and transforming growth factor β1 (TGF-β) were detected in both lung tissue and serum. Histologically, the model group had pronounced lung injury, increased inflammatory cells and collagenous fibres and up-regulated MMP9, TIMP-1, INF-γ and TGF-β compared with control group. The histological appearance of lung inflammation and fibrosis and elevation of these parameters were inhibited in BMSCs treatment groups, among which, day 3 and day 6 treatment groups had less inflammatory cells and collagenous fibres than day 1 treatment group. BMSCs might suppress lung fibrosis and inflammation through down-regulating MMP9, TIMP-1, INF-γ and TGF-β. Delayed BMSCs treatment might exhibit a better therapeutic effect. Highlights are as follows: 1. BMSCs repair lung injury induced by BLM. 2. BMSCs attenuate pulmonary fibrosis induced by BLM. 3. BMSCs transplantation down-regulates MMP9 and TIMP-1. 4. BMSCs transplantation down-regulates INF-γ and TGF-β. 5. Delayed transplantation timing of BMSCs might exhibit a better effect against BLM.
Collapse
Affiliation(s)
- Shi-huan Yu
- Department of Pulmonary Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-jie Liu
- Department of Pulmonary Disease, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Lv
- Department of Pulmonary Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chun-li Che
- Department of Pulmonary Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Da-ping Fan
- Department of Pulmonary Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-feng Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi-mei Zhang
- Department of Pulmonary Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
97
|
Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:725370. [PMID: 26106458 PMCID: PMC4461760 DOI: 10.1155/2015/725370] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/06/2015] [Accepted: 05/18/2015] [Indexed: 01/28/2023]
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system. Different trigger pathologies have been suggested by the primary cytodegenerative “inside-out” and primary inflammation-driven “outside-in” hypotheses. Recent data indicate that mitochondrial injury and subsequent energy failure are key factors in the induction of demyelination and neurodegeneration. The brain weighs only a few percent of the body mass but accounts for approximately 20% of the total basal oxygen consumption of mitochondria. Oxidative stress induces mitochondrial injury in patients with multiple sclerosis and energy failure in the central nervous system of susceptible individuals. The interconnected mechanisms responsible for free radical production in patients with multiple sclerosis are as follows: (i) inflammation-induced production of free radicals by activated immune cells, (ii) liberation of iron from the myelin sheets during demyelination, and (iii) mitochondrial injury and thus energy failure-related free radical production. In the present review, the different sources of oxidative stress and their relationships to patients with multiple sclerosis considering tissue injury mechanisms and clinical aspects have been discussed.
Collapse
|
98
|
Nishikawa K, Iwaya K, Kinoshita M, Fujiwara Y, Akao M, Sonoda M, Thiruppathi S, Suzuki T, Hiroi S, Seki S, Sakamoto T. Resveratrol increases CD68⁺ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice. Mol Nutr Food Res 2015; 59:1155-70. [PMID: 25677089 DOI: 10.1002/mnfr.201400564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/27/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022]
Abstract
SCOPE Resveratrol reportedly improves fatty liver. This study purposed to elucidate the effect of resveratrol on fatty liver in mice fed a high-fat (HF) diet, and to investigate the role of liver macrophages (Kupffer cells). METHODS AND RESULTS C57BL/6 mice were divided into three groups, receiving either a control diet, HF diet (50% fat), or HF supplemented with 0.2% resveratrol (HF + res) diet, for 8 weeks. Compared with the HF group, the HF + res group exhibited markedly attenuated fatty liver, and reduced lipid droplets (LDs) in hepatocytes. Proteomic analysis demonstrated that the most downregulated protein in the livers of the HF + res group was adipose differentiation-related protein (ADFP), which is a major constituent of LDs and reflects lipid accumulation in cells. The HF + res group exhibited greatly increased numbers of CD68(+) Kupffer cells with phagocytic activity. Immunohistochemistry showed that several CD68(+) Kupffer cells were colocalized with ADFP immunoreaction in the HF + res group. Additionally, the HF + res group demonstrated markedly decreased TNF-alpha production, which confirmed by both liver mononuclear cells stimulated by LPS in vitro and in situ hybridization analysis, compared with the HF group. CONCLUSION Resveratrol ameliorated fatty liver and increased CD68-positive Kupffer cells with downregulating ADFP expression.
Collapse
Affiliation(s)
| | - Keiichi Iwaya
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Yoko Fujiwara
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mai Akao
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mariko Sonoda
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Suresh Thiruppathi
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Sadayuki Hiroi
- Department of Laboratory Medicine, National Defense Medical College, Saitama, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Toshihisa Sakamoto
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
99
|
Novelle MG, Wahl D, Diéguez C, Bernier M, de Cabo R. Resveratrol supplementation: Where are we now and where should we go? Ageing Res Rev 2015; 21:1-15. [PMID: 25625901 DOI: 10.1016/j.arr.2015.01.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 01/15/2023]
Abstract
Pre-clinical findings have provided mounting evidence that resveratrol, a dietary polyphenol, may confer health benefits and protect against a variety of medical conditions and age-related complications. However, there is no consistent evidence of an increased protection against metabolic disorders and other ailments when comparing studies in laboratory animals and humans. A number of extraneous and potential confounding variables can affect the outcome of clinical research. To date, most of the studies that have investigated the effect of resveratrol administration on patient outcomes have been limited by their sample sizes. In this review, we will survey the latest advances regarding the timing, dosage, formulation, bioavailability, toxicity of resveratrol, and resveratrol-drug interactions in human studies. Moreover, the present report focuses on the actions of resveratrol treatment in combating diseases, such as cancer, diabetes, neurodegeneration, cardiovascular disease, and other age-related ailments.
Collapse
Affiliation(s)
- Marta G Novelle
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Devin Wahl
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Carlos Diéguez
- Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
100
|
Hesperidin, a Citrus Flavonoid, Has the Ameliorative Effects Against Experimental Autoimmune Encephalomyelitis (EAE) in a C57BL/J6 Mouse Model. Neurochem Res 2015; 40:1111-20. [PMID: 25859982 DOI: 10.1007/s11064-015-1571-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
The aim of this study was determined the effects of Hesperidin (HP) on neuronal damage in brain tissue caused by Experimental allergic encephalomyelitis (EAE), an established model of multiple sclerosis in C57BL/J6 mice. To explore 40 mice were equally divided into four groups: (1) Control, (2) EAE, (3) HP, and (4) HP + EAE. 14 days after induction of EAE with MOG35-55 and pertussis toxin, the mice treated with HP at the doses of 50 mg/kg/day for 7 days subcutaneously. To our results HP treatment prevents the oxidative stress caused by EAE via a decrease in lipid peroxidations and increase in elements of the antioxidant defense systems in brain tissue. Also, EAE elevate the IL-17, express the pro-inflammatory cytokines, and caspase-3-like immunreactivity, show apoptosis, staining in EAE mice brain and increased the incidence of histopathological damage. However, immonohistochemical and histological changes were reversed with HP. Moreover, elevated TNF-α and IL-1β levels, a result of EAE, were decreased in serum and neurological deficits as clinical signs were reversed with HP treatment in EAE mice, given HP. In conclusion, HP treatment effectively prevents oxidative, immunological and histological damage in the brain caused by EAE. It was thought that the beneficial effects of HP are likely a result of its strong antioxidant and anti-inflammatory properties.
Collapse
|